高一必修四三角函数复习题2

合集下载

必修四三角函数练习题(简单,限时训练,含答案)

必修四三角函数练习题(简单,限时训练,含答案)

必修四三角函数练习题(简单,限时训练,含答案)3.1任意角、弧度制和任意角的三角函数值时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.已知角α终边上一点的坐标是(3,-4),则sin α=( )A.35 B .-35 C.45 D .-452.圆内一条弦长等于半径,这条弦所对的圆心角为( )A.π6弧度B.π3弧度C.12弧度 D .以上都不对 3.若sin θ>0且sin θcos θ<0,则角θ的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在5.在下列各组角中,终边不相同的是( )A .60°与-300°B .230°与950°C .1050°与-300°D .-1000°与800°6.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( )A .40π cm 2B .80π cm 2C .40 cm 2D .80 cm 2二、填空题(每小题5分,共15分)7.写出-720°到720°之间与-1068°终边相同的角的集合________________.8.已知α的顶点在原点,始边与x 轴非负半轴重合,点P (-4m,3m )(m >0)是α终边上一点,则2sin α+cos α=________.9.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限.三、解答题(共15分)10.设90°<a <180°.角α的终边上一点为P (x ,5),且cos α=24x ,求sin α与tan α的值.3.2同角三角函数及诱导公式时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.cos300°=( )A .-32B .-12 C.12 D.322.已知sin α=35,则sin ⎝⎛⎭⎫π2+α的值为( ) A .±45 B .-45 C.45 D .-353.α是第四象限角,tan α=-34,则sin α=( ) A.35 B .-35 C.45 D .-454.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .25.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.356.若sin α+cos α2sin α-cos α=2,则tan α=( ) A .1 B .-1 C.34 D .-43二、填空题(每小题5分,共15分)7.已知tan α=3,则sin α+cos αsin α-2cos α=______.8.cos (-585°)sin495°+sin (-570°)的值是______. 9.若sin θ=-45,tan θ>0,则cos θ=________. 三、解答题(共15分)10.求证:cos (θ+π)·sin 2(θ+3π)tan (π+θ)·cos 3(-π-θ)=tan θ.3.3三角函数的图象与性质时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.函数f (x )=2sin ⎝⎛⎭⎫π2-x 是( )A .最小正周期为2π的奇函 数B .最小正周期为2π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数2.使cos x =1-m 有意义的m 值为( )A .m ≥0B .m ≤0C .0≤m ≤2D .-2≤m ≤03.函数y =4sin(2x +π)的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线x =π2对称 4.函数y =sin ⎝⎛⎭⎫2x +π3图象的对称轴方程可能是( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π125.函数y =2-sin x 的最大值及取最大值时x 的值为( )A .y max =3,x =π2B .y max =1,x =π2+C .y max =3,x =-π2+2k π(k ∈Z )D .y max π(k ∈Z ) 6.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°二、填空题(每小题5分,共15分)7.函数y =sin 2x +sin x -1的值域为________.8.设M 和m 分别是函数y =13cos x -1的最大值和最小值,则M +m =________. 9.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是________. 三、解答题(共15分)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调增区间.3.4函数y =A sin(ωx +φ)的图象时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.函数y =3sin ⎝⎛⎭⎫x +π3的图象的一个对称中心是( ) A .(0,0) B.⎝⎛⎭⎫π3,0 C.⎝⎛⎭⎫-π3,0 D .(3,0) 2.要得到函数y =sin ⎝⎛⎭⎫2x -π4的图象,可以把函数y =sin2x 的图象( ) A .向左平移π8个单位 B .向右平移π8个单位 C .向左平移π4个单位 D .向右平移π4个单位 3.函数y =sin(2x +φ)(0≤φ≤π)是R 上的偶函数,则φ的值是( )A .0 B.π4 C.π2D .π 4.下列函数中,图象的一部分如图所示J3­4­1的是( )图J3­4­1A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫4x -π3 D .y =cos ⎝⎛⎭⎫2x -π6 5.函数y =2sin ⎝⎛⎭⎫3x -π4的图象的两条相邻对称轴之间的距离是( ) A.π3 B.2π3 C .π D.4π36.若函数f (x )=2sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中ω>0,|φ|<π2的最小正周期是π,且f (0)=3,则( ) A .ω=12,φ=π6 B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3二、填空题(每小题5分,共15分)7.将函数y =sin ⎝⎛⎭⎫x +π3的图象向右平移π6个单位,再向上平移2个单位所得图象对应的函数解析式是________.8.函数f (x )=A sin ⎝⎛⎭⎫ωx +π3(A >0,ω>0)在一个周期内,当x =π12时,函数f (x )取得最大值2,当x =7π12时,函数f (x )取得最小值-2,则函数解析式为________.9.对于函数f (x )=sin ⎝⎛⎭⎫2x +π3,有下列四个结论: ①f (x )的图象关于直线x =π3对称; ②f (x )的图象关于点⎝⎛⎭⎫π4,0对称;③把f (x )的图象向左平移π12个单位,得到一个偶函数的图象; ④f (x )的最小正周期为π,且在⎣⎡⎦⎤0,π6上为增函数. 其中正确命题的序号是________.三、解答题(共15分)10.已知函数y =sin ⎝⎛⎭⎫2x +π4+1. (1)用“五点法”画出函数的草图;(2)函数图象可由y =sin x 的图象怎样变换得到?3.5两角和与差及二倍角的三角函数公式时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.若tan α=3,tan β=43,则tan(α-β)等于( ) A .-3 B .-13 C .3 D.132.下列各式中,值为32的是( ) A .2sin15°cos15° B .cos 215°-sin 215° C .2sin 215° D .sin 215°+cos 215°3.已知sin α=35⎝⎛⎭⎫0<α<π2,则cos ⎝⎛⎭⎫α+π4=( ) A.7 210 B.210 C .-7 210 D .-2104.已知sin α=55,则sin 4α-cos 4α=( ) A.35 B.15 C .-35 D .-155.函数f (x )=sin2x -cos2x 的最小正周期是( )A.π2B .ΠC .2πD .4π 6.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan2x 等于( ) A.724 B .-724 C.247 D .-247二、填空题(每小题5分,共15分)7.计算sin43°cos13°-cos43°sin13°的结果等于________8.已知sin(π+α)=-13,且α是第二象限角,那么sin2α=________. 9.函数f (x )=2cos 2x +sin2x 的最小值是________.三、解答题(共15分)10.已知tan(π+α)=-13,求sin2⎝⎛⎭⎫π2-α+4cos 2α10cos 2α-sin2α的值.3.6简单的三角恒等变换时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.已知sin α=35,则sin ⎝⎛⎭⎫π2+2α的值为( ) A .±1225 B .-725 C.725 D.12252.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( ) A.210 B .-210 C.7 210 D .-7 2103.sin α+cos α=35,则sin2α=( ) A.1625 B .-1625 C .-825 D .±8254.1-3tan75°3+tan75°的值等于( ) A .2+ 3 B .2-3 C .1 D .-15.2-sin 22+cos4=( )A .sin2B .-cos2 C.3cos2 D 6.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则sin α+cos αA .-72 B .-12 C.12 D.72二、填空题(每小题5分,共15分)7.若cos α=17,α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫α+π3=________. 8.设tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=______. 9.若sin θ2-2cos θ2=0,则tan θ=________. 三、解答题(共15分) 10.已知α为第二象限角,且sin α=154,求sin ⎝⎛⎭⎫α+π4sin2α+cos2α+1的值.3.7正弦定理和余弦定理时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.已知△ABC 中,a =2,b =3,B =60°,那么角A =( )A .135°B .90°C .45°D .30°2.已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )(a +b +c )=ab ,则角C 的大小为( )A .60°B .90°C .120°D .150°3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形4.在△ABC 中,若b =2a sin B ,则A 等于( )A .30°或60°B .45°或60°C .120°或60°D .30°或150°5.有下列判断:①△ABC 中,a =7,b =14,A =30°,有两解;②△ABC 中,a =30,b =25,A =150°,有一解;③△ABC 中,a =6,b =9,A =45°,有两解;④△ABC 中,b =9,c =10,B =60°,无解.不正确的结论有( )A .1个B .2个C .3个D .4个6.在△ABC 中,已知sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形二、填空题(每小题5分,共15分)7.若在△ABC 中,A =60°,b =2,△ABC 的面积为2 3,则a =________.8.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 9.在△ABC 中,若a =14,b =7 6,B =60°,则C =________.三、解答题(共15分)10.在△ABC 中,B =120°,AC =7,AB =5,求△ABC 的面积.3.8解三角形应用举例时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( )A .α>βB .α=βC .α+β=90°D .α+β=180°2.两灯塔A ,B 与海洋观察站C 的距离都等于a (km),灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A ,B 之间距离为( ) A.2a km B.3a km C .a km D .2a km3.如图所示J3­8­1,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.25 22m 4.渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4 km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)( )A .14.5 km/hB .15.6 km/hC .13.5 km/hD .11.3 km/h5.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,40 33m B .10 3 m,20 3 m C .10(3-2) m,20 3 m D.15 32 m ,20 33m 6.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为( )A .20 kmB .30 kmC .20 2 kmD .30 2 km二、填空题(每小题5分,共15分)7.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地距离为________km.8.在200 m 高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°,60°,则塔高为________m.9.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.三、解答题(共15分)10.隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.参考答案 3.11.D 2.B 3.B 4.A 5.C 6.B 解析:72°=2π5,∴S 扇形=12αR 2=12×2π5×202=80 π(cm 2). 7.{-708°,-348°,12°,372°}8.25 解析:由条件可求得r =5m ,所以sin α=35,cos α=-45.所以2sin α+cos α=25. 9.二 解析:∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0.∴角α在第二象限. 10.解:∵r =x 2+5,∴cos α=xx 2+5.从而24x =x x 2+5,解得x =0或x =± 3.∵90°<α<180°,∴x <0,因此x =- 3.故r =2 2,sin α=52 2=104,tan α=5-3=-153.3.21.C 2.A 3.B 4.D 5.B 6.A 7.4 8.2-2 9.-3510.证明:左边=-cos θ·sin 2θtan θ·(-cos 3θ)=1tan θ·tan 2θ=tan θ=右边. 3.31.B 2.C 3.B 4.D5.C 解析:∵y =2-sin x ,∴当sin x =-1时,y max =3,此时x =-π2+2k π(k ∈Z ).6.C 解析:sin168°=sin(180°-12°)=sin12°,cos10°=cos(90°-80°)=sin80°.因为正弦函数y =sin x 在区间[0,90°]上为增函数,所以sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.7.⎣⎡⎦⎤-54,1 解析:(数形结合法)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈ [-1,1],画出函数图象如图所示D4,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎡⎦⎤-54,1.图D48.-2 解析:∵cos x ∈[-1,1],∴M =13×1-1=-23,m =13×(-1)-1=-43.∴M +m =-23-43=-2.9.⎝⎛⎭⎫k π2-π8,0(k ∈Z ) 解析:由2x +π4=k π,k ∈Z ,得x =k π2-π8,k ∈Z ,故交点坐标为⎝⎛⎭⎫k π2-π8,0(k ∈Z ).10.解:(1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z .又-π<φ<0,则-54<k <-14,k ∈Z .∴k =-1,则φ=-3π4.(2)由(1),得f (x )=sin ⎝⎛⎭⎫2x -3π4.令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z , 可解得π8+k π≤x ≤5π8+k π,k ∈Z .因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 3.41.C 2.B 3.C 4.D 5.A6.D 解析:由T =2πω=π,∴ω=2.由f (0)=3⇒2sin φ=3,∴sin φ=32.又|φ|<π2,∴φ=π3.7.y =sin ⎝⎛⎭⎫x +π6+2 解析:y =sin ⎝⎛⎭⎫x +π3向右平移π6个单位得y =sin ⎝⎛⎭⎫x -π6+π3=sin ⎝⎛⎭⎫x +π6,再向上平移2个单位得y =sin ⎝⎛⎭⎫x +π6+2. 8.f (x )=2sin ⎝⎛⎭⎫2x +π3 解析:由题意可知A =2.T 2=7π12-π12=π2.∴T =π.∴2πω=π,即ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π3. 9.③10.解:(1)列表:图D5描点,连线如图所示D5.将y =sin ⎝⎛⎭⎫2x +π4+1在⎣⎡⎦⎤-π8,7π8上的图象向左、向右平移(每次π个单位长度), 即可得到y =sin ⎝⎛⎭⎫2x +π4+1的图象. (2)y =sin xy =sin ⎝⎛⎭⎫x +π4 y =sin ⎝⎛⎭⎫2x +π4 y =sin ⎝⎛⎭⎫2x +π4+1. 3.51.D 2.B 3.B 4.C 5.B6.D 解析:∵x ∈⎝⎛⎭⎫-π2,0,cos x =45.∴sin x =-35,∴tan x =-34.∴tan2x =2tan x1-tan 2x =2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247. 7.128.-4 29 解析:∵由题意知,sin α=13,且α是第二象限角,∴cos α=-2 23.∴sin2α=2sin αcos α=2×13×⎝⎛⎭⎫-2 23=-4 29.9.1-2 解析:∵f (x )=2cos 2x +sin2x =1+cos2x +sin2x =1+2sin ⎝⎛⎭⎫2x +π4,∴f (x )min =1- 2.10.解:∵tan(π+α)=-13.∴tan α=-13.∴sin2⎝⎛⎭⎫π2-α+4cos 2α10cos 2α-sin2α=sin (π-2α)+4cos 2α10cos 2α-sin2α=2sin αcos α+4cos 2α10cos 2α-2sin αcos α=sin α+2cos α5cos α-sin α=tan α+25-tan α=516.3.61.C 2.A 3.B 4.D 5.D 6.C 7.-1114 8.3229.-43 解析:由sin θ2-2cos θ2=0,得tan θ2=2.则tan θ=2tanθ21-tan 2θ2=-43.10.解:原式=22(sin α+cos α)2sin αcos α+2cos 2α=2(sin α+cos α)4(cos αsin α+cos 2α).∵α为第二象限角,且sin α=154,∴sin α+cos α≠0,cos α=-14. ∴原式=24cos α=- 2.3.71.C 2.C 3.C 4.D 5.C 6.A 7.2 38.1 解析:∵c 2=a 2+b 2-2ab cos C ,∴(3)2=a 2+1-2a cos 2π3.∴a 2+a -2=0.解得a =1或a =-2(舍).9.75° 解析:由正弦定理知,a sin A =b sin B .又a =14,b =76,B =60°,∴sin A =a sin B b =14sin60°7 6=22.∵a <b ,∴A <B .∴A =45°.∴C =180°-(B +A )=180°-(60°+45°)=75°.10.解:由余弦定理得b 2=a 2+c 2-2ac cos B , 即49=a 2+25-2×5×a cos120°.整理得a 2+5a -24=0,解得a =3或a =-8(舍). ∴S △ABC =12ac sin B =12×3×5sin120°=15 34.3.81.B 2.A 3.A 4.C 5.A 6.D7.7 解析:如图所示D6,由题意可知AB =3 3,BC =2,∠ABC =150°.由余弦定理,得AC 2=27+4-2×3 3×2×cos150°=49,AC =7.则A ,C 两地距离为7 km.图D68.40039.10 3 解析:如图所示D7,OM =AO tan45°=30(m),ON =AO tan30°=33×30=10 3(m),由余弦定理,得MN =900+300-2×30×10 3×32=300=10 3(m).图D710.解:如图所示D8,在△ACD 中.∵∠ADC =30°,∠ACD =120°,图D8∴∠CAD =30°,AC =CD =3(千米), 在△BDC 中,∠CBD =180°-45°-75°=60°. 由正弦定理,得BC =3sin75°sin60°=6+22(千米).在△ABC 中,由余弦定理,可得 AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA , 即AB 2=(3)2+⎝⎛⎭⎪⎫6+222-2 3·6+22cos75°=5. ∴AB = 5 (千米).所以,两目标A,B间的距离为5千米.。

