高中物理第一章静电场习题课带电粒子在电场中的运动学案选修3-1讲解

合集下载

高中物理人教版选修3-1全册学案:第一章静电场第11讲带电粒子在电场中的运动

高中物理人教版选修3-1全册学案:第一章静电场第11讲带电粒子在电场中的运动

第11讲 带电粒子在电场中的运动[目标定位] 1.会从力和能量角度分析计算带电粒子在电场中加速和偏转的有关问题.2.知道示波管的主要构造和工作原理.一、带电粒子的加速如图1所示,初速度为零、质量为m 、带电荷量为q 的带正电粒子,由静止开始从正极板通过电势差为U 的电场到达负极板,求其速度时可根据qU =12mv 2,得v =2qUm.图1深度思考(1)若上述粒子从两极板的中点由静止开始运动到负极板,则粒子到达负极板的速度是多少?(2)若上述粒子以速度v 0从正极板运动到负极板,其速度又是多少? 答案 (1) qU m .两极板的中点与负极板的电势差为U 2.由动能定理q U 2=12mv 2, 得v =qU m (2)v 20+2qU M ,由动能定理qU =12mv 2-12mv 20,得v =v 20+2qUm例1 如图2所示,M 和N 是匀强电场中的两个等势面,相距为d ,电势差为U ,一质量为m (不计重力)、电荷量为-q 的粒子,以速度v 0通过等势面M 射入两等势面之间,则该粒子穿过等势面N 的速度应是( )图2A.2qU mB .v 0+2qUmC.v 20+2qUmD.v 20-2qUm解析 qU =12mv 2-12mv 20,v =v 20+2qUm,选C.答案 C1.两类带电体(1)基本粒子:如电子、质子、α粒子、离子等,除特殊说明外,一般忽略粒子的重力(但并不忽略质量).(2)带电微粒:如液滴、油滴、尘埃、小球等,除特殊说明外,一般不忽略重力. 2.处理加速问题的分析方法(1)根据带电粒子所受的力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度、位移等.(2)一般应用动能定理来处理问题,若带电粒子只受电场力作用: ①若带电粒子的初速度为零,则它的末动能12mv 2=qU ,末速度v =2qUm.②若粒子的初速度为v 0,则12mv 2-12mv 20=qU ,末速度v =v 20+2qUm.针对训练1 如图3所示,两平行的带电金属板水平放置.若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )图3A .保持静止状态B .向左上方做匀加速运动C .向正下方做匀加速运动D .向左下方做匀加速运动 答案 D解析 两平行金属板水平放置时,带电微粒静止有mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确.二、带电粒子的偏转如图4甲所示,质量为m 、电荷量为q 的粒子,以初速度v 0垂直于电场方向进入两平行板间场强为E 的匀强电场,极板间距离为d ,两极板间电势差为U ,板长为l .图41.运动性质(1)沿初速度方向:做速度为v 0的匀速直线运动. (2)沿电场力方向:做初速度为零,加速度为a =qE m =qUmd的匀加速直线运动. 2.运动规律(1)偏转距离:由t =l v 0,a =qU md ,所以y =12at 2=qU 2md (l v 0)2. (2)偏转角度:因为v y =at =qUl mdv 0,所以tan θ=v y v 0=qUlmdv 20. 3.结论 由y tan θ=l 2,可知x =l2. 如图乙所示,粒子射出电场时速度方向的反向延长线过水平位移的中点,即粒子就像是从极板间l2处射出的一样.深度思考质子11H 和α粒子42He 由静止经同一电场加速后再垂直进入同一偏转电场,它们离开偏转电场时偏移量相同吗?为什么?答案 相同.若加速电场的电压为U 0,有qU 0=12mv 20①偏移量y =12at 2=12qU md (l v 0)2②①②联立,得y =Ul 24U 0d.即偏移量与m 、q 均无关.例2 一束电子流在经U =5000V 的加速电压加速后,在距两极板等距离处垂直进入平行板间的匀强电场,如图5所示.若两板间距离d =1.0cm ,板长l =5.0cm ,那么,要使电子能从平行板间飞出,两个极板上最大能加多大电压?图5解析 加速过程中,由动能定理有:eU =12mv 20进入偏转电场,电子在平行于板面的方向上做匀速直线运动l =v 0t在垂直于板面的方向电子做匀加速直线运动, 加速度a =F m =eU ′dm偏移的距离y =12at 2电子能飞出的条件y ≤d2联立解得U ′≤2Ud 2l 2=2×5000×1.0×10-4(5.0×10-2)2V =4.0×102V 即要使电子能飞出,两极板上所加电压最大为400V. 答案 400V针对训练2 装置如例2.如果质子经同一加速电压加速(U =5000V ,但加速电场方向与例2相反,如图6),从同一位置垂直进入同一匀强电场(d =1.0cm ,l =5.0cm),偏转电压U ′=400V .质子能飞出电场吗?如果能,偏移量是多大?图6答案 能 0.5cm解析 在加速电场:qU =12mv 20①在偏转电场:l =v 0t ②a =F m =qU ′md③ 偏移量y =12at 2④由①②③④得:y =U ′l 24Ud上式说明y 与q 、m 无关,解得y =0.5cm =d2即质子恰好从板的右边缘飞出无论粒子的质量m 、电荷量q 如何,只要经过同一电场U 1加速,再垂直进入同一偏转电场U 2,它们飞出的偏移量y 相同y =U 2l 24U 1d ,偏转角θtan θ=U 2l2U 1d自己证明也相同.所以同性粒子运动轨迹完全重合.三、示波管的原理1.构造示波管是示波器的核心部件,外部是一个抽成真空的玻璃壳,内部主要由电子枪(由发射电子的灯丝、加速电极组成)、偏转电极(由一对X 偏转电极板和一对Y 偏转电极板组成)和荧光屏组成,如图7所示.图72.原理(1)扫描电压:XX ′偏转电极接入的是由仪器自身产生的锯齿形电压.(2)灯丝被电源加热后,发射热电子,发射出来的电子经加速电场加速后,以很大的速度进入偏转电场,如在Y 偏转电极板上加一个信号电压,在X 偏转电极板上加一周期相同的扫描电压,在荧光屏上就会出现按Y 偏转电压规律变化的可视图象. 深度思考示波管荧光屏上的亮线是怎样产生的?所加的扫描电压和信号电压的周期要满足什么条件才能得到待测信号在一个周期内的稳定图象?答案 电子打在荧光屏上将出现一个亮点,若电子打在荧光屏上的位置快速移动,由于视觉暂留效应,能在荧光屏上看到一条亮线.所加的扫描电压和信号电压的周期相等才能得到待测信号在一个周期内的稳定图象.例3 示波管的内部结构如图8甲所示.如果在偏转电极XX′、YY′之间都没有加电压,电子束将打在荧光屏中心.如果在偏转电极XX′之间和YY′之间加上图丙所示的几种电压,荧光屏上可能会出现图乙中(a)、(b)所示的两种波形.则( )图8A.若XX′和YY′分别加电压(3)和(1),荧光屏上可以出现图乙中(a)所示波形B.若XX′和YY′分别加电压(4)和(1),荧光屏上可以出现图乙中(a)所示波形C.若XX′和YY′分别加电压(3)和(2),荧光屏上可以出现图乙中(b)所示波形D.若XX′和YY′分别加电压(4)和(2),荧光屏上可以出现图乙中(b)所示波形解析若XX′和YY′分别加电压(3)和(1),则横轴自左向右移动,纵轴则按正弦规律变化,荧光屏上可以出现如图(a)所示波形,A对.若XX′和YY′分别加电压(4)和(1)则横轴不变,即波形只在纵轴上,不管纵轴上面波形如何变化始终只能在横轴出现一条线,(a)、(b)都不可能出现,B错.若XX′和YY′分别加电压(4)和(2),同理,D错.若XX′和YY′分别加电压(3)和(2)则横轴自原点先向正方向运动后返回向负方向运动,到负方向一定位置后又返回,纵轴则先为负的定值后为正的定值,荧光屏上可以出现如图(b)所示波形,C对.答案AC1.(带电粒子的直线运动)(多选)如图9所示,电子由静止开始从A板向B板运动,当到达B极板时速度为v,保持两板间电压不变,则( )图9A .当增大两板间距离时,v 增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间也增大 答案 CD解析 根据动能定理研究电子由静止开始从A 板向B 板运动列出等式:eU =12mv 2,得v =2eUm所以当改变两板间距离时,v 不变,故A 、B 错误,C 正确;由于两极板之间的电压不变,所以极板之间的场强为E =U d, 电子的加速度为a =eE m =eUmd,电子在电场中一直做匀加速直线运动, 由d =12at 2=eU 2md t 2得电子加速的时间为t =d2meU由此可见,当增大两板间距离时,电子在两板间的运动时间增大,故D 正确.故选C 、D. 2.(带电粒子的偏转)如图10所示,有一带电粒子贴着A 板沿水平方向射入匀强电场,当偏转电压为U 1时,带电粒子沿①轨迹从两板正中间飞出;当偏转电压为U 2时,带电粒子沿②轨迹落到B 板中间;设粒子两次射入电场的水平速度相同,则两次偏转电压之比为( )图10A .U 1∶U 2=1∶8B .U 1∶U 2=1∶4C .U 1∶U 2=1∶2D .U 1∶U 2=1∶1答案 A解析 由y =12at 2=12·Uq md ·l 2v 20,得U =2mv 20dy ql 2,所以U ∝yl2,可知A 项正确.3.(对示波管原理的认识)如图11是示波管的原理图.它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成,管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.图11(1)带电粒子在________区域是加速的,在________区域是偏转的. (2)如果在荧光屏上P 点出现亮斑,那么示波管中的( ) A .极板X 应带正电B .极板X ′应带正电 C .极板Y 应带正电D .极板Y ′应带正电 答案 (1)Ⅰ Ⅱ (2)AC4.(带电粒子的偏转)如图12为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、N 间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P 点.已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的质量为m ,电荷量为e ,不计电子受到的重力及它们之间的相互作用力.图12(1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场中射出时的偏移量;(3)若要电子打在荧光屏上P 点的上方,可采取哪些措施? 