第4章 动态规划
最优控制理论课件
8
最优控制问题
1.1 两个例子
例1.1 飞船软着陆问题
软着陆 过程开 始时刻 t 为零
h& v
v& u g m
m& K u
m 飞船的质量 h 高度 v 垂直速度 g 月球重力加速度常数 M 飞船自身质量 F 燃料的质量 K 为常数
初始状态 h(0) h0 v(0) v0 m(0)MF
f(x(t),u(t),t) 为n维向量函数
22.03.2020
现代控制理论
24
最优控制问题
1.2 问题描述
(1) 状态方程 一般形式为
x&(t) f (x(t),u(t),t)
x(t) Rn
x(t)|tt0 x0
为n维状态向量
u(t) Rr
为r 维控制向量
f(x(t),u(t),t) 为n维向量函数
求解最优控制的变分方法
泛函与函数的几何解释
22.03.2020
现代控制理论
50
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
22.03.2020
现代控制理论
51
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
泛函的增量 J ( x ( g ) ) J ( x ( g ) x ) J ( x ( g ) ) L ( x , x ) r ( x , x )
J x ( T ) ,y ( T ) ,x & ( T ) ,y & ( T ) x & ( T )
控制
(t)
22.03.2020
现代控制理论
运筹学线性规划
4
例1.1:(计划安排问题) I 设备A(h) 0 设备B(h) 4 原材料(公斤) 2 利润(万元) 2 II 资源总量 3x2 15 3 15 0 12 s.t. 4x1 12 2 14 2x1+2x2 14 3 x1,x2 0 I,II生产多少, 可获最大利润?
s.t. x1 -x2 +x4 -x5 -x7 =2
x1 , x2 , x4 ,
…
, x7 0
12
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
0 3 1 0 0 15 4 0 0 1 0 X= 12 2 2 0 0 1 14
5
max Z= 2x1 +3x2
解:设 计划期内生产产品I、II的数量x1、x2 则该问题的数学模型为:
例1.2 成本问题
某炼油厂根据每季度需供应给合同单位汽油15万吨、煤油 12万吨、重油12万吨。该厂计划从A,B两处运回原油 提炼,已知两处的原油成分含量见表1-2;又已知从A 处采购的原油价格为每吨(包括运费)200元,B处采购 的原油价格为每吨(包括运费)290元, 问:该炼油厂该 如何从A,B两处采购原油,在满足供应合同的条件下, 使购买成本最小。 油品来源 A B min S 200x1 290x 2
解:(1) 确定可行域 x1 0 x1 =0 (横)
30
x2 0 x2=0 (纵) x1+2x2 30 x1+2x2 =30
运筹学OperationalResearchppt课件
– 最多有 Cmmn 个基
21
关于标准型解的若干基本概念:
• 可行解与非可行解 – 满足约束条件和非负条件的解 X 称为可行解,满足 约束条件但不满足非负条件的解 X 称为非可行解
3
1
1
1
6.5
4
1
0
3
7.4
5
0
3
0
6.3
6
0
2
2
7.2
余料
0.1 0.3 0.9 0 1.1 0.2
若目标函数为使购裁买剪的后 钢零筋料最少,则有
min f (x) x01.1x1x2 0.x33x2x40.9x35 0xx6 4 1.1x5 0.2x6
2x11 x22 x33 x44 100
x3 =10 x2 =10 x2 =8 x2 =7
x4 =8 x4 =-2 x3 =2 x3 =3
x5 =7
x5 =-3 x5 =-1 x4 =1
O 基础可行解 F 基础解 E 基础解 A 基础可行解
f(x)=36
5 x1, x2 , x3, x4 , x5 0
4
最3 优解 :
x1
2
2,
x2
6,
m2 ax f ( x)K 361 .