新人教A版高中数学必修四三角函数复习资料(含答案)

新人教A版高中数学必修四三角函数复习资料(含答案)

高一三角函数复习资料一、范例分析例1、 已知函数y=21cos 2x+23sinx·cosx+1 (x ∈R ),(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?说明:这类题一般的解法是:先化成关于sinωx,cosωx 的齐次式,降幂后最终化成y=22b a +sin (ωx+ϕ)+k 的形式。

解:(1)y=21cos 2x+23sinx·cosx+1=41 (2cos 2x -1)+ 41+43(2sinx·cosx )+1=41cos2x+43sin2x+45=21(cos2x·sin 6π+sin2x·cos 6π)+45=21sin(2x+6π)+45所以y 取最大值时,只需2x+6π=2π+2kπ,(k ∈Z ),即 x=6π+kπ,(k ∈Z )。

所以当函数y 取最大值时,自变量x 的集合为{x|x=6π+kπ,k ∈Z}(2)将函数y=sinx 依次进行如下变换:(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6π)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π)的图像;(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6π)的图像;(iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+45的图像。

综上得到y=21cos 2x+23sinxcosx+1的图像。

例2()已知向量,,,,,,其中a x xb x xc =⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪=-cos sin cos sin 32322231x R ∈.(I )当a ⊥b 时,求x 值的集合;()求的最大值。

II a c -解:()由⊥·I a b a b →→→→⇔=0即··coscos sin sin 3223220x x x x -=则cos20x =()得22x k k Z =+∈ππ()∴x k k Z =+∈ππ24∴当⊥时值的集合为,a b x x x k k Z →→=+∈⎧⎨⎩⎫⎬⎭|ππ24解法一:()II a c a c a a c c a a c c ||()||||→→→→→→→→→→→→-=-=-+=-+22222222又||c o s s i n a x x →=⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=22232321()||c →=+-=222314a b x x x x x →→=-=-⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪·332322323212322326cos sin cos sin cos π∴||c o s c o s a c xx→→-=-+⎛⎝ ⎫⎭⎪+=-+⎛⎝ ⎫⎭⎪214326454326ππ∴||m a xa c →→-=29∴||m i n a c →→-=3即的最大值为||a c →→-3解法二:||cos sin a c x x →→-=-+⎛⎝ ⎫⎭⎪22323321, =-⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪cos sin 32332122x x =-++++cos cos sin sin 223223323322321x x x x=-⎛⎝ ⎫⎭⎪+2323325sin cos x x =-⎛⎝ ⎫⎭⎪+43235sin x π∴||maxa c →→-=29∴||max a c →→-=3说明:三角函数与向量之间的联系很紧密,所以此类题目往往是命题人所青睐。

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修4

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修4

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修41.对于三角函数线,下列说法正确的是( )A.对任何角都能作出正弦线、余弦线和正切线B.有的角的正弦线、余弦线和正切线都不存在C.任何角的正弦线、正切线总是存在,但余弦线不一定存在D.任何角的正弦线、余弦线总是存在,但是正切线不一定存在答案 D解析当角的终边落在y轴上时,正切线不存在,但对任意角来说,正弦线、余弦线都存在.2.若角α的余弦线是单位长度的有向线段,那么角α的终边在( )A.y轴上 B.x轴上C.直线y=x上 D.直线y=-x上答案 B解析由题意得|cosα|=1,即cosα=±1,角α终边在x轴上,故选B.A.sin1>cos1>tan1 B.sin1>tan1>cos1C.tan1>sin1>cos1 D.tan1>cos1>sin1答案 C解析设1 rad角的终边与单位圆的交点为P(x,y),∵π4<1<π2,∴0<x<y<1,从而cos1<sin1<1<tan1.4.设a=sin(-1),b=cos(-1),c=tan(-1),则有( )A.a<b<c B.b<a<cC.c<a<b D.a<c<b答案 C解析作α=-1的正弦线、余弦线、正切线,可知:b=OM>0,a=MP<0,c=AT<0,且MP>AT.∴c<a<b.5.若α为第二象限角,则下列各式恒小于零的是( )A.sinα+cosα B.tanα+sinαC.cosα-tanα D.sinα-tanα答案 B解析如图,作出sinα,cosα,tanα的三角函数线.显然△OPM∽△OTA,且|MP|<|AT|.∵MP>0,AT<0,∴MP<-AT.∴MP+AT<0,即sinα+tanα<0.6.已知MP,OM,AT分别是75°角的正弦线、余弦线、正切线,则这三条线从小到大的排列顺序是________.答案OM<MP<AT解析如图,在单位圆中,∠POA=75°>45°,由图可以看出OM<MP<AT.7.利用三角函数线比较下列各组数的大小.(1)tan 4π3与tan 7π6;(2)cos 11π6与cos 5π3.解 (1)如图1所示,设点A 为单位圆与x 轴正半轴的交点,角4π3和角7π6的终边与单位圆的交点分别为P ,P ′,PO ,P ′O 的延长线与单位圆的过点A 的切线的交点分别为T ,T ′,则tan 4π3=AT ,tan 7π6=AT ′.由图可知AT >AT ′>0,所以tan 4π3>tan 7π6.(2)如图2所示,设角5π3和角11π6的终边与单位圆的交点分别为P ,P ′,过P ,P ′分别作x 轴的垂线,分别交x 轴于点M ,M ′,则cos 11π6=OM ′,cos 5π3=OM .由图可知0<OM <OM ′,所以cos 5π3<cos 11π6.答案 0,π4∪π2,5π4∪3π2,2π解析 由0≤θ<2π且tan θ≤1,利用三角函数线可得θ的取值范围是0,π4∪π2,5π4∪3π2,2π.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12;(3)tan α≥-1. 解 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k +4π3,k ∈Z.(3)在单位圆过点A (1,0)的切线上取AT =-1,连接OT ,OT 所在直线与单位圆交于P 1,P 2两点,则图中阴影部分即为角α终边的范围,所以α的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪-π4+k π≤α<π2+k π,k ∈Z,如图.一、选择题1.已知α(0<α<2π)的正弦线与余弦线的长度相等,且方向相同,那么α的值为( ) A .5π4或7π4 B .π4或3π4C .π4或5π4D .π4或7π4答案 C解析 因为角α的正弦线与余弦线长度相等,方向相同,所以角α的终边在第一或第三象限,且角α的终边是象限的角平分线,又0<α<2π,所以α=π4或5π4,选C .2.若α是三角形的内角,且sin α+cos α=23,则这个三角形是( )A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形 答案 D解析 当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+cos α=23,∴α必为钝角. 3.如果π<θ<5π4,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ 答案 D解析 本题主要考查利用三角函数线比较三角函数值的大小.由于π<θ<5π4,如图所示,正弦线MP 、余弦线OM 、正切线AT ,由此容易得到cos θ<sin θ<0<tan θ,故选D .4.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .⎝ ⎛⎭⎪⎫-π3,π3 B .⎝⎛⎭⎪⎫0,π3 C .⎝⎛⎭⎪⎫5π3,2π D .⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π答案 D解析 由图1知当sin α<32时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫2π3,2π.由图2知当cos α>12时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π,∴α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π. 5.已知sin α>sin β,那么下列命题正确的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 解法一:(特殊值法)取α=60°,β=30°,满足sin α>sin β,此时cos α<cos β,所以A 不正确;取α=120°,β=150°,满足sin α>sin β,这时tan α<tan β,所以B 不正确;取α=210°,β=240°,满足sin α>sin β,这时cos α<cos β,所以C 不正确.解法二:如图,P 1,P 2为单位圆上的两点, 设P 1(x 1,y 1),P 2(x 2,y 2),且y 1>y 2.若α,β是第一象限角,又sin α>sin β, 则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2. ∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),其中sin α=y 1′,sin β=y 2′,则tan α-tan β=y 1′x 1′-y 2′x 2′=x 2′y 1′-x 1′y 2′x 1′x 2′. 而y 1′>y 2′>0,x 2′<x 1′<0, ∴-x 2′>-x 1′>0,∴x 1′x 2′>0,x 2′y 1′-x 1′y 2′<0,即tan α<tan β.∴B 不正确.同理,C 不正确.故选D . 二、填空题6.若α是第一象限角,则sin2α,cos α2,tan α2中一定为正值的个数为________.答案 2解析 由α是第一象限角,得2k π<α<π2+2k π,k ∈Z ,所以k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角,则tan α2>0,cos α2的正负不确定;4k π<2α<π+4k π,k ∈Z ,2α的终边在x 轴上方,则sin2α>0.故一定为正值的个数为2.7.若0≤θ<2π,且不等式cos θ<sin θ和tan θ<sin θ成立,则角θ的取值范围是________.答案π2,π 解析 由三角函数线知,在[0,2π)内使cos θ<sin θ的角θ∈π4,5π4,使tan θ<sin θ的角θ∈π2,π∪3π2,2π,故θ的取值范围是π2,π.8.若函数f (x )的定义域是(-1,0),则函数f (sin x )的定义域是________. 答案 -π+2k π,-π2+2k π∪-π2+2k π,2k π(k ∈Z )解析 f (x )的定义域为(-1,0),则f (sin x )若有意义,需-1<sin x <0,利用三角函数线可知-π+2k π<x <2k π,且x ≠-π2+2k π(k ∈Z ).三、解答题9.比较下列各组数的大小:(1)sin1和sin π3;(2)cos 4π7和cos 5π7;(3)tan 9π8和tan 9π7;(4)sin π5和tan π5.解 (1)sin1<sin π3.如图1所示,sin1=MP <M ′P ′=sin π3.(2)cos 4π7>cos 5π7.如图2所示,cos 4π7=OM >OM ′=cos 5π7.(3)tan 9π8<tan 9π7.如图3所示,tan 9π8=AT <AT ′=tan 9π7.(4)sin π5<tan π5.如图4所示,sin π5=MP <AT =tan π5.10.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π(k ∈Z ),故k π+π4<θ2<k π+π2(k∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2(k ∈Z )时,cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+3π2(k ∈Z )时,sin θ2<cos θ2<tan θ2.。

