2006~13年天津市高考数学答案
2013年高考理科数学试题(天津卷)及参考答案
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么·球的体积公式 其中R 表示球的半径.)()()(B P A P A P B ⋃=+)()(()B P A A P P B =34.3V R π=一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则(A)(B) [1,2](C) [-2,2](D) [-2,1](2) 设变量x , y 满足约束条件则目标函数z =y -2x 的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题:①若一个球的半径缩小到原来的, 则其体积缩小到原来的;②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆相切. 其中真命题的序号是:(A) ①②③ (B) ①②(C) ①③(D) ②③(5) 已知双曲线的两条渐近线与抛物线的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =(A) 1(B)(C) 2 (D) 3(6) 在△ABC 中,则 =(A)(B) (C)(D)(7) 函数的零点个数为 (A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数. 设关于x 的不等式 的解集为A , 若,A B ⋂=(,2]-∞360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩12182212x y +=22221(0,0)x y a b a b -=>>22(0)px p y =>332,2,3,4AB BC ABC π∠===sin BAC ∠101010531010550.5()2|log |1xf x x =-()(1||)f x x a x =+()()f x a f x +<11,22A ⎡⎤-⊆⎢⎥⎣⎦则实数a 的取值范围是(A)(B) (C)(D)2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分. 二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10)的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为, 圆心为C , 点P 的极坐标为, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, , E 为CD 的中点.若AC ·BE =1, 则AB 的长为 . (13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)15,02⎛⎫- ⎪ ⎪⎝⎭13,02⎛⎫- ⎪ ⎪⎝⎭15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭52,1⎛⎫-- ⎪ ⎝⎭∞⎪61x x ⎛⎫- ⎪⎝⎭4cos ρθ=4,3π⎛⎫⎪⎝⎭60BAD ︒∠=1||2||a a b +已知函数.(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为, 求线段AM 的长.(18) (本小题满分13分)设椭圆的左焦点为F , 离心率为, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若, 求k 的值.(19) (本小题满分14分)已知首项为的等比数列不是递减数列, 其前n 项和为, 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列的通项公式;2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R0,2π⎡⎤⎢⎥⎣⎦2622221(0)x y a b a b +=>>33433··8AC DB AD CB +=32{}n a (*)n S n ∈N {}n a(Ⅱ) 设, 求数列的最大项的值与最小项的值.(20) (本小题满分14分)已知函数.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为, 证明: 当时, 有.2013年普通高等学校夏季招生全国统一考试数学理工农医类(天津卷)第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:D解析:解不等式|x |≤2,得-2≤x ≤2,所以A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤1}.故选D. 2.答案:A解析:作约束条件360,20,30x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩所表示的可行区域,如图所示,z =y -2x 可化为y =2x +z ,z 表示直线在y 轴上的截距,截距越大z 越大,作直线l 0:y =2x ,平移l 0过点A (5,3),此时z 最小为-7,故选A.3.答案:B解析:由程序框图,得x =1时,S =1;x =2时,S =9;x =4时,S =9+64=73,结束循环输出S 的值为73,故选B. 4.答案:C*()1n n nT S n S ∈=-N {}n T 2l ()n f x x x =()t f s =()s g t =2>e t 2ln ()15ln 2g t t <<解析:设球半径为R ,缩小后半径为r ,则r =12R ,而V =34π3R ,V ′=33344114πππ33283r R R⎛⎫==⨯ ⎪⎝⎭,所以该球体积缩小到原来的18,故①为真命题;两组数据的平均数相等,它们的方差可能不相等,故②为假命题;圆x 2+y 2=12的圆心到直线x +y +1=0的距离d==,因为该距离等于圆的半径,所以直线与圆相切,故③为真命题.故选C.5.答案:C解析:设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|·|y 0|.抛物线y 2=2px 的准线为2p x =-,所以02p x =-,代入双曲线的渐近线的方程b y xa =±,得|y 0|=2bpa .由2222,,ca abc ⎧=⎪⎨⎪+=⎩得b,所以|y 0|p .所以S △AOB2p =,解得p =2或p =-2(舍去). 6. 答案:C解析:在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=2923+-=5,即得AC.由正弦定理sin sin AC BCABC BAC =∠∠,即3sin BAC=∠,所以sin ∠BAC.7.答案:B解析:函数f (x )=2x |log 0.5x |-1的零点也就是方程2x |log 0.5x |-1=0的根,即2x|log 0.5x |=1,整理得|log 0.5x |=12x ⎛⎫ ⎪⎝⎭.令g (x )=|log 0.5x |,h (x )=12x⎛⎫ ⎪⎝⎭,作g (x ),h (x )的图象如图所示.因为两个函数图象有两个交点,所以f (x )有两个零点.8. 答案:A解析:f (x )=x (1+a |x |)=22,0,,0.ax x x ax x x ⎧+≥⎨-+<⎩若不等式f (x +a )<f (x )的解集为A ,且11,22⎡⎤-⎢⎥⎣⎦A ⊆,则在区间11,22⎡⎤-⎢⎥⎣⎦上,函数y=f(x+a)的图象应在函数y=f(x)的图象的下边.(1)当a=0时,显然不符合条件.(2)当a>0时,画出函数y=f(x)和y=f(x+a)的图象大致如图.由图可知,当a>0时,y=f(x+a)的图象在y=f(x)图象的上边,故a>0不符合条件.(3)当a<0时,画出函数y=f(x)和y=f(x+a)的图象大致如图.由图可知,若f(x+a)<f(x)的解集为A,且11,22⎡⎤-⎢⎥⎣⎦A ⊆,只需1122f a f⎛⎫⎛⎫-+<-⎪ ⎪⎝⎭⎝⎭即可,则有2211112222a a a a⎛⎫⎛⎫⎛⎫--++-+<---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a<0),整理,得a2-a-1<0a<<.∵a<0,∴a∈⎫⎪⎪⎭.综上,可得a的取值范围是⎫⎪⎪⎭.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9.答案:1+2i解析:由(a+i)(1+i)=a-1+(a+1)i=b i,得10,1,aa b-=⎧⎨+=⎩解方程组,得a=1,b=2,则a+b i=1+2i. 10.答案:15解析:二项展开式的通项为3662166C(1)Crrr r r rrT x x--+⎛==-⎝,3602r-=得r=4,所以二项展开式的常数项为T5=(-1)446C=15.11.