(物理)高考必刷题物理生活中的圆周运动题

合集下载

高中物理生活中的圆周运动题20套(带答案)

高中物理生活中的圆周运动题20套(带答案)

高中物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。

保持细管竖直用手轻轻摇动细管,稳定后A 在水平面内做匀速圆周运动而B 保持静止状态。

某时刻B 静止在地面上且对地面的压力恰好为零。

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动:水平方向:2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =+ 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=3.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。

必刷卷01-2024年高考物理核心考点考前信息必刷卷(全国乙卷地区专用)

必刷卷01-2024年高考物理核心考点考前信息必刷卷(全国乙卷地区专用)

必刷卷01-2024年高考物理核心考点考前信息必刷卷(全国乙卷地区专用)一、单项选择题:本题共8小题,每小题3分,共24分,在每小题给出的答案中,只有一个符合题目要求。

(共8题)第(1)题如图所示为“惯性演示”的小实验,质量均为m的四枚棋子a、b、c、d竖直叠放,静止在水平桌面上。

现用一直尺快速击打出最下方棋子d,在d被快速打出后瞬间,a、b、c可视为处于原位置,则此时( )(已知重力加速度为g)A.棋子a处于平衡状态B.棋子b对c的压力为2mgC.棋子c的加速度为3g D.棋子a、b、c均处于完全失重状态第(2)题如图所示为一走时准确的时钟,分别是分针和时针的端点,在时钟正常工作时()A.B.C.D.第(3)题《梦溪笔谈》是中国科学技术史上的重要文献,书中对彩虹作了如下描述:“虹乃雨中日影也,日照雨则有之”。

如图是彩虹成因的简化示意图,设水滴是球形的,图中的圆代表水滴过球心的截面,入射光线在过此截面的平面内,a、b是两种不同频率的单色光。

下列说法正确的是( )A.a光的频率小于b光的频率B.在同种介质中,a光传播速度小于b光传播速度C.a光和b光照射相同的单缝,a光的衍射现象更明显D.a光和b光做相同的双缝干涉实验,a光的条纹间距更大第(4)题如图所示,间距为d的两平行金属板通过理想二极管与电动势为的电源(内阻不计)相连,A板接地,在两板之间的C点固定一个带电荷量为的点电荷,C点与B板之间的距离为,下列说法正确的是( )A.图中电容器无法充电B.点电荷的电势能为C.把两板错开放置,B板的电势不变D.把A板向下移动,点电荷受到的电场力减小第(5)题如图甲所示是一种逆变器,逆变器是能够把蓄电池提供的直流电转变为交流电的设备。

如图乙所示为逆变器的简易电路图,核心的控制电路称为“逆变模块”,它的功能是把直流电转化为交流电,共有5个接线端子。

其中1、2、3为输入端,与两块相同的蓄电池连接,蓄电池的电动势为E,内阻不计,两块蓄电池同时工作;4、5为输出端,与理想变压器的原线圈相连,原线圈匝数为n1,副线圈匝数为n2,副线圈连一个电阻阻值为R的灯泡L。

(物理) 高考物理生活中的圆周运动专项训练100(附答案)

(物理) 高考物理生活中的圆周运动专项训练100(附答案)

(物理) 高考物理生活中的圆周运动专项训练100(附答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s2.如图,AB 为倾角37θ=︒的光滑斜面轨道,BP 为竖直光滑圆弧轨道,圆心角为143︒、半径0.4m R =,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹资一端固定在A 点另一自由端在斜面上C 点处,现有一质量0.2kg m =的小物块(可视为质点)在外力作用下将弹簧缓慢压缩到D 点后(不栓接)静止释放,恰能沿轨道到达P 点,已知0.2m CD =、sin370.6︒=、cos370.8︒=,g 取210m/s .求:(1)物块经过P 点时的速度大小p v ;(2)若 1.0m BC =,弹簧在D 点时的弹性势能P E ; (3)为保证物块沿原轨道返回,BC 的长度至少多大. 【答案】(1)2m/s (2)32.8J (3)2.0m 【解析】 【详解】(1)物块恰好能到达最高点P ,由重力提供圆周运动的向心力,由牛顿第二定律得:mg=m 2p v R解得:100.42m/s P v gR =⨯=(2)物块从D 到P 的过程,由机械能守恒定律得:E p =mg (s DC +s CB )sin37°+mgR (1+cos37°)+12mv P 2. 代入数据解得:E p =32.8J(3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:E p =mg (s DC +s ′CB )sin37°+mgR (1+cos37°)解得:s ′CB =2.0m点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.3.如图所示,在光滑水平桌面EAB 上有质量为m =2 kg 的小球P 和质量为M =1 kg 的小球Q ,P 、Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E 处放置一质量也为M =1 kg 的橡皮泥球S ,在B 处固定一与水平桌面相切的光滑竖直半圆形轨道。