答案 (1)2eU 1m (2)U 2L 24U 1d(3)见解析 解析 (1)设电子经电压U 1加速后的速度为v 0,由动能定理有eU 1=12mv 2解得v 0=2eU 1m.(2)电子沿极板方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动.设偏转电场的电场强度为E ,电子在偏转电场中运动的时间为t ,加速度为a ,电子离开偏转电场时的偏移量为y .由牛顿第二定律和运动学公式有t =L v 0a =eU 2mdy =12at 2 解得y =U 2L 24U 1d(3)减小加速电压U 1或增大偏转电压U 2.题组一 带电粒子的加速1.如图1所示,在点电荷+Q 激发的电场中有A 、B 两点,将质子和α粒子分别从A 点由静止释放到达B 点时,它们的速度大小之比为( )图1A .1∶2B .2∶1 C.2∶1 D .1∶ 2答案 C解析 质子和α粒子都带正电,从A 点释放将受静电力作用加速运动到B 点,设A 、B 两点间的电势差为U ,由动能定理可知,对质子:12m H v 2H =q H U ,对α粒子:12m αv 2α=q αU .所以v Hv α=q H m αq αm H =1×42×1=2∶1. 2.(多选)图2为示波管中电子枪的原理示意图,示波管内被抽成真空.A 为发射电子的阴极,K 为接在高电势点的加速阳极,A 、K 间电压为U ,电子离开阴极时的速度可以忽略,电子经加速后从K 的小孔中射出时的速度大小为v .下面的说法中正确的是( )图2A .如果A 、K 间距离减半而电压仍为U ,则电子离开K 时的速度仍为vB .如果A 、K 间距离减半而电压仍为U ,则电子离开K 时的速度变为v2C .如果A 、K 间距离不变而电压减半,则电子离开K 时的速度变为22vD .如果A 、K 间距离不变而电压减半,则电子离开K 时的速度变为v2答案 AC解析 电子在两个电极间的加速电场中进行加速,由动能定理eU =12mv 2-0得v =2eUm,当电压不变,A 、K 间距离变化时,不影响电子的速度,故A 正确;电压减半,则电子离开K 时的速度为22v ,C 正确. 3.如图3,一充电后的平行板电容器的两极板相距l .在正极板附近有一质量为M 、电荷量为q (q >0)的粒子;在负极板附近有另一质量为m 、电荷量为-q 的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距25l 的平面.若两粒子间相互作用力可忽略.不计重力,则M ∶m 为( )图3A .3∶2B .2∶1C .5∶2D .3∶1答案 A解析 因两粒子同时经过一平行于正极板且与其相距25l 的平面,电荷量为q 的粒子通过的位移为25l ,电荷量为-q 的粒子通过的位移为35l ,由牛顿第二定律知它们的加速度分别为a 1=qE M 、a 2=qE m ,由运动学公式有25l =12a 1t 2=qE 2M t 2①,35l =12a 2t 2=qE 2m t 2②,由①②得M m =32.B 、C 、D 错误,A 对.题组二 带电粒子的偏转4.(多选)有一种电荷控制式喷墨打印机的打印头的结构简图如图4所示.其中墨盒可以喷出极小的墨汁微粒,此微粒经过带电室后以一定的初速度垂直射入偏转电场,再经偏转电场后打到纸上,显示出字符.不必考虑墨汁的重力,为了使打在纸上的字迹缩小,下列措施可行的是( )图4A .减小墨汁微粒的质量B .减小墨汁微粒所带的电荷量C .增大偏转电场的电压D .增大墨汁微粒的喷出速度 答案 BD解析 墨汁微粒在电场中做类平抛运动,水平方向做匀速直线运动,则L =v 0t ;竖直方向做初速度为零的匀加速直线运动,则偏移距离y =12at 2;且qE =ma ,E =U d ,联立,解得y =12qUmd (Lv 0)2.为了使打在纸上的字迹缩小,可减小墨汁微粒所带的电荷量、减小偏转电压、增大墨汁微粒的质量和增大墨汁微粒的喷出速度,故选项B 、D 正确.5.如图5所示,a 、b 两个带正电的粒子,以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,a 粒子打在B 板的a ′点,b 粒子打在B 板的b ′点,若不计重力,则( )图5A .a 的电荷量一定大于b 的电荷量B .b 的质量一定大于a 的质量C .a 的比荷一定大于b 的比荷D .b 的比荷一定大于a 的比荷 答案 C解析 粒子在电场中做类平抛运动,h =12·qE m (xv 0)2得:x =v 02mhqE.由v 02hm aEq a<v 02hm bEq b得q a m a >q bm b.6.(多选)三个α粒子在同一地点沿同一方向垂直飞入偏转电场,出现了如图6所示的运动轨迹,由此可判断( )图6A .在B 飞离电场的同时,A 刚好打在负极板上 B .B 和C 同时飞离电场C .进入电场时,C 的速度最大,A 的速度最小D .动能的增加量C 最小,A 和B 一样大 答案 ACD解析 由题意知,三个α粒子在电场中的加速度相同,A 和B 有相同的偏转位移y ,由公式y =12at 2得,A 和B 在电场中运动的时间相同,由公式v 0=xt 得v B >v A ,同理,v C >v B ,故三个粒子进入电场时的初速度大小关系为v C >v B >v A ,故A 、C 正确,B 错误;由题图知,三个粒子的偏转位移大小关系为y A =y B >y C ,由动能定理可知,三个粒子的动能的增加量C 为最小,A 和B 一样大,D 正确.题组三 综合应用7.如图7所示的示波管,当两偏转电极XX ′、YY ′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标系的O 点,其中x 轴与XX ′电场的场强方向重合,x 轴正方向垂直于纸面向里,y 轴与YY ′电场的场强方向重合,y 轴正方向竖直向上).若要电子打在图示坐标系的第Ⅲ象限,则( )图7A .X 、Y 极接电源的正极,X ′、Y ′接电源的负极B .X 、Y ′极接电源的正极,X ′、Y 接电源的负极C .X ′、Y 极接电源的正极,X 、Y ′接电源的负极D .X ′、Y ′极接电源的正极,X 、Y 接电源的负极 答案 D解析 若要使电子打在题图所示坐标系的第Ⅲ象限,电子在x 轴上向负方向偏转,则应使X ′接正极,X 接负极;电子在y 轴上也向负方向偏转,则应使Y ′接正极,Y 接负极,所以选项D 正确.8.如图8所示,平行板电容器两极板的间距为d ,极板与水平面成45°角,上极板带正电.一电荷量为q (q >0)的粒子在电容器中靠近下极板处.以初动能E k0竖直向上射出.不计重力,极板尺寸足够大.若粒子能打到上极板,则两极板间电场强度的最大值为( )图8A.E k04qdB.E k02qd C.2E k02qdD.2E k0qd答案 B解析 根据电荷受力可以知道,粒子在电场中做曲线运动,如图所示.当电场足够大时,粒子到达上极板时速度恰好与上极板平行,如图,将粒子初速度v 0分解为垂直极板的v y 和平行极板的v x ,根据运动的合成与分解,当分速度v y =0时,则粒子的速度正好平行上极板,则根据运动学公式:-v 2y =-2Eq m d ,由于v y =v 0cos 45°,E k0=12mv 20,联立整理得到E =E k02qd,故选项B 正确.9.一束正离子以相同的速率从同一位置,沿垂直于电场方向飞入匀强电场中,所有离子的运动轨迹都是一样的,这说明所有粒子( ) A .都具有相同的质量 B .都具有相同的电荷量 C .具有相同的比荷 D .都是同一元素的同位素答案 C解析 由偏移距离y =12·qE m (l v 0)2=qEl22mv 20可知,若运动轨迹相同,则水平位移相同,偏移距离y 也应相同,已知E 、l 、v 0是相同的,所以应有qm相同.10.(多选)如图9所示,水平放置的平行板电容器,上极板带负电,下极板带正电,带电小球以速度v 0水平射入电场,且沿下极板边缘飞出.若下极板不动,将上极板上移一小段距离,小球仍以相同的速度v 0从原处飞入,则带电小球( )图9A .将打在下极板中央B .仍沿原轨迹由下极板边缘飞出C .不发生偏转,沿直线运动D .若上极板不动,将下极板上移一段距离,小球可能打在下极板的中央答案 BD解析 将电容器上极板或下极板移动一小段距离,电容器带电荷量不变,由公式E =U d =Q Cd=4k πQεr S可知,电容器产生的场强不变,以相同速度入射的小球仍将沿原轨迹运动.当上极板不动,下极板向上移动时,小球可能打在下极板的中央.11.如图10所示,质量为m 、电荷量为q 的带电粒子,以初速度v 0垂直射入场强大小为E 、方向竖直向下的匀强电场中,射出电场的瞬时速度的方向与初速度方向成30°角.在这一过程中,不计粒子重力.求:图10(1)该粒子在电场中经历的时间; (2)粒子在这一过程中电势能的增量. 答案 (1)3mv 03Eq (2)-16mv 20 解析 (1)分解末速度v y =v 0tan30°,在竖直方向v y =at ,a =qEm,联立三式可得t =3mv 03Eq. (2)射出电场时的速度v =v 0cos30°=233v 0,由动能定理得电场力做功为W =12mv 2-12mv 20=16mv 20,根据W =E p1-E p2得 ΔE p =-W =-16mv 20.12.两个半径均为R 的圆形平板电极,平行正对放置,相距为d ,极板间的电势差为U ,板间电场可以认为是匀强电场.一个α粒子从正极板边缘以某一初速度垂直于电场方向射入两极板之间,到达负极板时恰好落在极板中心.已知质子电荷量为e ,质子和中子的质量均视为m ,忽略重力和空气阻力的影响,求: (1)极板间的电场强度E ;(2)α粒子在极板间运动的加速度a ; (3)α粒子的初速度v 0.答案 (1)U d (2)eU 2md (3)R2d eUm解析 (1)极板间场强E =U d(2)α粒子电荷量为2e ,质量为4m ,所受电场力F =2eE =2eUd,α粒子在极板间运动的加速度a =F 4m =eU2dm(3)由d =12at 2,得t =2da=2dm eU ,v 0=R t =R 2d eUm13.一束电子从静止开始经加速电压U 1加速后,以水平速度射入水平放置的两平行金属板中间,如图11所示,金属板长为l ,两板距离为d ,竖直放置的荧光屏距金属板右端为L .若在两金属板间加直流电压U 2时,光点偏离中线打在荧光屏上的P 点,求OP .图11答案U 2l 2U 1d (l2+L ) 解析 电子经U 1的电场加速后,由动能定理可得eU 1=mv 202①电子以v 0的速度进入U 2的电场并偏转t =l v 0② E =U 2d ③a =eE m ④v ⊥=at ⑤由①②③④⑤得射出极板的偏转角θ的正切值tan θ=v ⊥v 0=U 2l 2U 1d. 所以OP =(l 2+L )tan θ=U 2l 2U 1d (l2+L ).。