答案:解析:由圆的极坐标方程为ρ=4cos θ,得圆心C的直角坐标为(2,0),点P的直角坐标为(2,),所以|CP|=12.答案:1 2解析:如图所示,在平行四边形ABCD 中,AC =AB +AD ,BE =BC +CE =12-AB +AD .所以AC ·BE =(AB +AD )·12AB AD ⎛⎫-+ ⎪⎝⎭=12-|AB |2+|AD |2+12AB ·AD =12-|AB |2+14|AB |+1=1,解方程得|AB |=12(舍去|AB |=0),所以线段AB 的长为12.13.答案:83解析:∵AE 为圆的切线,∴由切割线定理,得AE 2=EB ·ED . 又AE =6,BD =5,可解得EB =4. ∵∠EAB 为弦切角,且AB =AC , ∴∠EAB =∠ACB =∠ABC . ∴EA ∥BC .又BD ∥AC ,∴四边形EBCA 为平行四边形. ∴BC =AE =6,AC =EB =4. 由BD ∥AC ,得△ACF ∽△DBF ,∴45CF AC BF BD ==. 又CF +BF =BC =6,∴CF =83.14.答案:-2解析:因为a +b =2,所以1=1||22||a b a a b +⋅+=||||22||4||4||a ba ab a a b a a b ++=++≥+14||4||a a a a +=,当a >0时,5+1=4||4a a ,1||52||4a a b +≥; 当a <0时,3+1=4||4a a ,1||32||4a a b +≥,当且仅当b =2|a |时等号成立. 因为b >0,所以原式取最小值时b =-2a .又a +b =2,所以a =-2时,原式取得最小值.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.解:(1)f (x )=sin 2x·ππcossin 44x ⋅+3sin 2x -cos 2x=2sin 2x-2cos 2x=π24x⎛⎫-⎪⎝⎭.所以,f(x)的最小正周期T=2π2=π.(2)因为f(x)在区间3π0,8⎡⎤⎢⎥⎣⎦上是增函数,在区间3ππ,82⎡⎤⎢⎥⎣⎦上是减函数.又f(0)=-2,3π8f⎛⎫=⎪⎝⎭,π22f⎛⎫=⎪⎝⎭,故函数f(x)在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为,最小值为-2. 16.解:(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A)=1322252547C C+C C6C7=.所以,取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X的所有可能取值为1,2,3,4.P(X=1)=3347C1C35=, P(X=2)=3447C4C35=, P(X=3)=3547C2C7=, P(X=4)=3647C4C7=.所以随机变量X的分布列是随机变量X的数学期望EX=1×135+2×435+3×27+4×47=175.17.解:(方法一)(1)证明:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).易得11B C=(1,0,-1),CE=(-1,1,-1),于是11B C·CE=0,所以B1C1⊥CE.(2)1B C=(1,-2,-1).设平面B1CE的法向量m=(x,y,z),则10,0,B CCE⎧⋅=⎪⎨⋅=⎪⎩mm即20,0.x y zx y z--=⎧⎨-+-=⎩消去x,得y+2z=0,不妨令z=1,可得一个法向量为m=(-3,-2,1).由(1),B1C1⊥CE,又CC1⊥B1C1,可得B1C 1⊥平面CEC 1,故11B C=(1,0,-1)为平面CEC1的一个法向量.于是cos〈m,11B C〉=1111||||14B CB C⋅==⋅mm,从而sin 〈m ,11B C.所以二面角B 1-CE -C 1.(3)AE =(0,1,0),1EC =(1,1,1).设EM =λ1EC =(λ,λ,λ),0≤λ≤1,有AM =AE +EM =(λ,λ+1,λ).可取AB =(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM ,AB 〉|=AM ABAM AB⋅⋅=.=,解得13λ=,所以AM . (方法二)(1)证明:因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1⊂平面A1B 1C 1D 1, 所以CC1⊥B 1C 1.经计算可得B 1E B 1C 1,EC 1, 从而B 1E 2=22111B C EC +, 所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1, 所以B 1C 1⊥平面CC 1E ,又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1),B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G , 所以∠B 1GC 1为二面角B 1-CE -C 1的平面角.在△CC 1E 中,由CE =C 1E ,CC 1=2,可得C 1G.在Rt △B 1C 1G 中,B 1G , 所以sin ∠B 1GC 1,即二面角B 1-CE -C 1.(3)连接D 1E ,过点M作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角.设AM =x ,从而在Rt △AHM 中,有MHx ,AHx .在Rt △C 1D 1E 中,C 1D 1=1,ED 1,得EH13x =. 在△AEH 中,∠AEH =135°,AE =1,由AH 2=AE 2+EH 2-2AE ·EHcos 135°,得221711189x x x =++,整理得5x 2--6=0,解得x.所以线段AM.18.解:(1)设F (-c,0),由c a=a =.过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有2222()1c y a b -+=,解得y ==,解得b =, 又a 2-c 2=b 2,从而ac =1, 所以椭圆的方程为22=132x y +.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1), 由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=22623k k -+,x 1x 2=223623k k -+.因为A (3-,0),B (3,0),所以AC ·DB +AD ·CB=(x 1y 1-x 2,-y 2)+(x 2y 2x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=22212623k k +++. 由已知得22212623k k +++=8,解得k =. 19.解:(1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是25314a q a ==. 又{a n }不是递减数列且132a =,所以12q =-. 故等比数列{a n }的通项公式为11313(1)222n n n n a --⎛⎫=⨯-=-⋅ ⎪⎝⎭. (2)由(1)得11,121121,.2n n n n n S n ⎧⎫+⎪⎪⎪⎛⎫=--=⎪⎨ ⎪⎝⎭⎪⎪-⎪⎪⎩⎭为奇数,为偶数 当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32, 故11113250236n n S S S S <-≤-=-=. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1, 故221134704312n n S S S S >-≥-=-=-. 综上,对于n ∈N *,总有715126n n S S -≤-≤. 所以数列{T n }最大项的值为56,最小项的值为712-. 20.解:(1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =当x- +所以函数f (x )的单调递减区间是⎛ ⎝,单调递增区间是⎫+∞⎪⎭. (2)证明:当0<x ≤1时,f (x )≤0.设t >0,令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)内单调递增.h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f (s )成立.(3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而2ln ()ln ln ln ln ln ()ln(ln )2ln ln(ln )2ln g t s s s u t f s s s s s u u ====++,其中u=ln s.