压轴题20 圆周运动的临界问题 备战2021年高考物理必刷压轴题精选精炼(解析版)

压轴题20 圆周运动的临界问题 备战2021年高考物理必刷压轴题精选精炼(解析版)

压轴题20 圆周运动的临界问题一、单选题1.如图所示,一内壁光滑、质量为m 、半径为r 的环形细圆管(管的内径相对于环半径可忽略不计)用硬杆竖直固定在地面上。

有一质量为m 的小球可在圆管中运动(球直径略小于圆管直 径,可看做质点),小球以速率v 0经过圆管最高点时,恰好对管壁无压力,当球运动到最低点时,求硬杆对圆管的作用力大小为( )A. m v 02rB. 2mg +m v 02rC. 6mgD. 7mg【答案】D【解析】在最高点,球恰好对管壁无压力,则由重力提供向心力,故有:mg =mv 02r,球运动到最低点过程,由于内壁光滑,机械能守恒,故有:12mv 02+2mgr =12mv 2,在最低点,设硬杆对圆管的作用力大小为F ,对圆管及球整体列牛顿第二定律可得:F −2mg =m v 2r ,联立解得F =7mg 。

故ABC 错误,D 正确。

故选D 。

2.杂技演员表演水流星节目,一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,欲使杯子运动到最高点处而水不流出,杯子运动到最高点的角速度ω至少为 A. √gLB. √2g LC. √5g LD. √10g L【答案】B【解析】据题知,杯子圆周运动的半径r =L2,杯子运动到最高点时,水恰好不流出,由水的重力刚好提供其做圆周运动的向心力,根据牛顿第二定律得mg =mω2L2,解得ω=√2g L,故选B 。

3.如图所示,半径为R 的光滑34圆弧轨道ABC 竖直固定在水平地面上,顶端A 处切线水平。

将一质量为m 的小球(可视为质点)从轨道右端点C 的正上方由静止释放,释放位置距离地面的高度为ℎ(可以调节),不计空气阻力,下列说法正确的是A. ℎ=2R 时,小球刚好能够到达圆弧轨道的顶端AB. 适当调节h 的大小,可使小球从A 点飞出,恰好落在C 点C. ℎ=5R4时,由机械能守恒定律可知,小球在轨道左侧能够到达的最大距地高度为5R4 D. ℎ=4R 时,小球从A 点飞出,落地点与O 点之间的水平距离为4R 【答案】D【解析】A.圆弧轨道属于内轨道模型,通过A 点的临界速度为√gR ,则小球距地面高度ℎ=2R 时,根据机械能守恒定律,小球不能通过A 点,故A 错误。

高考物理高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)

高考物理高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)

高考物理高考物理生活中的圆周运动解题技巧( 超强) 及练习题 ( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,倾角为45的粗拙平直导轨与半径为r 的圆滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰巧击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为 e 点,重力加快度为g,不计空气阻力. 求:(1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果能够保存根号)【答案】( 1)142 mgr ;()′;()2=6mg2F314【分析】【剖析】【详解】(1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r v a t竖直方向: r1gt 22解得:v a gr小滑块在 a 点飞出的动能E k1mv a21mgr22(2)设小滑块在 e 点时速度为v m,由机械能守恒定律得:1mv m21mv a2mg 2r22在最低点由牛顿第二定律:F mg mv m2r由牛顿第三定律得:F′=F解得: F′ =6mg(3) bd 之间长度为L,由几何关系得:L 2 2 1 r从 d 到最低点 e 过程中,由动能定理mgHmg cos L1mv m22解得42142.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点. D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达 M 点( 3) 2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR 2 10 0.45 m/s=3m/sv y tan53 °4v D3因此: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v2y32 2.252m/s = 3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由D 到M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,因此物块不可以抵达M 点(3)由题意知x= 4t - 2t2,物块在桌面上过 B 点后初速度v B= 4m/s ,加快度为:a 4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数 :0.4质量 m1= 0.4kg 的物块将弹簧迟缓压缩到 C 点,开释后弹簧恢还原长时物块恰停止在B 点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC 0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.3.如下图 ,半径 R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数,重力加快度.求 :(1)滑块经过 C 点时的速度大小;(2)滑块刚进入圆轨道时,在 B 点轨道对滑块的弹力;(3)滑块在 A 点遇到的刹时冲量的大小.【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为 v A2B2- mv A 2,依据动能定理; -μ mgs= mv解得: v A=16.1m/s设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.4.如下图,在竖直平面内有一半径为R的1圆滑圆弧轨道 AB,与水平川面相切于B 4点。