必修四三角函数考前复习题

必修四三角函数考前复习题

必修四第一章三角函数考前复习题一、选择题1.将-300o 化为弧度为( )A .-43π; B .-53π; C .-76π; D .-74π;2.如果点)cos 2,cos (sin θθθP 位于第三象限,那么角θ所在象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列选项中叙述正确的是 ( ) A .三角形的内角是第一象限角或第二象限B .锐角是第一象限的角C .第二象限的角比第一象限的角大D .终边不同的角同一三角函数值不相等 4.下列函数中为偶函数的是( )A .sin ||y x =B .2sin y x =C .sin y x =-D .sin 1y x =+5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B6.函数3sin(2)6y x π=+的单调递减区间( )A .5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ B .511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈ C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D .2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈ 7.已知α是三角形的一个内角,且32cos sin =+αα,则这个三角形( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 8.)2cos()2sin(21++-ππ等于 ( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos29.若角α的终边落在直线y =2x 上,则sin α的值为( )A. 15±B. 5±C. 5±D. 12±10.函数y=cos 2x –3cosx+2的最小值是 () A .2B .0C .41D .611.如果α在第三象限,则2α必定在()A .第一或第二象限B .第一或第三象限C .第三或第四象限D .第二或第四象12.已知函数)sin(φϖ+=x A y 在同一周期内,当3π=x 时有最大值2,当x=0时有最小值-2,那么函数的解析式为 ( )A .x y 23sin 2= B .)23sin(2π+=x y C .)23sin(2π-=x y D .x y 3sin 21=13.已知函数sin 2y x =,要得到函数sin(2)3y x π=+的图象,只需将(f 的图象( )A .向左平移3π个单位 B .向右平移3π个单位32.已知角α终边上一点P (-4,3),求)29sin()211cos()sin()2cos(απαπαπαπ+---+ 的值33.已知函数y=Asin(ωx+φ)+b(A>0,|φ|<π,b 为常数)的 一段 图象(如图)所示. ①求函数的解析式; ②求这个函数的单调区间.34.已知43tan -=θ,求θθθ2cos cos sin 2-+的值。

(易错题)高中数学必修四第一章《三角函数》测试题(含答案解析)(2)

(易错题)高中数学必修四第一章《三角函数》测试题(含答案解析)(2)