同时不等号也要反向 • 第i 个约束为 型,在不等式左边增加一个非负的变量
xn+i ,称为松弛变量;同时令 cn+i = 0
• 第i 个约束为 型,在不等式左边减去一个非负的变量
《算法设计与分析》(全)
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
运筹学第三版课后习题答案 (2)
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
算法设计与分析习题与实验题(12.18)
《算法设计与分析》习题第一章引论习题1-1 写一个通用方法用于判定给定数组是否已排好序。
解答:Algorithm compare(a,n)BeginJ=1;While (j<n and a[j]<=a[j+1]) do j=j+1;If j=n then return trueElseWhile (j<n and a[j]>=a[j+1]) do j=j+1;If j=n then return true else return false end ifEnd ifend习题1-2 写一个算法交换两个变量的值不使用第三个变量。
解答:x=x+y; y=x-y; x=x-y;习题1-3 已知m,n为自然数,其上限为k(由键盘输入,1<=k<=109),找出满足条件(n2-mn-m2)2=1 且使n2+m2达到最大的m、n。
解答:m:=k; flag:=0;repeatn:=m;repeatl:=n*n-m*n-m*n;if (l*l=1) then flag:=1 else n:=n-1;until (flag=1) or (n=0)if n=0 then m:=m-1until (flag=1) or (m=0);第二章基础知识习题2-1 求下列函数的渐进表达式:3n 2+10n ; n 2/10+2n ; 21+1/n ; log n 3; 10 log3n 。
解答: 3n 2+10n=O (n 2), n 2/10+2n =O (2n ), 21+1/n=O (1), log n 3=O (log n ),10 log3n =O (n )。
习题2-2 说明O (1)和 O (2)的区别。
习题2-3 照渐进阶从低到高的顺序排列以下表达式:!n ,3/22,2,20,3,log ,4n n n n n 。
解答:照渐进阶从低到高的顺序为:!n 、 3n、 24n 、23n 、20n 、log n 、2习题2-4(1) 假设某算法在输入规模为n 时的计算时间为n n T 23)(⨯=。
第4章动态决策分析
《决策理论与方法》
4.2.2 多阶段决策问题的决策方法
84
73
60
45
5元
10
12
15
20
25
84
73
60
45
6元
12
13
16
20
24
84
73
60
45
7元
14
14
16
18
18
84
73
60
45
8元
16
15
15
14
14
例4-2-1决策图
第第 1155页页
4.2 多阶段决策
《决策理论与方法》
4.2.2 多阶段决策问题的决策 方法
例4-2-1 某公司考虑为某新产品定 价,该产品的单价拟从每件5元 、6元、7元、8元这四个价格中 选取其中之一,每年年初允许变 动价格,但幅度不能超过1元。 该公司预计该产品畅销只有五年 ,五年后将被淘汰,另据销售情 况的预测,在价格不同的情况下 各年的预计利润额见右表。
单价 第1年 第2年 第3年 第4年 第5年
10000
15000
第第 1199页页
4.3 序贯决策
《决策理论与方法》
4.3.1 序贯决策的基本概念
上面的多阶段决策,阶段数是确定的。除这种决 策外,还有一些决策的阶段数不是事先确定的,它依 赖于执行决策过程中出现的情况。这种决策问题称为 序贯决策(sequential decision problem)。
序列决策在进行决策后又产生一些新的情况,需 要进行新的决策,接着又有一些新的情况,又需要进 行新的决策。这样决策、情况、决策……,这就构成 一个序列。
第第 2200页页
(数学建模教材)4第四章动态规划
第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。
1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。
