《数学物理方法》作业

合集下载

数学物理方法大作业1

数学物理方法大作业1

目录一.实际现象的描述3二.问题的求解4(一)求弦振动泛定方程4(二)解弦振动方程 (6)Ⅰ.达朗贝尔法求“无限和半无限的”弦振动函数 (6)Ⅱ.分离变量法求两端固定弦振动方程 (7)三.各种情形下的弦振动求解与图像 (9)四.总结21一·实际现象的描述演奏者在演奏弦乐器(如二胡、提琴)时,用弓在弦上来回拉动,并通过另一只手指在按不同弦的不同地位的协调作用,奏出各种不同的美妙的音乐。

演奏者所用的乐器不同,奏出音乐的悦耳度也就不同。

演奏者虽然用弓所接触的只是弦的很小一段,似乎应该只引起这个小段的振动,而事实上,振动总是传播到整根弦。

这振动是怎样传播的呢?如何利用数学方法来求解这种物理问题?如何通过直观的方程来说明不同乐器演奏出的音乐效果不同的原因?可否利用matlab来将这种振动直观表示出来?通过对于弦振动方程的学习,与对matlab的初步了解,我对于不同定解问题下弦振动方程的求解做了初级小结。

也尝试利用matlab 直观表述不同定解条件下的弦振动动态图像。

二·问题的求解(一)求弦振动泛定方程在求解时,我们不妨认为弦是柔软的,就是说在放松的条件下,把弦完成任意的形状,它都保持静止。

由于弦乐器所用的弦往往是很轻的,它的重量只有力的几万分之一。

跟拉力相比,弦的重量完全可以略去,这样,真实的弦就抽象为“没有重量”的弦。

把没有重量的弦绷紧,它在不振动时是一根直线,就取这直线作为x轴。

把弦上各点的横向位移记作u。

这样,横向位移u是x和t的函数,记作u(x,t)。

要求解弦振动,首先应找出u所遵从的方程。

把弦细分为许多极小的小段,拿区间(x,x+dx)上的小段B为代表加以研究。

B既然没有重量而且是柔软的,它就只受到邻段A和C的拉力和。

弦的每小段都没有纵向(即x方向)的运动,所以作用于B的纵向合力应为零。

弦的横向加速度记作。

按照,小段B的纵向和横向运动分别为式中时弦的线密度,即单位长度的质量。

数学物理方法姚端正CH1作业解答

数学物理方法姚端正CH1作业解答

+
g(
y)

再将 v 对 y 求偏导:
一方面,由 C-R 条件, ∂v = ∂u = 2x + y , ④ ∂y ∂x
另一方面,由 ③式得: ∂v = 2x + dg

∂y
dy
由④⑤两式得 dg = y dy
所以 g = 1 y2 + c 2
所以 v = 2xy − 1 x2 + 1 y2 + c

∂x
∂y
∂x
∂y
可见, w 的实部和虚部有连续的一阶偏微商,且满足 C-R 条件,
所以, w = z2 在复平面可微,从而在复平面是解析的。
(2) w = z Re z
解:记 z = x + iy , w = u(x, y) + iv(x, y) ;
则 w = z Re z = x2 + ixy
w 的实部 u = x2 ,虚部 v = xy
3

i
=
i(−π
2e 6
+ 2kπ
)
,则
z5
= 2 e5
i5(− π + 2kπ ) 6
i (− 5π +10kπ )
= 32e 6
−i 5π
= 32e 6
= 32[cos(− 5π ) + i sin( − 5π )] = −16(
3 + i)
6
6
7.求解方程
(1) z3 − 1 = 0

e0 = 1
所以,函数 z + z + 1 是 2 值的,支点是1, ∞
(6)
i arg z + 2kπ

数学物理方法复习题.docx

数学物理方法复习题.docx

第一部分:填空题1复变函数/(z) = w(x, y) + zv(x, y)在点z = x + iy 可导的必要条件是 2柯西黎曼方程在极坐标系屮的表达式为 _____3复变函数/(z) = |z|2 z 在乙= ______ 处可导 4复变函数f{z) = xy + iy^£z = __ 处可导指数函数f(z) = e z的周期为fCOSTTZ r-------- ^dz 审d在Z 。

= 1的邻域上将函数.f ⑵=严展开成洛朗级数为cos z17 z°=0为函数一^的 ________ 阶极点Z■ 18 z°=0为函数畔的 _________ 阶极点Z12 13 1415 将J"在z° =0的邻域上展开成洛朗级数为— 将sin — 在z° = l 的邻域上展开成洛朗级数为 z-1Z 。

= 0为函数晋的 _________________ Z ()= 0为函数sin-的 _______________Zsin 16 I z°=l 为函数幺匚的 1011]_严函数/(z)=——在z o=O 的留数Re”*(O) = ___________Z函数/(Z)=亠一z在%=1的留数Re眇(1) = _________ 在无限远点的留数Re 5/(oo)= _______函数 /(z)-^IZ在z°=0 的留数Re 5/(0) = ______________cos z函数/(z) = 在z° = 0 的留数Re5/(0) = ____________zsin z函数/(z)=——厂在z° = 0的留数Re“(O) =_________Z'积分J: /(C力仏 Y)必= ______ a e (d,b))两端固定的弦在线密度为= 兀)sin//的横向力作用下振动,泛定方程为______________ •两端固定的弦在点*0受变力°/(X,0 = pfo sin血的横向力的作用,其泛定方程为____________________ .弦在阻尼介质中振动,单位长度的弦所受的阻力F = -R Ul (R为阻力系数), 弦在阻尼介质中的振动方程为_____________________ o长为/的均匀杆,两端有恒定的热流%进入,其边界条件为______________ ・长为/的均匀杆,一端x = 0固定,另一端兀二/受拉力花的作用而作纵振动,其边界条件为__________________长为/的均匀杆,一端x = 0固定,另一端兀受拉力忆的作用而伸长,杆在放手后振动,其边界条件为__________________________初始条件为________________________________ .长为/的两端固定的弦,在兀。

