七年级数学阶段性测试
南通海安市十三校2023-2024七年级上学期第一次阶段性测试数学试卷及答案
海安市十三校2023年七年级数学第一次月考试卷一.选择题(每题3分共30分)1. 在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做,那么小东跳出了3.85米,记作()A. B. C. D.2. 神舟七号进入地表上空,绕地球运转一周,一共运转了42100000米,请用科学记数法来表示()A. 米B. 米C. 米D. 米3. 如图,数轴上的点A表示的数可能是()A-4 B. -4 C. -3 D. -34. 下列各对数中,互为相反数的是()A. 和2B. 4和C. 和-3D. 5和5. 一种袋装大米的质量标识为“10±0.25千克”,则下列几袋大米中合格的是()A. 9.70千克B. 10.30千克C. 10.51千克D. 9.80千克6. 若,则x与y的关系是()A. 相等或互为相反数B. 都是零C. 互为相反数D. 相等7. 如果,且,那么一定正确的是()A. a为正数,且B. a为负数,且C. b为负数,且D. b为正数,且8. 下列说法正确的个数有().①倒数等于本身的数只有;②相反数等于本身的数只有;③平方等于本身的数只有、、;④有理数不是整数就是分数;⑤有理数不是正数就是负数.A. 个B. 个C. 个D. 个9. 有理数a,b在轴上表示如图所示,则下列结论中:①ab<0,②a+b<0,③a﹣b<0,④a<,⑤﹣a>﹣b,正确的有()A. 2个B. 3个C. 4个D. 5个10. 下列图形都是有几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是()A. 32B. 29C. 28D. 26二.填空题(11~12每题3分,13~18每题4分,共30分)11. 某市某天最高气温是﹣1℃,最低气温是﹣5℃,那么当天的最大温差是_____℃.12. 的相反数是_________;=_________;的倒数是_________.13. 有理数2,,,,,,中,非负整数有________个.14. 四舍五入法,把130542精确到千位是_____.15. 绝对值大于1并且不大于3的整数是__________.16. 在数-5,-3,-2,2,6中,任意两个数相乘,所得的积中最小的数是________.17. 如图,一条数轴上有点,其中点表示的数分别是、,现在以点为折点将数轴向右对折,若点落在射线上,且,则点表示的数是______.18. 给出依次排列的一列数:,,﹣,,﹣,,…,按照此规律,第n个数为_________.三.解答题(共8小题)19计算:(1)(2)(3)(4)(5).。
七年级数学阶段性测试试卷
一、选择题(每题4分,共20分)1. 下列各数中,正数有()A. -2,-1,0,1B. 0,1C. -2,-1,0D. 2,-1,12. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆3. 下列代数式中,同类项是()A. 3a^2和5aB. 4x^2y和6xy^2C. 2ab和3abD. 5m^2n和-7m^2n4. 一个长方形的长是6cm,宽是3cm,它的周长是()A. 15cmB. 18cmC. 24cmD. 30cm5. 下列关于圆的叙述中,正确的是()A. 圆的半径等于圆的直径B. 圆的直径等于圆的周长C. 圆的周长等于圆的面积D. 圆的面积等于圆的直径二、填空题(每题4分,共20分)6. 0的倒数是______,0的相反数是______。
7. 下列各数中,有理数有______,无理数有______。
8. 等腰三角形的两个底角相等,底角为______。
9. 下列各式中,绝对值最小的是______。
10. 若一个数x满足x^2=4,则x的值为______。
三、解答题(每题10分,共30分)11. 简化下列各数:(1)3a^2b^3c^4 ÷ 3a^2b^2c^2(2)(2x^3y^2z) ÷ (x^2yz)12. 求下列函数的值:(1)f(x) = 2x + 1,当x=3时,f(x)的值为______。
(2)g(x) = 5 - 2x,当x=4时,g(x)的值为______。
13. 已知长方形的长为10cm,宽为6cm,求这个长方形的面积。
四、应用题(每题10分,共20分)14. 一辆汽车以每小时80公里的速度行驶,行驶了4小时后,又以每小时100公里的速度行驶了2小时,求这辆汽车总共行驶了多少公里。
15. 小明有一块长方形的地,长为20米,宽为15米,他想将这块地分成若干块相同大小的正方形,问最多可以分成多少块?答案:一、选择题1. B2. C3. C4. B5. D二、填空题6. 1/0,07. 有理数:-2,-1,0,1;无理数:2,-1,18. 45°9. -210. ±2三、解答题11. (1)b^2c^2(2)5xyz12. (1)f(x) = 23 + 1 = 7(2)g(x) = 5 - 24 = -313. 长方形面积 = 长× 宽= 10cm × 6cm = 60cm^2四、应用题14. 总行驶距离= 80km/h × 4h + 100km/h × 2h = 320km + 200km = 520km15. 地的面积 = 长× 宽= 20m × 15m = 300m^2正方形边长 = 地的面积÷ 正方形数量= 300m^2 ÷ 正方形数量正方形数量 = 地的面积÷ 正方形边长的平方最多可以分成的正方形数量 = 地的面积÷ (地长÷2)^2 = 300m^2 ÷ (20m ÷ 2)^2 = 15块。
七年级数学上册第1章至第2章阶段性测试卷(含答案)
学校姓名班级______________学号___________ ………………………………………线………………………………订…………………………………装……………………………………… 初一阶段性测试数学试卷(第一章)一、精心选一选(每小题3分,共30分) 1、-3の相反数是( ) A 、31- B 、31 C 、-3 D 、3 2、国家游泳中心――“水立方”是北京2008年奥运会场馆之一,它の外层膜の展开面积均为260000平方米,将260000用科学记数法表示应为( )A 、0.26×106B 、26×104C 、2.6×105D 、2.6×106 3、下列四个数中,最小の数是( )A 、-2B 、0C 、21- D 、32 4、一天早晨の温度是-7℃,中午の温度比早晨上升了11℃,那么中午の温度是( ) A 、11℃ B 、4℃ C 、18℃ D 、-4℃5、下列运算の结果中,是正数の是( )A 、(-1)×(-2010)B 、(-1)2010C 、(-2010)÷2010D 、-2010+16、计算(-1)3の结果是( )A 、1B 、-1C 、3D 、-37、下列各对数中,互为倒数の是( ) A 、2.051与- B 、5454与- C 、3223与 D 、2211与8、请指出下面计算错在哪一步( ))311()51()32()54(1+---+-+3115132541-+-= …………①)31132()51541(--+= …… …②)32(2--= …… …③322322=+= …… …④A 、①B 、②C 、③D 、④9、两个有理数a 、b 在数轴上の位置如图所示,则下列各式正确の是( )A 、a >bB 、a <bC 、-a <-bD 、b a <10、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256 …根据上述算式の规律,你认为22007の末位字是( )A 、2B 、4C 、8D 、611.0.004007有__ ___个有效数字A .2B .3C .4D .5二、细心填一填(每题3分,共45分) 1.收入358元记作+358元,则支出213元记作 _________元。
2022-2023学年人教版七年级数学上册第一次阶段性综合测试题+答案