因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
例1 最短路线问题图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。
试寻求一条由A 到G距离最短(或费用最省)的路线。
图1 最短路线问题例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。
经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。
算法设计与分析知识点
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
《最优控制》第1章绪论
2020/8/9
1
第1章 绪论 第2章 求解最优控制的变分方法 第3章 最大值原理 第4章 线性二次型性能指标的最优控制 第5章 动态规划 第6章 状态估计
2
教学要求:
1. 学习泛函变分法,理解最优控制的一般概念 2. 掌握利用变分法求最优控制方法 3. 掌握极大值原理,状态调节器 4. 掌握动态规划
x(t) f [x(t), u(t), t]
(2)边界条件 ①初始时刻t0,初始状态x(t0)一般给定 ②终端时刻tf,变动,固定 ③终端状态x(tf)
12
第1章——绪论
x(tf)一般需满足一个约束方程[x(tf ), tf ] 0
满足约束方程的x(tf)构成一个目标集 x(tf ) S (3)一个衡量系统性能的性能指标
t0
N 1
或J x(N) F[x(k),u(k), k]
k k0
最优控制问题
(控制域) u t x t
J
17
4 常见的最优控制
tf
1.最少时间控制J dt t f t0
它要求设计一个快速控t0制系统,使系统在最短
时x间t0 内从初态终态 xt f
2.最少燃如料:导弹拦截器的轨道转移 。
最优值,J* J[u *(t)] 称为最优性能指标
14
3 研究最优控制的前提条件
1.给出受控系统的动态描述(状态方程)
连续系统 x(t) f [x(t),u(t),t]
离散系统 x(tk1 ) f [ x(tk ), u(tk ), tk ]
2.明确控制域(容许控制)
控制约束 ut 控制域(取值范围)
Mg
设M 1,x1(t) x(t)为高度,x(2 t) x1(t) x(t)
信息学奥赛全部内容知识
▪信息技术竞赛辅导▪计算机基础知识▪第一章计算机基础常识▪第二章操作系统简介▪第三章计算机网络▪第四章计算机信息安全基础知识▪Pascal 语言▪第一章开始编写pascal语言程序▪第二章Pascal语言基础知识▪第三章顺序结构程序设计▪第四章选择结构程序设计▪第五章循环结构程序设计▪第六章数组与字符串▪第七章函数和过程▪第八章子界与枚举类型▪第九章集合类型▪第十章记录与文件类型▪第十一章指针▪第十二章程序调试▪常用算法与策略▪第一章算法的概念▪第二章递归▪第三章回溯▪第四章排序▪第五章查找▪第六章穷举策略▪第七章贪心算法▪第八章分治策略▪数据结构▪第一章什么是数据结构▪第二章线性表▪第三章栈▪第四章队▪第五章树▪第六章图▪动态规划▪第一章什么叫动态规划▪第二章用动态规划解题▪第三章典型例题与习题▪第四章动态规划的递归函数法▪第五章动态规划分类1▪数学知识及相关算法▪第一章有关数论的算法▪第二章高精度计算▪第三章排列与组合▪第四章计算几何▪第五章其它数学知识及算法▪图论算法▪第一章最小生成树▪第二章最短路径▪第三章拓扑排序(AOV网)▪第四章关键路径(AOE网)▪第五章网络流▪第六章图匹配▪搜索算法与优化▪第一章双向广度优先搜索▪第二章分支定界法▪第三章A*算法青少年信息学奥林匹克竞赛情况简介信息学奥林匹克竞赛是一项旨在推动计算机普及的学科竞赛活动,重在培养学生能力,使得有潜质有才华的学生在竞赛活动中锻炼和发展。
近年来,信息学竞赛活动组织逐步趋于规范和完善,基本上形成了“地级市——省(直辖市)——全国——国际”四级相互接轨的竞赛网络。
现把有关赛事情况简介如下:全国青少年信息学(计算机)奥林匹克分区联赛:在举办1995年NOI活动之前,为了扩大普及的面,并考虑到多数省、直辖市、自治区已经开展了多年省级竞赛,举办了首届全国青少年信息学(计算机)奥林匹克分区联赛。