要使2ln()15ln2g tt<<成立,只需0ln2uu<<.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln2uu-,u>1.F′(u)=112u-,令F′(u)=0,得u=2.当1<u<2时,F′(u)>0;当u>2时,F′(u)<0. 故对u>1,F(u)≤F(2)<0.因此ln2uu<成立.综上,当t>e2时,有2ln()15ln2g tt<<.祝福语祝你考试成功!。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 10 (B) 10 (C) 310 (D) 5 (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x x ⎛- ⎪⎝⎭的二项展开式中的常数项为. (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为.(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为.(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.(18) (本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分. 考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后,再选凃其他答案标号.2.本卷共8小题, 每小题5分,共40分.参考公式:·如果事件A,B互斥,那么·棱柱的体积公式V=Sh,其中S表示棱柱的底面面积, h表示棱柱的高。
·如果事件A, B相互独立,那么·球的体积公式其中R表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A = {x∈R||x|≤2},A = {x∈R| x≤1},则(A)(B)[1,2] (C) [-2,2](D) [-2,1](2)设变量x,y满足约束条件则目标函数z = y-2x的最小值为(A)-7 (B) -4(C)1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序,若输入x的值为1,则输出S的值为(A) 64 (B)73(C) 512 (D)585(4) 已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x + y + 1 = 0与圆相切。
其中真命题的序号是:(A) ①②③(B)①②(C)②③(D)②③(5)已知双曲线的两条渐近线与抛物线的准线分别交于A,B两点, O为坐标原点. 若双曲线的离心率为2, △AOB的面积为, 则p =(A)1 (B)(C)2 (D) 3(6)在△ABC中, 则=(A)(B) (C)(D)(7)函数的零点个数为(A) 1 (B)2 (C)3 (D) 4(8) 已知函数。
2006年高考天津卷文科数学试题及参考答案
2005年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷(选择题 共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上。
参考公式:如果事件A 、B 互斥,那么 球的体积公式P(A+B)=P(A)+P(B) V球=34πR 3 如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A·B)=P(A)·P(B) 柱体(棱柱、圆柱)的体积公式 如果事件A 在一次试验中发生的概率是V 柱体=Sh.P ,那么n 次独立重复试验中恰好发生k 其中S 表示柱体的底面积,次的概率kn k k n n P P C k P --=)1()(h 表示柱体的高.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是最符合题目要求的.(1)集合A={x|0≤x<3且x ∈N}的真子集...的个数是 (A )16 (B )8 (C )7 (D )4 (2)已知log 21b<log 21a<log 21c ,则(A )2b >2a >2c (B )2a >2b >2c (C )2c >2b >2a (D )2c >2a >2b(3)某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为 (A )12581 (B )12554 (C )12536 (D )12527 (4)将直线2x-y+λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x-4y=0相切,则实数λ的值为(A )-3或7 (B )-2或8 (C )0或10 (D )1或11 (5)设α、β、γ为平面,m 、n 、l 为直线,则m ⊥β的一个充分条件是(A )α⊥β,α∩β=l ,m ⊥l (B )α∩γ=m ,α⊥γ,β⊥γ (C )α⊥γ,β⊥γ,m ⊥α (D )n ⊥α,n ⊥β,m ⊥α(6)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为(A )±2 (B )±34 (C )±21 (D )±43 (7)给出下列三个命题: ①若a ≥b>-1,则bba a +≥+11. ②若正整数m 和n 满足m ≤n ,则2)(n m n m ≤-. ③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a-x 1)2+(b-y 1)2=1时,圆O 1与圆O 2相切. 其中假命题...的个数为 (A )0 (B )1 (C )2 (D )3 (8)函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图所示,则函数表达式为(A )y= -4sin(8πx+4π) (B )y=4sin(8πx-4π) (C )y= -4sin(8πx-4π) (D )y=4sin(8πx+4π)(9)若函数f(x)=log a (2x 2+x)(a>0,a ≠1)在区间(0,21)内恒有f(x)>0,则f(x)的单调递增区间为 (A )(-∞,-41) (B )(-41,+∞) (C )(0,+∞) (D )(-∞,-21) (10)设f (x)是定义在R 上以6为周期的函数,f (x)在(0,3)内单调递减,且y=f (x)的图象关于直线x=3对称,则下面正确的结论是(A )f (1.5)< f (3.5)< f (6.5) (B )f (3.5)< f (1.5)< f (6.5) (C )f (6.5)< f (3.5)< f (1.5) (D )f (3.5)< f (6.5)< f (1.5)第Ⅱ卷(非选择题 共100分)注意事项:1.答卷前将密封线内的项目填写清楚。
2013年天津高考数学理试题(含答案)
2013年(天津卷)理 科 数 学第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号. 本卷共8小题, 每小题5分, 共40分. 参考公式:·如果事件A , B 互斥, 那么那么)()()(B P A P A P B È=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么那么)()(()B P A A P P B =·球的体积公式34.3V R p = 其中R 表示球的半径. 一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B Ç=(A) (,2]-¥ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ³--£+-ì-£ïíïî则目标函数z = y -2x 的最小值为的最小值为(A) -7 (B) -4 (C) 1 (D) 2 (3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等②若两组数据的平均数相等, , , 则它们的标准差也相等则它们的标准差也相等则它们的标准差也相等; ;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③①②③ (B) ①②①②(C) ②③②③ (D) ②③②③(5) 已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p = 2,p 1010310515-13,0-1513+-51ö- = . x 的二项展开式中的常数项为的二项展开式中的常数项为 . | = . 的长为的长为 . 的长为的长为 . = 时2sin23 2243。
2013年天津市高考数学试卷(文科)答案与解析