教师课件:2020学年高中物理第一章静电场习题课带电粒子在电场中的运动学案新人教版选修3-1

教师课件:2020学年高中物理第一章静电场习题课带电粒子在电场中的运动学案新人教版选修3-1

习题课 带电粒子在电场中的运动[基 础 梳 理]1.带电粒子在电场中做加速或减速直线运动时,若是匀强电场,可用动能定理或牛顿第二定律结合运动学公式两种方式求解,若是非匀强电场,只能用动能定理分析求解。

2.分析带电体在电场中运动问题的几个关键环节。

(1)做好受力分析。

根据题设条件判断重力是否可以忽略。

(2)做好运动分析。

要明确带电体的运动过程、运动性质及运动轨迹等。

(3)应用运动和力的关系,根据牛顿第二定律结合运动学公式求解。

[典 例 精 析]【例1】 (2017·4月浙江选考,8)如图1所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场。

有一质量为m ,电荷量为+q 的点电荷从两极板正中间处静止释放,重力加速度为g 。

则点电荷运动到负极板的过程( )图1A .加速度大小为a =Eq m+g B .所需的时间为t =dm EqC .下降的高度为y =d2D .电场力所做的功为W =Eqd解析 点电荷受到重力、电场力,根据牛顿第二定律得a =Eq2+mg2m,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,有d 2=12Eq m t 2,解得t =mdEq,选项B 正确;下降高度h =12gt 2=mgd 2Eq ,选项C 错误;电场力做功W =Eqd2,选项D 错误。

答案 B[即 学 即 练]1.(2016·4月浙江选考,8)密立根油滴实验原理如图2所示。

两块水平放置的金属板分别与电源的正负极相接,板间电压为U ,形成竖直向下场强为E 的匀强电场。

用喷雾器从上板中间的小孔喷入大小、质量和电荷量各不相同的油滴。

通过显微镜可找到悬浮不动的油滴,若此悬浮油滴的质量为m ,则下列说法正确的是()图2A .悬浮油滴带正电 B.悬浮油滴的电荷量为mg UC .增大场强,悬浮油滴将向上运动D .油滴的电荷量不一定是电子电量的整数倍解析 悬浮不动,说明带电粒子电场力与重力平衡,所以该油滴带负电,A 错误;由Eq =mg 知q =mg E,所以B 错误;如果增加电场,原本悬浮的油滴就会向上加速运动,C 正确;所有带电体的电量都是电子电荷量的整数倍,D 错误。