2022-2023学年人教版七年级数学上册第一次阶段性综合测试题(附答案)一、精心选一选!(每小题3分,共30分)1.2020的相反数是()A.2020B.C.﹣2020D.﹣2.某种大米包装袋上印有这样的字样“净含量:25±0.25kg”,则一袋这种合格的大米其实际净含量可能是()A.25.28kg B.25.18kg C.24.69kg D.24.25kg3.下列各数:﹣|﹣1|,﹣32,(﹣)3,﹣()2,﹣(﹣1)2021,其中负数有()A.2个B.3个C.4个D.5个4.已知x=1,|y|=2且x>y,则x﹣y的值是()A.﹣1B.﹣3C.1D.35.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数)城市纽约巴黎东京芝加哥时差/时﹣13﹣7+1﹣14如果现在是北京时间9月11日15时,那么现在的纽约时间是()A.9月10日21时B.9月12日4时C.9月11日4时D.9月11日2时6.已知有理数a,b在数轴上的位置如图所示,则a,﹣b,﹣a,b从大到小的顺序为()A.b>a>﹣a>﹣b B.﹣a>﹣b>a>b C.b>﹣a>a>﹣b D.﹣a>a>﹣b>b 7.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和18.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±210.正方形ABCD在数轴上的位置如图所示,点A、D对应的数分别为0和﹣1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则连续翻转2021次后,数轴上数2021所对应的点是()A.点A B.点B C.点C D.点D二、填空题(共24分)11.的倒数是.12.某市某天最高气温是﹣1℃,最低气温是﹣5℃,那么当天的最大温差是℃.13.用“>”“<”填空.(1)﹣0.02 1;(2)﹣()﹣|﹣|.14.已知|x+2|+(y﹣4)2=0,求x y的值为.15.绝对值小于2.5的整数有个,它们的积为.16.小颖同学做这样一道题“计算|﹣5+△|”,其中“△”是被墨水污染看不清的一个数,她翻开后面的答案,得知该题的计算结果是3,那么“△”表示的数是.17.已知a为有理数,{a}表示不小于a的最小整数,如{}=1,{﹣3}=﹣3,则计算{﹣6}﹣{5}×{﹣1}÷{4.9}=.18.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是.三、解答题(满分66分)19.请你把下列各数填入表示它所在的数的集合内:(﹣3)4,﹣(﹣2)5,﹣62,|﹣0.5|﹣2,20%,﹣0.13,﹣7,,0,4.7,正有理数集合:{ …};整数集合:{ …};负分数集合:{ …};自然数集合:{ …}.20.画出数轴,在数轴上表示下列各数,并将上述数据用“<”号连接起来﹣(+4),﹣(﹣2),0,+(﹣1.5),﹣|﹣3|21.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(3)1×﹣(﹣)×2+(﹣)÷1;(4)(﹣﹣+)×(﹣24);(5)﹣22÷﹣[22﹣(1﹣×)]×12;(6)﹣81÷2×|﹣|﹣(﹣3)3÷27.22.已知:a与b互为相反数,c与d互为倒数,x是到原点距离为3的数,y是最大的负整数.求:2x﹣cd+6(a+b)﹣y2022的值.23.粮库3天内进出库的吨数记录如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过3天,粮库里的粮食是增多了还是减少了?(2)经过3天,粮库管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存量有多少吨?(3)如果进库出库的装卸费都是每吨5元,那么这3天要付出多少装卸费?24.(10分)已知|a|=5,b2=4,c3=﹣8.(1)若a<b<0,求a+b的值;(2)若abc>0,求a﹣3b﹣2c的值.25.在数轴上,若点C到点A的距离恰好是3,则称点C为点A的“幸福点”;若点C到点A,B的距离之和为6,则称点C为点A,B的“幸福中心”.(1)如图1,点A表示的数是﹣1,则点A的“幸福点”C表示的数是.(2)如图2,点M表示的数是﹣2,点N表示的数是4,若点C为点M,N的“幸福中心”,则点C表示的数可以是(填两个即可);(3)如图3,点A表示的数是﹣1,点B表示的数是4,点P表示的数是8,点Q从点P 出发,以2单位/s的速度沿数轴向左运动,经过多少时间点Q是点A,B的“幸福中心”?26.如图,数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的式子表示:第n行的最后一个数是,第n行第一个数是,第n行共有数;(3)求第n行各数之和(只需要写出算式)参考答案一、精心选一选!(每小题3分,共30分)1.解:2020的相反数是:﹣2020.故选:C.2.解:大米的质量的范围是:在25﹣0.25=24.75kg,与25+0.25=25.25kg之间都是合格的,在这个范围内的数只有B.故选:B.3.解:∵﹣|﹣1|=﹣1<0,﹣32=﹣9<0,(﹣)3=,﹣()2=﹣,﹣(﹣1)2021=1>0,∴负数有:﹣|﹣1|,﹣32,(﹣)3,﹣()2,共4个.故选:C.4.解:∵x=1,|y|=2且x>y,∴x=1,y=﹣2,则x﹣y=3.故选:D.5.解:根据题意可得,15+(﹣13)=2,即纽约时间为9月11日2时.故答案为:D.6.解:在数轴上表示a,﹣b,﹣a,b,如图:由数轴上的点表示的数右边的总比左边的大,得:﹣b<a<﹣a<b,即b>﹣a>a>﹣b.故选:C.7.解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C错误,符合题意,故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;。
七年级数学上册 阶段性测试(一)(含答案)
A.5个
C.3个
B.4个
D.2个
杭州良品图书有限公司
阶段性测试(一)
7.下列各式中正确的是( C ) A.-|-16|>0 4 5 C.- >- 7 7
第5 页
B.|0.2|>|-0.2| 1 D.-6<0
8.下表是某市四个景区今年2月份某天6时的气温,其中气温最低的景区是 ( C )
精彩练习 七年级 数学
阶段性测试(一) [考查范围:1.1~1.4]
杭州良品图书有限公司
一
A.-3
选择题
(每小题3分,共32分)
1.在数-3,-2,0,3中,大小在-1和2之间的数是( C ) B.-2 C.0 D.3
2.仔细思考以下各对量: ①胜二局与负三局; ②气温上升3 ℃与气温下降3 ℃; ③盈利5万元与支出5万元;
第 10 页
解:(1)原式=10+12=22. 3 1 7 (2)原式= - = . 5 4 20 10 3 (3)原式= × =5. 3 2 1 (4)原式=20÷ -15=80-15=65. 4
杭州良品图书有限公司
阶段性测试(一)
第 11 页
16.(10分)如图所示,已知A,B,C,D四个点在一条没有标明原点的数轴上. (1)若点A和点C表示的数互为相反数,则原点为__B __.
④增加10%与减少20%.
其中具有相反意义的量有( C A.1对 B.2对 ) C.3对 D.4对
杭州良品图书有限公司
阶段性测试(一)
3.下列说法中不正确的是( B )
A.0的相反数、绝对值都是0 B.0是最小的整数 C.0大于一切负数 D.0是最小的非负数 4.如图,在数轴上点A表示的数最可能是( C )
七年级数学阶段性检测试题
国的我了害厉2022级新初一数学检测试题时间:90分钟 分值:120分“没有比人更高的山,没有比脚更长的路”。
亲爱的同学们,准备好了吗?相信自己,沉着应答,你一定能愉快地完成这次测试之旅,祝你成功!一、选择题(本题共12个小题,每题3分,共36分)1、如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )2、下列平面图形不能够围成正方体的是( )3、将正方体的表面沿某些棱剪开,展成如图所示的平面图形, 则原正方体中与“国”字所在的面相对的面上标的字是( )A. 厉B.害C. 了D. 我4、12019-的相反数是( ) A .12019-B .12019C .2019D .-2019 5、在有理数−3,0,23,85- ,3.7,−2.5中,非负数的个数为( )个 A. 2 B. 3 C. 4 D. 56、下列说法中不正确...的个数是( ) ①两点之间,线段最短; ②延长线段到,使BC AB =;③射线没有端点; ④如图,点是直线的中点; ⑤射线与射线是同一条射线; ⑥延长直线到,使.A .2 B.3 C.4 D.57、纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )AB C A a OA AO CD E DE CD =A B D C A aA. 6月16日1时;6月15日10时B. 6月16日1时;6月14日10时C. 6月15日21时;6月15日10时D. 6月15日21时;6月16日12时8、若x 的相反数是3,│y│=5,则x +y 的值为( )A .-8B .2C .8或-2D .-8或29、如果0,0,ab a b <+>且a b <,则,a b 的正负情况是( )A.0,0a b >>B.0,0a b ><C.0,0a b <>D.0,0a b <<10、如图,A 、B 两点在数轴上表示的数分别为a 、b,下列式子成立的是( )A. ab>0B. a+b<0C. (b −1)(a+1)>0D. (b −1)(a −1)>011、学校、张明家、书店依次坐落在一条南北走向的大街上,学校在张明家的南边20米,书店在张明家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置( )A. 在家B. 在学校C. 在书店D. 不在上述地方12、下列说法中正确的有( )个.①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③一个有理数不是整数就是分数;④1是绝对值最小的数;⑤如果两个数的绝对值相等,那么这两个数相等;⑥正有理数和负有理数组成全体有理数.A.2B.3C.4D.5二、填空题(本题共6个小题,每题3分,共18分,只要求填最后结果)13、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,那么5千米高空处的气温是_______℃14、绝对值不大于4的所有整数的和是________15、数轴上的点A 到表示-1的点B 距离是6,则点A 表示的数为____________16、已知两根木条,一根长60cm ,一根长80cm ,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是_________cm.17、某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),(-3,2),(1,-7),则车上还有______人。