一、选择题1.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的个数是( ) ①()f x 的最小值为2-; ②点,012π⎛⎫⎪⎝⎭是()f x 的图象的一个对称中心; ③()f x 的最小正周期为π; ④()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. A .1B .2C .3D .42.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( )A .35B .45-C .3-D .3.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-4.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增; C .若某声音甲对应函数近似为111()sin sin 2sin3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin33h x x =更低沉.5.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭ B .4953,66⎡⎫⎪⎢⎣⎭ C .3741,66⎡⎫⎪⎢⎣⎭ D .[8,9)6.已知()()sin 6f x x a b x ππ⎛⎫=--+ ⎪⎝⎭,若()0f x ≤在[]1,1x ∈-上恒成立,则a b +=( ) A .56B .23C .1D .27.设函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减,则下述结论: ①()f x 关于,012π⎛⎫⎪⎝⎭中心对称;②()f x 关于直线23x π=轴对称; ③()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦;④方程()1f x =在[]0,2π有4个不相同的根. 其中正确结论的编号是( ) A .①②B .②③C .②④D .③④8.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+.同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭9.有以下四种变换方式:①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍;③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④10.已知函数1,01()11sin ,14242x x f x x x π+≤≤⎧⎪=⎨+<≤⎪⎩,若不等式2()()20f x af x -+<在[]0,4x ∈上恒成立,则实数a 的取值范围为( )A .3a >B .23a <<C .22a >D .92a >11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度12.已知定义在R 上的函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭在[]1,2上有且仅有3个零点,其图象关于点1,04⎛⎫⎪⎝⎭和直线14x =-对称,给出下列结论:①1222f ⎛⎫=⎪⎝⎭;②函数()f x 在[]0,1上有且仅有3个最值点;③函数()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增;④函数()f x 的最小正周期是2.其中所有正确结论的个数是( ) A .1B .2C .3D .4二、填空题13.已知函数273(0)()323(0)x x f x x x x ⎧+≤⎪=⎨⎪-++>⎩,()cos 4g x x x =++,若对任意[3,3]t ∈-,总存在0,2s π⎡⎤∈⎢⎥⎣⎦,使得()()f t a g s +≤成立,则实数a 的取值范围为__________.14.已知sin 78a =︒,cos10b =︒,tan55c =︒,则a ,b ,c 的大小关系为______. 15.已知函数()f x 的定义域为R ,且()2()f x f x π+=,当[0,)x π∈时,()sin f x x =.若存在0(,]x m ∈-∞,使得0()f x ≥m 的取值范围为________.16.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.17.设函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的图象关于直线23x π=对称,它的周期为π,则下列说法正确是________(填写序号) ①()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; ②()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减;③()f x 的一个对称中心是5,012π⎛⎫⎪⎝⎭; ④将()f x 的图象向右平移ϕ个单位长度得到函数2sin 2y x =的图象. 18.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________.19.如图,某地一天从614时的温度变化曲线近似满足函数()sin y A x b ωϕ=++,则这段曲线的函数解析式为______________.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 22.如图,在扇形OMN 中,半径10OM =,圆心角6MON π∠=,D 是扇形弧上的动点,矩形ABCD 内接于扇形,记DON θ∠=,矩形ABCD 的面积为S .(1)用含θ的式子表示线段DC ,OB 的长; (2)求S 的最大值.23.已知函数()2sin()cos sin(2)(0)f x x x ωϕϕωϕω=+-+>在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增.(1)求ω的取值范围;(2)当ω取最小正整数时,关于x 的方程211()()022f x f x --=在区间,6m π⎛⎫- ⎪⎝⎭上恰有5个实数根,求m 的取值范围.24.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()f x 图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()g x 的图象.又()14g θ=求2114sin sin 63ππθθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值.25.一只红蚂蚁与一只黑蚂蚁在一个圆(半径为1cm 的圆)的圆周上爬动,且两只蚂蚁均从点1,0A 同时逆时针匀速爬动,红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0180αβ︒︒<<<).如果两只蚂蚁都在第14秒时回到A 点,并且在第2秒时均位于第二象限.(1)求α,β的值.(2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A 逆时针...匀速爬行,黑蚂蚁同时从点A 顺时针...匀速爬行,求当它们从点A 出发后第一次相遇时,红蚂蚁爬过的距离. 26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出()min f x 可判断①的正误;利用正弦型函数的对称性可判断②的正误;求出()f x 的最小正周期可判断③的正误;利用正弦型函数的单调性可判断④的正误. 【详解】 对于①,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,()()min 212f x ∴=⨯-=-,①正确;对于②,2sin 22sin 20121232f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以,点,012π⎛⎫⎪⎝⎭不是()f x 的图象的一个对称中心,②错误; 对于③,函数()f x 的最小正周期为22T ππ==,③正确; 对于④,当,06x π⎛⎫∈- ⎪⎝⎭时,2666x πππ-<+<,所以,函数()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. ④正确.因此,正确命题的序号为①③④. 故选:C.关键点点睛:对于正弦型函数基本性质的判断问题,一般将函数解析式化为()sin y A x b ωϕ=++或()cos y A x b ωϕ=++,将x ωϕ+视为一个整体,利用正弦函数或余弦函数的基本性质来求解.2.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.3.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题.4.B解析:B 【分析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断 CD 可取特值说明 【详解】 A. ()1111sin sin 2sin 3sin 4sin100234100f x x x x x x =+++++()()()()()()()1111sin sin 2sin 3sin 4sin 100234100f x x x x x x f x -=-+-+-+-++-=-,()f x 为奇函数B. ,1616x ππ⎡⎤∈-⎢⎥⎣⎦时,2,88x ππ⎡⎤∈-⎢⎥⎣⎦,333,1616x ππ⎡⎤∈-⎢⎥⎣⎦,4,44x ππ⎡⎤∈-⎢⎥⎣⎦,故sin ,sin 2,sin 3,sin 4x x x x 在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数故111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增. C. ()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 4034g f h ππππππ=-=++=故声音甲的响度不一定比纯音1()sin 22h x x =响度大 D. ()11()()sin sin 2sin 323h x g x h x x x x =-=+- ()11()()sin sin 2sin 3023h g h ππππππ=-=+-=甲不一定比纯音1()sin33h x x =更低沉 故选:B 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.5.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<.故选:A6.A解析:A 【分析】根据题意分析可得当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,0x a b --≥,从而可得506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解方程即可求解.【详解】当15,66x ⎡⎤∈-⎢⎥⎣⎦,sin 06x ππ⎛⎫+≥ ⎪⎝⎭, 当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,sin 06x ππ⎛⎫+≤ ⎪⎝⎭,, 故当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤时, 当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,0x a b --≥, 即506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩ ,所以56a b +=. 故选:A 【点睛】本题考查了三角函数的性质、不等式恒成立,考查了基本运算求解能力,属于中档题.7.D解析:D 【分析】利用题干中的已知条件求得2ω=,可得出()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,利用正弦型函数的对称性可判断①②的正误,利用正弦型函数的值域可判断③的正误,求出方程()1f x =在[]0,2π上的解,可判断④的正误. 【详解】N ω*∈,由55,126x ππ⎡⎤∈⎢⎥⎣⎦可得55126666x πωπππωπω-≤-≤-,由于函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,()553,2,21266622k k k Z πωππωπππππ⎡⎤⎡⎤--⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以,521262532662k k ωππππωππππ⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,解得()248121055k k k Z ω++≤≤∈,由248121055k k ++≤,解得16k ≤,N ω*∈且k Z ∈,0k ∴=,可得825ω≤≤,2ω∴=,则()sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于①,sin 2sin 00126ππ⎛⎫⨯-==⎪⎝⎭,所以,112f π⎛⎫= ⎪⎝⎭, 所以,函数()f x 的图象关于点,112π⎛⎫⎪⎝⎭成中心对称,①错误; 对于②,271sin 2sin 13662πππ⎛⎫⨯-==-≠± ⎪⎝⎭,②错误;对于③,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,5112,666x πππ⎡⎤-∈⎢⎥⎣⎦,则11sin 262x π⎛⎫-≤-≤ ⎪⎝⎭, 所以,()302f x ≤≤,即()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦,③正确; 对于④,当[]0,2x π∈时,232,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 令()1f x =,可得sin 206x π⎛⎫-= ⎪⎝⎭,206x π∴-=或26x ππ-=或226x ππ-=或236x ππ-=.所以,方程()1f x =在[]0,2π有4个不相同的根,④正确. 故选:D. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).8.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D . 因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍;当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍;故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.9.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=- ⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .10.D解析:D 【分析】这是一个复合函数的问题,通过换元()t f x = ,可知新元的范围,然后分离参数,转为求函数的最大值问题,进而计算可得结果. 【详解】由题可知当[]0,1x ∈时,有[]()11,2f x x =+∈,当4](1,x ∈时,0sin14xπ≤≤,即111()sin,12422x f x π⎡⎤=+∈⎢⎥⎣⎦ 所以当[]0,4x ∈时,1,22()f x ⎡∈⎤⎢⎥⎣⎦,令()t f x =,则1,22t ⎡⎤∈⎢⎥⎣⎦,从而问题转化为不等式220t at -+<在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,即222t a t t t+>=+在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,由2y t t =+ ,1,22t ⎡⎤∈⎢⎥⎣⎦,设1212t t <<<()()()1212121212122220t t f t f t t t t t t t t t --=-+-=->, 所以2y t t =+在12t ⎡∈⎢⎣是单调递减函数,122t t <<<,()()()1212121212122220t t f t f t t t t t t t t t --=-+-=-<, 所以2y t t=+在2t ⎤∈⎦是单调递增函数, 在1,22t ⎡⎤∈⎢⎥⎣⎦上先减后增,而2t t +在12t =时有最大值为92,所以92a >. 【点睛】本题考查含参数的恒成立问题,运用到分离参数法求参数范围,还结合双勾函数的单调性求出最值, 同时考查学生的综合分析能力和数据处理能力.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.B解析:B 【分析】由三角函数的图象与性质可得()sin 34f x x ππ⎛⎫=+⎪⎝⎭,代入即可判断①;令03,42()x k k Z ππππ+∈+=,化简即可判断②;令232,242k k x k Z ππππππ-≤+≤+∈+,化简即可判断③;由最小正周期的公式即可判断④. 【详解】∵函数()f x 的图象关于点1,04⎛⎫⎪⎝⎭对称,∴111,4k k Z ωϕπ+=∈,又函数()f x 的图象关于直线14x =-对称,∴221,42k k Z ππωϕ-+=+∈,∴()1221k k ωπ=--⎡⎤⎣⎦,即(21),n n Z ωπ=∈-, ∵函数()sin()f x x ωϕ=+在[]1,2上有且仅有3个零点, ∴24,)201(ππωωω<>≤-,即24πωπ≤<,所以3ωπ=,()()sin 3f x x πϕ=+, ∵104f ⎛⎫=⎪⎝⎭,∴3,4k k Z πϕπ+=∈,又||2πϕ≤,∴4πϕ=,∴()sin 34f x x ππ⎛⎫=+⎪⎝⎭;对于①,3sin 24122f ππ⎛⎫+ ⎪⎝⎛⎫==-⎪⎭⎝⎭,故①错误; 对于②,令03,42()x k k Z ππππ+∈+=,则01,31(2)Z k x k =+∈, 令101312k ≤+≤,则可取0,1,2k =, ∴0112x =,512,34,即函数()f x 在[]0,1上有且仅有3个最值点,故②正确; 对于③,令232,242k k x k Z ππππππ-≤+≤+∈+,则1212,43123k x k Z k -+≤≤∈+,当2k =-时,195,124⎡⎤--⎢⎥⎣⎦为()f x 的一个递增区间, 而35195,,24124⎛⎫⎡⎤--⊆-- ⎪⎢⎥⎝⎭⎣⎦,∴()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增,故③正确; 对于④,∵()sin 34f x x ππ⎛⎫=+⎪⎝⎭,∴函数的最小正周期2233T ππ==,故④错误. 综上所述,其中正确的结论的个数为2个. 故选:B. 【点睛】本题考查了三角函数解析式的确定及三角函数图象与性质的应用,考查了运算求解能力,属于中档题.二、填空题13.【分析】求出f (t )和g (s )的值域根据存在性和恒成立问题转化为求出a 的范围【详解】对于函数f (x )当x≤0时f (x )单调递增由﹣3≤t≤0可得f (t )∈﹣43当x >0时f (x )=﹣x2+2x+3= 解析:(],2-∞【分析】求出f (t )和g (s )的值域,根据存在性和恒成立问题,转化为()()()maxmaxf t ag s +≤求出a 的范围. 【详解】对于函数f (x ),当x ≤0时,f (x )733x =+单调递增,由﹣3≤t ≤0,可得f (t )∈[﹣4,3],当x >0时,f (x )=﹣x 2+2x +3=﹣(x ﹣1)2+4,由0<t ≤3,可得f (t )∈[0,4],∴对任意t ∈[﹣3,3],f (t )∈[﹣4,4],对于函数g (x )=x +cos x +4=2sin (x 6π+)+4, ∵s ∈[0,2π],∴s 6π+∈[6π,23π], ∴g (s )∈[5,6],∴对于s ∈[0,2π],使得g (s )∈[5,6],∵对任意t ∈[﹣3,3],总存在s ∈[0,2π],使得f (t )+a ≤g (s )成立,故()()()max maxf t ag s +≤∴a +4≤6,解得a ≤2, 故答案为:(],2-∞ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.【分析】同角三角函数关系知又由的区间单调性知根据的区间单调性知即可知的大小关系【详解】而∴故答案为:【点睛】本题考查了比较三角函数值的大小根据正弦函数正切函数的区间单调性及正弦函数的值域范围比较函数 解析:c b a >>【分析】同角三角函数关系知sin80b =︒,又由sin y x =的区间单调性知b a >,根据tan y x =的区间单调性知1c >,即可知a ,b ,c 的大小关系 【详解】cos10cos(9080)sin80sin 78b a =︒=︒-︒=︒>=︒,而tan55tan 451c =︒>︒=∴c b a >> 故答案为:c b a >> 【点睛】本题考查了比较三角函数值的大小,根据正弦函数、正切函数的区间单调性及正弦函数的值域范围,比较函数值的大小15.【分析】由f (x+)=2f (x )得f (x )=2f (x ﹣)分段求解析式结合图象可得m 的取值范围【详解】解:∵∴∵当时∴当时当时当时作出函数的图象:令解得:或若存在使得则故答案为:【点睛】本题考查函数与解析:10[,)3π+∞ 【分析】由f (x +π)=2f (x ),得f (x )=2f (x ﹣π),分段求解析式,结合图象可得m 的取值范围. 【详解】解:∵()()2f x f x π+=,∴()()2f x f x π=-, ∵当0,x时,()sin f x x =.∴当[),2x ππ∈时,()()2sin f x x π=-.当[)2,3x ππ∈时,()()4sin 2f x x π=-.当[)3,4x ππ∈时,()()8sin 3f x x π=-.作出函数的图象:令()8sin 343x π-=103x π=,或113π, 若存在(]0,x m ∈-∞,使得()043f x ≥,则103m π≥, 故答案为:10[,)3π+∞ 【点睛】本题考查函数与方程的综合运用,训练了函数解析式的求解及常用方法,考查数形结合的解题思想方法,属中档题.16.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈, ∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.17.③【分析】先根据对称轴及最小正周期求得函数的解析式再结合正弦函数的图象与性质判断点是否在函数图象上求得函数的单调区间及对称中心判断选项由平移变换求得变化后的解析式并对比即可【详解】函数的最小正周期是解析:③ 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式.再结合正弦函数的图象与性质,判断点是否在函数图象上,求得函数的单调区间及对称中心判断选项,由平移变换求得变化后的解析式并对比即可. 【详解】函数()()2sin 0,0,2f x x πωϕωϕ⎛⎫⎛⎫=+>∈ ⎪ ⎪⎝⎭⎝⎭的最小正周期是π,所以22πωπ==,则()()2sin 2f x x ϕ=+,又()()2sin 2f x x ϕ=+图象关于直线23x π=对称,所以对称轴为2,2x k k Z πϕπ+=+∈,代入可得22,32k k Z ππϕπ⨯+=+∈,解得5,6k k Z πϕπ=-+∈, 因为0,2πϕ⎛⎫∈ ⎪⎝⎭,所以当1k =时, 6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,对于①,当0x =时,()02sin 16f π==,()f x 的图象不过点30,2⎛⎫⎪⎝⎭,所以①不正确;对于②,()2sin 26f x x π⎛⎫=+⎪⎝⎭的单调递减区间为3222,262k x k k Z πππππ+≤+≤+∈,解得2,63k x k k Z ππππ+≤≤+∈, 当0k =时,263x ππ≤≤,又因为126ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以②错误;对于③,()2sin 26f x x π⎛⎫=+⎪⎝⎭的对称中心为2,6x k k Z ππ+=∈,解得,122k x k Z ππ=-+∈,当1k =时,512x π=,所以5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心,所以③正确;对于④,将()2sin 26f x x π⎛⎫=+⎪⎝⎭向右平移6π个单位长度,可得2sin 22sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以不能得到2sin 2y x =的图象,所以④错误.综上可知,正确的为③. 故答案为: ③. 【点睛】本题考查了三角函数解析式的求法,正弦函数的图像与性质的综合应用,属于中档题. 18.①④【分析】根据正切函数的周期判断①是否正确正切函数的奇偶性判断②是否正确由判断③是否正确由正切函数的单调性判断④是否正确由正切函数的图象判断⑤是否正确【详解】由于f(x)=tanx 的周期为π故①正解析:①④ 【分析】根据正切函数()tan f x x =的周期判断①是否正确,正切函数的奇偶性判断②是否正确,由tan 00=判断③是否正确,由正切函数的单调性判断④是否正确,由正切函数的图象判断⑤是否正确. 【详解】由于f (x )=tan x 的周期为π,故①正确; 函数f (x )=tan x 为奇函数,故②不正确; f (0)=tan 0=0,故③不正确;④表明函数为增函数,而f (x )=tan x 为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故④正确;⑤由函数f (x )=tan x 的图象可知,设A =12()()2f x f x +,B =122x x f +⎛⎫⎪⎝⎭故函数在区间,02π⎛⎫- ⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭, 在区间0,2π⎛⎫⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,故⑤不正确. 故答案为:①④ 【点睛】本题考查了正切函数的图象和性质,属于中档题.19.【分析】根据图象得出该函数的最大值和最小值可得结合图象求得该函数的最小正周期可得出再将点代入函数解析式求出的值即可求得该函数的解析式【详解】由图象可知从题图中可以看出从时是函数的半个周期则又得取所以解析:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈ 【分析】根据图象得出该函数的最大值和最小值,可得max min 2y y A -=,max min2y y b +=,结合图象求得该函数的最小正周期T ,可得出2Tπω=,再将点()10,20代入函数解析式,求出ϕ的值,即可求得该函数的解析式.【详解】由图象可知,max 30y =,min 10y =,max min 102y y A -∴==,max min202y y b +==,从题图中可以看出,从614时是函数()sin y A x b ωϕ=++的半个周期,则()214616T =⨯-=,28T ππω∴==. 又10228k πϕππ⨯+=+,k Z ∈,得()324k k Z πϕπ=+∈,取34πϕ=, 所以310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈. 故答案为:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈. 【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期;(2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间;(3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值. 【详解】(1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭, 所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈. 即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).22.(1)10sin DC θ=,0,6πθ⎛⎫∈ ⎪⎝⎭;OB θ=,0,6πθ⎛⎫∈ ⎪⎝⎭;(2)max 100S =-【分析】(1)在Rt DCO 和Rt ABO 中利用三角函数的定义可表示出,DC OB ;(2)求出BC 后可得矩形面积S ,利用二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质可得最大值. 【详解】解:(1)在Rt DCO 中,10OD =,∴10sin DC θ=,0,6πθ⎛⎫∈ ⎪⎝⎭,又Rt ABO 中,6AOB π∠=,10sin AB DC θ==,∴OB θ==,0,6πθ⎛⎫∈ ⎪⎝⎭;(2)在Rt DOC 中,10cos OC θ=,∴10(cos )BC OC OB θθ=-=,∴100sin (cos )S AB BC θθθ=⋅=-11cos 2100sin 2100sin 2223θπθθ-⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭∵06πθ<<,∴22333πππθ<+<,∴当232ππθ+=即12πθ=时,max 100S =-【点睛】关键点点睛:本题考查三角函数的应用,解题关键是用角表示出矩形面积,然后可利用三角函数的恒等变换公式如二倍角公式、两角和与差的正弦(余弦)公式、诱导公式等化函数为一个角的一个三角函数形式,即()sin()f x A x k ωϕ=++形式,最后利用正弦函数性质求得结论.23.(1)9(0,1],52⎡⎤⋃⎢⎥⎣⎦;(2)1923,66ππ⎛⎤⎥⎝⎦. 【分析】(1)先根据两角和的正弦公式将()f x 进行化简,再根据0>ω以及()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增,即可求出ω的取值范围; (2)根据(1)中ω的取值范围,写出()f x 的解析式,再根据211()()022f x f x --=得出()1f x =或1()2f x =-,再结合在区间,6m π⎛⎫- ⎪⎝⎭上恰有5个实数根,即可求出m 的取值范围. 【详解】(1)()2sin()cos sin(2)f x x x ωϕϕωϕ=+-+2sin()cos sin()cos cos()sin x x x ωϕϕωϕϕωϕϕ=+-+-+ sin()cos cos()sin x x ωϕϕωϕϕ=+-+sin x ω=,()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增,∴2 32222kk ωπππωπππ⎧≥-+⎪⎪⎨⎪≤+⎪⎩,k Z∈,解得:36142k kω-+≤≤+,k∈Z又0ω>,∴01ω<≤或952ω≤≤,即ω的取值范围为9(0,1],52⎡⎤⋃⎢⎥⎣⎦;(2)由(1)知[]21111,()()()1()0222f x f x f x f xω⎡⎤=--=-+=⎢⎥⎣⎦,解得:()1f x=或1()2f x=-,故在区间,6mπ⎛⎫- ⎪⎝⎭上,sin1x=或1sin2x=-时恰有5个实数根,5个实数根分别为2π,76π,116π,52π,196π.1sin62π⎛⎫-=-⎪⎝⎭,192366mππ∴<≤,即m的取值范围为1923,66ππ⎛⎤⎥⎝⎦.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.24.(1)()sin 26f x x π⎛⎫+ ⎝=⎪⎭;(2)1116.【分析】(1)由顶点及周期可得1A =,2ω=,再由sin 163f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,可得6π=ϕ,从而得解;(2)根据条件得1sin 64πθ⎛⎫+= ⎪⎝⎭,再结合诱导公式和同角三角函数关系可得解. 【详解】(1)由图可知1A =, 由311341264T πππ=-=,得2T ππω==,所以2ω=, 所以()()sin 2f x x ϕ=+, 因为sin 163f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以2,32k k Z ππϕπ+=+∈,则2,6k k Z πϕπ=+∈, 因为2πϕ<,所以6π=ϕ, ()sin 26f x x π⎛⎫+ ⎝=⎪⎭,(2)由题意,()sin 6g x x π⎛⎫=+ ⎪⎝⎭,由()14g θ=,得1sin 64πθ⎛⎫+= ⎪⎝⎭, 221143sin sin sin[2()]sin [()]63662πππππθθπθθ⎛⎫⎛⎫-+-=-+++- ⎪ ⎪⎝⎭⎝⎭221111sin()cos ()sin()1sin ()1666641616ππππθθθθ=-+++=-++-+=-+-=.【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤:(1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口.25.(1)3607α⎛⎫= ⎪⎝⎭,5407β⎛⎫= ⎪⎝⎭;(2)45πcm .【分析】(1)根据题中条件,先设()36140k k Z α=⋅∈,()14360m m Z β=⋅∈,再由两只蚂蚁在第2秒时均位于第二象限,0180αβ︒︒<<<,列出不等式求解,得出k 和m 的值,即可得出结果;(2)先设它们从点A 出发后第一次相遇时,所用的时间为t 秒,根据题中条件求出t ,根据弧长的计算公式,即可求出结果. 【详解】(1)由题意可得,14α与14β都是360的整数倍, 不妨设()36140k k Z α=⋅∈,()14360m m Z β=⋅∈,则()1807k k Z α=⋅∈,()1807mm Z β=⋅∈, 又两只蚂蚁在第2秒时均位于第二象限,所以902180902180αβ⎧<<⎨<<⎩,即()()29018018072901801807k k Z m m Z ⎧<⋅<∈⎪⎪⎨⎪<⋅<∈⎪⎩,所以()()77427742k k Z m m Z ⎧<<∈⎪⎪⎨⎪<<∈⎪⎩, 因为0180αβ︒︒<<<,所以k m <,所以2k =,3m =, 即3607α⎛⎫=⎪⎝⎭,5407β⎛⎫= ⎪⎝⎭;(2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A 逆时针...匀速爬行,黑蚂蚁同时从点A 顺时针...匀速爬行,设它们从点A 出发后第一次相遇时,所用的时间为t 秒, 则()360t αβ+=,即36054036077t ⎡⎤⎛⎫⎛⎫+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得145t =, 所以红蚂蚁爬过的角度为144t α=, 因为圆的半径为1cm , 所以红蚂蚁爬过的距离为1444213605ππ⋅⋅=cm . 【点睛】 关键点点睛:求解本题第一问的关键在于根据任意角的概念以及题中条件,得到14α与14β都是360的整数倍,利用题中所给限制条件:第2秒时均位于第二象限,即可求解.26.(1)()cos 4f x x ππ⎛⎫=+ ⎪⎝⎭ (2)12⎡⎤-⎢⎥⎣⎦(3)154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦ 【分析】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ=,又314f ⎛⎫=- ⎪⎝⎭可求出函数表达式. (2)当[1,2]x ∈时,52444x πππππ≤+≤+,由余弦函数图像可得答案. (3)先根据图象变换求出()g x 的解析式,再根据余弦型函数的单调减区间求解即可.【详解】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ= 所以()()cos f x x πφ=+,又当1534424x +==时,314f ⎛⎫=- ⎪⎝⎭即33cos 144f πφ⎛⎫⎛⎫=+=-⎪⎪⎝⎭⎝⎭,则324k k Z πφππ+=+∈, 所以124k k Z φππ=+∈,, 所以()cos 2cos 44f x x k x πππππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭(2)当[1,2]x ∈时,52444x πππππ≤+≤+cos 14x ππ⎛⎫≤+≤ ⎪⎝⎭所以当[1,2]x ∈时,()f x 的值域为12⎡⎤-⎢⎥⎣⎦(3)将()f x 的图像向右平移112个单位后可得:cos 6y x ππ⎛⎫=+ ⎪⎝⎭,再将所得图像横坐标伸长到原来的2倍,纵坐标不变得到:()1cos 26g x x ππ⎛⎫=+ ⎪⎝⎭, 由122,26k x k k Z πππππ≤+≤+∈ 1544,33k x k k Z -≤≤+∈所以()g x 的单调递减区间为:154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦。