高中物理选修3-1导学案第一章 微型专题3 带电粒子在电场中的运动

高中物理选修3-1导学案第一章  微型专题3  带电粒子在电场中的运动

微型专题3 带电粒子在电场中的运动[学习目标] 1.会利用动力学和功能观点分析带电粒子在电场中的直线运动.2.会利用运动的合成与分解方法分析带电粒子在电场中的类平抛运动.3.会分析带电粒子在交变电场及复合场中的运动.一、带电粒子在电场中的直线运动 1.带电粒子在电场中做直线运动(1)匀速直线运动:此时带电粒子受到的合外力一定等于零,即所受到的电场力与其他力平衡. (2)匀加速直线运动:带电粒子受到的合外力与其初速度方向同向. (3)匀减速直线运动:带电粒子受到的合外力与其初速度方向反向. 2.讨论带电粒子在电场中做直线运动(加速或减速)的方法 (1)力和加速度方法——牛顿运动定律、匀变速直线运动公式; (2)功和能方法——动能定理; (3)能量方法——能量守恒定律.例1 如图1所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔.质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰好为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g ).求:图1(1)小球到达小孔处的速度大小;(2)极板间电场强度大小和电容器所带电荷量; (3)小球从开始下落到运动到下极板处所用的时间. 答案 (1)2gh (2)mg (h +d )qd mg (h +d )C q (3)h +dh2hg解析 (1)小球从静止开始下落到小孔间做自由落体运动,由v 2=2gh ,得v =2gh . (2)在极板间带电小球受重力和电场力作用,由牛顿第二定律得:mg -qE =ma由运动学公式知:0-v 2=2ad 整理得电场强度大小E =mg (h +d )qd由U =Ed ,Q =CU ,得电容器所带电荷量Q =mg (h +d )Cq .(3)由h =12gt 12,0=v +at 2,t =t 1+t 2整理得t =h +dh2h g. 二、带电粒子在电场中的类平抛运动例2 长为L 的平行金属板水平放置,两极板带等量的异种电荷,板间形成匀强电场,一个带电荷量为+q 、质量为m 的带电粒子,以初速度v 0紧贴上极板垂直于电场线方向进入该电场,刚好从下极板边缘射出,射出时速度恰与下极板成30°角,如图2所示,不计粒子重力,求:图2(1)粒子离开电场时速度的大小; (2)匀强电场的场强大小; (3)两板间的距离.答案 (1)23v 03 (2)3m v 023qL (3)36L解析 (1)粒子离开电场时,速度与水平方向夹角为30°,由几何关系得速度: v =v 0cos 30°=23v 03. (2)粒子在匀强电场中做类平抛运动,在水平方向上:L =v 0t ,在竖直方向上:v y =at , v y =v 0tan 30°=3v 03,由牛顿第二定律得:qE =ma 解得:E =3m v 023qL.(3)粒子在匀强电场中做类平抛运动,在竖直方向上: d =12at 2,解得:d =36L .三、带电粒子在交变电场中的运动例3 在如图3所示的平行板电容器的两板A 、B 上分别加如图4甲、乙所示的两种电压,开始B 板的电势比A 板高.在电场力作用下原来静止在两板中间的电子开始运动.若两板间距足够大且不计重力,试分析电子分别在甲、乙两种交变电压作用下的运动情况,并定性画出相应的v -t 图象.图3甲 乙图4答案 见解析解析 t =0时,B 板电势比A 板高,在电场力作用下,电子向B 板(设为正向)做初速度为零的匀加速直线运动.(1)对于题图甲,在0~12T 内电子做初速度为零的正向匀加速直线运动,12T ~T 内电子做末速度为零的正向匀减速直线运动,然后周期性地重复前面的运动,其速度图线如图(a)所示. (2)对于题图乙,在0~T 2内做类似(1)0~T 的运动,T2~T 电子做反向先匀加速、后匀减速、末速度为零的直线运动.然后周期性地重复前面的运动,其速度图线如图(b)所示.(a) (b)1.当空间存在交变电场时,粒子所受电场力方向将随着电场方向的改变而改变,粒子的运动性质也具有周期性.2.研究带电粒子在交变电场中的运动需要分段研究,并辅以v -t 图象.特别注意带电粒子进入交变电场时的时刻及交变电场的周期.四、带电粒子在电场(复合场)中的圆周运动例4 如图5所示,半径为r 的绝缘细圆环的环面竖直固定在水平面上,场强为E 的匀强电场与环面平行.一电荷量为+q 、质量为m 的小球穿在环上,可沿环做无摩擦的圆周运动,若小球经A 点时,速度v A 的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用,求:图5(1)速度v A 的大小;(2)小球运动到与A 点对称的B 点时,对环在水平方向的作用力的大小. 答案 (1)qErm(2)6qE 解析 (1)在A 点,小球在水平方向只受电场力作用,根据牛顿第二定律得:qE =m v A 2r所以小球在A 点的速度v A =qEr m. (2)在小球从A 运动到B 的过程中,根据动能定理,电场力做的正功等于小球动能的增加量,即2qEr =12m v B 2-12m v A 2小球在B 点时,根据牛顿第二定律,在水平方向上有F B -qE =m v B 2r解以上两式得小球在B 点受到环的水平作用力为:F B =6qE .由牛顿第三定律知,球对环在水平方向的作用力大小F B ′=6qE .解决电场(复合场)中的圆周运动问题,关键是分析向心力的来源,向心力的提供有可能是重力和电场力的合力,也有可能是单独的重力或电场力.有时可以把复合场中的圆周运动等效为竖直面内的圆周运动,找出等效“最高点”和“最低点”.针对训练 如图6所示,ABCD 为竖直放在E =1.0×103 V/m 的水平匀强电场中的绝缘光滑轨道,其中BCD 部分是直径为20 cm 的半圆环,水平轨道AB =15 cm ,直径BD 垂直于AB ,今有m =10 g 、q =10-4 C 的小球从静止由A 点沿轨道运动,它运动到图中C 处时的速度是______ m/s ,在C 处时对轨道的压力是______ N ;要使小球恰好能运动到D 点,开始时小球的位置应离B 点________m .(g 取10 m/s 2)图6答案3 0.4 0.25解析 由Eq (AB +CO )-mg OB =12m v C 2可得v C = 3 m/s ;在C 处由F N -Eq =m v C 2R 得F N =0.4 N ,根据牛顿第三定律得在C 处时对轨道的压力为0.4 N ;要使小球能运动到D 点,v D =gR =1 m/s ,由Eq ·A ′B -mg ·BD =12m v D 2,得A ′B =0.25 m.1.(带电体在电场中的直线运动)如图7所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的小球从两极板正中间处静止释放,重力加速度为g ,不计空气阻力.则小球运动到负极板的过程( )图7A .加速度大小为a =qEm +gB .所需的时间为t = dm EqC .下降的高度为y =d2D .电场力所做的功为W =Eqd答案 B解析 小球在电场中的受力分析如图所示,小球所受的合外力为F =(Eq )2+(mg )2,所以由牛顿第二定律得小球的加速度为a =Fm =⎝⎛⎭⎫Eq m 2+g 2,A 错;小球在水平方向的加速度a 1=qE m ,由运动学公式d 2=12a 1t 2,所以t =mdqE,故B 正确;小球在竖直方向上做自由落体运动,所以下降的高度y =12gt 2=mgd 2Eq ,故C 错误;由做功公式得W =Eqd2,故D 错误.2.(带电粒子在交变电场中的运动)(多选)如图8(a)所示,A 、B 表示真空中水平放置的相距d 的平行金属板,板长为L ,两板加电压后板间的电场可视为匀强电场.现在A 、B 两板间加上如图(b)所示的周期性的交变电压,在t =0时恰有一质量为m 、电荷量为+q 的粒子在左侧板间中央沿水平方向以速度v 0射入电场,忽略粒子的重力,则下列关于粒子运动状态的表述中正确的是( )图8A .粒子在垂直于板的方向上的分运动可能是往复运动B .粒子在垂直于板的方向上的分运动是单向运动C .只要周期T 和电压U 0的值满足一定条件,粒子就可沿与板平行的方向飞出D .粒子不可能沿与板平行的方向飞出 答案 BC3.(带电粒子在复合场中的圆周运动)如图9所示,半径为R 的光滑圆环竖直置于场强为E 的水平方向的匀强电场中,质量为m 、带电荷量为+q 的空心小球穿在环上,当小球从顶点A 由静止开始下滑到与圆心O 等高的位置B 时,求小球对环的压力.(重力加速度为g )图9答案2mg+3Eq,方向水平向右解析小球从A运动到B的过程中,重力做正功,电场力做正功,动能增加,由动能定理有mgR+EqR=12m v2在B点小球受到重力mg、电场力F和环对小球的弹力F1三个力的作用,沿半径方向指向圆心的合力提供向心力,则F1-Eq=m v2R联立以上两式可得F1=2mg+3Eq小球对环的作用力与环对小球的作用力为一对作用力与反作用力,两者等大反向,即小球对环的压力F1′=2mg+3Eq,方向水平向右.4.(带电粒子在电场中的类平抛运动)如图10所示,阴极A受热后向右侧空间发射电子,电子质量为m,电荷量为e,电子的初速率有从0到v的各种可能值,且各个方向都有.与A极相距l的地方有荧光屏B,电子击中荧光屏时便会发光.若在A和B之间的空间里加一个水平向左、与荧光屏面垂直的匀强电场,电场强度为E,且电子全部打在荧光屏上,求B上受电子轰击后的发光面积.图10答案2ml v2πEe解析阴极A受热后发射电子,这些电子沿各个方向射向右边匀强电场区域,且初速率从0到v各种可能值都有.取两个极端情况如图所示.沿极板竖直向上且速率为v 的电子,受到向右的电场力作用做类平抛运动打到荧光屏上的P 点. 竖直方向上y =v t ,水平方向上l =12·Eemt 2.解得y =v2ml Ee. 沿极板竖直向下且速率为v 的电子,受到向右的电场力作用做类平抛运动打到荧光屏上的Q 点,同理可得y ′=v2mlEe . 故在荧光屏B 上的发光面积S =y 2π=2ml v 2πEe.一、选择题考点一 带电粒子在电场中的直线运动1.(多选)如图1所示,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )图1A .所受重力与电场力平衡B .电势能逐渐增加C .动能逐渐增加D .做匀变速直线运动答案 BD解析 对带电粒子受力分析如图所示,F合≠0,则A 错.由图可知电场力与重力的合力方向与v 0方向相反,F 合对粒子做负功,其中mg 不做功,Eq 做负功,故粒子动能减少,电势能增加,B 正确,C 错误.F 合恒定且F 合与v 0方向相反,粒子做匀减速直线运动,D 项正确.2.如图2所示,从F 处释放一个无初速度的电子(重力不计)向B 板方向运动,下列说法错误的是(设电源电压都恒为U )( )图2A .电子到达B 板时的动能是Ue B .电子从B 板到达C 板动能变化量为零 C .电子到达D 板时动能是3Ue D .电子在A 板和D 板之间做往复运动 答案 C3.如图3,一充电后的平行板电容器的两极板相距l .在正极板附近有一质量为M 、电荷量为q (q >0)的粒子;在负极板附近有另一质量为m 、电荷量为-q 的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距25l 的平面.若两粒子间相互作用力可忽略,不计重力,则M ∶m 为( )图3A .3∶2B .2∶1C .5∶2D .3∶1答案 A解析 因两粒子同时经过一平行于正极板且与其相距25l 的平面,电荷量为q 的粒子通过的位移为25l ,电荷量为-q 的粒子通过的位移为35l ,由牛顿第二定律知它们的加速度分别为a 1=qE M ,a 2=qEm ,由运动学公式有 25l =12a 1t 2=qE 2M t 2① 35l =12a 2t 2=qE 2mt 2② ②①得M m =32.B 、C 、D 错,A 对. 4.(多选)如图4所示,M 、N 是真空中的两块平行金属板,质量为m 、电荷量为q 的带电粒子,以初速度v 0由小孔进入电场,当M 、N 间电压为U 时,粒子恰好能到达N 板,如果要使这个带电粒子到达M 、N 板间距的12后返回,下列措施中能满足要求的是(不计带电粒子的重力)( )图4A .使初速度减为原来的12B .使M 、N 间电压加倍C .使M 、N 间电压提高到原来的4倍D .使初速度和M 、N 间电压都减为原来的12答案 BD解析 由qE ·l =12m v 02,知当v 0变为22v 0时l 变为l 2; 因为qE =q U d ,所以qE ·l =q U d ·l =12m v 02,通过分析知B 、D 选项正确.考点二 带电粒子在电场中的类平抛运动5.(多选)如图5所示,一电子(不计重力)沿x 轴正方向射入匀强电场,在电场中的运动轨迹为OCD ,已知OA =AB ,电子过C 、D 两点时竖直方向的分速度为v Cy 和v Dy ;电子在OC 段和OD 段动能的变化量分别为ΔE k1和ΔE k2,则( )图5A .v Cy ∶v Dy =1∶2B .v Cy ∶v Dy =1∶4C .ΔE k1∶ΔE k2=1∶3D .ΔE k1∶ΔE k2=1∶4答案 AD解析电子沿Ox轴射入匀强电场,做类平抛运动,水平方向做匀速直线运动,已知OA=AB,则电子从O到C与从C到D的时间相等.电子在竖直方向上做初速度为零的匀加速运动,则有v Cy=at OC,v Dy=at OD,所以v Cy∶v Dy=t OC∶t OD=1∶2,故A正确,B错误;根据匀变速直线运动的推论可知,在竖直方向上:y OC∶y OD=1∶4,根据动能定理得ΔE k1=qEy OC,ΔE k2=qEy OD,则得,ΔE k1∶ΔE k2=1∶4.故C错误,D正确.6.如图6所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中()图6A.它们运动的时间t Q>t PB.它们运动的加速度a Q<a PC.它们所带的电荷量之比q P∶q Q=1∶2D.它们的动能增加量之比ΔE k P∶ΔE k Q=1∶2答案 C解析设两板距离为h,P、Q两粒子的初速度为v0,加速度分别为a P和a Q,粒子P到上极板的距离是h2,它们做类平抛运动的水平距离均为l.则对P,由l=v0t P,h2=12a P t P2,得到a P=h v02l2;同理对Q,l=v0t Q,h=12a Q t Q2,得到a Q=2h v02l2.由此可见t P=t Q,a Q=2a P,而a P=q P Em ,a Q=q Q Em,所以q P∶q Q=1∶2.由动能定理得,它们的动能增加量之比ΔE k P∶ΔE k Q=ma P h2∶ma Q h=1∶4.综上所述,C项正确.7.如图7所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么()图7A.经过加速电场的过程中,电场力对氚核做的功最多B.经过偏转电场的过程中,电场力对氚核做的功最多C .三种原子核打在屏上的速度一样大D .三种原子核都打在屏的同一位置上 答案 D解析 同一加速电场、同一偏转电场,三种原子核带电荷量相同,故在同一加速电场中电场力对它们做的功都相同,在同一偏转电场中电场力对它们做的功也相同,A 、B 错;由于质量不同,所以三种原子核打在屏上的速度不同,C 错;再根据偏转距离公式y =l 2U 24dU 1知,偏转距离与带电粒子无关,D 对.8.如图8所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v 0等于( )图8A.s 2 2qEmh B.s 2 qE mh C.s 42qEmhD.s 4qE mh答案 B解析 根据对称性,两粒子轨迹的切点位于矩形区域abcd 的中心,则在水平方向有12s =v 0t ,在竖直方向有12h =12·qE m ·t 2,解得v 0=s2qEmh.故选项B 正确,选项A 、C 、D 错误. 考点三 带电粒子在交变电场中的运动9.(多选)如图9所示,两平行金属板分别加上如下列选项中的电压,能使原来静止在金属板中央的电子(不计重力)有可能做往返运动的U -t 图象应是(设两板距离足够大)( )图9答案 BC解析 由A 图象可知,电子先做匀加速运动,12T 时速度最大,从12T 到T 内做匀减速运动,T 时速度减为零.然后重复一直向一个方向运动不往返.由B 图象可知,电子先做匀加速运动,14T 时速度最大,从14T 到12T 内做匀减速运动,12T 时速度减为零;从12T 到34T 反向匀加速运动,34T 时速度最大,从34T 到T 内做匀减速运动,T 时速度减为零,回到出发点.然后重复往返运动.由C 图象可知,电子先做加速度减小的加速运动,14T 时速度最大,从14T 到12T 内做加速度增大的减速运动,12T 时速度减为零;从12T 到34T 反向做加速度减小的加速运动,34T 时速度最大,从34T 到T 内做加速度增大的减速运动,T 时速度减为零,回到出发点.然后重复往返运动.由D 图象可知,电子0~T 2做匀加速运动,从12T 到T 内做匀速运动,然后重复加速运动和匀速运动一直向一个方向运动.故选B 、C. 二、非选择题10.(带电粒子的直线运动)一个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图10所示.AB 与电场线夹角θ=30°,已知带电微粒的质量m =1.0× 10-7 kg ,电荷量q =1.0×10-10C ,A 、B 相距L =20 cm.(取g =10 m/s 2)求:图10(1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向.(3)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少? 答案 见解析解析 (1)微粒只在重力和电场力作用下沿AB 方向运动,受力分析如图所示,微粒所受合力的方向由B 指向A ,与初速度方向相反,微粒做匀减速运动.(2)因为qE =mg tan θ=mgtan 30°=3mg .所以电场强度E =3×104 N/C ,电场强度的方向水平向左.(3)微粒由A 运动到B 时的速度v B =0时,微粒进入电场时的速度最小,由动能定理得, -mg sin θ L =0-12m v A 2,代入数据,解得v A =2 2 m/s. 11.(带电粒子在电场中的圆周运动)如图11所示,长L =0.20 m 、不可伸长的绝缘丝线的一端拴一质量为m =1.0×10-4 kg 、带电荷量为q =+1.0×10-6 C 的小球,另一端连在一水平轴O 上,现将小球拉到与轴O 在同一水平面上的A 点(丝线拉直),然后无初速度地将小球释放,丝线拉着小球可在竖直平面内做圆周运动,整个装置处在竖直向上的匀强电场中,电场强度E =2.0×103 N/C.取g =10 m/s 2.求:图11(1)小球通过最高点B 时速度的大小;(2)小球通过最高点B 时,丝线对小球拉力的大小. 答案 (1)2 m/s (2)3.0×10-3 N解析 (1)小球由A 运动到B ,其初速度为零,电场力对小球做正功,重力对小球做负功,丝线拉力不做功,则由动能定理有:qEL -mgL =m v B 22v B =2(qE -mg )Lm=2 m/s.(2)设小球到达B 点时,受重力mg 、电场力qE 和拉力F T B 作用, mg =1.0×10-4×10 N =1.0×10-3 N qE =1.0×10-6×2.0×103 N =2.0×10-3 N因为qE >mg ,而qE 方向竖直向上,mg 方向竖直向下,小球做圆周运动,其到达B 点时向心力的方向一定指向圆心,由此可以判断出小球一定受丝线的拉力F T B 作用,由牛顿第二定律有:F T B +mg -qE =m v B 2LF T B =m v B 2L+qE -mg =3.0×10-3 N.12.(带电粒子的加速与偏转)虚线PQ 、MN 间存在如图12所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直进入匀强电场中,从虚线MN 上的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:图12(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)3×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 12代入数据得v 1=1.0×104 m/s.(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma联立以上各式并代入数据得:E =3×103 N/C. (3)由动能定理得:qU ab =12m (v 12+v y 2)-0联立以上各式并代入数据得:U ab=400 V.。