2013年天津市高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.共8小题,每小题5分,共40分.2.(5分)(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的,3.(5分)(2013•天津)阅读如图所示的程序框图,运行相应的程序,则输出n的值为()25.(5分)(2013•天津)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线axB=26.(5分)(2013•天津)函数f(x)=sin(2x﹣)在区间[0,]上的最小值是()取值范围,再由正弦函数的性质即可求出所求的最小值.∈,[在区间的最小值为7.(5分)(2013•天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a满足f(log2a)+f(log a)≤2f(1),则a的取值范围是(),即≤8.(5分)(2013•天津)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)(,∴二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津)i是虚数单位.复数(3+i)(1﹣2i)=5﹣5i.10.(5分)(2013•天津)已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为.,所以正方体的体对角线长为:a,.故答案为:11.(5分)(2013•天津)已知抛物线y2=8x的准线过双曲线的一个焦点,且双曲线的离心率为2,则该双曲线的方程为.,可得的一个焦点为(﹣曲线的离心率的计算公式可得=2,可得由题意可得双曲线的一个焦点为(﹣,∴∴双曲线的方程为.故答案为.12.(5分)(2013•天津)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.,=+﹣,,∴故答案为13.(5分)(2013•天津)如图,在圆内接梯形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为.,.故答案为:.14.(5分)(2013•天津)设a+b=2,b>0,则的最小值为.由题意得,,1的最小值为故答案为:.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2013•天津)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作(Ⅱ)在该样品的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.件,故样本的一等品率为=16.(13分)(2013•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsinA=3csinB,a=3,.(Ⅰ)求b的值;(Ⅱ)求的值.中,有正弦定理,b=(Ⅱ)由sinB=﹣=17.(13分)(2013•天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.ACD=BG==,所成角的正弦值18.(13分)(2013•天津)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.代入求出弦长使其等于,由,再由韦达定理进行求解.求得(Ⅰ)根据椭圆方程为,得±,=∵离心率为,∴=b=;﹣(﹣(,,(k=19.(14分)(2013•天津)已知首项为的等比数列{a n}的前n项和为S n(n∈N*),且﹣2S2,S3,4S4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明.(Ⅱ)根据(Ⅰ)求出,代入,,∴;为奇数时,=,=,,且综上,有20.(14分)(2013•天津)设a∈[﹣2,0],已知函数(Ⅰ)证明f(x)在区间(﹣1,1)内单调递减,在区间(1,+∞)内单调递增;(Ⅱ)设曲线y=f(x)在点P i(x i,f(x i))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明.(Ⅰ)令,)内单调递减,在区间单调递减,在区间利用导数的几何意义可得根据以上等式可得,从而,解得,于是可得t=,已知,①②时,时,,即函数在区间内单调递减,在区间互不相等,且.,解得,从而,则,解得,t=,则,,∴。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x的值为1, 则输出S 的值为(A) 64(B) 73 (C) 512 (D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③ (5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A) 1 (B) 32 (C) 2(D) 3 (6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 10 (B) 10 (C) 310 (D) 5(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是 (A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x x ⎛- ⎪⎝⎭ 的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC .过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分) 已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2,E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为2, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.2013 National English Contest for College Students.- 11 -。
2013年天津市高考数学试卷(理科)及答案(word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题】和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后, 再选凃其他答案标号.2.本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D) (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x ⎛ ⎝的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D) (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭ (D) ⎛- ⎝⎭∞ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10) 6x⎛ ⎝ 的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
2006-2013天津高考数学试题——数列(理科)
2006-2010天津高考数学试题——数列(理科)(2006)21.(本小题满分14分)已知数列}{}{n n y x 、满足121==x x ,221==y y ,并且11-+=n n n n x x x x λ,11-+≥n n n n y y y y λ(λ为非零参数,=n 2,3,4,…) (1)若531x x x 、、成等比数列,求参数λ的值;(2)当0>λ时,证明nn n n y x y x ≤++11(*N n ∈) (3)当1>λ时,证明11133222211-<--++--+--++λλn n n n y x y x y x y x y x y x (*N n ∈)。
(2007)21. (本小题满分14分)在数列{}n a 中,1112,(2)2(n n n n a a a n λλλ++==++-∈N *),其中0λ>. (I)求数列{}n a 的通项公式; (II)求数列{}n a 的前n 项和n S ;(III)证明存在k ∈N *,使得11n k n ka a a a ++≤对任意n ∈N *均成立.(2008)(22)(本小题满分14分)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS ,12+n a 为n b 与1+n b 的等比中项,*N n ∈.(Ⅰ)求22,b a 的值;(Ⅱ)求数列{}n a 与{}n b 的通项公式;(Ⅲ)设()()()*,1112121N n b b b T n a a a n n ∈-++-+-= .证明3,22≥<n n T n .(2009)(22)(本小题满分14分)已知等差数列{n a }的公差为d (d ≠0),等比数列{n b }的公比为q (q>1)。