(常考题)北师大版高中数学必修四第一章《三角函数》测试题(包含答案解析)(2)

(常考题)北师大版高中数学必修四第一章《三角函数》测试题(包含答案解析)(2)

一、选择题1.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z2.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6πB .4π C .3π D .2π 3.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 4.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2b a < B .()2cos >cos 3a b -C .()2sin sin3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭5.设函数()3cos22sin cos f x x x x =+,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③6.将函数()sin 3f x x π⎛⎫=- ⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),然后向左平移3π个单位,所得函数记为()g x .若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,且()()12g x g x =,则()12g x x +=( ) A .12-B .3-C .12D .327.函数()13cos313xxf x x -=+的图象大致是( ) A . B .C .D .8.函数1cos y x x=+的图象可能是( ) A . B .C .D .9.函数()()sin ln 0=->f x x x ωω只有一个零点,则实数ω的取值范围是( ) A .()0,πB .5,2⎫⎛⎪⎝⎭ππe C .50,2⎫⎛ ⎪⎝⎭πeD .5,2⎫⎛∞ ⎪⎝⎭π+e 10.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解 11.若函数)22()sin 23cos sin f x x x x =-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦上最大值是3 二、填空题13.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 14.已知函数()()πsin (00)2f x M x M ωϕωϕ=+>><,的部分图象如图所示,其中()23A ,(点A 为图象的一个最高点)502B ⎛⎫- ⎪⎝⎭,,则函数()f x =___________.15.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.16.关于函数()()4sin 23f x x x R π⎛⎫=+∈ ⎪⎝⎭,有下列命题: ①函数()y f x =的表达式可以改写为4cos 26y x π⎛⎫=- ⎪⎝⎭; ②函数()y f x =是以2π为最小正周期的周期函数; ③函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称;④函数()y f x =的图象关于直线6x π=-对称.其中正确的序号是______.17.函数[]y x =的函数值表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=.则对于函数()[]f x x x =-,有下列说法:①()f x 的值域为[)0,1;②()f x 是1为周期的周期函数;③()f x 是偶函数;④()f x 在区间[)1,2上是单调递增函数.其中,正确的命题序号为___________.18.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?19.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 20.已知函数sin cos |sin cos |3()22+--=+x x x x f x [0,]m 上恰有4个零点,则实数m 的取值范围为________.三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式; (2)当113,33x ⎡⎤∈-⎢⎥⎣⎦时,试由实数m 的取值讨论函数()()2g x f x m =-的零点个数. 22.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的相邻两个交点间的距离为2π,且________.在①函数6f x π⎛⎫+ ⎪⎝⎭为偶函数;②33f π⎛⎫=⎪⎝⎭;③x R ∀∈,()6f x f π⎛⎫≤⎪⎝⎭;这三个条件中任选一个,补充在上面问题中,并解答. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的单调递增区间.23.广东省清远市美林湖摩天轮是国内最大的屋顶摩天轮,该摩天轮直径为84米,摩天轮的最高点距地面101米,摩天轮匀速转动,每转动一圈需要t 分钟,若小明从摩天轮的最低点处登上摩天轮,从小明登上摩天轮的时刻开始计时.(1)求小明与地面的距离y (米)与时间x (分钟)的函数关系式;(2)在摩天轮转动一圈过程中,小明的高度在距地面80米以上的时间不少于5分钟,求t 的最小值.24.已知函数21()3cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x的取值集合.25.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?26.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b ⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭.(1)求函数f(x)的最小正周期; (2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据图象得到函数()f x 解析式,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,可得()y g x =解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论. 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+. 将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中, 整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确; 故选:D. 【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.2.C解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 22488g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.3.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论.【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.4.D解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断; 【详解】 因为0<2a <b <3-2a 对于A. 有0<2b a <, 若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a - ∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对. 故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.5.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+,即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确; 令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.6.D解析:D 【分析】先利用函数()sin y A ωx φ=+的图像变换规律求得()g x 的解析式,再利用正弦函数的图像的对称性,求得12x x +的值,可得()12g x x +的值. 【详解】将函数()sin 3f x x π⎛⎫=-⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),可得sin 23y x π⎛⎫=- ⎪⎝⎭的图象;再向左平移3π个单位,所得函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭,若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,则142,333x πππ⎛⎫+∈ ⎪⎝⎭,242,333x πππ⎛⎫+∈ ⎪⎝⎭,()()12g x g x =,12223322x x πππ+++∴=,126x x π∴+=,则()122sin 2sin 6332g x x πππ⎛⎫+=⨯+==⎪⎝⎭. 故选:D. 【点睛】本题考查函数()sin y A ωx φ=+的图像变换规律,正弦函数的对称性,属于中档题.7.A解析:A 【分析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x xx f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B , 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.8.C解析:C 【分析】利用函数的奇偶性和特殊的函数值的正负排除错误选项. 【详解】函数定义域是{|0}x x ≠,关于原点对称,记1()cos f x x x=+,则11()cos()cos f x x x x x-=-+=+-()f x =,是偶函数,排除BD ,11()cos 10f ππππ=+=-+<,排除A .故选:C . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.9.C解析:C 【分析】函数()()sin ln 0=->f x x x ωω只有一个零点,等价于sin y x ω=与ln y x =图象只有一个交点,作出两个函数的图象,数形结合即可求解. 【详解】函数()()sin ln 0=->f x x x ωω只有一个零点, 可得sin ln 0x x ω-=只有一个实根,等价于sin y x ω=与ln y x =图象只有一个交点, 作出两个函数的图象如图所示,由sin y x ω=可得其周期2T πω=,当x e =时,ln 1y e ==sin y x ω=最高点5,12A πω⎛⎫⎪⎝⎭所以若恰有一个交点,只需要5ln 12πω>,即52e πω>, 解得:52e πω<,又因为0>ω,所以502eπω<<, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.10.C解析:C 【分析】 可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 11.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确. 故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】由题意可得()23f x f x π⎛⎫+=⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+.在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ.则=4sin()4cos 462f ππϕϕ⎛⎫+==± ⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.14.【分析】由点的坐标可得的值由图象可求得函数的图象可得该函数的最小正周期可求得的值再将点的坐标代入函数的解析式结合的取值范围可求得的值可得出函数的解析式【详解】由于函数的图象的一个最高点为则由图象可知解析:ππ3sin 36x ⎛⎫- ⎪⎝⎭ 【分析】由点A 的坐标可得M 的值,由图象可求得函数()y f x =的图象可得该函数的最小正周期,可求得ω的值,再将点A 的坐标代入函数()y f x =的解析式,结合ϕ的取值范围可求得ϕ的值,可得出函数()y f x =的解析式. 【详解】由于函数()y f x =的图象的一个最高点为()2,3A ,则3M =,由图象可知,函数()y f x =的最小正周期为452632T ⎛⎫=+= ⎪⎝⎭,23T ππω∴==,()3sin 3x f x πϕ⎛⎫∴=+⎪⎝⎭, 将点A 的坐标代入函数()y f x =的解析式得()223sin 33f πϕ⎛⎫=+=⎪⎝⎭,可得2sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,则27636πππϕ<+<,232ππϕ∴+=,解得6πϕ=-,()3sin 36x f x ππ⎛⎫∴=- ⎪⎝⎭故答案为:()3sin 36x f x ππ⎛⎫=- ⎪⎝⎭ 【点睛】本题考查利用三角函数图象求解函数解析式,考查计算能力,属于中等题.15.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈, ∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.16.①③【分析】利用诱导公式化简函数判断①正误;求出函数周期判断②;求出函数的对称中心判断③;求出函数的对称轴判断④【详解】解:对于①所以①正确;对于②最小正周期所以②不正确;对于③因为所以为的对称中心解析:①③ 【分析】利用诱导公式化简函数()f x ,判断①正误;求出函数()f x 周期判断②;求出函数()f x 的对称中心判断③;求出函数()f x 的对称轴判断④. 【详解】解:对于①,()4sin 24cos 2323f x x x πππ⎛⎫⎛⎫=+=-- ⎪ ⎪⎝⎭⎝⎭ 4cos 24cos 2326x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,所以①正确;对于②,最小正周期222T πππω===,所以②不正确; 对于③,因为4sin 4sin 00633f πππ⎛⎫⎛⎫-=-+== ⎪ ⎪⎝⎭⎝⎭所以,,06π⎛⎫- ⎪⎝⎭为()f x 的对称中心,故③正确;对于④,()()4sin 23f x x x R π⎛⎫=+∈ ⎪⎝⎭的对称直线满足2,32x k k Z πππ+=+∈,6x π=-不满足条件,所以④不正确.故答案为:①③. 【点睛】本题考查正弦函数的性质,考查基本概念、基本知识的理解掌握程度,属于基础题.17.①②④【分析】当时即可判断①④;计算即可判断②也可以作图;计算即可判断③【详解】当时所以故①④正确;当时则故②正确;所以③错误故答案为:①②④【点睛】本题考查利用所学知识研究新定义函数的性质涉及到周解析:①②④ 【分析】当[,1)x n n ∈+时,()f x x n =-,即可判断①④;计算(1)f x +,()f x 即可判断②,也可以作图;计算12()33f -=,11()33f =即可判断③. 【详解】当[,1)x n n ∈+时,[]x n =,()||f x x n x n =-=-,所以()[0,1)f x ∈,故①④正确; 当[,1)x n n ∈+时,则1[1,2)x n n +∈++,[1]1x n +=+,(1)|1[1]|f x x x +=+-+|1(1)|||()x n x n f x =+-+=-=,故②正确;1112()|[]|3333f -=---=,1111()|[]|3333f =-=,所以③错误.故答案为:①②④. 【点睛】本题考查利用所学知识研究新定义函数的性质,涉及到周期性、单调性、奇偶性以及值域,是一道中档题.18.【分析】根据题意得到化简得到或得到答案【详解】设时间为根据题意:故故或故或故故答案为:【点睛】本题考查了三角函数的应用意在考查学生的应用能力解析:【分析】 根据题意得到40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,化简得到124t k =+或128t k =+,得到答案. 【详解】设时间为t ,0t >,根据题意:40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,故1sin 622t ππ⎛⎫-= ⎪⎝⎭. 故2626t k ππππ-=+或52626t k ππππ-=+,故124t k =+或128t k =+,k Z ∈. 故1234564,8,16,20,28,32t t t t t t ======. 故答案为:32. 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.19.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩,根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.20.【分析】周期为先考查一个周期函数判断零点个数及坐标再结合周期性即可求解【详解】是函数的一个周期当时当时只有四个零点在上恰有4个零点实数m 的取值范围为故答案为:【点睛】本题考查函数的零点个数求参数注意 解析:517[,)36ππ 【分析】()f x 周期为2π,先考查一个周期函数,判断零点个数及坐标,再结合周期性,即可求解【详解】2x π=是函数()f x 的一个周期,当[0,2]x π时,35cos [,]44()35sin [0,][,2]44x x f x x x πππππ⎧∈⎪⎪=⎨⎪+∈⋃⎪⎩当[0,2]x π时,()f x 只有四个零点5745,,,6633ππππ, 在[0,]m 上恰有4个零点,实数m 的取值范围为517[,)36ππ. 故答案为:517[,)36ππ. 【点睛】本题考查函数的零点个数求参数,注意函数图像和性质的应用,属于中档题.三、解答题21.(1)()2sin 412f x x ππ⎛⎫=- ⎪⎝⎭;(2)答案见解析. 【分析】(1)结合“五点法”求函数解析式:最大值确定A ,由周期确定ω,由最高点坐标确定ϕ.(2)确定113,33x ⎡⎤∈-⎢⎥⎣⎦时()f x 的图象与性质,由2y m =与()y f x =的交点个数确定m 的范围. 【详解】解:(1)由图可知2A =.函数()f x 最小正周期1374833T ⎛⎫=⨯-= ⎪⎝⎭,则28πω=.4πω∴=. 又772sin 2312f πϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,则72122k ππϕπ+=+,Z k ∈. 212k πϕπ∴=-+,Z k ∈.又2πϕ<,12πϕ∴=-.∴函数()f x 的解析式为()2sin 412f x x ππ⎛⎫=- ⎪⎝⎭.(2)由题意,()()2g x f x m =-在113,33⎡⎤-⎢⎥⎣⎦内的零点个数即函数()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时公共点的个数. 由(1),知()2sin 412f x x ππ⎛⎫=-⎪⎝⎭,113,33x ⎡⎤∈-⎢⎥⎣⎦. 113f ⎛⎫-=- ⎪⎝⎭,723f ⎛⎫= ⎪⎝⎭,1303f ⎛⎫= ⎪⎝⎭, 由图,知函数()f x 在区间17,33⎛⎫- ⎪⎝⎭上单调递增,在区间713,33⎛⎫ ⎪⎝⎭上单调递减. (i )当12m <-或1m 时, ()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时没有公共点,(ii )当102m -≤<或1m =时, ()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时恰有一个公共点;(iii )当01m ≤<时,()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时恰有两个公共点.综上可知,当12m <-或1m 时,函数()g x 的零点个数为0; 当102m -≤<或1m =时,函数()g x 的零点个数为1; 当01m ≤<时,函数()g x 的零点个数为2.【点睛】关键点点睛:本题考查求三角函数的解析式,考查真分数零点个数问题.解题关键是转化,函数零点个数转化为函数图象与直线的交点个数,基本方法是利用函数的性质,确定函数图象与直线交点个数得出参数范围.22.(1)()()2sin f x x ϕ=+;(2)答案见解析. 【分析】由已知得周期从而求得ω, 选①:(1)得出()6f x π+,根据偶函数与诱导公式求得ϕ;(2)求出()f x 的增区间,再与[0,]π求交集可得;选②:(1)解方程3f π⎛⎫= ⎪⎝⎭ϕ; (2)同选①选③:(1)由6f π⎛⎫ ⎪⎝⎭是最大值可得ϕ; (2)同选① 【详解】解:∵()f x 的图象与直线2y =的相邻两个交点间的距离为2π, ∴2T π=,即22ππω=,∴1ω=,∴()()2sin f x x ϕ=+. 方案一:选条件① (1)∵2sin 66f x x ππϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭为偶函数, ∴62k ππϕπ+=+,即3k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭.(2)令22232k x k πππππ-+≤+≤+,k Z ∈,得:52266k x k ππππ-+≤≤+,k Z ∈,令0k =,得566x ππ-≤≤, ∴函数()f x 在[]0,π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦(写成开区间也可得分) 方案二:选条件②(1)方法1:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭, ∴2k 33ππϕπ+=+或2233k ππϕπ+=+,k Z ∈, ∴2k ϕ=π或23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭;方法2:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭, ∵02πϕ<<,∴5336πππϕ<+<, ∴233ππϕ+=即3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;(2)同方案一. 方案三:选条件③∵x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭,∴6f π⎛⎫⎪⎝⎭为()f x 的最大值,∴262k ππϕπ+=+,k Z ∈,即23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭; (2)同方案一. 【点睛】思路点睛:本题考查三角函数的图象与性质,掌握正弦函数的性质是解题关键.()sin()(0,0)f x A x A ωϕω=+>>,只要把x ωϕ+作为一个整体,用它替换sin y x =中的x 可确定函数的性质如单调性、对称中心、对称轴,最值,也可由()sin()(0,0)f x A x A ωϕω=+>>中x 的范围求出t x ωϕ=+的范围M ,然后考虑sin y x =在x M ∈时的性质得出结论.23.(1)242cos 59y x tπ⎛⎫=-+ ⎪⎝⎭(0x ,t 为参数);(2)15. 【分析】(1)以摩天轮最低点为原点,最低点的切线为x 轴建立直角坐标系,设sin()y A x b ωϕ=++,根据最高点和最低点的距离,求得,A b 的值,进而求得,ωϕ的值,即可求解.(2)由80y ≥,得到21cos 2x t π⎛⎫≤- ⎪⎝⎭,得到2533t t -≥,即可求解.【详解】(1)如图所示,以摩天轮最低点为原点,最低点的切线为x 轴建立直角坐标系, 由题意可设sin()(0,0,0)y A x b A b ωϕω=++>>因为摩天轮的最高点距地面101m ,最低点距地面1018417(m)-=, 所以101,17,A b A b +=⎧⎨-+=⎩解得42,59A b ==,又函数周期为t ,可得2t πω=,所以242sin 59(0)y x x t πϕ⎛⎫=++⎪⎝⎭. 又0x =时,17y =,所以21742sin 059t πϕ⎛⎫=⨯++ ⎪⎝⎭,即sin 1,ϕϕ=-可取2π-,所以2242sin 5942cos 592y x x t tπππ⎛⎫⎛⎫=-+=-+⎪⎪⎝⎭⎝⎭(0x ≥,t 为参数). (2)依题意,可知242cos 5980y x tπ⎛⎫=-+≥ ⎪⎝⎭,即21cos 2x tπ⎛⎫≤- ⎪⎝⎭,不妨取第一圈,可得2242,3333t tx x t πππ≤≤≤≤, 所以持续时间为2533t t-≥,即15t ≥,所以t 的最小值为15.【点睛】三角函数实际应用问题的处理策略: 1、已知函数模型求解数学问题;2、把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题;3、根据实际问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质. 24.(1)2π;(2)2,5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】(1)先利用二倍角公式化简,再用辅助角公式化为()f x sin 16x π⎛⎫=++ ⎪⎝⎭,即可求出()f x 的最小正周期;(2)利用图像变换得到()y g x =的解析式,利用换元法就可以得到()y g x =的最大值及取得最大值时 x 的取值 【详解】(1)∵函数1cos 1()22x f x x +=++ sin 16x π⎛⎫=++ ⎪⎝⎭∴函数的周期为2π(2)依题意:函数()f x sin 16x π⎛⎫=++ ⎪⎝⎭的图象上的各点向左平移32π个单位,得到y 3sin +1= -cos 1626x x πππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭;再保持纵坐标不变,横坐标缩短到原来的一半,得到y = -cos 216x π⎛⎫++ ⎪⎝⎭; 所以()cos 216g x x π⎛⎫=-++ ⎪⎝⎭令226t x k πππ=+=+,即5()12x k k Z ππ=+∈ 使函数()g x 取得最大值2,即max ()2g x = 使函数()g x 取得最大值的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【注意】取得最大值的集合为7,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭也可以. 【点睛】:(1)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a ;(2)求y =Asin (ωx +φ)+B 的值域通常用换元法;25.(1)()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<,所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++⎪⎝⎭. (2)因为货船需要的安全水深度为6, 所以()2sin 5666f t t ππ⎛⎫=++≥⎪⎝⎭,即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+,又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.26.(1)65π;(2)1222⎡⎤---⎣⎦, . 【解析】 试题分析:(1)整理函数的解析式可得:56ω=,利用最小正周期公式可得函数的最小正周期为65π ; (2)化简三角函数的解析式()52sin 236f x x π⎛⎫=--⎪⎝⎭,结合函数的定义域可得函数的取值范围是12,22⎡⎤---⎣⎦ .试题(1)因为f(x)=sin 2ωx -cos 2ωx +2sinωx·cosωx +λ=-cos2ωx +sin2ωx +λ =2sin+λ.由直线x =π是y =f(x)图象的一条对称轴,可得sin =±1,所以2ωπ-=kπ+ (k ∈Z),即ω=+ (k ∈Z). 又ω∈,k ∈Z ,所以k =1,故ω=.所以f(x)的最小正周期是. (2)由y =f(x)的图象过点,得f =0, 即λ=-2sin=-2sin =-,即λ=-.故f(x)=2sin-,由0≤x≤,有-≤x-≤,所以-≤sin≤1,得-1-≤2sin x--≤2-.故函数f(x)在上的取值范围为[-1-,2-].。