考虑到不同年级学生的知识层次,也为了鼓励更多的学生积极参与,竞赛设提高组、普及组,并分初、复赛进行,这样可以形成一个梯队,确保每年的竞赛活动有比较广泛扎实的基础。
《管理运筹学教案》课件
《管理运筹学教案》PPT课件第一章:管理运筹学概述1.1 管理运筹学的定义解释管理运筹学的概念和内涵强调管理运筹学在实际管理中的应用价值1.2 管理运筹学的发展历程介绍管理运筹学的起源和发展过程提及著名学者和管理运筹学的重要成果1.3 管理运筹学的方法和工具概述管理运筹学常用的方法和工具简要介绍线性规划、整数规划、动态规划等方法1.4 管理运筹学的应用领域列举管理运筹学在不同领域的应用实例强调管理运筹学在企业经营、物流管理、生产计划等方面的应用第二章:线性规划2.1 线性规划的基本概念解释线性规划的目标函数和约束条件引入可行解、最优解等基本概念2.2 线性规划的图解法演示线性规划问题的图解法步骤提供实际例子进行图解法的应用演示2.3 线性规划的代数法介绍线性规划的代数法解题步骤使用具体例子进行代数法的应用解释2.4 线性规划的应用案例提供实际案例,展示线性规划在企业决策、资源分配等方面的应用强调线性规划在解决实际问题中的重要性第三章:整数规划3.1 整数规划的基本概念解释整数规划与线性规划的区别引入整数规划的目标函数和约束条件3.2 整数规划的解法介绍整数规划常用的解法,如分支定界法、动态规划法等使用具体例子进行整数规划解法的应用解释3.3 整数规划的应用案例提供实际案例,展示整数规划在人员排班、物流配送等方面的应用强调整数规划在解决实际问题中的重要性3.4 整数规划与线性规划的比较对比整数规划与线性规划的解法和技术强调整数规划在处理离散决策问题时的优势第四章:动态规划4.1 动态规划的基本概念解释动态规划的定义和特点引入动态规划的基本原理和基本定理4.2 动态规划的解法步骤演示动态规划的解题步骤,如最优子结构、状态转移方程等使用具体例子进行动态规划解法的应用解释4.3 动态规划的应用案例提供实际案例,展示动态规划在库存管理、项目管理等方面的应用强调动态规划在解决多阶段决策问题中的重要性4.4 动态规划与其他运筹学方法的比较对比动态规划与其他运筹学方法的特点和适用场景强调动态规划在处理具有时间序列特征的问题时的优势第五章:决策分析5.1 决策分析的基本概念解释决策分析的目的和意义引入决策问题的基本要素和决策方法5.2 确定型决策分析介绍确定型决策分析的方法和步骤使用具体例子进行确定型决策分析的应用解释5.3 不确定型决策分析介绍不确定型决策分析的方法和步骤使用具体例子进行不确定型决策分析的应用解释5.4 风险型决策分析介绍风险型决策分析的方法和步骤使用具体例子进行风险型决策分析的应用解释5.5 决策分析的应用案例提供实际案例,展示决策分析在企业战略规划、新产品开发等方面的应用强调决策分析在解决实际问题中的重要性第六章:网络计划技术6.1 网络计划技术的基本概念解释网络计划技术的定义和作用引入节点、箭线、活动等基本元素6.2 常用网络计划技术介绍常用的网络计划技术,如PERT、CPM等演示这些网络计划技术的绘制和应用方法6.3 网络计划技术的应用案例提供实际案例,展示网络计划技术在项目管理和生产调度等方面的应用强调网络计划技术在时间管理和资源分配中的重要性6.4 网络计划技术的优化介绍网络计划技术的优化方法和步骤使用具体例子进行网络计划技术优化的应用解释第七章:排队论7.1 排队论的基本概念解释排队论的定义和研究对象引入队列、服务设施、顾客等基本元素7.2 排队论的模型构建介绍排队论的模型构建方法和步骤使用具体例子进行排队论模型的应用解释7.3 排队论的应用案例提供实际案例,展示排队论在服务业、制造业等方面的应用强调排队论在解决等待问题和提高服务水平中的重要性7.4 排队论的优化策略介绍排队论的优化策略和方法使用具体例子进行排队论优化策略的应用解释第八章:存储论8.1 存储论的基本概念解释存储论的定义和研究对象引入存储成本、缺货成本、需求量等基本元素8.2 存储论的模型构建介绍存储论的模型构建方法和步骤使用具体例子进行存储论模型的应用解释8.3 存储论的应用案例提供实际案例,展示存储论在库存管理、供应链等方面的应用强调存储论在解决存货控制和降低成本中的重要性8.4 存储论的优化策略介绍存储论的优化策略和方法使用具体例子进行存储论优化策略的应用解释第九章:对偶理论9.1 