高考物理必刷题

高考物理必刷题

精品题库试题用户:大学霸生成时间:2015.08.29 14:45:14物理1.(2015课标Ⅰ,18,6分)一带有乒乓球发射机的乒乓球台如图所示。

水平台面的长和宽分别为L1和L2,中间球网高度为h。

发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。

不计空气的作用,重力加速度大小为g。

若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是()A.<v<L1B.<v<C.<v<D.<v<2.(2015浙江理综,17,6分)如图所示为足球球门,球门宽为L。

一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点)。

球员顶球点的高度为h。

足球做平抛运动(足球可看成质点,忽略空气阻力),则()A.足球位移的大小B.足球初速度的大小v0=C.足球末速度的大小D.足球初速度的方向与球门线夹角的正切值θ=3.(2015福建理综,17,6分)如图,在竖直平面内,滑道关于B点对称,且A、B、C三点在同一水平线上。

若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则()<t2112>t21D.无法比较t1、t2的大小4.(2015浙江理综,19,6分)(多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r和2r。

一辆质量为m的赛车通过线经弯道到达A'B'线,有如图所示的①、②、③三条路线,其中路线③是以O'为圆心的半圆'。

赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为。

选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等5.(2015天津理综,4,6分)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示。

高考物理信息必刷卷05(广东专用)经典题解版

高考物理信息必刷卷05(广东专用)经典题解版

一、单选题二、多选题1. 如图所示,a 、b 、c 、d 四个质量均为m 的带电小球恰好构成“三星拱月”之形,其中a 、b 、c 三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕O 点做半径为R 的匀速圆周运动,三小球所在位置恰好将圆周等分,小球d 位于O 点正上方h 处,且在外力F 作用下恰处于静止状态。

已知a 、b 、c 三小球的电荷量均为q ,d 球的电荷量为-6q,,重力加速度为g ,静电力常量为k,则( )A .小球a的线速度为B .小球b的角速度为C .小球c的向心加速度大小为D .外力F竖直向上,大小为2. 如图所示,一理想变压器原线圈可通过移动滑动触头P 的位置改变接入电路的匝数,b 为原线圈的中点。

当P 接a 时,原、副线圈的匝数比为10:1,线圈L上的直流电阻不计。

原线圈接的交流电,则()A .当P 接b 时,变阻器R两端的电压为B .当P 接a 时,通过原、副线圈截面的磁通量之比为10:1C .若将P 由a 向b 滑动时,则变压器的输入功率增大D .若增大电源的频率,则灯泡B 将变亮3. 钴60()是金属元素钴的放射性同位素之一,其半衰期为5.27年。

静止的钴60发生一次衰变成为镍60(),同时放出X 粒子和两束射线。

下列说法正确的是( )A .射线具有很强的电离作用B .10g 钴60经过10.54年全部发生衰变C .X 粒子的质量数为4D .X 粒子带负电4. 钚()是原子能工业的一种重要原料,可作为核燃料的裂变剂。

钚240的衰变方程为,下列说法正确的是( )A .这种衰变过程叫作衰变B.衰变放出的是由原子核外电子受激发而产生的C .衰变前的质量数大于衰变后的质量数之和D .衰变前的电荷数等于衰变后的电荷数之和5. 苹果从某一高度静止释放,已知落地前倒数第二秒内的位移是10m ,苹果的运动视作自由落体运动,重力加速度为10m/s 2,则苹果释放的高度为( )A .45mB .36.75mC .31.25mD .11.25m6. 如图所示一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m ,带电量为+q 的小球相连,静止在光滑绝缘水面上,当施加水平向右的匀强电场E 后,小球开始运动,关于小球的运动的正确说法是( )A.运动过程中最大加速度为高考物理信息必刷卷05(广东专用)经典题解版三、实验题B.从静止向右运动距离为时速度最大C .小球的机械能守恒D .小球的弹性势能、电势能之和保持不变7. 如图甲所示,Q 1、Q 2为两个固定点电荷,其中Q 1带正电,两电荷连线的延长线上有a 、b 两点.一带正电的试探电荷,只在静电力作用下以一定的初速度沿直线从b 点开始经a 点向远处运动,其速度—时间图像如图乙所示,和分别为试探电荷经过a 、b 两点时的速度,下列说法正确的是()A .带正电B.C .试探电荷从b 点到a 点的过程中电势能增大D .试探电荷离开a 点后所受静电力一直减小8. 如图所示,质量均为 m 的a 、b 两小球在光滑半球形碗内做圆周运动,碗的球心为 O 、半径为 0.1m , Oa 、Ob 与竖直方向夹角分别为53°、37° ,两球运动过程中,碗始终静止在水平地面上,已知sin 37°= 0.6 ,g 取10m/s 2。