必修四三角函数测试2

必修四三角函数测试2

高一数学必修4第一章《三角函数》单元测试(满分:100分 时间:90分钟) 班级: 姓名:1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.函数)421sin(2π+=x y 的周期,振幅,初相分别是( )A .4,2,4ππB .4,2,4ππ--C .4,2,4ππD .4,2,2ππ3 .函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数4.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为( )A .1个 B .2个 C .3个 D .4个5.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( )A .x=--π2B .x=- π4C .x= π8 D .x=π6.函数x x y tan sin +=的奇偶性是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数7.要得到函数y=sin(2x-3π)的图象,只要将函数y=sin2x 的图象向 平行移动 个单位( ) A.向左平移3π B.向左平移6π C.向右平移3π D.向右平移6π8.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B9.为了得到函数y=4sin(3x+π4),x ∈R 的图象,只需把函数y=4sin(x+π4)的图象上所有点( )A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变.10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数)32cos(π--=xy 的单调递增区间是( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππC .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ12、函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦13.给出下列命题:1>存在实数α,使1cos sin =⋅αα 2>函数)23sin(x y +=π是偶函数 3>8π=x 是函数)452sin(π+=x y 的一条对称轴方程 4>若βα、是第一象限的角,且βα>,则βαsin sin > _ 5>当x ∈R 时,函数y= -2sin(2x+π12)+3的最大值为1 ,其中正确命题的序号是______________ 14. 函数xy sin 1=的定义域: 15.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移2π,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________. 16给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位; ④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。

高中数学必修4三角函数复习题

高中数学必修4三角函数复习题

三角函数复习题一、选择题(5分⨯10=50分)1.若θ为第二象限角,那么)2cos(sin )2sin(cos θθ⋅的值为 ( )A .正值B .负值C .零D .为能确定 2.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623D .-1623 3.1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >>B 、1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >> 4.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .23 5.已知,)1514tan(a =-π那么=︒1992sin( )A .21||aa + B .21aa + C .21aa +- D .211a+-6.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-67.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A .33 B .-33C .3D .-38.函数)42sin(log 21π+=x y 的单调减区间为 ( )A 、)](,4(Z k k k ∈-πππ B 、)](8,8(Z k k k ∈+-ππππC 、)](8,83(Z k k k ∈+-ππππD 、)](83,8(Z k k k ∈++ππππ 9.设a 为常数,且π20,1≤≤>x a ,则函数1sin 2cos )(2-+=x a x x f 的最大值为 ( )A .12+aB .12-aC .12--aD .2a 10.方程x x lg sin =的实根有( )A .1个B .2个C .3个D .无数个二、填空题(5分⨯10=50分) 11.αααsin 12sin2cos-=-,且α是第二象限角,则2α是第 象限角. 12.已知βαπβαππβαπ-2,3,34则-<-<-<+<的取值范围是 .13.)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 . 14.若)101()5(),3(),1(,6sin )(f f f f n n f 则π== .15.已知方程0sin 4cos 2=-+a x x 有解,那么a 的取值范围是 . 16.函数216sin lg x x y -+=的定义域为 .17.已知,2cos 3sin =+αα则=+-ααααcos sin cos sin .18.若,223tan 1tan 1+=+-θθ则=⋅--+θθθθθcos sin cot 1)cos (sin .19.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .20.函数x x y cos lg 362+-=的定义域是_________.三、解答题(5分+5分+7分+7分+8分+8分+10分=50分) 21.已知,1)sin(=+y x 求证:.0tan )2tan(=++y y x 22.若xx x x x tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.23.已知α为第三象限角,问是否存在这样的实数m ,使得αsin 、αcos 是关于x 的方程012682=+++m mx x 的两个根,若存在,求出实数m ,若不存在,请说明理由.24.设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.25.已知αtan 、αcot 是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<<求)sin()3cos(απαπ+-+的值.26.已知函数b x a y +=cos 的最大值为1,最小值为-3,试确定)3sin()(π+=ax b x f 的单调区间. 27.求函数)]32sin(21[log 2.0π+-=x y 的定义域、值域、单调性、周期性、最值.。

高中必修4三角函数第二节任意角的三角函数_教师版

高中必修4三角函数第二节任意角的三角函数_教师版

C.π4或54π
D.π4或74π
【答案】 C 作出角π4与54π的正弦线、余弦如图所示.
由图可知,角π4与54π的正弦线、余弦线长度相等,且符号相同.
5.下列不等式中,成立的是( ) A.sin1>sin2 C.tan1>tan2
B.cos1<cos2 D.cot1<cot2
【答案】 C 如图,由单位圆中的三角函数线可知,sin1<sin2,cos1>cos2,tan1>tan2,故选 C.
=3×222-2+4×12+1=1.
27.已知 tan(π+α)=-12,求下列各式的值.
(1)
-α - α- +
+α -α