高二物理选修3-1第一章静电场第9节带电粒子在电场中的运动课件(共31张PPT)

高二物理选修3-1第一章静电场第9节带电粒子在电场中的运动课件(共31张PPT)
可能质量不同,因而它们在电场中的加速 度可以互不相同,这是静电场与重力场的 重要区别。
示波管的原理
1.有一种电子仪器叫示波器,可以用来观察 电信号随时间变化的情况。
2.示波器的核心部件是示波管,如图所示是 它的原理图。它由电子枪、偏转电极和荧 光 屏组成,管内抽成真空。电子枪的作用 是产生高速飞行的一束电子,前面例题1实 际上讲的就是电子枪的原理。
8.示波管是示波器的核心部件,它由电子枪、 偏转电极和荧光屏组成,如图所示,如果在荧 光屏上P点出现亮斑,那么示波管中的( A )
A.极板x应带正电,极板y应带正电 B.极板x′应带正电,极板y应带正电 C.极板x应带正电,极板y′应带正电 D.极板x′应带正电,极板y′应带正电
9.示波管内部结构如图所示,如果在电极YY′之 间加上图(a)所示的电压,在XX′之间加上图(b) 所示电压,荧光屏上会出现的波形是( C )
其中t为飞行2 时间。由于电子在平行于板面的方 向不受力,所以在这个方向做匀速运动,由
l = v0t 可求得:t=l/v0 代入数据得:y=0.36cm 即电子射出时沿垂直于板面的方向偏离 0.36 cm。
(2)偏转角度θ如图所示,由于电子在平行 于板面的方向不受力,
它离开电场时,这个方
向的分速度仍是v0, 而垂 直于板面的分速度是
5.现代实验测出的电子电荷量是 e=1.60×10-19C
【课堂训练】
1.如图所示装置,从A板释放的一个无初速电子 向B板方向运动,下列对电子的描述中正确的是 ( ABD) A.电子到达B板时动能是eU B.从B板到C板时动能变化为零 C.电子到达D板时动能是3eU D.电子在A板和D板之间往复运动
10.图(a)为示波管的原理图。如果在电极YY ′之 间所加的电压图按图(b)所示的规律变化,在电 极XX′之间所加的电压按图(c)所示的规律变化, 则在荧光屏上会看到的图形是( B )

物理选修3-1第一章静电场教案及练习题教案

物理选修3-1第一章静电场教案及练习题教案

人教板—新课标物理选修3—1教案-----第一章、静电场第一节、电荷及其守恒定律(1课时)教学目标(一)知识与技能1.知道两种电荷及其相互作用.知道电量的概念.2.知道摩擦起电,知道摩擦起电不是创造了电荷,而是使物体中的正负电荷分开.3.知道静电感应现象,知道静电感应起电不是创造了电荷,而是使物体中的电荷分开.4.知道电荷守恒定律.5.知道什么是元电荷.(二)过程与方法1、通过对初中知识的复习使学生进一步认识自然界中的两种电荷2、通过对原子核式结构的学习使学生明确摩擦起电和感应起电不是创造了电荷,而是使物体中的电荷分开.但对一个与外界没有电荷交换的系统,电荷的代数和不变。

(三)情感态度与价值观通过对本节的学习培养学生从微观的角度认识物体带电的本质重点:电荷守恒定律难点:利用电荷守恒定律分析解决相关问题摩擦起电和感应起电的相关问题。

教具:丝绸,玻璃棒,毛皮,硬橡胶棒,绝缘金属球,静电感应导体,通草球。

教学过程:(一)引入新课:新的知识内容,新的学习起点.本章将学习静电学.将从物质的微观的角度认识物体带电的本质,电荷相互作用的基本规律,以及与静止电荷相联系的静电场的基本性质。

【板书】第一章静电场复习初中知识:【演示】摩擦过的物体具有了吸引轻小物体的性质,这种现象叫摩擦起电,这样的物体就带了电.【演示】用丝绸摩擦过的玻璃棒之间相互排斥,用毛皮摩擦过的硬橡胶棒之间也相互排斥,而玻璃棒和硬橡胶棒之间却相互吸引,所以自然界存在两种电荷.同种电荷相互排斥,异种电荷相互吸引.【板书】自然界中的两种电荷正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示.把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示.电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引.(二)进行新课:第1节、电荷及其守恒定律【板书】1、电荷(1)原子的核式结构及摩擦起电的微观解释构成物质的原子本身就是由带电微粒组成。

人教版高中物理(选修3-1)

人教版高中物理(选修3-1)

人教版高中物理(选修3-1) 重、难点梳理第一章电场§1.1 电荷及其守恒定律一、课标及其解读1、了解摩擦起电和感应起电,知道元电荷(①知道自然界存在两种电荷。

同种电荷相互排斥,异种电荷相互吸引;②了解摩擦起电、感应起电,能从物质微观结构的角度认识物体带电的本质;③知道元电荷、电荷量的概念,知道电荷量不连续变化。

)2、用原子结构和电荷守恒的知识分析静电现象(①知道电荷守恒定律;②应掌握完全相同的两个带电金属球相互接触后,电荷间的分配关系。

)3、了解静电现象及其在生产、生活中的应用(如静电喷涂、静电复印、经典植绒、静电除尘等。

)二、教学重点从物质微观结构的角度认识物体带电的本质。

三、教学难点起电的本质四、教学易错点1、在静电感应现象中,金属导体内移动的是电子,而不是质子;2、元电荷是电荷量,并不是某个实体电荷;3、电荷量是不连续的,电荷的正负表示其带电性质。