2024届天津巿南开区高三(下)一模物理核心考点试题(基础必刷)

2024届天津巿南开区高三(下)一模物理核心考点试题(基础必刷)

2024届天津巿南开区高三(下)一模物理核心考点试题(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题下列有关生活中的圆周运动实例分析,其中说法正确的是( )A.汽车过凸形桥时桥所受压力一定大于汽车的重力B.在铁路的转弯处,通常要求外轨比内轨高,目的是减轻轮缘与内轨的挤压C.洗衣机甩干衣服的原理是水随脱水桶高速旋转时会做离心运动D.杂技演员表演“水流星”,当“水流星”通过最低点时,“水流星”重力恰好全部提供其所需要的向心力第(2)题飞力士棒(Flexi-bar)是德国物理治疗师发明的一种物理康复器材,也是一种有效加强躯干肌肉功能的训练器材。

标准型飞力士棒整体结构由中间的握柄,两端负重头,用一根P VC软杆连接,质量为,长度为,棒的固有频率为,如图所示,可以使用双手进行驱动,则下列关于飞力士棒的认识正确的是( )A.使用者用力越大飞力士棒振动越快B.随着手振动的频率增大,飞力士棒振动的幅度一定越来越大C.双手驱动该飞力士棒每分钟振动270次全振动,会产生共振D.负重头质量相同,同样材料的PVC杆缩短,飞力士棒的固有频率不变第(3)题如图所示,轻质弹簧一端固定在足够长的光滑斜面的顶端,另一端与物块A连接,物块B叠放在A上,两物块质量均为m,斜面倾角为θ,O点为弹簧原长位置。

将两物块从O点上方x0处由静止释放,下滑过程中A、B始终相对静止,则在下滑至最低点过程中( )A.物块A在O点的速度最大B.最低点到O点的距离为x0C.物块B在最低点时加速度大小为D.物块B在最高点与最低点所受摩擦力大小相等第(4)题某学习小组利用图甲所示装置研究摩擦力的变化情况。

他们在实验台上固定一个力传感器,传感器用棉线拉住物块,质量的物块放置在粗糙的质量的长木板上。

水平向左拉木板,传感器记录的图像如图乙所示。

则物块与木板间的动摩擦因数约为( )A.B.C.D.第(5)题跳台滑雪是运动员以滑雪板为工具,在专设的跳台上以自身的体重通过助滑坡获得速度,比拼跳跃距离和动作姿势的一种雪上竞技项目。

(物理)高考必刷题物理数学物理法题含解析

(物理)高考必刷题物理数学物理法题含解析

(物理)高考必刷题物理数学物理法题含解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。

【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos157712gL S r t Tπ︒==︒【点睛】考察粒子在复合场中的运动。