(2)sin(α-7π)·cos(α+5π).
【答案】 tan(π+α)=-12⇒tanα=-12, (1)原式=-42ccoossαα-+s3insiαnα=-42-+t3antaαnα
一、以考查知识点为主试题
【容易题】
1.已知角 α 的终边经过点(-4,3),则 cosα=( )
A.45
B.35
C.-35
D.-45
【答案】 D 考查了三角函数的定义.
由条件知:x=-4,y=3,则 r=5,∴cosα=xr=-45.
2.如果角 α 的终边经过点(2sin30°,-2cos30°),则 sinα=( )
25.若 sinα=mm- +35,cosα=4m-+25m,π2<α<π,则 m=________.
【答案】 8
由题意,得
m-3 m+5>0 4-2m m+5 <0

m-3 m+5
2+
4-2m m+5

高一数学必修4三角函数练习题及答案

高一数学必修4三角函数练习题及答案

高一必修4三角函数练习题一、选择题(每题4分,计48分) 1.sin(1560)- 的值为( )A 12-B 12C 32-D 322.如果1cos()2A π+=-,那么sin()2A π+=( )A 12-B 12C 32-D 323.函数2cos()35y x π=-的最小正周期是 ( )A 5πB 52π C 2π D 5π4.轴截面是等边三角形的圆锥的侧面展开图的中心角是 ( )A3π B 23π C π D 43π 5.已知tan100k = ,则sin80的值等于 ( )A 21k k +B 21k k-+ C 21k k + D 21k k +-6.若sin cos 2αα+=,则tan cot αα+的值为 ( )A 1-B 2C 1D 2-7.下列四个函数中,既是(0,)2π上的增函数,又是以π为周期的偶函数的是( ) A s i n y x = B |sin |y x = C cos y x = D |c o s |y x = 8.已知tan1a =,tan 2b =,tan 3c =,则 ( )A a b c <<B c b a <<C b c a <<D b a c <<9.已知1sin()63πα+=,则cos()3πα-的值为( )A 12B 12- C 13 D 13-10.θ是第二象限角,且满足2cos sin (sin cos )2222θθθθ-=-,那么2θ是 ( )象限角A 第一B 第二C 第三D 可能是第一,也可能是第三11.已知()f x 是以π为周期的偶函数,且[0,]2x π∈时,()1sin f x x =-,则当5[,3]2x ππ∈时,()f x 等于 ( )A 1sin x +B 1sin x -C 1sin x --D 1sin x -+12.函数)0)(sin()(>+=ωϕωx M x f 在区间],[b a 上是增函数,且M b f M a f =-=)(,)(, 则)cos()(ϕω+=x M x g 在],[b a 上 ( )A 是增函数B 是减函数C 可以取得最大值MD 可以取得最小值M -二、填空题(每题4分,计16分) 13.函数tan()3y x π=+的定义域为___________。

高中数学必修4三角函数常考题型:三角函数的诱导公式(二)

高中数学必修4三角函数常考题型:三角函数的诱导公式(二)

三角函数的诱导公式(二)【知识梳理】诱导公式五和公式六【常考题型】题型一、给角求值问题【例1】 (1)已知cos 31°=m ,则sin 239°tan 149°的值是() A.1-m 2m B.1-m 2C .-1-m 2mD .-1-m 2(2)已知sin ⎝⎛⎭⎫π3-α=12,求cos ⎝⎛⎭⎫π6+α的值.[解析] (1)sin 239°+tan 149°=sin(180°+59°)tan(180°-31°)=-sin 59°(-tan 31°)=-sin(90°-31°)(-tan 31°)=-cos 31°·(-tan 31°)=sin 31°=1-cos 231°=1-m 2.[答案] B(2)cos ⎝⎛⎭⎫π6+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π3-α=12.【类题通法】角的转化方法(1)对于负角的三角函数求值,可先利用诱导公式三,化为正角的三角函数.若转化之后的正角大于360°,再利用诱导公式一,化为0°到360°间的角的三角函数.(2)当化成的角是90°到180°间的角时,再利用180°-α的诱导公式化为0°到90°间的角的三角函数.(3)当化成的角是270°到360°间的角时,则利用360°-α及-α的诱导公式化为0°到90°间的角的三角函数.【对点训练】已知cos(π+α)=-12,求cos ⎝⎛⎭⎫π2+α的值. 解:∵cos(π+α)=-cos α=-12, ∴cos α=12,∴α为第一或第四象限角. ①若α为第一象限角,则cos ⎝⎛⎭⎫π2+α=-sin α=-1-cos 2α =- 1-⎝⎛⎭⎫122=-32; ②若α为第四象限角,则cos ⎝⎛⎭⎫π2+α=-sin α=1-cos 2α= 1-⎝⎛⎭⎫122=32. 题型二、化简求值问题【例2】 已知f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫-α+3π2cos ⎝⎛⎭⎫π2-αsin (-π-α). (1)化简f (α);(2)若α为第三象限角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值. [解] (1)f (α)=sin αcos α(-sin α)sin αsin α=-cos α. (2)∵cos ⎝⎛⎭⎫α-3π2=-sin α=15,∴sin α=-15,又∵α为第三象限角,∴cos α=-1-sin 2α=-265, ∴f (α)=265. (3)f ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-31π3 =-cos ⎝⎛⎭⎫-6×2π+5π3=-cos 5π3=-cos π3=-12. 【类题通法】化简求值的方法解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数的基本关系式变形求解.【对点训练】已知f (α)=sin (-α)cos (π+α)cos ⎝⎛⎭⎫π2-αcos (π-α)sin (2π+α)tan (π+α). (1)化简f (α);(2)若角α的终边在第二象限且sin α=35,求f (α). 解:(1)f (α)=sin (-α)cos (π+α)cos ⎝⎛⎭⎫π2-αcos (π-α)sin (2π+α)tan (π+α)=-sin α(-cos α)sin α-cos αsin αtan α=-cos α. (2)由题意知cos α=-1-sin 2α=-45, ∴f (α)=-cos α=45. 题型三、三角恒等式的证明【例3】 求证:tan (2π-α)cos ⎝⎛⎭⎫3π2-αcos (6π-α)tan (π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=1. [证明] 左边=tan (-α)⎣⎡⎦⎤-cos ⎝⎛⎭⎫π2-αcos (-α)(-tan α)⎣⎡⎦⎤-sin ⎝⎛⎭⎫π2+α⎣⎡⎦⎤-cos ⎝⎛⎭⎫π2+α =(-tan α)(-sin α)cos α(-tan α)(-cos α)sin α=1=右边.∴原式成立. 【类题通法】三角恒等式的证明策略对于恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一、变更论证的方法.常用定义法、化弦法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法.【对点训练】求证:cos (π-θ)cos θ⎣⎡⎦⎤sin ⎝⎛⎭⎫32π-θ-1+ cos (2π-θ)cos (π+θ)sin ⎝⎛⎭⎫π2+θ-sin ⎝⎛⎭⎫3π2+θ=2sin 2θ. 证明:左边=-cos θcos θ(-cos θ-1)+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=1-cos θ+1+cos θ(1+cos θ)(1-cos θ) =21-cos 2θ=2sin 2θ=右边.∴原式成立. 【练习反馈】1.若sin ⎝⎛⎭⎫π2+θ<0,且cos ⎝⎛⎭⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角解析:选B 由于sin ⎝⎛⎭⎫π2+θ=cos θ<0,cos ⎝⎛⎭⎫π2-θ=sin θ>0,所以角θ的终边落在第二象限,故选B.2.如果cos(π+A )=-12,那么sin ⎝⎛⎭⎫π2+A 等于( ) A. -12B.12 C .-32D.32解析:选B cos(π+A )=-cos A =-12, ∴cos A =12, ∴sin ⎝⎛⎭⎫π2+A =cos A =12. 3.化简:sin(-α-7π)·cos ⎝⎛⎭⎫α-3π2=________. 解析:原式=-sin(7π+α)·cos ⎝⎛⎭⎫3π2-α=-sin(π+α)·⎣⎡⎦⎤-cos ⎝⎛⎭⎫π2-α =sin α·(-sin α)=-sin 2α.答案:-sin 2α4.sin 21°+sin 22°+sin 23°+…+sin 289°=________.解析:将sin 21°+sin 22°+sin 23°+…+sin 289°中的首末两项相加得1,第二项与倒数第二项相加得1,…,共有44组,和为44,剩下sin 245°=12, 则sin 21°+sin 22°+sin 23°+…+sin 289°=892. 答案:8925.化简:1tan 2(-α)+1sin ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫α-3π2·tan (π+α). 解:∵tan(-α)=-tan α,sin ⎝⎛⎭⎫π2-α=cos α, cos ⎝⎛⎭⎫α-3π2=cos ⎝⎛⎭⎫3π2-α=-sin α, tan(π+α)=tan α,∴原式=1tan 2α+1cos α·(-sin α)·tan α=1sin 2αcos 2α+1-sin 2α=cos 2α-1sin 2α=-sin 2αsin 2α=-1.。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

必修4三角函数1.1-1.3(含答案)

必修4三角函数1.1-1.3(含答案)

第1页,总14页三角函数1.1-1.3一:知识点1.⑴角度制与弧度制的互化:π弧度180=,1801π=弧度,1弧度 )180(π='1857 ≈⑵弧长公式:R l θ=;扇形面积公式:Rl R S 21212==θ。

2.三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==ααxy=αtan 3.三角函数符号规律:一全正,二正弦,三两切,四余弦;4.诱导公式记忆规律:“奇变偶不变,符号看原函数象限”; 5.同角三角函数的基本关系:x xxx x tan cos sin ;1cos sin 22==+;1.已知扇形面积为83π,半径是1,则扇形的圆心角是( ) A.43π B.83π C.163π D.23π【答案】A【解析】试题分析:扇形面积公式为παπ22⋅⋅r ,r 为半径。

设该扇形的圆心角弧度数为α,则ππαπ83212=⋅⋅,所以解得πα43=,故选A. 考点:扇形面积公式\弧度制。

2.已知扇形的周长为4cm ,面积是1cm 2,则扇形的圆心角的弧度[数是 . 【答案】2 【解析】试题分析:设扇形的半径为r ,则弧长为42l r =- ,由题意得:()14212r r -= ,整理得:2210r r -+= 解得:1r =,所以,4212l =-⨯=,所以扇形的圆心角的弧度数是:2lr= 所以答案应填:2.考点:1、扇形的弧长与面积公式;2、弧度制. 3.已知半径为10的圆o 中,弦AB 的长为10. 求弦AB 所对的圆心角α的大小;第 2 页 共 14 页求α所在的扇形的弧长l 及弧所在的弓形的面积S . 【答案】(1)3πα=,(2)⎪⎪⎭⎫⎝⎛-=∴23350πS .【解析】试题解析:解:由圆o 的半径AB r ==10,知AOB ∆是等边三角形,3600πα==∠=∴AOB由(1)可知10,3==r πα,∴弧长350103102121,310103ππππα=⋅⋅==∴=⋅=⋅=lr S r l 扇形, 32523101021231021=⋅⋅==∆AB S AOB ⎪⎪⎭⎫⎝⎛-=-=∴∆23350πAOB S S S 扇形.考点:扇形弧长、面积公式的应用. 4.已知α是第一象限的角,那么2α是( ) A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 【答案】D 【解析】试题分析:∵α的取值范围222k k πππ+(,),分类属于第三象限角.②当k=2n属于第一象限角.故答案为:D .考点:象限角、轴线角. 5.θ是第二象限角,则2θ是第 象限角. 【答案】一或三 【解析】试题分析:θ是第二象限角,则有22,()2k k k Z ππθππ+<<+∈,于是422k k πθπππ+<<+,因此2θ是第一、三象限角. 考点:象限角的概念.6.若角α的终边在第二象限且经过点(1P -,则sin α等于A B ..12- D .12【答案】A【解析】第3页,总14页试题分析:由已知23sin 2,3,1==⇒=∴=-=r y r y x α,故选A . 考点:三角函数的概念.7.已知角α终边上一点P(y),且sin α=4y ,求cos α和tan α的值. 【答案】cos α=-1,tan α=0. 【解析】r 2=x 2+y 2=y 2+3,由sin α=y r=4y , ∴yy =0.当yα是第二象限角时,cos α=x r=-4,tan α=-3;当y即α是第三象限角时, cos α=x rtan α;当y =0时,P(0),cos α=-1,tan α=0. 8.已知43tan =α,⎥⎦⎤⎢⎣⎡∈ππα23,则αcos 的值是 . 【答案】54- 【解析】试题分析:由43cos sin tan ==ααα,1cos sin 22=+αα,当⎥⎦⎤⎢⎣⎡∈ππα23,,0cos <α,所以解得54cos -=α考点:1,同角三角函数关系式 2,三角函数值符号的判定 9.若cos θ=,[0,π]θ∈,则tan θ= A .12 B .12- C .2- D .2 【答案】C 【解析】试题分析:cos 05θ=-< ,,2πθπ⎡⎤∴∈⎢⎥⎣⎦,sin 5θ∴==,sin tan 2cos θθθ∴==-,故答案为C.考点:同角三角函数的基本关系. 10.若sin cos θθ+=,[0,π]θ∈,则tan θ= A .12-B .12C .2-D .2 【答案】C 【解析】第 4 页 共 14 页试题分析:()θθθθθθcos sin 2cos sin cos sin 222++=+51=,因此得054cos sin 2<-=θθ,由于[]πθ,0∈,0cos ,0sin <>∴θθ,因此⎪⎭⎫⎝⎛∈ππθ,2,∴()θθθθθθcos sin 2cos sin cos sin 222-+=-59=,由于0cos ,0sin <>θθ,553cos sin =-θθ,又由于sin cos θθ+=,55cos ,552sin -==∴θθ,得2cos sin tan -==θθθ,故答案为C. 考点:同角三角函数的基本关系.11.已知()11cos cos ,sin sin cos 23αβαβαβ+=+=-=, ( ) A.5972- B .1372- C .5972± D .1372±【答案】A 【解析】试题分析:由211cos cos (cos cos )24αβαβ+=⇒+=即221cos 2cos cos cos 4ααββ++=① 由211sin sin (sin sin )39αβαβ+=⇒+=即221sin 2sin sin sin 9ααββ++=②所以①+②可得1322(cos cos sin sin )36αβαβ++=即592cos()36αβ-=-即59cos()72αβ-=-,选A.考点:1.同角三角函数的基本关系式;2.两角差的余弦公式. 12.计算cos330的值为( )A.-.12- C .12 D【答案】D【解析】试题分析:()cos330cos 36030cos30 =-== 考点:1.诱导公式;2.特殊角三角函数值 13.)613sin(π-的值是( ) A .23 B .23- C .21 D .21-【答案】D【解析】 试题分析:131sin sin 2sin 6662ππππ⎛⎫⎛⎫-=-+=-=- ⎪ ⎪⎝⎭⎝⎭.故D 正确. 考点:诱导公式.第5页,总14页14.=65tanπ。