设n s =11a b +22a b …..+ n n a b ,n T =11a b -22a b +…..+(-11)n - n n a b ,n ∈N + (I) 若1a =1b = 1,d=2,q=3,求 3S 的值;若1b =1,证明(1-q )2n S -(1+q )2n T =222(1)1n dq q q--,n ∈N +(Ⅲ)若正数n 满足2≤n ≤q ,设1212,,...,,,...,12...n n k k k l l l 和是,,,n 的两个不同的排列,12112...n k k k n c a b a b a b =+++,12212...n l l l n c a b a b a b =+++ 证明12c c ≠。
2006-2013天津高考数学试题——概率(文)
2006-2013年天津高考概率与随机变量大题(2006)18.(本小题满分12分)甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95。
(1)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答);(2)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答)(2007)(18)(本小题满分12分)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(2008)(18)(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.(2009)18. (满分12分)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B,C 三个区中抽取7个工厂进行调查,已知A,B ,C 区中分别有18,27,18个工厂(Ⅰ)求从A,B,C 区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率。
(2010)(18)(本小题满分12分)有编号为1A ,2A , (10)A 的10个零件,测量其直径(单位:cm ),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率。
本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分。
考试用时120分钟。
第Ⅰ卷1至2页, 第Ⅱ卷3至5页。
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效。
考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分。
参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径。
一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A ) (,2]-∞ (B ) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为(A ) -7 (B ) -4(C ) 1 (D ) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B ) 73(C ) 512 (D ) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A ) ①②③(B ) ①② (C ) ②③ (D ) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A ) 1 (B ) 32 (C ) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A ) 1010 (B ) 105 (C) 31010 (D) 55(7) 函数0.5()2|log |1x f x x =-的零点个数为(A ) 1 (B ) 2 (C ) 3 (D) 4(8) 已知函数()(1||)f x x a x =+。
2006年高考天津卷理科数学试题及参考答案
模拟题一填空题(21分,每空1分)2.当前CPU的两大品牌是,。
3.目前硬盘常见的接口型号有,两种。
5.从读盘的类型分,可分为和两类光驱;从刻盘的类型分,可分为和两类刻录机。
1.目前的显示器根据成像原理分,可分为,两类。
1.按鼠标的工作原理,可以分为机械鼠标、光机鼠标、、激光鼠标、等等。
2.安装Windows XP的方式主要有两种;一种是,另外一种就是。
3.扫描仪按其操作方式的不同可以分为手持式、和 3种。
二、选择题(每小题2分,共20分)1.是计算机系统的核心,计算机发生的所有动作都是受其控制的。
A.内存B.CPU C.主板D.硬盘2.CPU的主频由外频和决定。
A.超频B.倍频C.内频D.前端总线频率3.目前市场上的主流内存是。
A.DDR B.DDR2 C.DDR3 D.RDRAM一.选择题(30分,每题5分)1.下列一段文字描述的是哪个配件的功能?()C用于长期存储操作系统、数据和应用程序,是最重要的存储设备。
计算机关机后,其中的数据不会丢失。
A. CPUB. 内存C. 硬盘D. 光驱3.下列哪一项不是CPU的性能参数()AA. 转速B. 前端总线频率C. 主频D. 一级缓存大小4.下列哪一项不属于装机注意事项()DA. 释放静电B. 防止液体进入计算机内部C. 不可粗暴安装D. 必须戴上绝缘手套5.当需要重装系统时,必须要把启动顺序设置成光盘启动。
方法是在BIOS中设置“First Boot Device”的值为()BA. Hard DiskB. CDROMC. EnabledD. Disabled二.简答题(30分)1.请罗列出计算机的主要配件。
(5分)答:计算机的主要配件有:主板,CPU,显卡,声卡,网卡,硬盘,内存,光驱,显示器,机箱,电源,CPU风扇,键盘,鼠标。
2.内存和硬盘都属于存储设备,它们的作用相同吗?请把两者作一比较。
(10分)答:它们的作用不同。
内存是用于临时存储程序和运算所产生的数据,其运行速度和容量大小对计算机的运行速度影响较大。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B = ·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 (A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③(D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A ,B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D)(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x ⎛⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.- 11 -2013高考真题。
2013年天津高考数学理试题(含答案)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B = ·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 (A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③(D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A ,B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D)(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x ⎛⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE = , 则AB 的长为 . (13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
2006年高考理课数学试题(天津卷)
2006年普通高等学校招生全国统一考试(天津卷)数学(理工类) 第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,满分50分。