浙教版数学七年级上册阶段性检测卷(01)(测试范围:第1-3章)(含答案)
浙教版数学七年级上册阶段性检测卷(01)(测试范围:第1-3章)本卷满分120分,考试时间90分钟一、选择题(本大题共10小题,每小题3分,共30分)1.如果零上3℃记做+3℃,那么零下6℃记做()A.-6B.-6℃C.6D.6℃2.如图,数轴上的点A表示的数是-1,则在原点另一侧,到原点的距离与点A到原点的距离相等的点表示的数是()A.-2B.0C.1D.23.拒绝“餐桌浪费”,刻不容缓,每人一日三餐少浪费一粒米,全国一年就可节省31500000斤米,可供70000人吃一年.数据31500000用科学记数法表示为()A.0.315×108B.3.15×107C.31.5×106D.315×1054.下列运算正确的是()A.9=±3B.(-2)3=8C.--3=3D.-22=-45.在0,13,-1,2这四个数中,最小的是()A.0 B.13C.-1 D.26.下列各对数中,数值相等的是()A.32和23B.-32和(-3)2C.(-2)3和-23D.(-3×2)2和3×22 7.若实数x满足x3=81,则下列整数中与x最接近的是()A.3B.4C.5D.68.计算(-0.25)2022×(-4)2023的结果是()A.-1B.+1C.-4D.+49.实数a,b在数轴上对应的点的位置如图2-JD-1所示,则下列结论正确的是()A.b-a<0B.b-a<0C.a+b>0D.ab>010.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的数字1所对应的点重合,若将圆沿着数轴向右滚动(无滑动),则数轴上的数字2023所对应的点与圆周上字母所对应的点重合()A.AB.BC.CD.D二、填空题(本大题共6小题,每小题4分,共24分)11.4的算术平方根是_________;27的立方根是__________.12.化简:|3-2|=___________.13.定义一种新运算:a*b=2a-b,如1*2=2×1-2=0,则1*3=___.14.若 =2,b2=9,且ab<0,则a+b的值为________________.15.气象台记录了某地一周七天的气温变化情况(如下表).星期一二三四五六日气温变化(℃)+2-4-1-2+3-5-3其中正数表示这天与前一天相比气温上升的温度,负数表示这天与前一天相比气温下降的温度.已知上周日的气温是3℃,根据表中数据,请你判断该地本周最低气温是__________℃. 16.将1,2,3,5按图2-JD-4所示的方式排列.若规定(m,n)表示第m排从左向右第n个数,则(6,3)与(8,1)表示的两数之和是.三、解答题(本大题共8小题,共66分)17.(本题6分)把数π,0,-9,-3.14,2023,2,-312分别填入相应的横线内.整数:;负分数:;正数:.18.(本题6分)已知下列各数,回答问题:-3,0,0.25,π,112--, 3.(1)在如图所示的数轴上表示上述各数中的非负数(标在数轴上方,无理数标出大致位置),并把它们用“<”连接.(2)上述各数中介于-2与-1之间的数有________个.19.(本题6分)计算:(1)5-(-3);(2)(-12)34+(3)-12-12÷(-2)2×9.20.(本题8分)出租车司机老姚某天的营运全部是在一条笔直的东西走向的路上进行的.如果规定向东为正,向西为负,那么他这天的行车里程(单位:千米)记录如下:+5,-3,+6,-7,+6,-2,-5,+4,+6,-8.(1)将第几名乘客送到目的地时,老姚刚好回到出发点?(2)将最后一名乘客送到目的地时,老姚距出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过的部分每千米2元,则老姚在这天一共收入多少元?21.(本题8分)如图所示为4×4的网格(每个小正方形的边长均为1),请画两个格点正方形(顶点均在小正方形的顶点处),要求:其中一个的边长是有理数,另一个的边长是大于3的无理数,并写出它们的边长.22.(本题10分)阅读下列各式:(a×b)2=a2b2,(a×b)3=a3b3,(a×b)4=a4b4,…,并回答下面的三个问题:(1)验证:2×=,2100=;(2)通过上述验证,归纳得出:(a×b)n=, × × =;(3)请应用上述结论计算:(-0.125)2021×22022×42023.23.(本题10分)在学习《实数》这一章时,我们利用“逐步逼近”的方法可以计算出2的近似值,得出1.4<2<1.5.利用“逐步逼近”法,请回答下列问题:(1)若m<15<n(m,n精确到0.1,且m,n是连续的一位小数),则m=,n=;(2)若a是15+2的小数部分,b是15-2的整数部分,求( -15-2) 的平方根.24.(本题12分)如图,数轴的单位长度为1,P,A,B,Q是数轴上的四个点,且点A和点B所表示的两个数的绝对值相等.(1)点P表示的数是,点Q表示的数是;(2)点A以2个单位长度/秒的速度沿数轴的正方向运动,点B以1个单位长度/秒的速度沿数轴的负方向运动,且两点同时开始运动,那么当运动时间为1秒时,A,B两点之间的距离是多少? (3)点A以2个单位长度/秒的速度,点B以1个单位长度/秒的速度均沿数轴的正方向运动,且两点同时开始运动,当运动时间为多少秒时,A,B两点相距4个单位长度?答案解析一、选择题(本大题共10小题,每小题3分,共30分)1.选B.2.选C.3.选B.4.选D.5.选C.6.选C.7.选B.[解析]∵33=27,43=64,53=125,63=216,x3=81,∴与x最接近的整数是4.故选B.8.选C.9.选A.10.选C.二、填空题(本大题共6小题,每小题4分,共24分)11.答案:__2__;__3__.12.答案:__2-3__.13.答案:-1.14.答案:1或-1.15.答案:__-7__.16.答案:2+1三、解答题(本大题共8小题,共66分)17.(本题6分)解:整数:0,-9,2023;负分数:-3.14,-312;正数:π,2023,2.18.(本题6分)解:(1)0.25=0.5,112--=-112,属于非负数的有:0,0.25,π,3,表示在数轴上如答图所示.∴0<0.25<3<π.(2)介于-2与-1之间的数有-3,-|-112|,共2个.19.(本题6分)解:(1)原式=5+3=8.(2)原式=(-12)×13+(-12)×(-12)×56=-4+9-10=-5.(3)原式=-1-12÷4×3=-1-3×3=-1-9=-10.20.(本题8分)解:(1)5-3+6-7+6-2-5=0.答:将第7名乘客送到目的地时,老姚刚好回到出发点.(2)5-3+6-7+6-2-5+4+6-8=2(km).答:将最后一名乘客送到目的地时,老姚距出发点2km ,在出发点的东面.(3)8+2×(5-3)+8+8+2×(6-3)+8+2×(7-3)+8+2×(6-3)+8+8+2×(5-3)+8+2×(4-3)+8+2×(6-3)+8+2×(8-3)=126(元).答:老姚在这天一共收入126元.21.(本题8分)解:画出格点正方形如答图所示(答案不唯一).答图1中正方形的边长为2.答图2中正方形的面积为4×4-4×12×1×3=10,∴它的边长为10.22.(本题10分)23.(1)1-2.5(2)5或-3(3)①0.5②点M表示的数为-2023,点N表示的数为202123.(本题10分)解:(1)3.83.9(2)由题意,得5.2<15+2<5.4,2.3<15-2<2.5.因为a是15+2的小数部分,b是15-2的整数部分,所以a=15+2-5,b=2,所以( -15-2) =(-5)2=25,所以( -15-2) 的平方根为±25=±5.24.(本题12分)解:(1)-45(2)由题意,得运动前点A表示的数是-3,点B表示的数是3.当运动时间为1秒时,点A在数轴上表示的数为-3+2×1=-1,点B在数轴上表示的数为3-1×1=2,所以A,B两点之间的距离是2-(-1)=3.(3)分两种情况:①若点A追上点B之前,A,B两点相距4个单位长度,因为开始运动前,A,B两点相距3-(-3)=6(个)单位长度,运动后A,B两点相距4个单位长度,所以追及路程为6-4=2(个)单位长度,故追及时间为2÷(2-1)=2(秒).②若点A追上点B之后,A,B两点相距4个单位长度,则此时追及路程为6+4=10(个)单位长度,故追及时间为10÷(2-1)=10(秒).综上可知,当运动时间为2秒或10秒时,A,B两点相距4个单位长度.。