数学物理方法复习题

数学物理方法复习题

第一部分:填空题1复变函数f(z) u(x,y) i v(x,y)在点z x i y可导的必要条件是____ 2 柯西黎曼方程在极坐标系中的表达式为_______ 3 复变函数f(z) zz在z ____处可导4复变函数f(z) xy i y在z ____处可导5 ln( 1) _____6 指数函数f(z) ez的周期为______ 21dz _____ 7 1z 2(z )2zezdz _____ 8 z 3z 3 19 dz _____ 2 z 4z 2 1cos zd z _________ 5(z 1)z 111 z10 11 在z0 1的邻域上将函数f(z) e展开成洛朗级数为__________12 将e1/z在z0 0的邻域上展开成洛朗级数为_____________1在z0 1的邻域上展开成洛朗级数为________________ z 1sinz14 z0 0为函数的________________ 2z115 z0 0为函数sin的________________ z13 将sin16 z0 1为函数e17 z0 0为函数11 z的____________________ cosz的______阶极点4zsinz18 z0 0为函数4的______阶极点z1 e2z19 函数f(z) 在z0 0的留数Resf(0) ________ z320 函数f(z) e11 z在z0 1的留数Resf(1) ________,在无限远点的留数Resf( ) ________21 函数f(z) e1/z2在z0 0的留数Resf(0) ________22 函数f(z) cosz在z0 0的留数Resf(0) ________ 3zsinz23 函数f(z) 3在z0 0的留数Resf(0) ________ z24 积分 f( ) (t0 )d ______ (t (a,b) )ab25 两端固定的弦在线密度为 f(x,t) (x)sin t的横向力作用下振动,泛定方程为_______________.26 两端固定的弦在点x0受变力 f(x,t) f0sin t的横向力的作用,其泛定方程为_________________.27 弦在阻尼介质中振动,单位长度的弦所受的阻力F R ut(R为阻力系数),弦在阻尼介质中的振动方程为_______________。

数学物理方法习题解答

数学物理方法习题解答

习题解答
向安平
B xiangap@ xiangap@
成都信息工程学院光电技术系 2006 年 9 月 11 日
前 言
本书供电子科学与技术专业和光信息科学与技术专业《数学物理方法》课程教学使用. 本教学参考书仅供授权读者在计算机上阅读,不能编辑、拷贝和打印.经作者授权,可取消全 部限制. 在第一版中只收录了必要的试题,以后将增补习题的数量和类型,在每章增加内容小结和解题 方法讨论.欢迎读者提供建议. 作为本书的第一版,错误和排版差错在所难免,敬请读者指正.
§ 1.1 复数与复数运算
1. 下列式子在复平面上各具有怎样的意义? (1) | x |≤ 2. (2) | z − a |=| z − b | (a 、b为复常数). (3) Rez > 1 2. (1) | x |≤ 2 解一:|z| = | x + iy| = 部. x2 + y2 ≤ 2,或 x2 + y2 ≤ 4.这是以原点为圆心而半径为2的圆及其内
z?az?bx?a12y?a22x?b12y?b22于是x?a12y?a22x?b12y?b22即2y?a2?b2b2?a22x?a1?b1a1?b1y?a2b22x?a1b12a1?b1b2?a22a2b2这是一条直线是一条过点a和点b连线的中点a1b12且与该直线垂直的直线
数 学 物 理 方 法
解二:按照模的几何意义,|z|是复数z = x + iy与原点间的距离,若此距离总是≤ 2,即表示 以原点为圆心而半径为2的圆内部. (2) |z − a| = |z − b| ( a、b为复常数). 解一:设z = x + iy, z = a1 + ia2 , b = b1 + ib2 ; ( x − a1 )2 + (y − a2 )2 , ( x − b1 )2 + (y − b2 )2 ,

数学物理方法姚端正CH7作业解答

数学物理方法姚端正CH7作业解答

uΙ =
1 x+t sin αdα = sin x sin t 2 ∫x − t 1 t 2 ∫0
t 0
由无界纯强迫振动解的公式,得
u ΙΙ =

x + ( t −τ )
x − ( t −τ )
τ sin αdαdτ =
1 t {cos[ x − (t − τ )] − cos[ x + (t − τ )]}τdτ 2 ∫0
t 0
= ∫ sin x sin( t − τ )τdτ = sin x ∫ sin( t − τ )τdτ = t sin x − sin x sin t
(上式最后一步用了分部积分法) 则 u = u + u = t sin x
Ι ΙΙ
3
utt − a 2u xx = x (3) u ( x,0) = 0 u ( x,0) = 3 t
① ② ③
① 即 f1 ( x) − f 2 ( x) = −ϕ ( x) ②
解:方程 utt = u xx 的通解为: u ( x, t ) = f1 ( x + t ) + f 2 ( x − t ) 将④式代入定解条件②得: f1 (0) + f 2 (2 x) = ϕ ( x )


1
将④式代入定解条件③得:
2
u xx − u yy = 8 (2) u ( x,0) = 0 u ( x,0) = 0 y 解:由冲量原理,原定解问题可转化为以下定解问题: v yy − vxx = 0 v( x,τ ) = 0 v ( x,τ ) = −8 y 由 D ' Alembert 公式,该问题的解为: v( x, y;τ ) = 1 x + a ( y −τ ) − 8dα =8τ − 8 y 2 ∫x − a ( y −τ )

李明奇数学物理方法作业

李明奇数学物理方法作业

杨立-201122050231-第1次作业-4班习题2.1.2长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆作自由振动。

试写出振动方向的定解条件。

解:由于x=0端固定,可知0|0x u ==,又L 端为自由端,知|0x L u ==。

t=0时刻杆上点的位移0|t b u kx x L===,又t=0时刻的速度为0,即0|0t t u ==。

习题2.2.1一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的均质园杆,如同界面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。