对偶理论的基本概念解释对偶理论的定义和意义引入对偶问题、对偶关系等基本元素9.2 对偶理论的解法介绍对偶理论的解法方法和步骤使用具体例子进行对偶理论的应用解释9.3 对偶理论的应用案例提供实际案例,展示对偶理论在优化问题和经济学中的应用强调对偶理论在解决实际问题中的重要性9.4 对偶理论与灵敏度分析解释对偶理论与灵敏度分析的关系介绍灵敏度分析的方法和步骤第十章:总结与展望10.1 管理运筹学的重要性和局限性总结管理运筹学在实际管理中的应用价值和局限性强调管理运筹学在解决问题和创新方面的潜力10.2 管理运筹学的发展趋势展望管理运筹学未来的发展趋势和研究方向提及新兴领域和技术在管理运筹学中的应用前景10.3 提高管理运筹学能力的建议给出提高管理运筹学能力的建议和指导鼓励学习者持续学习和实践,以提升解决实际问题的能力重点解析本文教案主要介绍了管理运筹学的十个重点内容,具体如下:1. 管理运筹学的定义、发展历程、方法与工具,以及应用领域。
《运筹学》习题集
《运筹学》习题集第一章线性规划1.1将下述线性规划问题化成标准形式1)minz=-3某1+4某2-2某3+5某4t.4某1-某2+2某3-某4=-2某1+某2-某3+2某4≤14-2某1+3某2+某3-某4≥2某1,某2,某3≥0,某4无约束2)minz=2某1-2某2+3某3-某1+某2+某3=4-2某1+某2-某3≤6某1≤0,某2≥0,某3无约束t.1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)minz=2某1+3某24某1+6某2≥6t2某1+2某2≥4某1,某2≥02)ma某z=3某1+2某22某1+某2≤2t3某1+4某2≥12某1,某2≥03)ma某z=3某1+5某26某1+10某2≤120t5≤某1≤103≤某2≤84)ma某z=5某1+6某22某1-某2≥21.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)minz=5某1-2某2+3某3+2某4-1-t-2某1+3某2≤2某1,某2≥0某1+2某2+3某3+4某4=7t2某1+2某2+某3+2某4=3某1,某2,某3,某4≥01.4分别用图解法与单纯形法求解下列LP问题,并对照指出最优解所对应的顶点。
1)ma某z=10某1+5某23某1+4某2≤9t5某1+2某2≤8某1,某2≥02)ma某z=2某1+某23某1+5某2≤15t6某1+2某2≤24某1,某2≥01.5分别用大M法与两阶段法求解下列LP问题。
1)minz=2某1+3某2+某3某1+4某2+2某3≥8t3某1+2某2≥6某1,某2,某3≥02)ma某z=4某1+5某2+某3.3某1+2某2+某3≥18St.2某1+某2≤4某1+某2-某3=53)ma某z=5某1+3某2+6某3某1+2某2-某3≤18t2某1+某2-3某3≤16某1+某2-某3=10某1,某2,某3≥04)ma某z10某115某212某395某13某2某35某16某215某315t.某352某1某2某,某,某01231.6求下表中a~l的值。
第4章 最优化方法(运筹学)
例题分析5:投资问题
例5 某部门现有资金200万元,今后五年内考虑给以下的项目 投资。已知: 项目A:从第一年到第五年每年年初都可投资,当年末能收回 本利110%; 项目B:从第一年到第四年每年年初都可投资,次年末能收回 本利125%,但规定每年最大投资额不能超过30万元; 项目C:需在第三年年初投资,第五年末能收回本利140%,但 规定最大投资额不能超过80万元; 项目D:需在第二年年初投资,第五年末能收回本利155%,但 规定最大投资额不能超过100万元。 问应如何确定这些项目的每年投资额,使得第五年年末拥 有资金的本利金额为最大?
欧洲的古代城堡为什么建成圆形?
案例:生产计划问题
例1.
某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的 生产,已知生产单位产品所需的设备台时及A、B两 种原材料的消耗、资源的限制,如下表:
Ⅰ
设备 原料 A 原料 B 单位产品获利 1 2 0 50 元
Ⅱ
1 1 1 100 元资源限制 300 来自时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能
使工厂获利最多?