在每小题给出的四个选项中只有一个正确答案)1、i 是虚数单位,=+ii1( ) A .i 2121+ B .i 2121+- C .i 2121- D .i 2121--2、如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F ,一条渐近线方程为x y 2=,那么它的两条准线间的距离是( )A .36B .4C .2D .13、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x xy ,则目标函数y x z +=2的最小值为( )A .2B .3C .4D .94、设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5、将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种 6、设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,,D .ββαβα⊥⇒⊥=⊥n m n m ,, 7、已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .1008、已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称 D .奇函数且它的图象关于点)0,(π对称 9、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个10、已知函数)(x f y =的图象与函数x a y =(0>a 且1≠a )的图象关于直线x y =对称,记]1)2(2)()[()(-+=f x f x f x g .若)(x g y =在区间]2,21[上是增函数,则实数a 的取值范围是( )A .),2[+∞B .)2,1()1,0(C .)1,21[D .]21,0(第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6个小题,每小题4分,共24分)11、7)12(xx +的二项展开式中x 的系数是____ (用数学作答).12、设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __________.13、如图,在正三棱柱111C B A ABC -中,1=AB . 若二面角1C AB C --的大小为60,则点C 到平面1ABC 的距离为______________.14、设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为a =____________.15、某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 16、设函数()11+=x x f ,点0A 表示坐标原点,点()()()*,N n n f n A n ∈,若向量01121n n n a A A A A A A -=+++,n θ是n a 与i 的夹角,(其中()0,1=i),设n n S θθθt a n t a n t a n 21+++= ,则n n S ∞→lim = .三、解答题(本题共6道大题,满分76分)17、(本题满分12分)如图,在ABC ∆中,2AC =,1BC =,43cos =C . (1)求AB 的值; (2)求()C A +2sin 的值.18、(本题满分12分)某射手进行射击训练,假设每次射击击中目标的概率为53,且各次射击的结果互不影响。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年天津市高考数学试卷(理科)及答案(Word版)2013年普通高等学校招生全国统一考试(天津卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2.本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A, B 互斥, 那么)()()(B P AP A P B⋃=+·棱柱的体积公式V =Sh , 其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x∈R| |x|≤2}, A = {x∈R| x≤1},则A B⋂=(A) (,2]-∞(B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x, y满足约束条件360,20,30,x yyx y≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x的最小值为(A) -7 (B) -4(C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x的值为1, 则输出S的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18;②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: (A) ①②③(B) ①②(C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x ya b a b-=>>的两条渐近线与抛物线22(0)px p y=>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积3则p = (A) 1 (B) 32(C) 2(D) 3 (6) 在△ABC 中, ,2,3,4AB BC ABC π∠==则sin BAC ∠ =10 103105 (7) 函数0.5()2|log |1xf x x =-的零点个数为(A) 1(B) 2(C) 3(D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是 (A) 15⎫-⎪⎪⎝⎭(B) 13⎫-⎪⎪⎝⎭(C) 1513⎛+⋃ ⎝⎫-⎪⎝⎭⎪⎭(D)51⎛-- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 +i ) = bi , 则a + bi = .(10)6x x ⎛- ⎪⎝⎭ 的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C ,点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =u u u r u u u r,则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分) 已知函数2()226sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R.(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD,AB//DC, AB⊥AD, AD = CD =1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.(18) (本小题满分13分)设椭圆22221(0)x ya ba b+=>>的左焦点为F, 离心率为3, 过点F且与x轴垂直的直线被椭圆截得的线段长为43.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=u u u r u u u r u u u r u u u r , 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}na 不是递减数列, 其前n 项和为(*)nS n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}na 的通项公式;(Ⅱ) 设*()1nn nTS n S ∈=-N , 求数列{}nT 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 10 (B) 10 (C) 310 (D) 5 (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪ 2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x x ⎛- ⎪⎝⎭的二项展开式中的常数项为. (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为.(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为.(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.(18) (本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 C1D=
,CC1= ,在△CC1D 中,过 C 作 CE⊥C1D,
则 CE 为点 C 到平面 ABC1 的距离,CM= 所以点 C 到平面 ABC1 的距离为 . 故答案为:
2668157
,
,则 cosθ=
.