高中数学必修4三角函数综合测试题及答案详解[2]

高中数学必修4三角函数综合测试题及答案详解[2]

高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改)的全部内容。

必修4三角函数综合测试题及答案详解一、选择题1.下列说法中,正确的是( )A.第二象限的角是钝角B.第三象限的角必大于第二象限的角C.-831°是第二象限角D.-95°20′,984°40′,264°40′是终边相同的角2.若点(a,9)在函数y=3x的图象上,则tan错误!的值为()A.0 B。

错误! C.1 D。

错误!3.若|cosθ|=cosθ,|tanθ|=-tanθ,则错误!的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或x轴上D.第二、四象限或x轴上4.如果函数f(x)=sin(πx+θ)(0<θ〈2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=错误! B.T=1,θ=πC.T=2,θ=π D.T=1,θ=错误!5.若sin错误!=-错误!,且π<x〈2π,则x等于()A。

错误!π B.错误!πC。

错误!π D。

错误!π6.已知a是实数,而函数f(x)=1+a sin ax的图象不可能是( )7.将函数y=sin x的图象向左平移φ(0≤φ〈2π)个单位长度后,得到y=sin错误!的图象,则φ=( )A。

错误! B.错误!C.错误!D.错误!8.若tanθ=2,则错误!的值为( )A.0 B.1C.错误!D.错误!9.函数f(x)=错误!的奇偶性是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数10.函数f(x)=x-cos x在(0,+∞)内( )A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点11.已知A为锐角,lg(1+cos A)=m,lg错误!=n,则lgsin A的值是()A.m+错误!B.m-nC。

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题三角函数诱导公式sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα,sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π-α)=sinαcos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotαsin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanαcot(π+α)=cotα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinαtan(3π/2-α)=cotα,cot(3π/2-α)=tanα,sin(3π/2+α)=-cosαcos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanαsin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanαcot(2π-α)=-cotα,sin(2kπ+α)=sinα,cos(2kπ+α)=cosαtan(2kπ+α)=tanα,cot(2kπ+α)=cotα(其中k∈Z)习题精选一、选择题1.若,则的值为().A.B.C.D.2.的值等于().A.B.C.D.3.在△ 中,下列各表达式为常数的是().A. B.C.D.4.如果,且,则可以是().A. B. C. D.5.已知是方程的根,那么的值等于().A.B.C.D.二、填空题6.计算.7.已知,,则,.8.若,则.9.设,则.10..三、解答题11.求值:12.已知角终边上一点的坐标为,(1)化简下列式子并求其值:;(2)求角的集合.13.已知,求证:.14.若,求的值.15.已知、、为△ 的内角,求证:(1);(2).16.已知为锐角,并且,,求的值.参考答案:一、选择题1.B 2.D 3.C 4.D 5.A二、填空题6.2 7.,8.9.10.三、解答题11..12.(1);(2).13.提示:.14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.16..提示:化简已知条件,再消去得.。

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题三角函数诱导公式sin〔-α〕=-sinα,cos〔-α〕=cosα,tan〔-α〕=-tanαcot〔-α〕=-cotαsin〔π/2-α〕=cosα,cos〔π/2-α〕=sinα,tan〔π/2-α〕=cotα,cot〔π/2-α〕=tanα,sin〔π/2+α〕=cosα,cos〔π/2+α〕=-sinα,tan〔π/2+α〕=-cotα,cot〔π/2+α〕=-tanα,sin〔π-α〕=sinαcos〔π-α〕=-cosα,tan〔π-α〕=-tanα,cot〔π-α〕=-cotαsin〔π+α〕=-sinα,cos〔π+α〕=-cosα,tan〔π+α〕=tanαcot〔π+α〕=cotα,sin〔3π/2-α〕=-cosα,cos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotα,cot〔3π/2-α〕=tanα,sin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinα,tan〔3π/2+α〕=-cotα,cot〔3π/2+α〕=-tanαsin〔2π-α〕=-sinα,cos〔2π-α〕=cosα,tan〔2π-α〕=-tanαcot〔2π-α〕=-cotα,sin〔2kπ+α〕=sinα,cos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanα,cot〔2kπ+α〕=cotα(其中k∈Z)习题精选一、选择题1.假设,那么的值为〔〕.A.B.C.D.2.的值等于〔〕.A.B.C.D.3.在△ 中,以下各表达式为常数的是〔〕.A. B.C.D.4.如果,且,那么可以是〔〕.A. B. C. D.5.是方程的根,那么的值等于〔〕.A.B.C.D.二、填空题6.计算.7.,,那么,.8.假设,那么.9.设,那么.10..三、解答题11.求值:12.角终边上一点的坐标为,〔1〕化简以下式子并求其值:;〔2〕求角的集合.13.,求证:.14.假设,求的值.15.、、为△ 的内角,求证:〔1〕;〔2〕.16.为锐角,并且,,求的值.参考答案:一、选择题1.B 2.D 3.C 4.D 5.A二、填空题6.2 7.,8.9.10.三、解答题11..12.〔1〕;〔2〕.13.提示:.14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.16..提示:化简条件,再消去得.。

高中数学必修四三角函数两角和2

高中数学必修四三角函数两角和2

三角函数练习11 两角和与差的正弦、余弦、正切2一、选择题1.cos82.5°cos52.5°+cos7.5°cos37.5°的值等于( ) A. 21B. 23C.1D. 222.若tan(α+β)=m,tan(α-β)=n,且mn ≠-1,则tan2β等于( ) A. mn n m -+1 B. n m mn +-1C. mn nm+-1 D.m-n3.若cos2xcos3x=sin2xsin3x ,则x 的一个值是( )A.36°B.45°C.18°D.30°4.若α、β均为锐角,P=sin(α+β),Q=sin α+sin β,则( )A.P >QB.P <QC.P ≥QD.P ≤Q5.tan10°tan20°+3 (tan10°+tan20°)等于( ) A. 23B.1C. 3D. 66.设a=2sin24°,b=sin85°-3 cos85°,c=2(sin47°sin66°-sin24°sin43°),则( )A.a >b >cB.b >c >aC.c >b >aD.b >a >c7.若0<β<4π<α<43π,cos(4π-α)= 53,sin(43π+β)= 135,则sin(α+β)等于( ) A. 6516B. 6556C.- 6556D.- 65168.在△ABC 中,角A 和角B 满足关系式1-cotAcotB <0,那么△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种情况均有可能9.设tan α=31,tan(β-α)=-2,则tan β等于( )A.-7B.-1C.-5D.-310. 21cos α-23sin α可化为( ) A.sin(6π-α) B.sin(3π-α)C.sin(6π +α)D.sin(3π+α)11.在下列各命题中,真命题的为( )(1)不存在无究多组角α、β,使得cos(α+β)=cos αcos β+sin αsin β成立.(2)存在无究多组角α、β,使得:cos(α-β)=cos αcos β-sin αsin β成立.(3)对任意的α、β,sin(α+β)=sin αcos β+cos αsin β成立.(4)不存在角α和β,使sin(α-β)≠sin αcos β-cos αsin β.A.(1)、(2)B.(3)、(4)C.(2)、(3)、(4)D.(1)、(3)、(4)12.已知:cos α=-21,sin β=-23,且α∈(2π,π)β∈(23π,2π)则sin(α+β)的值是( ) A. 23 B.-1 C.- 23 D.- 2113.若A=22°,B=23°则(1+tanA)(1+tanB)的值是( ) A.3B.2C.1+2D.2(tanA+tanB)14.△ABC 中,已知sinA=53,cosB=135,则sin(A+B)的值为( ) A.6563或-6533 B.- 6533 C.- 6563 D. 656315.已知sin α=-53,cos β=135,cot(α+β)= 3356,则( ) A.α为第三象限角,β为第一象限角B.α为第三象限角,β为第四象限角C.α为第四象限角,β为第一象限角D.α、β均为第四象限角二、填空题:1.在△ABC 中,若(1+tanA)(1+tanB)=2,则A+B= .2.已知5sin β=sin(2α+β),则tan(α+β)cot α= .3.已知cos(α+β)= 54,cos(α-β)=- 54 ,α+β∈(4π,2π),α-β∈(43π,π),则cos2α= ,cos2β= .4.tan20°+tan40°+3tan20°tan40°= .5.已知cos α=71,cos(α+β)=- 1411,α、β为锐角,则cos β= .6.3 csc20°-sec20°= .三、解答题:1.已知:sin α+sin β=21,cos α+cos β=31,求cos(α-β)的值.2.已知cos(α-2β)=-91,sin(2α-β)= 32,2π<α<π,0<β<2π,求cos(α+β)之值.3.已知:0<β<4π,4π <α<43π,且cos(4π-α)= 54,sin(43π+β)= 1312,求cos(α+β)的值.4.已知:tan(α+β)=2tan α,(α,α+β≠k π+2π (k ∈Z)),求证:3sin β=sin(2α+β).5.已知:tan α,tan β都是方程x 2+3x+2=0的两个根,求sin 2(α+β)+6sin(α+β)cos(α+β)+5cos 2(α+β)的值.参考答案一、1.B 2.B 3.C 4.B 5.B 6.D 7.B 8.C 9.B 10.A 11.C 12.A 13.B 14.D 15.C二、1.42. 233.- 257;-14. 25. 216.4 三、1.- 7259 2.- 729229 3. 6533 4.略 5. 516。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一必修四三角函数复习题(二)
班级: 姓名:
1.若α角的终边落在第三或第四象限,则2
α
的终边落在 ( )
A .第一或第三象限
B .第二或第四象限
C .第一或第四象限
D .第三或第四象限
2.已知cos α·tan α<0,那么角是( ) (A)第一或第二象限角 (B)第二或第三象限角 (C)第三或第四象限角 (D)第一或第四象限角 3.下列函数中为偶函数的是( ) A.sin y x = B.sin 2y x = C.sin y x =-
D.sin 1y x =+
4.
α
是第四象限角,12
5
tan -
=α,则sin α
=( )
(A)
5
1 (B)51-
(C)
135 (D)13
5-
5.函数y =|sin x |的一个单调增区间是( ) (A))4π,4π(-
(B))4
π
3,4π( (C))2π3,
π( (D))π2,2
π
3( 6.下列不等式中,正确的是( )
A .tan 513tan
413ππ< B .sin )7
cos(5ππ-> C .sin(π-1)<sin1o
D .cos )52cos(57ππ-<
7. 函数)6
2sin(π
+
-=x y 的单调递减区间是( )
A .)](23,26[Z k k k ∈++-ππππ
B .)](26
5,
26
[
Z k k k ∈++ππ
ππ
C .)](3
,
6
[Z k k k ∈++-
ππ
ππ
D .)](6
5,
6
[
Z k k k ∈++ππ
ππ
8.对于函数f(x)=sin(2x+
6
π
),下列命题: ①函数图象关于直线x=-12
π
对称; ②函数图象关于点(125π,0)对称;
③函数图象可看作是把y=sin2x 的图象向左平移个6
π
单位而得到;
④函数图象可看作是把y=sin(x+6
π
)的图象上所有点的横坐标缩短到原来的21倍
(纵坐标不变)而得到;其中正确的命题的个数是 A.0 B.1 C.2 D.3
二.填空题:
9.若α是第三象限角,则)πcos()πsin(21αα---=_________ 10.αα
α
sin 12
sin
2
cos
-=-,且α是第二象限角,则
2
α
是第 象限角. 三.解答题 11.求值
)cos(·3sin()
cos()n(s 2sin(απα)παπα)π----+-απi
12.已知:sin (x+6π)=41,求sin (
)67x +π+cos 2(6

-x )的值.
13.下图是正弦型函数π
sin()(000)2
y A x A ωϕωϕ=+>><<,,的图象.
(1)确定它的解析式;
(2)写出它的对称轴方程.。

相关文档
最新文档