五、教学疑点1、对起电方式及实质的理解(①对物质内部微观结构分析,说明部分物质内部电子可以自由移动;②电荷守恒,说明起电的实质不是新电荷的产生。

)2、电中性的解释,加深学生对起电的理解。

六、教学资源(一)教材中重视的问题1、关于静电现象方面的知识,初中已有介绍,而高中则更侧重于从物质微观结构的角度去认识物体带电的本质,如教材中提到的导体与绝缘体;2、能用静电现象解释生活中的现象(如课本P5第1题)。

(二)教材中重要的思想方法1、各种守恒定律是物理学的基本规律,本节进一步突出守恒的思想;2、培养学生对实验现象进行归纳、总结的能力,教材中各种实验现象均未给出具体的结论,这就要求教学中要渗透科学探究的思想方法。

§1.2 库仑定律一、教学要求1、知道点电荷,体会科学探究中的理想模型方法(①了解点电荷;②明确点电荷是个理想模型及把物体看成点电荷的条件;③体会理想化物体模型在科学研究中的作用与意义。

)2、知道两个点电荷间的相互作用规律(①通过实验,探究影响电荷间相互作用力的因素,了解库仑定律的建立过程;②知道两个点电荷相互作用的规律(库仑定律及其适用条件);③能用数学知识解决库仑定律中存在的极值问题。

2019-2020学年人教版高中物理选修3-1同步课件:第一章 习题课(二) 带电粒子(带电体)在电场中的运动

2019-2020学年人教版高中物理选修3-1同步课件:第一章 习题课(二) 带电粒子(带电体)在电场中的运动
由牛顿运动定律可知kQr2q=mrv2 代入数据解得 Q=1.04×10-8 C. [答案] (1)3 cm (2)见解析 (3)带负电 1.04×10-8 C
[答案] D
【例 3】 两块水平平行放置的导体板如图甲所示,大量电 子(质量 m、电荷量 e)由静止开始,经电压为 U0 的电场加速后, 连续不断地沿平行板的方向从两板正中间射入两板之间.当两 板均不带电时,这些电子通过两板之间的时间为 3t0;当在两板 间加如图乙所示的周期为 2t0、幅值恒为 U0 的周期性电压时,恰 好能使所有电子均从两板间通过.求:
第一章 静电场
习题课(二) 带电粒子(带电体) 在电场中的运动
知识点一
带电体在电场中的直线运动
|知识归纳| 1.对处于电场中的带电粒子进行受力分析时,没有特殊说 明,一般情况下,基本粒子(比如电子、质子、α 粒子等)重力不 计,而带电小球、液滴、物块等所受重力要计. 2.粒子所受合外力 F 合≠0,且与初速度方向在同一条直线 上,带电粒子将做匀加速直线运动或匀减速直线运动,或变加 速直线运动.
(1)这些电子通过两板之间后,侧向位移的最大值和最小值 分别是多少?
(2)侧向位移分别为最大值和最小值的情况下,电子在刚穿 出两板之间时的动能之比为多少?
[解析] 画出电子在 t=0 时和 t=t0 时进入电场的 v -t 图象 如图 1 和图 2.
(1)vy1=emUd0t0,vy2=emUd02t0=2emUd0t0, ymax=212vy1t0+vy1t0=3vy1t0=3emUd0t02=d2, ymin=12vy1t0+vy1t0=1.5vy1t0=3e2Um0dt02=d4,
A.到达 M 板,速度为零 B.到达 P 点,速度为零 C.到达 N 板,速度为零 D.到达 P 点,速度不为零

高中物理第一章静电场第12讲习题课:带电粒子在电场中的运动学案新人教版选修3-1(new)

高中物理第一章静电场第12讲习题课:带电粒子在电场中的运动学案新人教版选修3-1(new)

习题课:带电粒子在电场中的运动[目标定位] 1。

加深对电场中带电粒子的加速和偏转的理解和应用。

2.掌握电场中带电粒子的圆周运动问题的分析方法.一、带电粒子在电场中的直线运动例1 如图1所示,水平放置的A、B两平行板相距h,上极板A带正电,现有质量为m、电荷量为+q的小球在B板下方距离B板为H处,以初速度v0竖直向上从B板小孔进入板间电场.图1(1)带电小球做何种运动?(2)欲使小球刚好打到A板,A、B间电势差为多少?解析(1)带电小球在电场外只受重力的作用做匀减速直线运动,在电场中受重力和电场力作用做匀减速直线运动.(2)整个运动过程中小球克服重力和电场力做功,由动能定理得-mg(H+h)-qU AB=0-错误!mv错误!解得U AB=错误!答案见解析二、带电粒子在电场中的类平抛运动例2 长为L的平行金属板竖直放置,两极板带等量的异种电荷,板间形成匀强电场,一个带电荷量为+q、质量为m的带电粒子,以初速度v0紧贴左极板垂直于电场线方向进入该电场,刚好从右极板边缘射出,射出时速度恰与右极板成30°角,如图2所示,不计粒子重力,求:图2(1)粒子末速度的大小;(2)匀强电场的场强;(3)两板间的距离.解析(1)粒子离开电场时,合速度与竖直方向夹角为30°,由速度关系得合速度:v=错误!=错误!,v y=vtan30°=错误!(2)粒子在匀强电场中做类平抛运动,在竖直方向上:L=v0t,在水平方向上:v y=at,由牛顿第二定律得:qE=ma解得:E=错误!;(3)粒子做类平抛运动,在水平方向上:d=错误!at2,解得:d=错误!L答案(1)错误!(2)错误!(3)错误!L三、带电粒子在交变电场中运动例3 在如图3甲所示平行板电容器A、B两极板上加上如图乙所示的交变电压,开始B板的电势比A板高,这时两极板中间原来静止的电子在电场力作用下开始运动,设电子在运动中不与极板发生碰撞,则下述说法正确的是(不计电子重力)()甲乙图3A.电子先向A板运动,然后向B板运动,再返回A板做周期性来回运动B.电子一直向A板运动C.电子一直向B板运动D.电子先向B板运动,然后向A板运动,再返回B板做周期性来回运动解析由运动学和动力学规律画出如图所示的v-t图象可知,电子一直向B板运动,C正确.答案C(1)当空间存在交变电场时,粒子所受电场力方向将随着电场方向的改变而改变,粒子的运动性质也具有周期性.(2)研究带电粒子在交变电场中的运动需要分段研究,并辅以v-t图象特别注意带电粒子进入交变电场时的时刻及交变电场的周期.四、带电粒子在电场中的圆周运动电学知识与圆周运动结合的综合问题是近几年高考热点.解决这类问题的基本方法和力学中的情形相同,但处理时要充分考虑到电场力的特点,明确向心力的来源,灵活应用等效法、叠加法等分析解决问题.例4 如图4所示,一绝缘细圆环半径为r,其环面固定在水平面上,电场强度为E的匀强电场与圆环平面平行,环上穿有一电荷量为+q、质量为m的小球,可沿圆环做无摩擦的圆周运动,若小球经A点时速度v A的方向恰与电场线垂直,且圆环与小球间沿水平方向无作用力,则速度v A=________.当小球运动到与A点对称的B点时,小球对圆环在水平方向的作用力F B =______。

高中物理第一章静电场第9节带电粒子在电场中的运动教学案新人教版选修3-1(new)

高中物理第一章静电场第9节带电粒子在电场中的运动教学案新人教版选修3-1(new)

第9节带电粒子在电场中的运动1.带电粒子仅在电场力作用下加速时,可根据动能定理求速度.2.带电粒子以速度v0垂直进入匀强电场时,如果仅受电场力,则做类平抛运动。

3.示波管利用了带电粒子在电场中的加速和偏转原理.一、带电粒子的加速1.基本粒子的受力特点对于质量很小的基本粒子,如电子、质子等,虽然它们也会受到万有引力(重力)的作用,但万有引力(重力)一般远远小于静电力,可以忽略不计。

2.带电粒子加速问题的处理方法(1)利用动能定理分析。

初速度为零的带电粒子,经过电势差为U的电场加速后,qU=错误!mv2,则v=错误!。

(2)在匀强电场中也可利用牛顿定律结合运动学公式分析.二、带电粒子的偏转两极板长为l,极板间距离为d、电压为U。

质量为m、带电量为q的基本粒子,以初速度v0平行两极板进入匀强电场后,粒子的运动特点和平抛运动相似:(1)初速度方向做匀速直线运动,穿越两极板的时间t=错误!。

(2)电场线方向做初速度为零的匀加速直线运动,加速度a=错误!。

三、示波管的原理1.构造示波管是示波器的核心部件,外部是一个抽成真空的玻璃壳,内部主要由电子枪(发射电子的灯丝、加速电极组成)、偏转电极(由一对X偏转电极板和一对Y偏转电极板组成)和荧光屏组成,如图1.9.1所示。

图1­9.12.原理(1)扫描电压:XX′偏转电极接入的是由仪器自身产生的锯齿形电压。

(2)灯丝被电源加热后,出现热电子发射,发射出来的电子经加速电场加速后,以很大的速度进入偏转电场,如果在Y偏转极板上加一个信号电压,在X偏转极板上加一扫描电压,在荧光屏上就会出现按Y偏转电压规律变化的可视图像。

1.自主思考——判一判(1)基本带电粒子在电场中不受重力。

(×)(2)带电粒子仅在电场力作用下运动时,动能一定增加。

(×)(3)带电粒子在匀强电场中偏转时,其速度和加速度均不变。

(×)(4)带电粒子在匀强电场中无论是直线加速还是偏转,均做匀变速运动.(√)(5)示波管电子枪的作用是产生高速飞行的电子束,偏转电极的作用是使电子束发生偏转,打在荧光屏的不同位置。

人教版高中物理选修3-1第一章1.9 带电粒子在电场中的运动学案(基础)

人教版高中物理选修3-1第一章1.9 带电粒子在电场中的运动学案(基础)