考点: 平面向量数量积坐标表示的应用. 分析: 先求出 ,然后用数量积求解即可. 解答: 解:设向量 与 的夹角为 θ,且 ,
∴
,
则 cosθ=
=
.
故答案为: 点评: 本题考查平面向量的数量积,是基础题. 13. (4 分) 如图, 在正三棱柱 ABC﹣A1B1C1 中, AB=1. 若二面角 C﹣AB﹣C1 的大小为 60°, 则点 C 到平面 ABC1 的距离为 .
A.1 B. 2 C. 3 D.4 考点: 利用导数研究函数的单调性. 专题: 压轴题. 分析: 根据当 f'(x)>0 时函数 f(x)单调递增,f'(x)<0 时 f(x)单调递减,可从 f′(x)的图象可知 f(x) 在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案. 解答: 解:从 f′(x)的图象可知 f(x)在(a,b)内从左到右的单调性依次为增→减→增→减, 根据极值点的定义可知在(a,b)内只有一个极小值点. 故选 A. 点评: 本题主要考查函数的极值点和导数正负的关系.属基础题.
2006 年天津市高考数学试卷(理科)
参考答案与试题解析
一、选择题(共 10 小题,每小题 5 分,满分 50 分) 1. (5 分)i 是虚数单位, A. =( B. ) C. D.
考点: 复数代数形式的混合运算. 分析: 化简复数的分母为实数,即可. 解答: 解:i 是虚数单位, =
2668157
处取得最小值, 则函数
D.奇函数且它的图象关于点(π,0)对称 考点: 函数 y=Asin(ωx+φ)的图象变换. 专题: 计算题;压轴题. 分析: 先对函数 f(x)运用三角函数的辅角公式进行化简求出最小正周期,根据正弦函数的最值和取得最值时的 x
2668157
的值可求出函数
的解析式,进而得到答案.
2668157
*
*
( n ∈N ) ,
*
∴c1+c2+…+c10=
又∵ ,
=
∴
=4+5+6+…+13=85,
故选 C. 点评: 本题主要考查等差数列的通项公式和数列中的函数思想. 8. (5 分) 已知函数 f (x) =asinx﹣bcosx (a、 b 为常数, a≠0, x∈R) 在 是( ) A.偶函数且它的图象关于点(π,0)对称 B. 偶函数且它的图象关于点 对称 C. 奇函数且它的图象关于点 对称
2668157
1
m⊥α,n⊂β,m⊥n 时,α、β 可能平行,也可能相交,不一定垂直,故 A 不正确 α∥β,m⊥α,n∥β 时,m 与 n 一定垂直,故 B 正确 α⊥β,m⊥α,n∥β 时,m 与 n 可能平行、相交或异面,不一定垂直,故 C 错误 α⊥β,α∩β=m 时,若 n⊥m,n⊂α,则 n⊥β,但题目中无条件 n⊂α,故 D 也不一定成立, 故选 B. 点评: 判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点) ;②利用线面平行的判定定理 (a⊂α, b⊄α, a∥b⇒a∥α) ; ③利用面面平行的性质定理 (α∥β, a⊂α⇒a∥β) ; ④利用面面平行的性质 (α∥β, a⊄α,a⊄,a∥α⇒ a∥β) .线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面 内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判 定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需 要将分析与综合的思路结合起来. 7. (5 分)已知数列{an}.{bn}都是公差为 1 的等差数列,其首项分别为 a1、b1,且 a1+b1=5,a1,b1∈N 、设 ,则数列{cn}的前 10 项和等于( ) ( n ∈N ) A.55 B.70 C.85 D.100 考点: 等差数列的前 n 项和. 分析: 将{cn}的前 10 项和用{an}.{bn}的通项公式表示出来,再利用其关系求解. 解答: 解:已知数列{a }、{b }都是公差为 1 的等差数列其首项分别为 a 、b ,且 a +b =5,a ,b ∈N*又∵ n n 1 1 1 1 1 1
考点: 二项式定理. 专题: 计算题. 分析: 利用二项展开式的通项公式求出展开式中 x 的系数. 解答: 解: 的二项展开式中 x 的项是
2668157
,
所以 x 的系数是 280. 故答案为 280 点评: 本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具. 12. (4 分)设向量 与 的夹角为 θ,且
,B(1,1) ,C(3,3) , 在坐标系中画出可行域△ABC,A(2,0) 则目标函数 z=2x+y 的最小值为 3, 故选 B 点评: 在解决线性规划的问题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个 角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解. 4. (5 分)设集合 M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的( ) A.充分而不必要条件 B.必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 考点: 必要条件、充分条件与充要条件的判断. 分析: 由题意 N⊆M,由子集的定义可选. 解答: 解:设集合 M={x|0<x≤3},N={x|0<x≤2},M⊇N, 所以若“a∈M”推不出“a∈N”; 若“a∈N”,则“a∈M”, 所以“a∈M”是“a∈N”的必要而不充分条件, 故 B. 点评: 本题考查充要条件的判断和集合包含关系之间的联系,属基本题.