试导出杆上温度u 满足的方程。

解:如图所示通过两截面而留下的热量=微元段升 温吸热+与侧面交换所留下的热量因为 11[(,)(,)(,)(,)]()2x x t kdt u x dx t s x dx t u x t s x t c sdxu dt k u u rdxdt ρπ++-=+- 其中,k 为进入截面的系数;s 为横截面;x u 为沿轴温度的法向导数;2πrdx 为侧面。

所以 221()t xx u a u b u u -=--,2k a cp =,212k b c r ρ= 习题2.3.3由静电场Gauss 定理 1s V E dS dV ρε⋅=⎰⎰⎰⎰⎰ ,求证:E ρε∇⋅=,并由此导出静电势u 所满足的Poisson 方程。

解:因为 s VE dS EdV ⋅=⎰⎰⎰⎰⎰且 1s VE dS dV ρε⋅=⎰⎰⎰⎰⎰ 比较可得 E ρε∇⋅=即 ()E ερ∇⋅=可令 E u =-∇ 代入上式可得2u u ρε∇=∆=-0 x x+dx L X习题2.4.2求下列方程的通解(2)230xx xy yy u u u +-=;(5)161630xx xy yy u u u ++=;解:(2)230xx xy yy u u u +-=此方程式双曲型的第二标准型,将其化成第一标准型特征方程2230dy dy dx dx ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭解得12dy dx=± 令3x y x yζη=-⎧⎨=+⎩ 可得111212220880a a a a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦10b =;20b =;0c =;0f =可得标准型0u ζη=因此 (3)()u f x y g x y =-++。

“数学物理方法”第11章作业解答

“数学物理方法”第11章作业解答

数学物理方法第11章作业解答第346页 4. 半径为高为的圆柱体0ρL 上下底温度为零度侧面(0ρρ=u)分布为Lz z f /)(=底和侧面保持零度上底温度分布为2)(ρρ=f 求柱体内各点的稳恒温度分布解采用柱坐标系原点在下底心定解问题020000,()z z Lu u u u f ρρρρ===∆=====由柱面的其次边条知µ≥01µ>一般解()cos (,,)~())sin m m J x m x N x m e ϕρϕϕ=  u z∵边条与无关ϕ∴m=0 0ρ→∵即0x→m N →∞应舍去mN 00(,)~))(n n n u z J J A B ee ρ)∴=⋅+∑其中由柱面第一类齐次边条决定µn 00)J =02(0)0n n x µρ ∴=(0)n x 是的第n 个零点0()Jx2µ=0, 考虑到m =0 00.u A B z ∴=+不不能满足第一类边条000A B ∴==综合得0(,))()n n nu z J A B eρ=⋅+∑代入底面边条(0)(0)0(0)01021)0(2)n n n nn x L x Ln n x B J eB e ρρρρρ∞=∞−=+= += ∑∑ n n (A A (1) {同P 236例}上面两式展成傅立叶贝塞尔级数再对比系数()(0)(0)000(0)200022(0)0002n n n x L x L n n n B x J d e B e J x ρρρρρρρ−+= ⋅ += ′∫n n A A ρρ ()()(0)43004022(0)002 =.n x nx J x dx J x ρρ⋅′∫见书上P334例一 ()()()()(0)232011042(0)02=.42n x nx J x xJ x x J x J x ρ ⋅−+ ′0()()()()23(0)(0)(0)(0)01142(0)02=.4n n n n nx J x x J x J x ρ ⋅−′ 解得n B =−n A ()()204(0)(0)(0)(0)1041n n n n x x L x J x shρρ−=n A 使用了01J J ′=−最后()()(0)(0)00204(0)(0)0(0)1(0)(0)01041(,)(n n x z x z n n n n n n x x u z e e J x L x J x sh ρρρρρρρ∞−=− =−∑⋅[ (0)(0)20(0)(0)(0)(0)2110142[1()()n n n n n nn x zsh x J x Lx J x x shρρρρρ∞==−∑() ]====∆====L z u u u u L z z f u L P L z z /0,0( 0./)(., 1. 000 361ρρρ柱坐标系解定解问题温度求解柱体内各点的稳恒为分布侧面上下底温度为零度高为匀质圆柱半径为()z L n L n I Ln I n z u Ln I n n L n L L n I zdz L n z L n z n L L n I z L n d z n L Ln I zdzL n L z L L n I B L z z L n L n I B z Ln L n I B z u B A zB A u m n Ln L L B L A I A I A z B z A I u K m x m m z z x K x I u n n L L L L n n n n n n n nn n n n n n n n n n n n n n n m m m πρπρππρρππππρππππρπππρππρππρππρπρµπννννρνρνγννρνρϕνρϕϕννµµνsin)()(2)1(),)1()(2)(cos 1)(2cos cos 1)(2 )(cos 1)(2 sin 2)(1/sin )(sin )(),000)2)2,1(,0sin 0sin cos )(0 0)()sin cos )((00)(sin cos sin cos )()(~010000110000000000000001010000000⋅⋅−=−⋅=⋅−⋅⋅= −−⋅⋅=⋅−⋅⋅=⋅=====+=======+⋅=⇒=+=∴→=∴=<≤∴∑∫∫∫∑∑∑∑∑++∞=∞=最后得由侧面边条综合由底面边条知时考虑到得为了得到非零解必须得定由上下底齐次边条决其中项时应有截舍去无关由于边条为时上下底面为齐次边条 ∵∵分离变数得球坐标系解本定解问题为处温度变化情况使他冷却求解球内各而把球面温度保持零度初始温度为均质球半径为)()(4.2372===∆−==rfuuuaurfrPtrrt至此即可最后得即代入边条得的边条应舍去不能满足时舍去部分没有了时得无关与无关所以由于本问题与满足()sin(),2,1sin)))~2~1,),(),(22222222222222222trannnnnntaknnntaknnntaktakltaktakerrnrrnctrunrnkrkrkrkjerkjcerkjcukrucceeruknekrjukmlrvrvvkvvetrvtruππππϕθϕθϕθ−−−−−−−∑∑∑=======∴=====≠====+∆=tranranrrnnnnerrnrdrrrnrfr rt rukrkrjdrrrrnjdrrrrnjrfcrrnjcrfc2222102221sinsin)(2),(sin)()()()()(:ππππππ−∞=∞=⋅⋅⋅====∫∑∫∫∑整理后代入由初条定满足分离变数可得解本定解问题为处温度变化情况使他冷却求解球内各而把球面温度保持零度初始温度为均质球半径为0,),(),(cos )(00cos )(5.2020372220=+∆====∆−−==v k v v e t r v t r u r f u u u a u r f r P t a k t r r tθθ至此即可个解的第是方程其中即即代入边界条件得可知对此初始条件应舍去不能满足舍去时考虑到舍去时考虑到可得无关所以由于本问题与( )(cos )(),,( 0)(cos sin cos sin )( 0)()(cos )(1,cos )()(cos ~,0)(cos )(cos ~10)2)(cos ~010),,()(222222022221110020000211111t a k n n n n n n n ta knn n ta kl l r r l l ta k l l l ta k l l l n e P r k j c t r u n x tgx x r xk kr tgkr kr kr kr kr x xx x x j r k j e P r k j c u l r f e P kr j u uP r e P r u r r k e P kr j u r r k m r v r v −∞=−−=−+−∑∑=∴==∴==−−===∴=∴==∞→∞→=∞→∞→≠==θθθθθθθθθϕ∵20023021020232022322122121011)(23)(22 )(22)(2)()()(cos )(cos )(:−⋅⋅=⋅⋅= ===∫∫∫∫∑∞=r k r k j r k j r k r k j r k rdr r k j k dr r j drr r k j drr r k j r f c r k j c r f c n n n n n n r n nr ar an n r n n n n n πππθθ因为由初条定系数[][]drr r k j r f e P r k j r k j r t r u r k j r r k j r k r r k j r k n r t a k n n n n n n n n 210120013020030202103020230)()()(cos )()(2),,()(2)(22 )(22 022∫∑−⋅=⋅=⋅⋅=⋅=θθππ最后---end---。