1.9带电粒子在电场中的运动教学设计(第二课时:偏转)班级:姓名:小组:一、学习目标1.理解带电粒子在电场中的运动规律,并能分析解决偏转方向的问题.2.知道示波管的构造和基本原理.二、预习先学1.平抛运动的运动的特点=水平方向:运动;速度:vx位移:X==竖直方向:运动:速度:vy位移:y=2.带电粒子的偏转(限于匀强电场)垂直于电场线方向飞入匀强电场时,由于电(1)运动状态分析:带电粒子以速度v场力方向与粒子的初速方向,且电场力是恒力,所以带电粒子只能做。

(2)粒子偏转问题的分析处理方法类似于的分析处理,即应用运动的合成和分解的知识方法:可分解成垂直电场线方向为运动和沿电场线方向为运动,沿电场线方向的加速度a=。

3.示波器(1)利用电场来改变或控制带电粒子的运动,最简单情况有两种,利用电场使带电粒子________;利用电场使带电粒子________(2)示波器:示波器的核心部件是___________,示波管由电子枪、____________和荧光屏组成,管内抽成真空.三、新知导学1.带电粒子的偏转(以电子的偏转为例)如图所示,电子以初速度v0垂直于电场线射入匀强电场中.问题讨论:(1)分析,电子的受力情况。

(2)你认为这种情况同哪种运动类似,这种运动的研究方法是什么?(3)你能类比得到,电子在电场中运动的研究方法吗?讨论并回答上述问题:深入探究:如右图所示,设电子电荷量为e,平行板长为L,两板间距为d,电势差为U,初速为v0.试求:(1)电子在电场中运动的时间t。

(2)电子运动的加速度。

(3)电子受力情况分析。

(4)电子在射出电场时竖直方向上的偏转距离。

(5)电子在离开电场时竖直方向的分速度。

(6)电子在离开电场时的偏转角度θ。

思考讨论:如何改变上述问题中电子的偏移距离?2.自主学习示波管的原理(1)示波器作用:(2)示波管的构造①偏转电极XX′、YY′上不加电压,电子如何运动?②只在偏转电极YY′上加电压,电子如何运动?③只在偏转电极XX′上加电压,电子如何运动?四、例题例:一电子在经加速电压U 0加速后,在距两极板等距处垂直进入平行板间的匀强电场,如图所示.若两板间距d ,板长l ,电子质量m,电子刚好能从平行板间飞出,运动轨迹如图所示,(1)判断上极板电性?(2)带电粒子在电场中运动的时间t?(3)电子运动的加速度?(4)极板间的电场强度E的大小?(5)两个极板上加多大电压U?五、反思总结六、作业布置:优化探究30页第3题参考答案:二、预习先学1.平抛运动的运动的特点水平方向:匀速运动;速度:vx = v位移:X=vt竖直方向:自由落体运动:速度:vy= gt 位移:y= gt2/22 ( 1)垂直、匀变速运动(2)平抛运动、匀加速直线、匀速、Eq/m3 (1) 加速、偏转(2)示波管、偏转电极三、新知导学(1)时间t=L/V0(2)加速度 a=Eq/m(3)受力情况分析:只受电场力(4)竖直方向上的偏转距离y=at2/2=EqL2/2mv2(5)竖直方向的分速度vy =EqL/mv(6)偏转角度θ=EqL/mv022.自主学习示波管的原理(1)示波器作用:它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程(2)①匀速直线运动②上下偏转③左右偏转四、例题(1)负电荷(2)t=L/V(3)E=dmvo2/qL2(4)U=d2mvo2/qL2。

高中物理第一章静电场1.9带电粒子在电场中的运动教案选修3_1

高中物理第一章静电场1.9带电粒子在电场中的运动教案选修3_1

带电粒子在电场中的运动一、教学目标:(1)知识与技能:①学习运用静电力、电场强度等概念研究带电粒子在电场中运动时的加速度、速度和位移等物理量的描述。

②理解带电粒子在匀强电场中的运动规律——只受电场力,带电粒子做匀变速运动.③掌握初速度与场强方向垂直的带电粒子在电场中的运动(类平抛运动)(2)过程与方法:①通过带电粒子在电场中的偏转学会类比的研究方法②培养学生综合运用力学和电学的知识分析解决带电粒子在电场中的运动能力(3)情感态度与价值观:①通过本节内容的学习,培养学生科学研究的意志品质②通过本节内容的学习,培养学生注意观察生活中的物理二、教材分析与学生分析:在前面学习静电场性质的基础上,本节学习处理带电粒子在电场中运动的问题。

本节内容主要培养学生力学知识和电学知识的综合应用能力,是高考热点之一,也是电学部分重点章节。

学生在前面的学习为本节学习奠定了一定的基础,做了一定的准备,但是本节综合应用知识能力要求较强,而所带的普通班级学生基础相对薄弱,在实践教学中要根据学生情况加以适当调整教学进度,教学难度使其适应学生,所以这节课设计上分为两个课时,此为第一课时。

三、教学重点与难点重点:带电粒子在电场中的加速和偏转规律难点:带电粒子在电场中的偏转问题及应用四、教学流程设计(一)、新课引入:【实验器材演示和多媒体展示】通过对阴极射线管和示波器的简单介绍,和演示阴极射线管中带电粒子在不同电场中的运动引入(二)、新课教学:一、带电粒子在电场中的加,减速直线。

【例1】右图所示,相距d的两平行金属板间加一电压U,有一带正电荷q、质量为m的带电粒只在电场力的作用下从静止开始从正极板向负极板运动。

则(1)带电粒子在电场中做什么运动?(2)粒子穿出负极板时的速度多大?【引导学生思考解题的思路多样性】【例2】炽热的金属丝可以发射电子,在金属丝和金属板之间加以电压U=2500V,发射出的电子在真空中加速后,从金属板的小孔穿出,电子穿出时的速度有多大?设电子刚刚离开金属丝时的速度为0。

高中物理第一章静电场1.8带电粒子在电场中的运动教案选修3_1

高中物理第一章静电场1.8带电粒子在电场中的运动教案选修3_1

1.8带电粒子在电场中的运动项目内容课题 1.8带电粒子在电场中的运动修改与创新教学目标(一)知识与技能1.了解带电粒子在电场中的运动——只受电场力,带电粒子做匀变速运动。

2.重点掌握初速度与场强方向垂直的带电粒子在电场中的运动(类平抛运动)。

3.知道示波管的主要构造和工作原理。

(二)过程与方法培养学生综合运用力学和电学的知识分析解决带电粒子在电场中的运动。

(三)情感态度与价值观1.渗透物理学方法的教育:运用理想化方法,突出主要因素,忽略次要因素,不计粒子重力。

2.培养学生综合分析问题的能力,体会物理知识的实际应用。

教学重、难点重点:带电粒子在电场中的加速和偏转规律难点:带电粒子在电场中的偏转问题及应用。

教学准备教学过程(一)复习力学及本章前面相关知识要点:动能定理、平抛运动规律、牛顿定律、场强等。

(二)新课教学1.带电粒子在电场中的运动情况(平衡、加速和减速)⑴.若带电粒子在电场中所受合力为零时,即∑F=0时,粒子将保持静止状态或匀速直线运动状态。

例:带电粒子在电场中处于静止状态,该粒子带正电还是负电?分析:带电粒子处于静止状态,∑F =0,mg qE =,因为所受重力竖直向下,所以所受电场力必为竖直向上。

又因为场强方向竖直向下,所以带电体带负电。

⑵.若∑F ≠0(只受电场力)且与初速度方向在同一直线上,带电粒子将做加速或减速直线运动。

(变速直线运动)◎打入正电荷(右图),将做匀加速直线运动。

设电荷所带的电量为q ,板间场强为E电势差为U ,板距为d, 电荷到达另一极板的速度为v,则电场力所做的功为:qEL qU W ==粒子到达另一极板的动能为: 221mv E k =由动能定理有:221mv qU =(或221mv qEL = 对恒力)※若初速为v 0,则上列各式又应怎么样?让学生讨论并列出。