2022-2023学年人教版七年级数学上册阶段性(1-1-3-4)综合测试题(附答案)
2022-2023学年人教版七年级数学上册阶段性(1.1-3.4)综合测试题(附答案)一.选择题(共10小题,满分30分)1.珠穆朗玛峰海拔高8848米,塔里木盆地海拔高﹣153米,求珠穆朗玛峰比塔里木盆地高多少米,列式正确的是()A.8848+153B.8848+(﹣153)C.8848﹣153D.8848﹣(+153)2.数轴上一动点A向左移动3个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为()A.﹣1B.﹣2C.﹣3D.33.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数为()A.4个B.3个C.2个D.1个4.下列四舍五入法得到的近似数,说法不正确的是()A.2.40万精确到百分位B.0.03086精确到十万分位C.48.3精确到十分位D.6.5×104精确到千位5.下列各式:﹣a2b2,x﹣1,﹣25,,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个6.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.47.已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A.﹣6B.6C.5D.148.某商场一件商品的标价是2000元,若按标价的六折销售,仍可获利25%,则这件商品的进价为()元.A.900B.850C.960D.10609.下列利用等式的性质,错误的是()A.由a=b,得到1﹣2a=1﹣2b B.由ac=bc,得到a=bC.由,得到a=b D.由a=b,得到10.若方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,则代数式|m﹣1|的值为()A.0B.2C.0或2D.﹣2二.填空题(共10小题,满分30分)11.在全国上下众志成城抗疫情、保生产、促发展的关键时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位,将“580亿元”用科学记数法表示为元.12.已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c﹣a|=.13.若|m|=3,|n|=2,且<0,则m+n的值是.14.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).15.单项式﹣的系数是,次数是.16.多项式3x3y+xy2﹣2y3﹣3x2按y的降幂排列是.17.下列各式:ab•2,m÷2n,,,其中符合代数式书写规范的有个.18.若关于x的多项式x3﹣(2m﹣1)x2+(m+n)x﹣1不含二次项和一次项,则m=,n=.19.三个连续奇数的和是15,这三个奇数的最小公倍数是.20.已知x=是关于x的一元一次方程(m﹣1)x2m﹣3+2a﹣5=0的解,则a的值为.三.解答题(共10小题,满分60分)21.计算:(1)(﹣1)3﹣1×÷[1+2×(﹣3)];(2)(﹣+﹣)×(﹣36).22.已知多项式(x2+mx﹣y+3)﹣(3x﹣2y+1﹣nx2).(1)若多项式的值与字母x的取值无关,求m、n的值;(2)在(1)的条件下,先化简多项式(3m2+mn+n2)﹣3(m2﹣mn﹣n2),再求它的值.23.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).24.定义“*”运算:当a,b同号时,a*b=+(a2+b2);当a,b异号时,a*b=﹣(a2﹣b2).(1)求4*1的值.(2)求*[(﹣2)*3]的值.25.规定符号(a,b)表示a,b两个数中较小的一个,规定符号[a,b]表示两个数中较大的一个.例如(2,1)=1,[2,1]=2.(1)计算:(﹣2,3)+[﹣,﹣].(2)若(p,p+2)﹣[﹣2q﹣1,﹣2q+1]=1,试求代数式(p+2q)3﹣3p﹣6q的值.(3)若(m,m﹣2)+3[﹣m,﹣m﹣1]=﹣5,求m的值.26.某果蔬基地现有草莓18吨,若在市场上直接销售鲜草莓,每吨可获利润500元;若对草莓进行粗加工,每吨可获利润1200元;若对草莓进行精加工,每吨可获利润2000元.该工厂的生产能力是如果对草莓进行粗加工,每天可加工3吨;精加工,每天可加工1吨,受人员限制,两种加工方式不能同时进行;受气候限制,这批草莓必须在8天内全部销售或加工完毕,为此,该厂设计了两种方案.方案一,尽可能多的精加工,其余的草莓直接销售;方案二:将一部分草莓精加工,其余的粗加工销售,并恰好在8天完成,你认为哪种方案获利较多?为什么?27.数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上越往右边的点表示的数越大,例如:若数轴上点M表示数m,则点M向右移动n 个单位到达的点N表示的数为m+n,若点M向左移动n个单位到达的点表示的数为m﹣n.如图,已知数轴上点A表示的数为10,点B与点A距离16个单位,且在点A的左边,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)数轴上点B表示的数为,点P表示的数为.(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q 同时出发.①求点P运动多少秒追上点Q?②求点P运动多少秒时与点Q相距6个单位?并求出此时点P表示的数.28.为增强公民的节约意识,合理利用天然气资源,我市将居民用天然气用气量及价格分为三档,其中:档次年用气量单价(元/m3)第一档气量不超出300m3的部分 2.7第二档气量超出300m3不超出600m3的部分a第三档气量超出600m3的部分a+0.5(说明:户籍人口超过4人的家庭,每增加1人,各档年用气量基数按每人增加60立方米依次调整.)(1)若甲用户户籍人口登记有4人,今年前三个月已使用天然气200m3,则应缴费元.(2)若乙用户户籍人口登记有5人,今年已使用天然气560m3,共缴费用1632元,则a 的值为.(3)在(2)的条件下,若乙用户年用气量为x(m3),请用含x的代数式表示每年支出的燃气费.29.临近春节,上海到扬州的单程汽车票价为80元/人,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打6折非学生10人以下(含10人)没有优惠;团购:超过10人,其中10人按原价售票,超出部分每张票打8折.(1)若有15名非学生乘客团购买票,则共需购票款多少元?(2)已知一辆汽车共有乘客60名,非学生乘客若达到团购人数则按团购方式缴款,这一车总购票款为3680元,则车上有学生和非学生乘客各多少名?30.观察:=,=,=,….=,=,=,….根据上述式子,完成下列问题:(1)=﹣,=+.(2)计算:﹣﹣.(3)计算:.(4)解方程:x=1.参考答案一.选择题(共10小题,满分30分)1.解:8848﹣(﹣153)=8848+153,故选:A.2.解:将点C向左移动5个单位得到点B表示的数为﹣4,将点B向右移动3个单位得到点A表示的数是﹣1.故选:A.3.解:①﹣(﹣2)=2,是正数;②﹣|﹣2|=﹣2是负数;③﹣22=﹣4,是负数;④﹣(﹣2)2=﹣4,是负数;综上所述,负数有3个.故选:B.4.解:A、2.40万精确到百位,所以A选项的说法不正确;B、0.03086精确到十万分位,所以B选项的说法正确;C、48.3精确到十分位,所以C选项的说法正确;D、6.5×104精确到千位,所以D选项的说法正确.故选:A.5.解:根据单项式的定义知,单项式有:﹣25,a2b2.故选:C.6.解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.7.解:∵mx2y n﹣1+4x2y9=0,∴m=﹣4,n﹣1=9,解得:m=﹣4,n=10,则m+n=6.故选:B.8.解:设这件商品的进价为x元,根据题意得:2000×0.6﹣x=25%x,解得:x=960.答:这件商品的进价为960元.故选:C.9.解:A、在等式a=b的两边同时乘以﹣2再加上1,等式仍成立,即1﹣2a=1﹣2b,故本选项不符合题意;B、当c=0时,ac=bc=0,但a不一定等于b,故本选项符合题意;C、在等式的两边同时乘以c,等式仍成立,即a=b,故本选项不符合题意;D、在等式a=b的两边同时除以不为0的式子(c2+1),等式仍成立,即,故本选项不符合题意;故选:B.10.解:由已知方程,得(m2﹣1)x2﹣(m+1)x+2=0.∵方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,∴m2﹣1=0,且﹣m﹣1≠0,解得,m=1,则|m﹣1|=0.故选:A.二.