数学物理方法 作业答案

数学物理方法 作业答案

则 f (z) = ex sin y − iex cos y + iC = −iez + iC
因此,(5)= cos 5ϕ −10 cos3 ϕ sin2 ϕ + 5 cosϕ sin4 ϕ ,
(6)= 5cos4 ϕ sin ϕ −10 cos2 ϕ sin3 ϕ + sin5 ϕ
(7) cosϕ + cos 2ϕ + cos 3ϕ + ... + cos nϕ ,(8) sinϕ + sin 2ϕ + sin 3ϕ + ... + sin nϕ
综上所述,可知 z 为左半平面 x<0,但除去圆 x2 + y2 −1 + 2x = 0 及其内部
(7) z -1 ≤ 1, z +1
[ ] 解:
z -1 z +1
=
x −1+iy x +1+iy
=
⎡ x2 + y2 −1 ⎤2
⎢⎣(x
+1)2
+
y2
⎥ ⎦
+
4y2
(x +1)2 +
y2
2
( ) [ ] 所以 x2 + y2 −1 2 + 4 y2 ≤ (x + 1)2 + y2 2
第一章 复变函数
§1.1 复数与复数运算
1、下列式子在复数平面上个具有怎样的意义? (1) z ≤ 2
解:以原点为心,2 为半径的圆内,包括圆周。 (2) z − a = z − b ,(a、b 为复常数)
解:点 z 到定点 a 和 b 的距离相等的各点集合,即 a 和 b 点连线的垂直平分线。 (3) Re z >1/2 解:直线 x = 1/ 2 右半部分,不包括该直线。 (4) z + Re z ≤ 1

数学物理方法姚端正CH3 作业解答

数学物理方法姚端正CH3 作业解答

k →∞
k →∞
所以,所求收敛半径为 R
P55 习题 3.3
1
1.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围: (1) 1 (1 − z ) 2
解:解法之一:利用多项式的乘法: 已知
∞ 1 = ∑ zk 1 − z k =0
| z |< 1 ,
∞ ∞ 1 k = ( z ) ⋅ ( zk ) ∑ ∑ 2 (1 − z ) k =0 k =0
k →∞
lim |
k + ak |= 1 ( k + 1) + a k +1
若 | a |> 1 ,则
lim |
罗比塔法则 k + ak k ( k − 1) a k − 2 1 + ka k −1 罗比塔法则 1 = = | lim | | lim | |= k +1 k k −1 → ∞ → ∞ k k ( k + 1) + a 1 + (k + 1)a ( k + 1) ka |a|
收敛范围: | (5)
a z |< 1 b
即 | z |<|
b | a
1 1 + z + z2 1 1− z 1 z 解: = − = 2 3 3 1+ z + z 1− z 1 − z 1 − z3 令 t = z 3 ,则
∞ 1 = ∑t k , 1 − t k =0

2
∞ 1 = ∑ z 3k 1 − z3 k =0
数理方法 CH3 作业解答 P51 习题 3.2
1. 确定下列级数的收敛半径: (2) ∑ k k z k k =1 2 k k z k k =1 2 ak k k +1 2k |= lim | k /( k +1 ) |= lim =2 k →∞ k + 1 a k +1 k → ∞ 2 2

数学物理方法姚端正CH 作业解答

数学物理方法姚端正CH 作业解答

度为 s = πr = π . 在该路径上, x = r cosθ , y = r sin θ , 则
| f (z) |= x4 + y4 = r4 (cos4 θ + sin 4 θ ) = r2 (sin 2 θ + cos2 θ )2 − 2sin 2 θ cos2 θ
= r2 (sin 2 θ + cos2 θ )2 − 1 sin 2 2θ = r2 1 − 1 sin 2 2θ ≤ 1
1− n
1− n
P38 习题 2.2: 1.计算积分:
∫l
(
z

dz a)(z

b)
l 是包围 a 、 b 两点的围线。
解法之一:
(z

1 a)(z

b)

l
内有两个奇点, z
=
a

z
=
b
。在
l
内作小圆
l1
包围
a
,作小圆 l2
包围 b ,则由复通区域的柯西定理知:
∫ ∫ ∫ dz
dz
dz
=
+
l (z − a)(z − b) l1 (z − a)(z − b) l2 (z − a)(z − b)
z)3
dz
=
1 2πi
l0
ez z(1 −
z)3
dz
+
1 2πi
l1
ez z(1 −
z)3
dz
其中,
ez
∫ ∫ 1
2π i
l0
ez z(1 −
z)3
dz
=
1 2πi
l0
(1