高考物理生活中的圆周运动练习题及答案

高考物理生活中的圆周运动练习题及答案

高考物理生活中的圆周运动练习题及答案一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为 m ,绳长为 L ,悬点距地面高度为H.小球运动至最低点时,绳恰被拉断,小球着地时水平位移为 S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】 (1)1(2) vs 2 g0(3)T1s2g星 = g04H L[1] mg0 442(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知Mmv 2 GR 2m RGMmmgR 2v 2可得 gR则 g 星= 1g 04(2)由平抛运动的规律: H L1 g 星t22s v 0ts2g 0解得v 0H L4(3)由牛顿定律 ,在最低点时 : Tmg 星= mv 2L1 1s 2mg 0 解得:TL )L42( H【点睛】本题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度 g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决本题的要点.3. 圆滑水平面 AB 与一圆滑半圆形轨道在 B 点相连,轨道位于竖直面内,其半径为 R ,一个质量为 m 的物块静止在水平面上,现向左推物块使其压紧弹簧,而后松手,物块在弹力 作用下获取一速度,当它经 B 点进入半圆形轨道瞬时,对轨道的压力为其重力的 9 倍,之后向上运动经C 点再落回到水平面,重力加快度为g.求:(1)弹簧弹力对物块做的功;(2)物块走开 C 点后,再落回到水平面上时距 B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不离开轨道,则弹簧弹性势能的取值范围为多少?【答案】 (1) (2) 4R ( 3)或【分析】【详解】(1)由动能定理得W=在 B 点由牛顿第二定律得:9mg- mg= m解得 W= 4mgR(2)设物块经 C 点落回到水平面上时距 B 点的距离为S,用时为t ,由平抛规律知S=v c t2R= gt2从 B 到 C 由动能定理得联立知, S= 4 R(3)假定弹簧弹性势能为EP,要使物块在半圆轨道上运动时不离开轨道,则物块可能在圆轨道的上涨高度不超出半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块恰巧经过 C 点,则物块从 B 到 C 由动能定理得物块在 C 点时 mg= m则联立知:EP≥ mgR.综上所述,要使物块在半圆轨道上运动时不离开轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥ mgR.4.如下图,在竖直平面内有一半径为R 的1圆滑圆弧轨道,与水平川面相切于B 4AB点。

必刷卷01-2024年高考物理考前信息必刷卷(全国乙卷地区专用)

必刷卷01-2024年高考物理考前信息必刷卷(全国乙卷地区专用)

必刷卷01-2024年高考物理考前信息必刷卷(全国乙卷地区专用)一、单选题 (共7题)第(1)题如图所示,某同学在做双缝干涉实验时,发现目镜中干涉条纹与分划板的刻度线始终有一定夹角,下面哪些操作可以调整分划板刻度线与干涉条纹平行( )A.旋转单缝B.调节拨杆C.将光源更靠近单缝D.旋转毛玻璃处的测量头第(2)题在同一水平面、同一种介质中有两个波源O1和O2,振动频率均为f,振动振幅均为A。

现两波源同时开始沿垂直纸面方向振动,且起振方向相反。

经半个周期后停止振动,波形如图所示,其中实线表示波峰,虚线表示波谷。

已知,P为bc的中点,下列说法正确的是( )A.两列波的波长均为2LB.两列波的波速均为C.质点c为振动的加强点D.质点P振动经过的总路程为4A第(3)题2021年美国“星链”卫星曾近距离接近我国运行在距地近圆轨道上的天宫空间站。

为避免发生危险,天宫空间站实施了发动机点火变轨的紧急避碰措施。

已知质量为m的物体从距地心r处运动到无穷远处克服地球引力所做的功为,式中M为地球质量,G为引力常量;现将空间站的质量记为,变轨前后稳定运行的轨道半径分别记为、,如图所示。

空间站紧急避碰过程发动机做的功至少为( )A.B.C.D.第(4)题如图所示,B是一个立方体物体,中间有一个光滑球形孔,小球C位于球形孔内,整个装置放在足够长的木板A上。

已知立方体B与长木板A之间的动摩擦因数为,最大静摩擦力等于滑动摩擦力。

现将木板的倾角由缓慢增大到,在此过程中,下列说法正确的是()A.木板受到的压力逐渐增大B.立方体受到木板的摩擦力逐渐变大C.小球对立方体的压力逐渐变大D.小球对立方体的压力大小先不变后减小第(5)题如图所示,匀强电场中有一边长为的正方体,为上表面的中心。

已知点的电势为6V,点的电势为8V,、两点的电势均为4V,下列说法正确的是( )A.点的电势为3 VB.正方体中心的电势为6 VC.该匀强电场电场强度的大小为4 V/mD.该匀强电场电场强度的大小为第(6)题对一定质量的理想气体进行等温压缩的过程中,下列说法正确的是( )A.分子热运动的平均动能减少B.气体的内能增加C.气体向外界放热D.单位时间碰撞到器壁单位面积的分子数减少第(7)题在同一均匀介质中,分别位于坐标原点和处的两个波源O和P,沿y轴振动,形成了两列相向传播的简谐横波a和b,某时刻a和b分别传播到和处,波形如图所示。

必刷卷01-2024年高考物理高频考点考前信息必刷卷(全国乙卷地区专用) (2)

必刷卷01-2024年高考物理高频考点考前信息必刷卷(全国乙卷地区专用) (2)