填空题(共10小题,满分30分)11.解:580亿=58000000000=5.8×1010.故答案为:5.8×1010.12.解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c﹣a=2b+2c﹣2a.故答案是:2b+2c﹣2a.13.解:∵|m|=3,|n|=2,∴m=±3,n=±2,又∵<0,∴当m=3时,n=﹣2,m+n=1,当m=﹣3时,n=2,m+n=﹣1,故答案为:﹣1或1.14.解:顺风飞行3小时的行程=(a+20)×3(千米),逆风飞行4小时的行程=(a﹣20)×4(千米),两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).15.解:单项式﹣的系数是:﹣π2,次数是:5.故答案为:﹣π2,5.16.解:多项式3x3y+xy2﹣2y3﹣3x2按y的降幂排列是﹣2y3+xy2+3x3y﹣3x2.故答案为:﹣2y3+xy2+3x3y﹣3x2.17.解:ab•2应该写成2ab,m÷2n应该写成,,书写规范,综上所述,符合代数式书写规范的有2个,故答案为:2.18.解:∵关于x的多项式x3﹣(2m﹣1)x2+(m+n)x﹣1不含二次项和一次项,∴2m﹣1=0,m+n=0,解得m=,n=,故答案为:,.19.解:15÷2=5,5﹣2=3,5+2=7,∴3×5×7=105.故答案为:105.20.解:由题意得:m﹣1≠0且2m﹣3=1.∴m=2.∴这个方程为x+2a﹣5=0.∴当x=时,.∴a=.故答案为:.三.解答题(共10小题,满分60分)21.解:(1)原式=﹣1﹣×÷(1﹣6)=﹣1﹣÷(﹣5)=﹣1+×=﹣1+=﹣;(2)原式=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+30=36.22.解:(1)原式=x2+mx﹣y+3﹣3x+2y﹣1+nx2=(n+1)x2+(m﹣3)x+y+2,由多项式的值与字母x的取值无关,得到n+1=0,m﹣3=0,解得:m=3,n=﹣1;(2)原式=3m2+mn+n2﹣3m2+3mn+3n2=4mn+4n2,当m=3,n=﹣1时,原式=﹣12+4=﹣8.23.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.24.解:(1)原式=+(42+12)=16+1=17;(2)原式=*﹣[(﹣2)2﹣32]=*﹣(4﹣9)=*5=+[()2+52]=+25=31.25.解:(1)由题意可知:(﹣2,3)+[﹣,﹣].=﹣2+(﹣)=﹣;(2)∵(p,p+2)﹣[﹣2q﹣1,﹣2q+1]=1,∴p﹣(﹣2q+1)=1,p+2q﹣1=1,p+2q=2,∴(p+2q)3﹣3p﹣6q=(p+2q)3﹣3(p+2q)=23﹣3×2=2;(3)根据题意得:m﹣2+3×(﹣m)=﹣5,解得m=.26.解:方案二获利较多.理由:方案一:获利:8×1×2000+(18﹣8)×500=21000(元);方案二:设x天精加工,则(8﹣x)天粗加工,由题意得x+3(8﹣x)=18,解得x=3,8﹣x=5(天),获利:3×2000+5×3×1200=24000(元),∵24000>21000,∴方案二获利较多.27.解:(1)点A表示的数为10,点B与点A距离16个单位,且在点A的左边,∴点B表示的数为﹣6,点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P点运动的长度为5t,∴点P所表示的数为10﹣5t,故答案为:﹣6;10﹣5t.(2)①设点P运动t秒追上点Q,由题意可列方程为:5t=3t+16,解得t=8,∴点P运动8秒追上点Q.②当点P在追上Q之前相距6个单位时,设此时时间为t1,∴16+3t1=6+5t1,解得t1=5.此时点P所表示的数为10﹣5t=﹣15,当点P超过点Q6个单位长度时,设设此时时间为t2,∴5t2=3t2+6+16,∴t2=11,此时点P所表示的数为10﹣5t=﹣45,综上所述,点P运动5秒或11秒时与点Q相距6个单位,点P表示的数分别为﹣15和﹣45.28.解:(1)由题意得:2.7×200=540(元),故答案为:540;(2)由题意得:2.7×(300+60)+[560﹣(300+60)]a=1632,解得:a=3.3,故答案为:3.3;(3)当年用气量不超过360m3时,每年支出的燃气费为:2.7x;当年用气量超过360m3不超过660m3时,每年支出的燃气费为:2.7×360+3.3(x﹣360)=3.3x﹣216;当年用气量超过660m3时,每年支出的燃气费为:2.7×360+3.3×(660﹣360)+(x﹣660)×(3.3+0.5)=3.8x﹣546.29.解:(1)10×80+(15﹣10)×80×80%=1120(元),故购票款为1120元;(2)设车上有非学生x名,则学生(60﹣x)名,①当x不超过10时,根据题意得80x+80×0.6(60﹣x)=3680,解得:x=25>10 (舍去),②当x超过10时,根据题意得80×10+80×0.8(x﹣10)+80×0.6(60﹣x)=3680,解得:x=40>10,60﹣x=20(名),答:车上有非学生40名,学生20名.30.解:(1)=,=;(2)﹣﹣=()﹣()+()﹣()+()﹣()+()﹣()+()=+=;(3)=1++2++3++4++5++6++7++8+=(1+2+3+⋯+8)+(1﹣+﹣+﹣+⋯+﹣)=36+1﹣=36;(4)∵x=1,∴x=﹣+++++++++,∴x=﹣+﹣+﹣+⋯+﹣,∴x=,解得x=.。
166中学七年级12.1数学阶段性测试(5)
北京市第一六六中学2022—2023学年度第一学期练习题(四)初 一 数 学班级____________ 姓名____________ 学号____________ 成绩____________ 注 意 事 项1.本试卷共4页,共3道大题,22道小题,满分100分;时间60分钟。
2.居家练习,请自觉遵守考试纪律、诚实守信,否则试卷不予..........................评阅,并做后续处理.........。
3.在试卷上准确填写班级、姓名、学号;在答题纸上用黑色字迹签字笔认真填写答案。
4.若不具备打印条件,请在空白纸上标清题号....,写出答案....。
5.考试结束后,请迅速将作答内容拍摄清晰照片,按任课老师要求发送。
一、选择题(本题共24分,每题3分)1.如果x = 3是关于x 的方程3m - 2x = 6的解,则m 的值是A .0B .32 C .-4D .42.已知x = y ,则下列等式不一定成立的是A .x + m = y + mB .y - n = x - nC .px = pyD .=x yq q3.已知AB = 8,下列各条件中能确定点C 是线段AB 中点的是A .BC = 4B . AB = 2ACC . AC + BC = 8D .AC = BC = 44.一些学生打算合买一个篮球,每人出6元,则还少10元;每人出8元,就多出4元. 则学生的人数是 A .6B .7C .8D .95.下列方程变形中,正确的是A .方程75= 5 7 t ,系数化为1得t = 1B .方程-1-=13 7 x x,去分母得7(-1) -3=21x x C .方程4+2=2-3(-1)x x ,去括号得4+2=2-3+1x x D .方程4+1=5-2x x ,移项得4x - 5x = 1 - 2 6.一副三角板按如图所示的方式摆放,且∠1的度数是∠2的3倍,则∠1的度数为A .20°B .22.5°C .25°D .67.5°7.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东60° 的方向上,观测到小岛B 在它南偏东37°的方向上,则∠AOB 的度数是 . A .67°B .83°C .90°D .97°8.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3. 定义 a * b 为数表中第a 行第b 列的数,例如,数表第3行第1列所对应的数 是2,所以3 * 1 = 2. 若2 * 3 =(2+1) *( 3*3)x ,则x 的值为 A .1,2 B .1,3 C .0,2D .1,0二、填空题(本题共24分,每题3分) 9.方程3x = 9的解为____ .10.若∠α = 37° 16′,则∠α 补角的度数为____ .11.请你写出一个解是x = -3的一元一次方程,这个方程可以为:____ .12.如图,延长线段AB 到C ,使1= 2 BC AB ,D 为线段AC 的中点, 若DC = 6,则AB = ____ .13.如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“起”相对的汉字是____ .14.若方程||-3(-4)-21=0a a x 是关于x 的一元一次方程,则a = ____ . 15.某单位购买甲、乙两种纯净水共用了500元,其中甲种水每桶20元,乙种水每桶15元;乙种水比甲种水多买了10桶. 设甲种水买了x 桶,则可列方程:____ .16.