x
B.(0,1)∪(1,2)
指数式与对数式的互化;反函数. 压轴题. 先表述出函数 f(x)的解析式然后代入将函数 g(x)表述出来,然后对底数 a 进行讨论即可得到答案.
2668157
解:已知函数 y=f(x)的图象与函数 y=a (a>0 且 a≠1)的图象关于直线 y=x 对称, 2 则 f(x)=logax,记 g(x)=f(x)[f(x)+f(2)﹣1]=(logax) +(loga2﹣1)logax. 当 a>1 时, 若 y=g(x)在区间 上是增函数,y=logax 为增函数,
2668157
10. (5 分)已知函数 y=f(x)的图象与函数 y=a (a>0 且 a≠1)的图象关于直线 y=x 对称,记 g(x)=f(x)[f(x) +f(2)﹣1].若 y=g(x)在区间 A.[2,+∞) 考点: 专题: 分析: 解答: 上是增函数,则实数 a 的取值范围是( C. ) D.
2668157
①1 号盒子中放 1 个球,其余 3 个放入 2 号盒子,有 C4 =4 种方法; 2 ②1 号盒子中放 2 个球,其余 2 个放入 2 号盒子,有 C4 =6 种方法; 则不同的放球方法有 10 种, 故选 A. 点评: 本题考查组合数的运用,注意挖掘题目中的隐含条件,全面考虑. 6. (5 分)设 m、n 是两条不同的直线,α、β 是两个不同的平面.考查下列命题,其中正确的命题是( ) A.m⊥α,n⊂β,m⊥n⇒α⊥β B. α∥β,m⊥α,n∥β⇒m⊥n C. α⊥β,m⊥α,n∥β⇒m⊥n D.α⊥β,α∩β=m,n⊥m⇒n⊥β 考点: 空间中直线与平面之间的位置关系. 分析: 本题考查的知识点是空间中直线与平面之间位置关系的判定,我们要根据空间中线面关系的判定及性质定 理对四个结论逐一进行判断. 若 m⊥α, n ⊂ β, m⊥n 时, α、 β 可能平行, 也可能相交, 不一定垂直; 若 α⊥β, m⊥α,n∥β 时,m 与 n 可能平行、相交或异面,不一定垂直,α⊥β,α∩β=m 时,与线面垂直的判定定理 比较缺少条件 n⊂α,则 n⊥β 不一定成立. 解答: 解:设 m、n 是两条不同的直线,α、β 是两个不同的平面,则:
考点: 点、线、面间的距离计算. 分析: 在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多 面体的体积也常转化为求点到平面的距离.常用方法有“找垂面法”:即找(作)出一个过该点的平面与已知
2668157
平面垂直,然后过该点作其交线的垂线,则得点到平面的垂线段.过 C 作 CD⊥AB,D 为垂足,连接 C1D, ∠C1DC=60°, 则 C1D⊥AB, 且 AB⊥平面 C1DC, 所以平面 ABC1⊥平面 C1DC, 平面 ABC1∩平面 C1DC=C1D, 所以过 C 作 CE⊥C1D,则 CE 为点 C 到平面 ABC1 的距离. 解答: 解:如图,在正三棱柱 ABC﹣A1B1C1 中,AB=1.若二面角 C﹣AB﹣C1 的大小为 60°, 过 C 作 CD⊥AB,D 为垂足,连接 C1D,则 C1D⊥AB,∠C1DC=60°,CD= ,
,故选 A.
点评: 本题考查复数的代数形式的运算,是基础题. 2. (5 分)如果双曲线的两个焦点分别为 F1(﹣3,0) 、F2(3,0) ,一条渐近线方程为 ,那么它的两条 准线间的距离是( ) A. B. 4 C. 2 D.1 考点: 双曲线的简单性质. 专题: 计算题. 分析: 依题意可求得 c, 根据 c= 和渐线方程, 联立求得 a 和 b, 进而根据准线间的距离是 求得答案.
x
令 t=logax,t∈[
,loga2],要求对称轴
,矛盾;
当 0<a<1 时,若 y=g(x)在区间
上是增函数,y=logax 为减函数,
令 t=logax,t∈[loga2, 解得 ,
],要求对称轴
,ቤተ መጻሕፍቲ ባይዱ
所以实数 a 的取值范围是