必刷卷01-2024年高考物理高频考点考前信息必刷卷(全国乙卷地区专用)一、单选题 (共6题)第(1)题某载人宇宙飞绕地球做圆周运动的周期为T,由于地球遮挡,宇航员发现有T时间会经历“日全食”过程,如图所示,已知地球的半径为R,引力常量为G,地球自转周期为T0,太阳光可看作平行光,则下列说法正确的是( )A.宇宙飞船离地球表面的高度为2RB.一天内飞船经历“日全食”的次数为C.宇航员观察地球的最大张角为120D.地球的平均密度为第(2)题位于水平面的一个圆上有等间距的三个点A、B、C,每个点上放一个带正电的点电荷,这三个点电荷的带电荷量相同,如图所示。

设每个点电荷单独在圆心产生的电场的场强大小为、电势为,则关于圆上正北点处的电场场强大小E、电势的说法正确的是( )A.B.C.D.第(3)题如图所示为电影《流浪地球》中我国歼击机垂直起降的剧照。

假设该歼击机的质量为25吨,起飞时,单位时间竖直向下喷出气体的质量为300千克,喷气速度为1000m/s。

重力加速度g取,则起飞瞬间该歼击机的加速度大小约为( )A.B.C.D.第(4)题质量为M、倾角为的斜面A与质量为m的圆球B在水平向右的外力F作用下静止在墙角处,它们的截面图如图所示,已知B球光滑,重力加速度为g。

下列说法正确的是( )A.若水平面光滑,则有B.若水平面粗糙,则一定有C.增大外力F(A、B始终静止),侧壁对B的弹力增加D.增大外力F(A、B始终静止),地面对A的支持力增加第(5)题如图所示为静电植绒技术植绒流程示意图,需要植绒的布在滚轮的带动下匀速向右运动,将绒毛放在带负电荷的容器中,使绒毛带负电,容器与带电极板之间加恒定的电压,绒毛成垂直状加速飞到需要植绒的布表面上,假设每根绒毛规格相同,下列判断正确的是()A.绒毛在飞往需要植绒的物体的过程中,电势能增大B.若只增大滚轮的转速,植绒会越密C.若增大容器与带电极板之间的距离,植绒效果会更好D.绒毛带的带电量越多,到达布的表面时速率越大第(6)题霍尔效应传感器可用于自行车速度计上,如图甲所示,将霍尔传感器固定在前叉上,磁铁安装在前轮辐条上,轮子每转一圈,磁铁就靠近霍尔传感器一次,传感器就会输出一个脉冲电压。

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除碰到重力及轨道作用力外,小球还素来碰到一水平恒力的作用,已知小球在 C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求:(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【解析】试题解析此题观察小球在竖直面内的圆周运动、受力解析、动量、斜下抛运动及其相关的知识点,意在观察考生灵便运用相关知识解决问题的的能力.解析( 1)设水平恒力的大小为F0,小球到达C点时所受合力的大小为F.由力的合成法规有F0tan①mgF 2(mg )2F02②设小球到达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球到达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,此题将小球在竖直面内的圆周运动、受力解析、动量、斜下抛运动有机结合,经典创新.2.以下列图,倾角为45 的粗糙平直导轨与半径为r 的圆滑圆环轨道相切,切点为b,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H=3r 的 d 处无初速下滑进入圆环轨道,接着小滑块从最高点 a 水平飞出,恰好击中导轨上与圆心O 等高的c 点 . 已知圆环最低点为 e 点,重力加速度为g,不计空气阻力. 求:(1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果能够保留根号)142【答案】( 1)E k mgr ;(2)F′=6mg;(3)142【解析】【解析】【详解】(1)小滑块从 a 点飞出后做平拋运动:水平方向:2r v a t 竖直方向: r 1 gt22解得:v a gr小滑块在 a 点飞出的动能E k 1mv a21mgr 22(2)设小滑块在e点时速度为 v m,由机械能守恒定律得:1mv m21mv a2mg2r22在最低点由牛顿第二定律:F mg mv m2 r由牛顿第三定律得: F′=F解得: F′ =6mg(3) bd 之间长度为 L,由几何关系得:L 2 2 1 r从 d 到最低点 e 过程中,由动能定理mgH mg cos L 1mv m2 2解得42143.以下列图,竖直平面内有一圆滑的直角细杆MON ,其中 ON 水平, OM 竖直,两个小物块 A 和 B 分别套在 OM 和 ON 杆上,连接 AB 的轻绳长为,.现将直角杆 MON 绕过 OM 的轴 O1O2缓慢地转动起来.已知 A 的质量为 m1=2kg,重力加速度 g 取 10m/s 2。