对于任意两个有理数m ,n ,可以组成一个有理数对[],m n ,我们规定=[,1]-+m n m n . 例如-3,7=-3-1+7=3[]. 根据上述规定解决下列问题:(1)有理数对[6,-2]= ____; (2)当满足等式5[-5, 3+2=]x p 的x 是正整数时,则p 的正整数值为____ .试卷作答区域一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)9.____________;10.____________;11. ____________;12.____________;13.____________;14.____________;15.____________;16.(1)________________;(2)________________;三、解答题(本题共52分,第17题18分,第18题8分,第19 ~ 21题,每题6分,第22题8分)17.解下列方程:(1)5x +6x - x = 20×10;(2)3x + 8 = 6x - 7 + 2x;(3)4+=-2(+5) +4x x;(4)-43+1-=1 36x x.18.如图,已知平面上四个点A,B,C,D,请按要求完成下列问题:(1)画直线AB,射线BD,连接AC;(2)在线段AC上求作点P,使得CP = AC - AB;(保留作图痕迹)(3)请在直线AB上确定一点Q,使点Q到点P与点D的距离之和最短,并写出画图的依据.19.若一个角的补角比它的余角的6倍还多40°,求这个角.20.如图,∠AOB = 35°,∠BOC = 75°,OD平分∠AOC. 求∠BOD的度数.21.初一年级共45名学生参与科技节活动,制作纸飞机模型.每人每小时可做20个机身或60个机翼,一个飞机模型要1个机身配2个机翼,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时能够做出多少套?22.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数-2, 点B表示的数2,下列各数2-,0,4,6所对应的点分别C1,C2,C3,3C4,其中是点A,B的“联盟点”的是____;(2)点A表示数-10, 点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数____ .。
初一年级数学阶段性测试试卷
七年级数学阶段性测试试卷时间:90分钟 满分:100分[卷首语:亲爱的同学:时间过得真快啊!升入中学已半学期了:你与新课程在一起成长了:相信你在小学原有的基础上又掌握了许多新的数学知识与能力:变得更加聪明了:更加懂得应用数学来解决实际问题了。
现在让我们一起走进考场:仔细思考:认真作答:成功将属于你——数学学习的主人。
]一、 选择题(本大题共15个小题:每小题2分:共30分.在每小题给出的四个选项中:只有一项是符合题目要求的)1.实数π是[ ]A .整数B .分数C .有理数D .无理数2.下面各组数:互为相反数的组有[ ];25.041)1-+与 ;与π-14.3)2 )()与()2123-+-- a b b a --与)4 A .1组 B .2组 C .3组 D .4组3.已知2||=x ,则下列四个式子中一定正确的是[ ]A . 2=xB . 2-=xC .42=xD . 83=x4.地球上的陆地面积约为149000000平方千米,用科学记数法表示为[ ] 平方千米.A . 610149⨯B . 7109.14⨯C . 81049.1⨯D . 91049.1⨯5.下列说法正确的是 [6.下列各数中数值相等的是 [ ]A .32和23B .-23和(-2)3C .-32和(-3)2D .-(3×2)2和-3×227.若a+b <0:且a·b >0:则一定有 [ ]A .a >0:且b >0B .a <0:且b <0C .a >0:且b <0D .a <0:且b >08.下面去括号中错误的是 [ ]A .a-(b+c )=a-b-cB .a+(b-c )=a+b-cC .3(a-b )=3a-bD .-(a-2b)=-a+2b9.若x 、y 为任何有理数:化简|x-y|-|y-x|结果等于 [ ]A .2xB .2yC .0D .2x-2y10.如果某数的平方根是23a +和18a -:那么这个数是[ ]A .5B .5-C .169D .169-118=±:②8=±:③8=:④2(8)64±=:⑤8-是2(8)-的算术平方根。
江西省赣州市2024-2025学年上学期七年级数学第一次月考阶段性测试卷(第1章和第2章)
江西省赣州市2024-2025学年上学期七年级数学第一次月考阶段性测试卷(第1章和第2章)一、单选题1.某市文旅局的统计信息显示2020年国庆假日期间本地接待游客9207000人次,该数据可用科学记数法表示为( )A .4920.710⨯B .592.0710⨯C .69.20710⨯D .79.20710⨯ 2.某天傍晚,北京的气温由中午的零上3C ︒下降了5C ︒,这天傍晚北京的气温是( ) A .零上8C ︒ B .零上2C ︒ C .零下2C ︒ D .零下8C ︒ 3.下列各式中计算正确的是( ).A .|3||2|1--+-=B .311252⎛⎫--÷-= ⎪⎝⎭C .43443433⎛⎫-÷-⨯= ⎪⎝⎭ D .11(2)24⎛⎫-÷-= ⎪⎝⎭ 4.已知()2230a b -++=,那么2a b 的值是( )A .12-B .6-C .12D .65.已知5x =,2y =,且0x y +<,则x y -的值等于( )A .7和7-B .7C .7-D .以上答案都不对 6.两个非零的有理数相除,如果交换它们的位置,若商不变,那么( )A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数7.在数轴上有间隔相等的四个点M N P Q ,,,,所表示的数分别为m n p q ,,,,其中有两个数互为相反数,若m 的绝对值最大,则数轴的原点是( )A .点NB .点PC .点P 或N ,P 的中点D .点P 或P ,Q 的中点8.甲、乙二人同时从A 地去B 地,甲每分走60米,乙每分走90米,乙到达B 地后立即返回.在离B 地180米处与甲相遇.A 、B 两地相距( )米.A .900B .720C .540D .10809.下表是小博家上半年六个月的用电情况,每月规定用电量为a 度,表中的正数表示超过每月规定用电量.电费交费标准是:在每月规定用电量内的按每度电0.6元交费,超过的部分按每度电1元交费,则小博家上半年的总电费为( )A .(618)a +元B .(3.644.8)a +元C .(1.844.8)a +元D .(3.618)a +元 10.有理数a 、b 、c 在数轴上对应点的位置如图所示,若|b |>|c |,则下列结论中正确的是( )A .abc <0B .b +c <0C .a +c >0D .ac >ab二、填空题11.把下列各数分别填在相应的大括号里:7-,3.5, 3.14-,π,0, 152-, 1319,0.03,10,5-℅, 03..- 自然数集合:{…};整数集合:{…};非负数集合:{…};负分数集合:{…};偶数集合:{…};奇数集合{…}.12.化简:①23⎡⎤⎛⎫-+-= ⎪⎢⎥⎝⎭⎣⎦,②15-的相反数是 .③比较大小0.5-23-. 13.若a ,b 互为相反数,x ,y 互为倒数,m 为最大的负整数,则2021(a +b )-(xy )2021+m 的值是.14.计算:111123344520132014++++=⨯⨯⨯⨯L ( ) 15.四个各不相等的整数a ,b ,c ,d ,它们的积···9a b c d =,那么+++a b c d 的值是. 16.有理数a ,b 两个有理数在数轴上对应的位置如图所示,化简b a b --=.17.如下是张小琴同学的一张测试卷,她的得分应是 .18.将一根绳子对折1次,从中间剪断,绳子变成3段,将一根绳子对折2次.从中间剪断,绳子变成5段,将一根绳子对折3次,从中间剪断,绳子变成9段;现把一根足够长的绳子对折7次,从中间剪断.绳子会变成段.19.现有四个有理数3,4,-6,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式.三、解答题20.计算.(1)()()()()181274++----+;(2)()()()()2.7 2.5 5.57.3---+--+.(3)13.75(7.25)0.75 2.75-+----+;(4)331( 6.25)() 1.7548+---- 21.设[]a 表示不小于a 的最小整数,如:[]2.33=,[]514345⎡⎤-=⎥-⎢⎣⎦=, (1)求[][]5115 2.6⎥+-⎤⎢⎣⎦--⎡的值; (2)令{}[]a a a =-,求{}.31154444⎡⎤---⎢⎥⎣⎣⎡⎤⎢⎥⎦⎦-的值. 22.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为12.