数学物理方法姚端正CH 作业解答

数学物理方法姚端正CH 作业解答

数理方法CH3作业解答P51习题3.21. 确定下列级数的收敛半径:(2)∑∞=12k kk z k (4)∑∞=+0)(k k k z a k解:(2)∑∞=12k kkz k 收敛半径为:212lim |)21/(2|lim ||lim 11=+=+==∞→+∞→+∞→k k k k a a R k k k k k k k (4)∑∞=+0)(k k k z a k解:收敛半径为:|)1(|lim ||lim 11+∞→+∞→+++==k kk k k k a k a k a a R 若1||≤a ,则1|)1(|lim 1=++++∞→k kk a k a k 若1||>a ,则||1|)1()1(|lim |)1(11|lim |)1(|lim 1211a ka k a k k a k ka a k a k k k k k k k k k k =+−=+++=+++−−∞→−∞→+∞→罗比塔法则罗比塔法则2.∑∞=1k k k z a 的收敛半径为R )0(∞<≤R ,确定下列级数的收敛半径:(1)∑∞=0k k k n z a k解:||lim |)1(|lim |||)1(|lim |))1(|lim 111+∞→∞→+∞→+∞→⋅+=⋅+=+k k k n k k k n k k n k n k a a k k a a k k a k a k 收敛半径为:而 1|)1(|lim =+∞→n k k k R a ak k k =+∞→||lim 1所以,所求收敛半径为RP55习题3.31.将下列函数在0=z 点展开成幂级数,并指出其收敛范围: (1)2)1(1z − 解:解法之一:利用多项式的乘法:已知 ∑∞==−011k k z z 1||<z ,=−2)1(1z )()(00∑∑∞=∞=⋅k kk k z z ...)1(...432132+++++++=k z k z z z ∑∞=+=0)1(k k z k解法之二:逐项求导: 11()1(12zz −=−则=−2)1(1z ==∑∑∞=−∞=110)'(k k k k kz z (43211)32++++++=−k kz z z z 由于2)1(1z −在复平面内有唯一的奇点1=z ,它与展开中心的距离为1,故该级数的收敛范围为1||<z (2)baz +1解:∑∑∞=+∞=−=−=+=+010)1()()1(1)1(11k k k k k k k k z b a z b a b z ba b b az 收敛范围:1||<z b a 即||||ab z < (5)211z z ++ 解:33321111111z zz z z z z −−−=−−=++令3z t =,则 ∑∞==−011k k t t , 故∑∞==−03311k kz z =−31z z ∑∞=+013k k z所以,=++211z z ∑∞=03k kz∑∞=+−013k k z 收敛范围为1||<z2. 将下列函数按)1(−z 的幂展开,并指明其收敛范围: (1)z cos解:1sin )1sin(1cos )1cos(]1)1cos[(cos −−−=+−=z z z z∑∑∞=+∞=+−−−−−=01202)!12()1()1(1sin )!2()1()1(1cos k k k k k k k z k z 收敛范围: ∞<−|1|z3.应用泰勒级数求下列积分: (3)∫=zdz z zSiz 0sin解:利用正弦函数的泰勒展开式:∑∞=++−=012)!12()1(sin k k k k z z ,得到 z zsin ∑∞=+−=02)!12()1(k k k k z 则 ∑∑∫∫∑∫∞=+∞=∞=++−=+−=+−=0120020020)12()!12()1()!12()1()!12()1(sin k k k k z k k z k k k zk k z dz k z dz k z dz z z 4.函数α)1(z +在α不等于整数时是多值函数,试证明普遍的二项式定理:...]!3)2)(1(!2)1(!11[1)1(32+−−+−++=+z z z z αααααααα 式中,α为任意复数;πααk i e 21=解: )1ln(2]2)1[ln()1()1(z k i k i z z Ln e e e e z ++++⋅===+απαπααα 下面将)1ln(z e +α在1<z 中作泰勒展开:记∑∞=+==0)1ln()(k kk z z a ez f α, 其中,!)0()(k f a k k =)(11)(')1ln(z f ze z zf z +=+=+ααα ① ⇒ α=)0('f同时由①式有: )()(')1(z f z f z α=+ ② 将②式两边再对z 求导:)(')(')('')1(z f z f z f z α=++ 得到 )(')1()('')1(z f z f z −=+α ③得)1()0(''−=ααf将③式两边再对z 求导得:)('')1()('')()1()3(z f z f z f z −=++α 得到)('')2()()1()3(z f z f z −=+α得 )2)(1()0()3(−−=αααf以此类推,得 )1)...(2)(1()0()(+−−−=k f k αααα则!)0()(k f a k k =)1)...(2)(1(!1+−−−=k k αααα所以∑∑∞=∞=+==)1ln(k kk k kk z z a z a eαk k z k k )1)...(2)(1(!1+−−−=∑∞=αααα 则k k k i z k k e z )1)...(2)(1(!1)1(02+−−−=+∑∞=ααααπαα...]!3)2)(1(!2)1(!11[132+−−+−++=z z z ααααααα 1<z5.将)1(z Ln +在0=z 的邻域内展开为泰勒级数。

数理方法习题解

数理方法习题解

数学物理方法作业解答:习题1.1P6 .1下列式子在复平面上具有这样的意义 (2) | z-a |= | z-b | 解:| z-a | 表示z 到a 点的距离,| z-b |表示b 点的距离 即a 与b 的连线的垂直平分线。