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析

(物理)高考必刷题物理生活中的圆周运动题含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100(附答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧.在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理生活中的圆周运动题20套(带答案)及解析

高考物理生活中的圆周运动题20套(带答案)及解析
【解析】 【分析】 【详解】 (1)从释放小球至 A 点根据速度与位移关系有
v A 2=2 gh
在 A 点,根据牛顿第二定律 在 B 点,根据牛顿第二定律 根据题意有 故
FN1
m
vA2 R
FN 2
mg
m
vB2 R
FN 2 FN1 3mg
若 h 0 ,则小球在 B 点的速度
vB 2g(R h)
(3)要使物体从某点出发后的运动过程中不会在 N 到 M 点的中间离开半圆轨道,那么物 体能到达的最大高度 0<h≤R 或物体能通过 M 点;
物体能到达的最大高度 0<h≤R 时,由动能定理可得:−μmgx−mgh=0− 1 mv02, 2
所以,
x=
1 2
mv0
2
mgh =
v02
h,
mg
2g
所以,3.5m≤x<4m;
(2)恰好做圆周运动时物体在最高点
B
满足:
mg=m
vB21 R
,解得
vB1
=2m/s
假设物体能到达圆环的最高点 B,由机械能守恒: 1 mv2A=2mgR+ 1 mv2B
2
2
联立可得:vB=3 m/s
因为 vB>vB1,所以小球能通过最高点 B.
此时满足
FN
mg
m
v2 R
解得 FN 1.25N
(3)小球从 B 点做平抛运动,有:
(1)A、B 离开弹簧瞬间的速率 vA、vB; (2)圆弧轨道的半径 R;
(3)A 在小车上滑动过程中产生的热量 Q(计算结果可含有 µ).
【答案】(1)4m/s(2)0.32m(3) 当满足 0.1≤μ<0.2 时,Q1=10μ ;当满足 0.2≤μ≤0.3

【期末提升】必刷03 圆周运动-2019-2020学年下学期高一物理期末限时特训(人教版新教材)(解析版)

【期末提升】必刷03 圆周运动-2019-2020学年下学期高一物理期末限时特训(人教版新教材)(解析版)

必刷03 圆周运动(解析版)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

1.关于物体做匀速圆周运动,下列说法正确的是( )A.匀速圆周运动就是匀速运动B.匀速圆周运动就是匀加速运动C.匀速圆周运动是变加速运动D.做匀速圆周运动的物体处于平衡状态【答案】C【解析】匀速圆周运动加速度大小不变,方向时刻指向圆心,是变加速运动,C 正确。

2.2013年6月20日,航天员王亚平在运行中的“天宫一号”内做了如图所示实验:细线的一端固定,另一端系一小球,在最低点给小球一个初速度,小球能在竖直平面内绕定点做匀速圆周运动.若将此装置带回地球,仍在最低点给小球相同初速度,则在竖直平面内()A.小球一定能做匀速圆周运动B.小球不可能做匀速圆周运动C.小球不可能做完整的圆周运动D.小球一定能做完整的圆周运动【答案】B【解析】把此装置带回地球表面,在最低点给小球相同初速度,小球在运动过程中,只有重力做功,机械能守恒,则动能和重力势能相互转化,速度的大小发生改变,不可能做匀速圆周运动,故A错误,B正确;若小球到达最高点的速度gR,则小球可以做完整的圆周运动,若小于此速度,则不能达到最高点,则不能做完整的圆周运动,故CD错误.故选B.3.如图所示两个内壁光滑的倒立圆锥,底角不同,两个完全相同的小球A、B在两个圆锥内壁相同高度处分别做匀速圆周运动。

关于小球A、B的运动情况,下列说法正确的是 ( )A .两小球做匀速圆周运动的角速度大小相同B .两小球做匀速圆周运动的向心加速度大小相同C .两小球做匀速圆周运动的线速度大小相同D .两小球做匀速圆周运动的向心力大小相同 【答案】C【解析】对任意一球研究,斜面的倾角为θ,受力分析,如图。

由图可知 F 合=mgtanθ=ma,a=gtanθ,则θ不同,向心加速度和向心力都不等;根据向心力公式有 mgtanθ=mω2R=m ,其中R=,解得:ω=,v =,h 相等,θ不等,则角速度不等,线速度相等,故ABD 错误,C 正确。

压轴题19 竖直面内的圆周运动 备战2021年高考物理必刷压轴题精选精炼(原卷版)