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是,点P 表示的数是 (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发.求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为6个单位长度?23.阅读下面材料:若点A B 、在数轴上分别表示实数a b 、,则A B 、两点之间的距离表示为AB ,且AB a b =-;回答下列问题:(1)①数轴上表示x 和2的两点A 和B 之间的距离是;②在①的情况下,如果3AB =,那么x 为;(2)代数式12x x ++-取最小值时,相应的x 的取值范围是.(3)若点、、A B C 在数轴上分别表示数a b c 、、,a 是最大的负整数,且2(5)0-++=c a b ,①直接写出a b c 、、的值.②点、、A B C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.24.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a ≠相除记作n a ,读作“a 的n 次商”.(1)直接写出结果:312⎛⎫= ⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( )A .任何非零数的2次商都等于1B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭。
河南省驻马店市确山县2022-2023学年七年级下学期3月阶段性测试数学试卷(含解析)
2022—2023学年度第二学期阶段性测试卷七年级数学测试范围:(5-6章第2节)注意事项:1.本试卷共6页,三大题,满分120分,测试时间100分钟2.请用蓝、黑色钢笔或圆珠笔写在试卷或答题卡上.3.答卷前请将密封线内的项目填写清楚.一、选择题(每小题3分,共30分)1. 下列各图中,∠1与∠2是对顶角的是( )A. B. C. D. 答案:A解析:解:由题意得:互为对顶角的两个角两边互为反向延长线,且有公共顶点,∴A选项中的两个角是对顶角.故选:A2. 的算术平方根是()A. B. C. D. 答案:A解析:解:∵=9,∴的算术平方根是=3,故选:A.3. 下列各式中,正确是( )A. B. C. D. 答案:D解析:根据算术平方根的意义,可知=4,故不正确;根据立方根的意义,可知=,故不正确;根据平方根的意义,可知,故不正确;根据立方根的意义,可知,故正确.故选D.4. 如图,,垂足为点,,垂足为点,则点到所在直线的距离是线段的()长.A. B. C. D.答案:D解析:解:∵,∴点到所在直线的距离是线段的长,故选D.5. 下列命题中真命题是()A. 两个锐角之和为钝角B. 两个锐角之和为锐角C. 钝角大于它的补角D. 锐角小于它的余角答案:C解析:A、两个30°角的和是60°,是锐角,不正确;B、两个80°的角之和是160°,是钝角,不正确;C、钝角大于90°,它的补角小于90°,正确;D、80°锐角的余角是10°,不正确.故选C.6. 如图,点在的延长线上,下列条件中不能判定的是()A B. C. D.答案:C解析:解:A、,,故本选项不符合题意,B、,,故本选项不符合题意,C、,,故本选项符合题意,D、,,故本选项不符合题意.故选:C.7. 如图,四边形EFGH是由四边形ABCD平移得到的,已知AD=5,∠B=70°,则( )A. FG=5,∠G=70°B. EH=5,∠F=70°C. EF=5,∠F=70°D. EF=5,∠E=70°答案:B解析:在四边形EFGH,EH是AD的对应边,∠F是∠B的对应角,∵AD=5,∠B=70°,故EH=5,∠F=70°.故选B.8. 如果(0<x<150)是一个整数,那么整数x可取得的值共有( )A. 3个B. 4个C. 5个D. 6个答案:B解析:,而(0<x<150)是一个整数,且x为整数,∴5×5×2×3x一定可以写成平方的形式,所以可以是6,24,54,96共有4个.故选B.9. 如图,∠C+∠D=180°,∠DAE=3∠EBF,∠EBF=27°,点G是AB上的一点,若∠AGF=102°,∠BAF=34°,下列结论错误的是()A ∠AFB=81° B. ∠E=54° C. AD∥BC D. BE∥FG答案:D解析:解:∵∠C+∠D=180°,∴AD∥BC,故选项C正确,不符合题意;∴∠DAE=∠CFE,∵∠CFE=∠EBF+∠BEF,∠DAE=3∠EBF,∠EBF=27°,∴∠CFE=3∠EBF=81°,∠BEF=54°,故选项B正确,不符合题意;∴∠AFB=∠CFE=81°,故选项A正确,不符合题意;∵∠AGF=102°,∠BAF=34°,∴∠AFG=44°,∵∠E=54°,∴∠AFG≠∠E,∴BE和FG不平行,故选项D错误,符合题意;故选:D.10. 如图,若,则、、之间的关系是()A. B.C. D.答案:B解析:解:过点E作,∵,∴,∴,,∴,故选:B.二、填空题(每小题3分,共15分)11. 将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.答案:如果两条直线平行于同一条直线,那么这两条直线平行解析:命题可以改写为:如果两条直线平行于同一条直线,那么这两条直线平行.故答案为:如果两条直线平行于同一条直线,那么这两条直线平行12. 如图所示,四边形ABCD中,∠1=∠2,∠D=72°,则∠BCD=_______.答案:108°解析:∵∠1=∠2,∴AD∥BC,∴∠D+∠BCD=180°,∴∠BCD=180°-∠D=180°-72°=108°.故答案是:108°.13. 已知,则_________.答案:1.01解析:解:,;故答案为:1.01.14. 将一张长方形纸片折叠成如图所示的图形.若,则______.答案:##122度解析:解:如图,点在的延长线上,∵AB DM,,,根据折叠的性质得到,,,,故答案为:.15. 如图,直线EF上有两点A、C,分别引两条射线AB、CD.∠DCF=60°,∠EAB=70°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,在射线CD转动一周的时间内,使得CD与AB 平行所有满足条件的时间t=_____.答案:5秒或95秒解析:∵∠EAB=70°,∠DCF=60°,∴∠BAC=110°,∠ACD=120°,分三种情况:如图①,AB与CD在EF的两侧时,∠ACD=120°−(3t)°,∠BAC=110°−t°,要使,则∠ACD=∠BAC,即120°−(3t)°=110°−t°,解得t=5;如图②CD旋转到与AB都在EF的右侧时,∠DCF=360°−(3t)°−60°=300°−(3t)°,∠BAC=110°−t°,要使,则∠DCF=∠BAC,即300°−(3t)°=110°−t°,解得t=95;如图③CD旋转到与AB都在EF的左侧时,∠DCF=(3t)°−(180°−60°+180°)=(3t)°−300°,∠BAC=t°−110°,要使,则∠DCF=∠BAC,即(3t)°−300°=t°−110°,解得t=95,此时∠BAC=t°−110°<0°,∴此情况不存在.综上所述,当时间t的值为5秒或95秒时,CD与AB平行.故答案为:5秒或95秒.三、解答题(共8题,共75分)16. (1)计算:.(2)解方程:;(3)解方程:.答案:(1);(2)或;(3)解析:解:(1)原式;(2)∵,∴,∴,∴或;(3)∵,∴,∴,∴.17. 已知的平方根是,的算术平方根是1,c是的整数部分.(1)求a,b,c的值;(2)求的立方根.答案:(1),.(2)小问1解析:解:∵的平方根是,的算术平方根是1,∴,∴,∵,∴,∴,小问2解析:∵,,∴,∵的立方根是,∴的立方根是.18. 如图,,,,求的度数.答案:55解析:解:∵,,∴,∴,∴,∵,∴,∴,∴.19. 一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36 cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.答案:(1)cm;(2)4个.解析:(1)解:,所以立方体棱长为cm,(2)设长方形宽为x,可得:,,∵x>0,∴x=3,,横排可放4个,竖排只能放1个,4×1=4个所以最多可放4个.20. 如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.答案:(1)∠NOD=90°;(2)∠AOC=45°,∠MOD=135°.解析:(1)由已知条件和观察图形可知∠1与∠AOC互余,再根据平角的定义求解;(2)利用已知的∠1=∠BOC,结合图形以及对顶角的性质求∠AOC与∠MOD即可.试题解析:(1)因为OM⊥AB,所以∠AOM=∠1+∠AOC=90°,因为∠1=∠2,所以∠NOC=∠2+∠AOC=90°,所以∠NOD=180°-∠NOC=180°-90°=90°;(2)因为OM⊥AB,所以∠AOM=∠BOM=90°,因为∠1=∠BOC,所以∠BOC=∠1+90°=3∠1,解得∠1=45°,所以∠AOC=90°-∠1=90°-45°=45°,所以∠MOD=180°-∠1=180°-45°=135°.21. 