(3) Re(z) > 12解:Re z = x 有 x >1 2Re z > 12表示坐标x 大于12的一切点即x=12的右边平面(8) Re (1z) = 2解:因为z = x+iy所以Re(1z)=Re(1x+iy)=Re(x-iyx2+y2)=xx2+y2=2 得x2+y2- x2=0 即(x-14)2+y2=116=(14)2所以Re(1z)为以(14,0)为圆心,以14为半径的圆P6. 2把下列复数代数式,三角式和指数式几种形式表示出来(1)i解:i = cos(π2)+isin(π2)=eiπ2(2)-1解:-1= cos(π)+isin(π)=e iπ(3) 1+i 23解:1+i 23 =2(cosπ3+isinπ3)=2eiπ3(4)1-cosα+isinα解:1-cosα+isinα=ρ(cosφ+isinφ)= ρe iφ其中ρ=2(1-cosα)2+sinα= 2sin(α2)Φ =arctgsinα1-cosα= arctg(ctgα2)原式=2sin α2[cos arctg(ctgα2)+isin arctg(ctgα2)]=2sin α2eiarctg(ctgα2)(5)z3解:z3 =(x+iy)3 =(x3-3xy2) +i(3x2y-y3) ρ3e i3φ=ρ3(cos3φ+isin3φ)其中ρ=2x2+y2φ =arctgyx(7) 1-i1+i=(1-i)2(1-i)(1+i)=- i =cos3π2+isin3π2=e(i3π2)3.计算下列数值P6.3(1). 2a+ib解:x+iy=2a+ib →(x+iy)2=a+ibX2-y2+i2xy=a+ib得到:{ X2-y2=a →4 X44a X2-b2=0 →x2=a+2a2+b222xy=b } →4y4+4ay2-b2=0→ y2=-a+2a2+b22所以x=+2222a+2a2+b2=+Ay =+2222-a+2a2+b2=+B2a+ib = A+iB →-A-iB →A-iB →-A+iB(2) 3 i解:3i =3e i(π2+2nπ)=e i(π6+2nπ3)=→ e i π6(n=0)→ e i 5π6(n=1)→ e i 3π2(n=2)(3) i i解:i i =[ e i(3π2+2nπ)]i = e-(π2+znπ)(4) ii =ie i(π2+znπ)=π2+znπ(5) cos 5φ解:cos 5φ =Re(cos 5φ+i sin 5φ)=Re(cos 5φ+i sin 5φ)5=Re(cos 5φ+5 cos 4φ(i sin φ)+10 cos 3φ(i sin φ)2+10 cos 2φ(i sin φ)3+10 cos φ(i sin φ)4+(i sin φ)5)= cos 5φ-10cos3φsin2φ+5cosφsin4φ(7) cos φ + cos2φ +cos3φ +.....cosnφ解:原式=Re(e iφ+ e i2φ+ e i3φ+ e i4φ...... e inφ)=Re 1- e inφ1- e iφe iφ→括号中为等比数列,其前n项和为:e iφ1- e inφ1- e iφ=e-iφ2(1- einφ)e-iφ2(1- eiφ)e iφ=e-iφ2- ei(nφ-φ2)e-iφ2- eiφ2e iφφ2=e-iφ2- ei(nφ-φ2)2i12i(e-iφ2- eiφ2e iφ=e-iφ2+ei(nφ-φ2)2i sinφ2e iφ= -e iφ2+ei(nφ+φ22i sinφ2=e i(nφ+φ2) -e iφ22i sinφ2e i(nφ+ φ2)=cos(nφ+φ2)+isin(nφ+φ2)e i φ2=cosφ2+isinφ2故上式=[cos(nφ+φ2)- cosφ2]+i[sin(nφ+φ2)- sinφ2]2i sinφ2=[sin(nφ+φ2)- sinφ2]-i[cos(nφ+φ2)- cosφ2]2 sinφ2→Re 1- e in φ 1- ei φ e i φ=sin(n φ+φ 2 )- sin φ2 2 sin φ 2(8) sin φ + sin2φ +sin3φ +.....+sinn φ 解:原式=Im(e i φ+ ei2φ+ ei3φ+ …..ein φ)=cos φ 2 - cos(n φ+φ 2 )2 sin φ 2习题1.2P8: 验证1.2.11-1.2.14式(1)si (2)c()()(3)|sin |111sin ()()222iz izi x iy i x iy y ix y ixz z e ee e e e e e ii i-+-+--=⎡⎤=-=-=-⎣⎦ 证明:方法一而且)()yy ix ixy ix y ixy ix y ixe e e e e e e e e e e ------+-=-+-(e ① )()y yixix y ix y ix yixyixe e ee e e e e e e e-------+=+--(e②①+②得 )())()2()y y ix ixyyixixyix y ixe e ee e eee e e------+-+-+=-(e(e1111sin 2())())()2222yix y ixy y ix ix y y ix ix z e e e ee e e e e e i i ------⎡⎤∴=⋅⋅-=⋅+-+-+⎣⎦(e (e 1111)())())sin )cos 2222y y ix ix y y ix ix y y y y e e e e e e e x i e x i i ------⎡⎤⎡⎤=+-+-+=+--⎣⎦⎢⎥⎣⎦(e (e (e (e|sin |z ∴==方法二()()111sin ()()()22211(cos sin )(cos sin )(cos (221((2izizi x iy i x iy yix y ixy y y y y yy y y y z e eeeee e ei iix i x e x i x e e e x i e e x i i e e x i e e x -+-+-------=-=-=-⎡⎤⎡⎤=+--=-++⎣⎦⎣⎦⎡⎤=+--⎣⎦ ))sin )sin )cos|sin |z ∴==()()(4)|cos |111cos ()()222izizi x iy i x iy y ix y ix z z e ee e e e e e -+-+--=⎡⎤=+=+=+⎣⎦ 证明:方法一而且)()yy ix ixy ix y ixy ix y ixe e e e e e e e e e e ------++=+++(e ① )()y yixix yixyix yixyixe e ee e e e e e e e--------=--+(e②①+②得 )())()2()yyixixyyixixyix y ixe e ee e eee e e------+++--=+(e(e1111cos 2())())()22221111)())())cos )sin 2222y ix y ix y y ix ix y y ix ixy y ix ix y y ix ix y y y y z e e e e e e e e e e e e e e e e e x i e x ------------⎡⎤∴=⋅⋅+=⋅+++--⎣⎦⎡⎤⎡⎤=+++--=++-⎣⎦⎢⎥⎣⎦(e (e (e (e (e (e|cos |z ∴==方法二()()111cos ()()222izizi x iy i x iy y ix y ix z e ee e e e e e -+-+--⎡⎤=+=+=+⎣⎦11(cos sin )(cos sin )(cos (22y y y y y yx i x e x i x e e e x i e e x ---⎡⎤⎡⎤=++-=++-⎣⎦⎣⎦))sin|cos |z ∴==2(5)z izeeπ+=22(cos 2sin 2)z iziz zee ee i eππππ+==+=证明:(6)(2)sh z i sh π+=z2(2)2211(2)()()22z iz i z iz ish z i eee ee eπππππ+-+--+=-=-证明:1()2z ze e-=-=sh z(7)(2)ch z i π+=ch z2(2)2211(2)()()22z iz i z iz iz i eee ee eπππππ+-+--+=+=+证明:ch 1()2z ze e-=+=ch zP82.计算下列数值。