压轴题19 竖直面内的圆周运动 备战2021年高考物理必刷压轴题精选精炼(原卷版)

压轴题19 竖直面内的圆周运动一、单选题1.如图所示,AB 是半径为R 的四分之一圆弧轨道,轨道底端B 点与一水平轨道BC 相切,水平轨道又在C 点与足够长的斜面轨道CD 平滑连接,轨道B 处有一挡板(厚度不计)。

在圆弧轨道上静止摆放着N 个半径为r (r ≪R )的光滑刚性小球,恰好将AB 轨道铺满,小球从A 到B 依次标记为1、2、3、…、N 号。

现将B 处挡板抽走,N 个小球均开始运动,不计一切摩擦,考虑小球从AB 向CD 的运动过程,下列说法正确的是A. N 个小球在离开圆弧轨道的过程中均作匀速圆周运动B. 1号小球第一次经过B 点的速度一定小于√2gRC. 1号小球第一次经过B 点的向心加速度一定等于2gD. 1号小球第一次沿CD 斜面上升的最大高度为R2.如图所示,半径为R 的光滑34圆弧轨道ABC 竖直固定在水平地面上,顶端A 处切线水平。

将一质量为m的小球(可视为质点)从轨道右端点C 的正上方由静止释放,释放位置距离地面的高度为ℎ(可以调节),不计空气阻力,下列说法正确的是A. ℎ=2R 时,小球刚好能够到达圆弧轨道的顶端AB. 适当调节h 的大小,可使小球从A 点飞出,恰好落在C 点C. ℎ=5R4时,由机械能守恒定律可知,小球在轨道左侧能够到达的最大距地高度为5R4 D. ℎ=4R 时,小球从A 点飞出,落地点与O 点之间的水平距离为4R3.用绝缘材料制成的半径为R 的管形圆环竖直放置,圆管内壁光滑,空间有平行圆环平面的匀强电场,质量为m 的带电荷量大小为q 的两个小球以速度v 先后进入管中,小球直径略小于管内径,两小球在管中均恰好做匀速圆周运动,重力加速度为g ,不考虑两小球进入圆管前的相互作用,小球在管中运动过程中电荷量不变,圆环半径远大于圆管内径,则下列说法不正确的是( )A. 两小球一定带同种电荷B. 两球进入管中的最短时间差为πRvC. 两球进入管中的速度必须大于某个不为零的值D. 两球均在圆环中运动时整个系统机械能不变4.长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好过最高点,重力加速度为g,则下列说法中正确的是()A. 小球过最高点时速度为零B. 小球过最高点时速度大小为√gLD. 小球过最高点时绳对小球的拉力为mgC. 小球开始运动时绳对小球的拉力为mv02L5.如图所示,质量为m的小球置于立方体的光滑盒子中,盒子的边长略大于球的直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(物理)高考必刷题物理生活中的圆周运动题一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.4.如图所示,BC为半径r225m竖直放置的细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球过C点时速度大小不变,小球冲出C点后经过98s再次回到C点。

(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多大?(2)小球第一次过C 点时轨道对小球的支持力大小为多少?(3)若将BC 段换成光滑细圆管,其他不变,仍将小球从A 点以v 0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N 的恒力,试判断小球在BC 段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。

【答案】(1)2m/s (2)20.9N (3)N 【解析】 【详解】(1)小球从A 运动到B 为平抛运动,有:r sin45°=v 0t 在B 点有:tan45°0gt v =解以上两式得:v 0=2m/s (2)由牛顿第二定律得: 小球沿斜面向上滑动的加速度: a 14545mgsin mgcos m μ︒+︒==g sin45°+μg cos45°=2小球沿斜面向下滑动的加速度: a 24545mgsin mgcos mμ︒-︒==g sin45°﹣μg cos45°=m/s 2设小球沿斜面向上和向下滑动的时间分别为t 1、t 2,由位移关系得:12a 1t 1212=a 2t 22又因为:t 1+t 298=s解得:t 138=s ,t 234=s小球从C 点冲出的速度:v C =a 1t 1=m/s在C 点由牛顿第二定律得:N ﹣mg =m 2Cv r解得:N =20.9N(3)在B 点由运动的合成与分解有:v B 045v sin ==︒因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。

设细管对小球作用力大小为F由牛顿第二定律得:F =m 2Bv r解得:F =由牛顿第三定律知小球对细管作用力大小为,5.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g==B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.6.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

相关文档
最新文档