完成推理,并在括号内注明依据:已知:如图,,求证:平分.证明:∵(已知)∴(______)∴(______)∴____________(______)∴(______),(______)又∵(已知)∴______(等量代换)∴平分(______)答案:垂直定义;等量代换;;;同位角相等,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;;角平分线的定义解析:证明:∵(已知)∴(垂直的定义)∴(等量代换)∴(同位角相等,两直线平行)∴(两直线平行,同位角相等),(两直线平行,内错角相等)又∵(已知)∴(等量代换)∴平分(角平分线的定义)22. 对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3.(1)仿照以上方法计算:=_______;=_____.(2)若,写出满足题意的x的整数值_____________.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1.(3)对100连续求根整数,多少次之后结果为1,请写出你的求解过程.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是_________.答案:(1)2;5 (2)1,2,3(3)3次,过程见解析(4)255小问1解析:解:∵,,,∴,∴,,故答案为:2,5.小问2解析:解:∵,,,∴或或,故答案为:1,2,3.小问3解析:解:第一次:,第二次:,第三次:,∴第3次之后结果为1.小问4解析:最大的是255,理由如下,解:由(2)得,进行1次求根整数运算后结果为1的正整数最大为3,∵,,∴进行1次求根整数运算后结果为3的正整数最大为15,∵,,∴进行1次求根整数运算后结果为15的正整数最大为255,∴只对一个正整数进行3次连续求根整数运算后结果为1,则这个正整数最大值是255.23. 如图,,平分,点D,E在射线,上,点P是射线上的一个动点,连接交射线于点F,设.(1)如图1,若.①的度数是 ,当时, ;②若,求x的值;(2)如图2,若,是否存在这样的x的值,使得?若存在,求出x的值;若不存在,说明理由.答案:(1)①,;②;(2)存在这样的x的值,使得.当或时,.小问1解析:解:①∵,平分,∴,∵,∴;∵,∴,,当时,,即,故答案为:,;②∵,,∴,又∵,∴,∴;小问2解析:存在这样的x的值,使得.分两种情况:①如图2,若在左侧,∵,∴,∵,∴,当时,,解得;②如图3,若在右侧,∵,,∴当时,,解得;综上所述,当或时,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学测试二
姓名:___________________ 得分:_____________________
一、填空题
1.某升降机上升了4米,表示为+4米,那么下降了3米,应记作_____. 2.请任意写出4个负分数_____.
3.与数轴上表示-2的点相距3个单位,则此点表示的数是_____. 4.已知-
21,-32,31,4
3
四个有理数在数轴上所对应的点分别为A 、B 、C 、D ,则这四个点从左到右的顺序为_____,离原点最近的点为_____.
5.|-3.2|的相反数为_____,-|0.5|的倒数为_____.
6.(-1)2n +(-1)2n+1
=______(n 为正整数).
7.土星表面的夜间平均气温为-150℃,白天比夜间高27℃,那么土星表面一天的平均气温为_____.
8.计算:-52-(-34+16)=_____.
9.甲、乙两人去商店买东西,共带钱120元,甲用去30元,乙用去40元,则此时甲、乙两人一共还剩钱_____元.
10.某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000米高空的气温是-23℃,则地面气温约为_____.
11.一物体可以上下移动,设向上为正 ①向上移动3m 应记作_____
②记作-1.5m 表明_______ .
12.某种工件比标准长度长2mm ,记作+2mm ,那么比标准工件短1mm 记作_____. 13.如果a 为负数,那么
①-a 2
______0 ②|a|+1______0
③-|a|-
2
1
______0(填“>”或“<”号) 14.如果|x|-2=4,则x=______,如果x=3,则|x|-1=______.
15.存折现有5000元,如果存入记为正,支取为负,上半年某人支存情况为+500元,-300元,+1200元,-600元,则该人现有存款为_____.
16.当b<0时,a ,a -b ,a+b ,a -2b 中从小到大的顺序为___________. 17.用“>”或“<”号填空.
①若a>0,b>0,那么a ·b______0.
②若a>0,b<0,那么ab 2
______0.
③若a<0,b<0,那么-
a
b
2______0. 18.某潜艇从海平面以下27米处上升了9米,此时潜艇在海平面以下______米处.
19.当a=-3,b=2时,计算a 2-2ab+b 2
=______.
二、选择题
20.下列说法正确的是( ) A .有理数的绝对值为正数 B .只有正数或负数才有相反数
C .如果两数之和为0,则这两个数的绝对值相等
D .如果两个数的绝对值相等,则这两个数之和为0
21.如果一个数的平方等于这个数的绝对值,则这个数是( ) A .0,-1 B .±1 C .0,1 D .0,±1
22.若一个数的倒数的相反数为正整数,则这个数可以是( ) A .
2
1 B .-
5
1 C .0 D .+2
23.在有理数32,23,-33,(-2)3,(-3-1)2,|1-32
|中相等的是( )
A .32与-32
B .23与(-2)3
C .(-3-1)2与|1-32|
D .23与|1-32
| 24.下列说法正确的是( )
A .所有的有理数都能用数轴上的点表示
B .有理数分为正数及负数
C .0没有相反数
D .0的倒数仍为0
25.在-(-2)、|-1|、-|0|,-22,(-3)2,-(-4)5
中正数有( ) A .1个 B .2个 C .3个 D .4个 26.下列结论正确的是( ) A .-
53是3
5
的倒数 B .|-2|=-2 C .任何一个有理数的偶次方都是非负数
D .-3>
3
1 27.10n
的意义是( ) A .10个n 相乘所得的积
B .表示一个1后面有n 个零的数
C .表示一个1后面有(n -1)个零的数
D .表示一个1后面有(n+1)个零的数
28.如果一个数的绝对值,等于这个数的相反数,那么这个数一定是( ) A .正数 B .负数 C .非正数 D .非负数
29.用计算器求25
的值时,按键的顺序是( ) A .=、、、2y 5x B .=、、、52x y C .=、、、x y 25
D .=、、、x y 32
30.如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a+b+m 2
-cd 的值为( )
A .3
B .±3
C .3±2
1 D .4±
2
1
三、解答题
31.计算下列各题 (1)(-431)-[(-431)-(-33
2)]
(2)-22
-(-2)2
+(-3)2
×(-3
2)-42
÷|-4|
(3)(-243)×[(-354)-(-354)+11
16]÷4
32.某次考试六名同学成绩与平均分的差值为5、1
21、-4、32
1
、-5、0,请在数轴上画出表示各数的点,并用“<”号把它们连接起来.
33、(本题10分)国庆放假时,小明一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆。
早上从家里出发,向东走了6千米到超市买东西,然后又向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里。
(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;
(2)问超市A和外公家C相距多少千米?
(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家所经历路程小车的耗油量。
参考答案
一、1.-3米 2.-
21,-32,-43,-2
5 3.-5或1 4.B 、A 、C 、D C
5.-3.2 -2 6.0 7.-136.5℃ 8.-34 9.50 10.37℃
11.①+3m ②物体向下移动1.5m 12.-1mm 13.①< ②> ③<
14.±6 2 15.5800元16.a+b ,a ,a -b ,a -2b 17.①> ②> ③< 18.18 19.25
二、20.C 21.D 22.B 23.D 24.A 25.D 26.C 27.B 28.C 29.B 30.A
三、31.(1)-3
32
(2)-18 (3)-1 32.-5<-4<-121<0<32
1
<5
33.60
23。