第一节 线性规划
一、在管理中一些典型的线性规划应用 二、线性规划的一般模型
三、线性规划问题的计算机求解
(Excel,lingo)
第一节 线性规划
一、在管理中一些典型的线性规划应用 1、合理利用线材问题:如何在保证生产的条件下, 下料最少 2、配料问题:在原料供应量的限制下如何获取最大 利润 3、投资问题:从投资项目中选取方案,使投资回报 最大 4、产品生产计划:合理利用人力、物力、财力等, 使获利最大 5、劳动力安排:用最少的劳动力来满足工作的需要 6、运输问题:如何制定调运方案,使总运费最小
“管理运筹学”教学大纲
“管理运筹学”教学大纲一、课程简介“管理运筹学”是一门研究企业管理中决策与优化问题的课程。
本课程旨在让学生掌握运筹学的基本理论和方法,学会运用运筹学工具解决企业管理中的实际问题,提高决策效率和创新能力。
二、课程目标1、掌握运筹学的基本概念和原理,了解运筹学在企业管理中的应用。
2、掌握线性规划、整数规划、动态规划等常用运筹学方法,能够运用相关软件进行求解和分析。
3、理解运筹学在决策分析、资源优化配置、风险管理等方面的应用,能够运用运筹学方法解决实际问题。
4、培养学生的创新思维和综合分析能力,提高其在实际工作中运用运筹学的能力。
三、课程内容1、运筹学概述:介绍运筹学的定义、发展历程和应用领域,阐述运筹学在企业管理中的重要性。
2、线性规划:介绍线性规划的基本概念、数学模型、求解方法和实际应用,重点讲解线性规划在生产计划、资源分配等问题中的应用。
3、整数规划:介绍整数规划的基本概念、数学模型、求解方法和实际应用,重点讲解整数规划在排班安排、仓库管理等问题中的应用。
4、动态规划:介绍动态规划的基本概念、数学模型、求解方法和实际应用,重点讲解动态规划在最优路径选择、生产策略制定等问题中的应用。
5、决策分析:介绍决策分析的基本概念和方法,包括风险决策、不确定决策和多目标决策等,重点讲解如何运用运筹学方法进行决策分析。
6、资源优化配置:介绍资源优化配置的基本概念和方法,包括供应链优化、库存管理和排班安排等,重点讲解如何运用运筹学方法进行资源优化配置。
7、风险管理:介绍风险管理的基本概念和方法,包括风险识别、评估和控制等,重点讲解如何运用运筹学方法进行风险管理。
本课程总计36学时,分为理论授课和实践操作两个环节。
理论授课主要讲解运筹学的基本理论和常用方法,实践操作则通过案例分析和软件操作等方式加深学生对运筹学应用的理解和实践能力。
具体安排如下:1、理论授课:32学时,每周2学时,共16周。
2、实践操作:4学时,集中安排在学期末进行。
运筹学教材习题答案详解
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案
一
二
三
四
五
六
七
八
九
十
十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:
计算思维导论考试重点
计算思维导论考试重点高等教育出版社第一章计算思维基础知识一计算科学与计算学科1计算科学又称科学计算,它是一种与数学模型构建、定量分析方法以及利用计算机来分析和解决科学问题的研究领域。
2利用计算科学对其他学科中的问题进行计算模拟以及其他形式的计算而形成的诸如计算物理,计算化学、计算生物等学科统称为计算学科。
计算学科是对描述和变换信息的算法过程进行系统的研究,它包括算法过程的理论、分析、设计、效率分析、;实现和应用等。
二科学思维科学思维通常是指理性认识及其过程,经过感性阶段获得大量材料,通过整理和改造,形成概念、判断和推理,以及反映事物的本质和规律。
三科学思维的分类1 理论思维又称逻辑思维,是指通过抽象概括,建立描述事物本质的的概念,应用科学的方法探寻概念概念之间联系的一种思维方法。
2 实验思维又称实证思维,是通过观察和实验获取自然规律法则的一种思维方法。
3 计算思维又称构造思维,是指从具体的的算法设计规范入手,通过算法过程的构造与实施来解决给定问题的一种思维方法。
四计算思维的定义计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类行为的涵盖了计算机科学之广度的一系列思维活动。
五计算思维的特征1概念化不是程序化2根本的,不是刻板的技能3是人的,不是计算机的思维方式。
4数学和工程思维的互补与融合5是思想,不是人造物6面向所有人,所有地方六计算思维的本质抽象和自动化第二章计算理论与计算模型一计算理论是关于计算和计算机械的数学理论,它研究计算的过程与功效。
计算理论主要包括算法与算法学、计算复杂性理论、可计算性理论、自动机理论和形式语言理论等。
二可计算性理论是研究计算的一般性质的数学理论。
可计算理论的中心课题就是将算法这一直观概念精确化,建立计算的数学模型,研究哪些是可计算的,哪些是不可计算的,以此揭示计算的实质。
三停机问题 p29 理解四冯诺依曼机1 冯诺依曼机的模型p372冯诺依曼机的工作原理冯诺依曼机的主要思想是存储程序和程序控制,其工作原理是:程序由指令组成,并和数据一起存放在存储器中,计算机一经启动,就能按照程序指定的逻辑顺序把指令从存储器中读取并逐条执行,自动完成指令规定的操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指标函数表示为 Vkn(sk)=Vkn(sk,pkn(sk)) = Vkn(sk,dk,sk+1,dk+1,…sn,dn) . 或记为 Vkn(sk) =∑vi (si , di (si )). 其中vi (si , di (si ))表示第 i 阶段的初始状态为si , 且 采取决策di(si)时该阶段的指标值. 指标函数Vkn(sk)的最优值称为最优指标函数, 记为fk(sk).它表示从第k阶段的状态sk开始, 选取最 优策略(或最优后部子策略)后,得到的指标函数. 在例1中, f1(A)表示从始点A到终点E的管线最 短长度.