数学物理方法作业

数学物理方法作业

《数学物理方法》作业年级: 专业: 学号: 姓名:1.复数31i +的指数式为( ).A. i e 62πB. i e 32πC. i e 6πD. i e 3π2. 点0=z 是函数21z 的( )阶极点. A. 1 B. 2 C. 3 D. 43.条件0|sin x u a t ω==是第 类边界条件.A. 一B. 二C. 三D. 以上都不对4.积分dz z z z )3()2(1--⎰=的值为:A . 0 B. 1 C. 21 D.2 5.方程),(2t x f u a u xx t =-是( )方程.A. 波动方程B. 热传导方程C.位势方程D. 以上都不是6.下面对复球面描述正确的是A. 复数球的S 极对应复平面上的原点,N 极对应复平面上的有限远点B. 复数球的S 极对应复平面上的无穷远点,N 极对应复平面上的有限远点C. 复数球的S 极对应复平面上的无穷远点,N 极对应复平面上的无穷远点D. 复数球的S 极对应复平面上的原点,N 极对应复平面上的无穷远点7.方程2=+i z 表示复平面上的( )A . 圆 B. 双曲线 C. 抛物线 D. 椭圆 8. 0Im(z)> 表示复平面上的( )A . 有界单连通区域 B. 无界单连通区域C. 无界复连通区域D. 有界复连通区域9.扩充复平面是指( )A. 有限复平面B. 包含“无穷远”点的复平面C. 不包含“无穷远”点的复平面D. 都不是10.下面对函数的解析和函数可导间关系说法错误的是( )A. 若函数在某点可导,则在该点一定解析B. 若函数在某点及其邻域内处处可导,则函数在该点解析C. 若函数在某点可导,但在该点不一定解析D. 若函数在某点解析,则在该点一定可导11.函数)(z f 以0z 为中心的洛朗展开的系数公式为( )A . ⎰+-=l k k z z dz z f i C 10)()(21π B. !)(0)(k z f C k k = B. ⎰+-=l k k z d f i C 10)()(21ζζζπ C. ⎰+-=l k k z d f i k C 10)()(2!ζζζπ 12.将)(z f 在挖去0z 的环域的洛朗级数含无穷多负幂项时,则0z 叫( )A .本性奇点 B. 可去奇点 C. 单极点 D. 高阶极点13.洛朗级数的负幂部分叫( )A .主要部分 B. 可去奇点 C. 单极点 D. 高阶极点14.下列方程是波动方程的是( )A .f u a u xx tt +=2 B. f u a u xx t +=2 C. xx t u a u 2= D. x tt u a u 2=15.对泛定方程02=-xx tt u a u 而言,边界条件,00==x x u 00==x x u 是( )A .第一类边界条件 B. 第二类边界条件C. 第三类边界条件D. 自然边界条件16.下列方程是输运方程的是( )A .f u a u xx tt +=2 B. f u a u xx t +=2 C. xx t u a u 2= D. x tt u a u 2=17.用分离变量法求解偏微分方程定解问题的一般步骤是( )A .分离变量→解单变量本征值问题→得单变量解→得分离变量解B. 分离变量→得单变量解→解单变量本征值问题→得分离变量解C. 解单变量本征值问题→得分离变量解→分离变量→得分离变量解D. 解单变量本征值问题→分离变量→得分离变量解→得分离变量解 18.)(z f 为解析函数是指( )A .若)(z f 在0z 点处可导,则称其为解析函数B. 若)(z f 在0z 点及其领域内处处可导,则称其为解析函数C. 若)(z f 只在0z 点领域内处处可导,则称其为解析函数D. 以上均不对 19.31i +的指数式为( )A.3/22i e πB.3/2i e πC. 3/2i e πD. 3/i e π20.边界条件为t u u l x x sin 0====为( )A. 第一类齐次边界条件B. 第一类非齐次边界条件C. 第二类非齐次边界条件D. 自然边界条件二、填空(每小题2分,共40分)1、说明物理现象初始状态的条件称为 ,说明边界上的约束情况的条件称为 .2、数学物理方程可分为___________、_________和位势方程.3、复变函数的孤立奇点可分为___________、__________和本性奇点三类.4、在直角坐标系,柯西—黎曼条件为y x u u =和___________.5、复数231i -的实部u=___________,虚部v=___________. 6、函数z 为___________.(填多值函数或单值函数). 7、级数∑∞1n z n 的收敛半径为___________.8、2)(z z f =的导数为___________.9、复数i +1的三角表达式为__________.10、方程),(2t x f u a u xx tt =-是__________方程.三、简答题1.留数定理的内容2.柯西积分定理的内容四、计算题1、用柯西积分公式计算积分 dz z e z z⎰=-42. 2、用留数定理计算积分 dz z z z z ⎰=-+1)2(12.3、用分离变量法求解定解问题.⎪⎪⎩⎪⎪⎨⎧≤≤==≥==><<=-====.0),(),(,0,0,0,0,0,00002l x x u x u t u u t l x u a u t t t l x x xx tt ψϕ 4、用行波法求解定解问题.⎪⎩⎪⎨⎧∞<<∞==∞<<∞>=-==. - ),( ),( , - 0, t ,0002x x u x u x u a u t t t xx tt ψϕ5.在环域0<1-z <1上将)2)(1(1)(--=z z z f 展开成洛朗展式.。