下面利用上述分析建立解析式求解例1
原问题分为四个阶段, A→B, B→C, C→D, D→E,即n=4; sk表示第k阶段初管线已达位置 (k=1,2,3,4); dk(sk)表示在第k阶段拟把管线铺达的下一站 位置; vk(sk,dk(sk))表示从sk到dk(sk)之间的管道线段 的长; fk(sk)表示从sk出发至终点E按最佳线路铺设 时的最短管线长. 按过程发展的反向顺序计算可得
2. 状态(state)与状态变量 (state variable) 状态表示每个阶段开始时, 过程所处的自 然状况,它应能描述过程的特征并且无后效性. 描述状态的变量称状态变量. 用 sk 表示第k 个阶段的状态变量. 允许状态集合(set of admissble states):称变 量的允许取值范围为允许状态集合. 用 Sk 表示第 k阶段的允许状态集合.
6. 阶段指标(step objective) 阶段指标是衡量决策过程中某一阶段决策效 果的一种数量指标. 第 k 阶段初始状态为sk且采取决策dk(sk)时的 阶段指标记为vk(sk, dk(sk)). 7.指标函数(objective function)与最优指标函 数(optimal objective function) 指标函数是衡量多阶段决策效果的一种数量 指标, 它是定义在全过程或所有后部子过程上的 确定的数量函数.
B
2
1
A
3
4
6 3
7 4 2
C
1
3 4 6 D
1
3 E
B
2
C
2
4 6
5
B
3
2
3 3
3
D
2
4
C
3
f2(B2)=min{B2C1+f3(C1), B2C2+f3(C2), B2C3+f3(C3)} =min{3+6*,2+7*,4+6}=9 从B2到E的最短路线为B2→C1→D1→E或 B2→C2→D2→E; 最短管线长9, 最优决策为 d2*(B2)=C1或C2.
2
4 6
5
B
3
2
3 3
3
D
2
4
C
3
k=3时, f3(C1) = min{v3(C1,d3(C1)) + f4(s4)} = min{C1D1+f4(D1), C1D2+f4(D2)} = min{3+3*,4+4}= 6 从C1到终点E的最短路线是C1→D1→E;最短管 线长为6;最优决策为d3*(C1) = D1.
B
2
1
A
3
4
6 3
7 4 2
C
1
3 4 6 D
1
3 E
B
2
C
2
4 6
5
B
3
2
3 3
3
D
2
4
C
3
f3(C3) = min{C3D1+f4(D1), C3D2+f4(D2)} = min{3+3*,3+4}=6 从C3到E的最短路线为C3→D1→E;最短管 线长为6;最优决策为d3*(C3)=D1
B
B
2
1
A
3
4
6 3
7 4 2
C
1
3 4 6 D
1
3 E
B
2
C
2
4 6
5
B
3
2
3 3
3
D
2
4
C
3
f3(C2) = min{C2D1 + f4(D1), C2D2 + f4(D2)} = min{6+3,3+4*}=7 从C2到终点E的最短路线为C2→D2→E;最短 管线长为7;最优决策为d3*(C2)=D2
第4章 动态规划
4.1 4.2 4.3 4.4 引言 动态规划模型的基本结构 动态规划 的计算方向 动态规划 的求解形式
4.1 引言
动态规划(Dynamic Programming)又称为多阶 段规划(Multistage Programming),是解决多阶段决 策过程最优化的一种数学方法, 是考察问题的一种 途径,也是运筹学的一个重要分支. 20世纪50年代初美国数学家 R.E.Bellman等人 在研究多阶段决策过程(multistep decision process) 的优化问题时, 提出了著名的最优性原理(principle of optima1ity), 即把一个较复杂的多阶段过程转化 为一系列单阶段问题,逐个求解, 从而创立了解决这 类过程优化问题的新方法—动态规划.1957年出版 了他的名著《Dynamic programming》, 这是该领 域的第一本著作.
按标号法反向顺序计算可得
11
B
6
6 3 7 4 2 C 3
3
D
12
A
2 4 3
9
B
1
7
C
1
4
6 3 3 3
3
E
4
D
2
1
9
B
3
2
4 6
5
6
2
4
2
C
3
因此,该问题的最优路线为A→B3→C2→D2→E,总 管线长度为12单位.
4.2 动态规划模型的基本结构
4.2.1 动态规划的基本概念 一个多阶段决策过程最优化问题的动态规 划模型通常包含以下要素. 1. 阶段(step) 把所给问题的过程,恰当地划分为若干个相 互联系的阶段, 以便按阶段的次序解优化问题. 通常用k表示阶段变量, 阶段总数记为n.
B
2
1
A
3
4
6 3
7 4 2
C
1
3 4 6 D
1
3 E
B
2
C
2
4 6
5
B
3
ቤተ መጻሕፍቲ ባይዱ
2
3 3
3
D
2
4
C
3
k=1时, f1(A) = min{AB1+f2(B1), AB2+f2(B2), AB3+f2(B3)} = min{2+11,4+9,3+9*}=12 从A到E的最短路线为A→B2→C2→D2→E; 最短管线长为12,最优决策为d1*(A)=B3.
注意: 无后效性是指当某阶段的状态给定时,这个 阶段以后过程的演变与该阶段以前各阶段的状态无关, 通常还要求状态是直接或间接可以观测的.
3. 决策(decision)与决策变量(decision variable) 决策是指在某一阶段状态绐定以后, 从该状 态演变至下一阶段某状态的选择. 描述决策的变量称为决策变量,用dk(sk)表示 第k阶段处于状态为sk 时的决策变量, 它是状态sk 的函数. 决策变量的变化范围称为决策集合,用Dk (sk) 表示第k阶段状态为sk 时的决策集合. 如例l中,D1(A)={B1,B2,B3}. 注意:决策的实质是关于状态的选择.
最短路线问题 如图,给出一个线路网络,两点间连线上的数 字表示两点间的距离,试求一条由A到E的铺管线 路, 使总距离为最短.
B 2 A 3
1
例
4
6 3 4 6
7 4 2
C
1
3 4 6 3 3 D
1
3
B
2
C
2
E
4
D
2
B
3
2 5
C
3
3
B 2 A 4
1
6 3
4 6
7 4 2
C
1
3 4 6 3
D
1
3 E 4
B
2
1
A
3
4
6 3
7 4 2
C
1
3 4 6 D
1
3 E
B
2
C
2
4 6
5
B
3
2
3 3
3
D
2
4
C
3
f5(s5)= f5(E)=0. k=4时, f4(D1) = min{D1E+f5(E)}= 3+0 = 3. 同理可得 f4(D2)=4.
B
2
1
A
3
4
6 3
7 4 2
C
1
3 4 6 D
1
3 E
B
2
C
5. 策略(policy)与(后部)子策略 决策组成的序列称为策略. 由过程的第一阶 段到终点的各阶段决策dk(sk)所组成的决策序列 (其中k=1,2,…,n),称为全过程策略,简称策略; 记为 p1n(s1)=(d1(s1),d2(s2),…,dn(sn)); 全部策略构成策略集,记为P1n(s1). 从第k阶段状态sk开始,到终点的过程称为全 过程的后部子过程.其相应的决策序列 pkn(sk)=(dk(sk),dk+1(sk+1),…,dn(sn)) 称 为k后部子策略,简称子策略,后部子策略的全体记 为Pkn(sk).