数学物理方法姚端正CH10作业解答

数学物理方法姚端正CH10作业解答

数学物理方法姚端正CH10作业解答题目1题目描述求解一维无限深势阱中的薛定谔方程。

解答过程薛定谔方程为:$$ -\\frac{{\\hbar}^2}{2m}\\frac{{d^2}\\psi}{{dx^2}} + V(x)\\psi = E\\psi $$对于一维无限深势阱,即势能为零的区域内,薛定谔方程简化为:$$ -\\frac{{\\hbar}^2}{2m}\\frac{{d^2}\\psi}{{dx^2}} = E\\psi $$可以将上式改写为标准形式:$$ \\frac{{d^2}\\psi}{{dx^2}} = -k^2\\psi $$其中,$k = \\frac{\\sqrt{2mE}}{{\\hbar}}$。

上述方程为一个二阶常微分方程,可以通过分离变量的方法进行求解。

假设解为$\\psi(x) = A\\sin(kx) + B\\cos(kx)$,代入上式得到:$$ (A\\sin(kx) + B\\cos(kx))'' = -k^2(A\\sin(kx) +B\\cos(kx)) $$化简上式可得:$$ -Ak^2\\sin(kx) - Bk^2\\cos(kx) = -k^2(A\\sin(kx) +B\\cos(kx)) $$通过观察可以发现,上式两边的结果是相等的。

因此,我们只需对振幅因子A和B分别进行求解。

首先,将振幅因子A令为0,代入方程可得到:$$ B\\cos(kx) = 0 $$由于$\\cos(kx)$的周期为$2\\pi$,因此得到的解为$x = 0, \\pm \\pi, \\pm 2\\pi, \\cdots$。

接下来,将振幅因子B令为0,代入方程可得到:$$ A\\sin(kx) = 0 $$由于$\\sin(kx)$的周期也为$2\\pi$,因此得到的解为$x = \\pm \\frac{\\pi}{2}, \\pm \\frac{3\\pi}{2}, \\pm\\frac{5\\pi}{2}, \\cdots$。

数学物理方法大作业

数学物理方法大作业

基于分离变量法的波导中的电磁波研究1 空间当中的电磁波在迅变情况下,电磁场以波动形式存在,电磁场的基本方程是麦克斯韦方程组,对于在0==J σ情况下的迅变场,麦克斯韦方程组为]4[⎪⎪⎪⎭⎪⎪⎪⎬⎫=⋅∇=⋅∇∂∂=⨯∇∂∂-=⨯∇00B D t D H t B E (1)为了便于求解,通常将(1)式化为⎪⎪⎭⎪⎪⎬⎫=∂∂-∇=∂∂-∇010122222222t BcB t E c E (2) 必须指出的是,(2)式中第一式E 的三个分量X E ,y E ,z E 虽然是三个独立方程,但是其解却是相互关联的,因为(1)式到(2)式麦克斯韦方程变为二阶的麦克斯韦方程,故解的范围变大了。

为了使波动方程(2)的解是原方程(2)的解,必须是波动方程的解满足条件 0=⋅∇E 。

求解方程(1),即为求解⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂-=⨯∇=⋅∇=∂∂-∇t BE E t Ec E 0012222(3)(3)式在给定的边界条件下,可以求得定解. 对于定态电磁波,场量可以表示为t i e z y x E E ω-=),,( (4)考虑(4)式,(3)式可表示如下:⎪⎪⎭⎪⎪⎬⎫⨯∇-==⋅∇=+∇E iB E E k E ω0022(5)设电磁波为时谐波,并考虑到关系H B μ=,由(5)式可得到z y x ,,三个分量的6个标量方程:x y xH i E yE ωμγ-=+∂∂ (6) y x zH i E xE ωμγ-=-∂∂-(7) z xy H i yE xE ωμ-=∂∂-∂∂ (8) x y zE i H yH ωεγ=+∂∂ (9) y x zE i H xH ωεγ=-∂∂-(10) z xy E i yH xH ωε=∂∂-∂∂ (11) 以上6个方程经过简单运算,可以将横向场分量y x y x H H E E ,,,用两个纵向场分量z z H E ,来表示,即:)(12yE i x H k H zz cx ∂∂-∂∂-=ωεγ(12) )(12x E i y H k H zz cy ∂∂+∂∂-=ωεγ (13) )(12y H i x E k E z z cx ∂∂+∂∂-=ωμγ (14) )(12x H i y E k E z z cy ∂∂-∂∂-=ωμγ (15) 式中222k k c +=γεμω=kTM 波的纵向场分量与横向场分量关系[]1为:yE k i H zc x ∂∂=2ωε (12*) x E k i H zcy ∂∂-=2ωε (13*) xE k E zcx ∂∂-=2γ (14*)y E k E zcy ∂∂-=2γ (15*)TE 波的纵向场分量与横向场分量关系为[]1:xH k H zcx ∂∂-=2γ (12+)yH k H zc y ∂∂-=2γ (13+)yH k i E zc x ∂∂-=2ωμ (14+) x H k i E zcy ∂∂=2ωμ (15+) 2 波导内的电磁场 2.1波导的几个假设这里所讨论的波导,有以下假设:波导的横截面沿z 方向是均匀的,即波导内的电场与磁场只与坐标y x ,有关,与z 无关;构成波导壁的导体是理想导体,即∞=σ;波导内的介质各向同性,并且0=σ;波导内的电磁场为时谐场,角频率为ω。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档