◎若打入的是负电荷(初速为v 0),将做匀减速直线运动,其运动情况可能如何,请学生讨论,并得出结论。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课:带电粒子在电场中的运动[学习目标] 1.会利用动力学和功能观点分析带电粒子在电场中的直线运动.2.会利用运动的合成与分解方法分析带电粒子在电场中的类平抛运动.3.会分析带电粒子在交变电场及复合场中的运动.一、带电粒子在电场中的直线运动 1.带电粒子在电场中做直线运动(1)匀速直线运动:此时带电粒子受到的合外力一定等于零,即所受到的电场力与其他力平衡. (2)匀加速直线运动:带电粒子受到的合外力与其初速度方向同向. (3)匀减速直线运动:带电粒子受到的合外力与其初速度方向反向. 2.讨论带电粒子在电场中做直线运动(加速或减速)的方法 (1)力和加速度方法——牛顿运动定律、匀变速直线运动公式; (2)功和能方法——动能定理; (3)能量方法——能量守恒定律.例1 如图1所示,水平放置的A 、B 两平行板相距h ,上板A 带正电,现有质量为m 、带电荷量为+q 的小球在B 板下方距离B 板为H 处,以初速度v 0竖直向上从B 板小孔进入板间电场.图1(1)带电小球在板间做何种运动?(2)欲使小球刚好打到A 板,A 、B 间电势差为多少? 答案 (1)做匀减速直线运动(2)m [v 20-2g H +h ]2q解析 (1)带电小球在电场外只受重力的作用做匀减速直线运动,在电场中受重力和静电力作用做匀减速直线运动.(2)整个运动过程中重力和静电力做功,由动能定理得 -mg (H +h )-qU AB =0-12mv 2解得U AB =m [v 20-2g H +h ]2q.二、带电粒子在电场中的类平抛运动1.分析带电粒子在电场中做类平抛运动的方法:利用运动的合成与分解把曲线运动转换为直线运动.利用的物理规律有:牛顿运动定律结合运动学公式、动能定理、功能关系等.2.分析此类问题要注意:粒子在哪个方向不受力,在哪个方向受电场力,粒子的运动轨迹向哪个方向弯曲.例2 长为L 的平行金属板水平放置,两极板带等量的异种电荷,板间形成匀强电场,一个带电荷量为+q 、质量为m 的带电粒子,以初速度v 0紧贴上极板垂直于电场线方向进入该电场,刚好从下极板边缘射出,射出时速度恰与下极板成30°角,如图2所示,不计粒子重力,求:图2(1)粒子末速度的大小; (2)匀强电场的场强; (3)两板间的距离.答案 (1)23v 03 (2)3mv 203qL (3)36L解析 (1)粒子离开电场时,合速度与水平方向夹角为30°,由几何关系得合速度:v =v 0cos 30°=23v 03. (2)粒子在匀强电场中做类平抛运动,在水平方向上:L =v 0t ,在竖直方向上:v y =at ,v y =v 0tan 30°=3v 03, 由牛顿第二定律得:qE =ma 解得:E =3mv203qL .(3)粒子做类平抛运动,在竖直方向上:d =12at 2,解得:d =36L .三、带电粒子在交变电场中的运动例3 在如图3所示的平行板电容器的两板A 、B 上分别加如图4甲、乙所示的两种电压,开始B 板的电势比A 板高.在电场力作用下原来静止在两板中间的电子开始运动.若两板间距足够大,且不计重力,试分析电子在两种交变电压作用下的运动情况,并画出相应的v -t 图象.图3甲 乙图4答案 见解析解析 t =0时,B 板电势比A 板高,在电场力作用下,电子向B 板(设为正向)做初速度为零的匀加速直线运动.(1)对于题图甲,在0~12T 内电子做初速度为零的正向匀加速直线运动,12T ~T 内电子做末速度为零的正向匀减速直线运动,然后周期性地重复前面的运动,其速度图线如图(a)所示. (2)对于题图乙,在0~T 2内做类似(1)0~T 的运动,T2~T 电子做反向先匀加速、后匀减速、末速度为零的直线运动.然后周期性地重复前面的运动,其速度图线如图(b)所示.(a) (b)1.当空间存在交变电场时,粒子所受电场力方向将随着电场方向的改变而改变,粒子的运动性质也具有周期性.2.研究带电粒子在交变电场中的运动需要分段研究,并辅以v -t 图象.特别注意带电粒子进入交变电场时的时刻及交变电场的周期.针对训练1 (多选)带正电的微粒放在电场中,场强的大小和方向随时间变化的规律如图5所示.带电微粒只在电场力的作用下由静止开始运动,则下列说法中正确的是( )图5A.微粒在0~1 s 内的加速度与1~2 s 内的加速度相同B.微粒将沿着一条直线运动C.微粒将做往复运动D.微粒在第1 s 内的位移与第3 s 内的位移相同 答案 BD解析 设微粒的速度方向、位移方向向右为正,作出微粒的v -t 图象如图所示.由图可知B 、D 选项正确.四、带电粒子在电场(复合场)中的圆周运动例4 如图6所示,半径为r 的绝缘细圆环的环面固定在水平面上,场强为E 的匀强电场与环面平行.一电荷量为+q 、质量为m 的小球穿在环上,可沿环做无摩擦的圆周运动,若小球经A 点时,速度v A 的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用,求:图6(1)速度v A 的大小;(2)小球运动到与A 点对称的B 点时,对环在水平方向的作用力的大小. 答案 (1)qErm(2)6qE 解析 (1)在A 点,小球在水平方向只受电场力作用,根据牛顿第二定律得:qE =m v2A r所以小球在A 点的速度v A =qEr m. (2)在小球从A 运动到B 的过程中,根据动能定理,电场力做的正功等于小球动能的增加量,即2qEr =12mv 2B -12mv 2A小球在B 点时,根据牛顿第二定律,在水平方向上有F B -qE =m v2B r解以上两式得小球在B 点受到环的水平作用力为:F B =6qE .由牛顿第三定律知,球对环在水平方向的作用力大小F B ′=6qE .解决电场 复合场 中的圆周运动问题,关键是分析向心力的来源,向心力的提供有可能是重力和电场力的合力,也有可能是单独的重力或电场力.有时可以把复合场中的圆周运动等效为竖直面内的圆周运动,找出等效“最高点”和“最低点”.针对训练2 如图7所示,ABCD 为放在E =1.0×103V/m 的水平匀强电场中的绝缘光滑轨道,其中BCD 部分是直径为20 cm 的半圆环,AB =15 cm ,今有m =10 g 、q =10-4C 的小球从静止由A 点沿轨道运动,它运动到图中C 处时的速度是______ m/s ,在C 处时对轨道的压力是______ N ;要使小球能运动到D 点,开始时小球的位置应离B 点________m.图7答案3 0.4 0.25解析 由Eq (AB +CO )-mg OB =12mv 2C 可得v C = 3 m/s ;在C 处由F N -Eq =mv 2C R 得F N =0.4 N ,根据牛顿第三定律得在C 处时对轨道的压力为0.4 N ;要使小球能运动到D 点,v D =gR =1 m/s ,由Eq ·A ′B -mg ·BD =12mv 2D ,得A ′B =0.25 m.1.(多选)如图8所示,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )图8A.所受重力与电场力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动答案BD解析对带电粒子受力分析如图所示,F合≠0,则A错.由图可知电场力与重力的合力方向与v0方向相反,F合对粒子做负功,其中mg不做功,Eq做负功,故粒子动能减少,电势能增加,B正确,C错误.F合恒定且F合与v0方向相反,粒子做匀减速运动,D项正确.2.(多选)如图9甲所示,平行金属板中央有一个静止的电子(不计重力),两板间距离足够大.当两板间加上如图乙所示的交变电压后,选项中的图象,反映电子速度v、位移x和加速度a 三个物理量随时间t的变化规律可能正确的是( )图9答案AD解析在平行金属板之间加上如题图乙所示的周期性变化的电压时,因为电子在平行金属板间所受的电场力F =U 0ed,所以电子所受的电场力大小不变,而方向随电压呈周期性变化.由牛顿第二定律F =ma 可知,电子在第一个T4内向B 板做匀加速直线运动,在第二个T4内向B 板做匀减速直线运动,在第三个T 4内向A 板做匀加速直线运动,在第四个T4内向A 板做匀减速直线运动.所以a -t 图象如图甲所示,v -t 图象如图乙所示,又因匀变速直线运动的位移x =v 0t +12at 2,所以x -t 图象应是曲线.3.如图10所示,半径为R 的光滑圆环竖直置于场强为E 的水平方向的匀强电场中,质量为m 、带电荷量为+q 的空心小球穿在环上,当小球从顶点A 由静止开始下滑到与圆心O 等高的位置B 时,求小球对环的压力.图10答案 2mg +3Eq ,方向水平向右解析 小球从A 运动到B 的过程中,重力做正功,电场力做正功,动能增加,由动能定理有mgR +EqR =12mv 2在B 点小球受到重力mg 、电场力F 和环对小球的弹力F 1三个力的作用,沿半径方向指向圆心的合力提供向心力,则F 1-Eq =m v 2R联立以上两式可得F 1=2mg +3Eq小球对环的作用力与环对小球的作用力为一对作用力与反作用力,两者等大反向,即小球对环的压力F 1′=2mg +3Eq ,方向水平向右.4.如图11所示,阴极A 受热后向右侧空间发射电子,电子质量为m ,电荷量为e ,电子的初速率有从0到v 的各种可能值,且各个方向都有.与A 极相距l 的地方有荧光屏B ,电子击中荧光屏时便会发光.若在A 和B 之间的空间里加一个水平向左、与荧光屏面垂直的匀强电场,电场强度为E ,求B 上受电子轰击后的发光面积.图11答案2mlv 2πEe解析 阴极A 受热后发射电子,这些电子沿各个方向射向右边匀强电场区域,且初速率从0到v 各种可能值都有.取两个极端情况如图所示.沿极板竖直向上且速率为v 的电子,受到向右的电场力作用做类平抛运动打到荧光屏上的P 点.竖直方向上y =vt , 水平方向上l =12·Ee m t 2.解得y =v2mlEe.沿极板竖直向下且速率为v 的电子,受到向右的电场力作用做类平抛运动打到荧光屏上的Q 点,同理可得y ′=v2mlEe.故在荧光屏B 上的发光面积S =y 2π=2mlv 2πEe.一、选择题(1~6题为单选题,7~10题为多选题)1.如图1,两平行的带电金属板水平放置.若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )图1A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动 答案 D解析 两平行金属板水平放置时,带电微粒静止有mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确.2.如图2所示,一个平行板电容器充电后与电源断开,从负极板处释放一个电子(不计重力),设其到达正极板时的速度为v 1,加速度为a 1.若将两极板间的距离增大为原来的2倍,再从负极板处释放一个电子,设其到达正极板时的速度为v 2,加速度为a 2,则( )图2A.a 1∶a 2=1∶1,v 1∶v 2=1∶2B.a 1∶a 2=2∶1,v 1∶v 2=1∶2C.a 1∶a 2=2∶1,v 1∶v 2=2∶1D.a 1∶a 2=1∶1,v 1∶v 2=1∶ 2 答案 D解析 电容器充电后与电源断开,再增大两极板间的距离时,场强不变,电子在电场中受到的电场力不变,故a 1∶a 2=1∶1.由动能定理Ue =12mv 2得v =2Uem,因两极板间的距离增大为原来的2倍,由U =Ed 知,电势差U 增大为原来的2倍,故v 1∶v 2=1∶ 2.3.如图3所示,从F 处释放一个无初速度的电子(重力不计)向B 板方向运动,下列说法错误的是(设电源电动势为U )( )图3A.电子到达B 板时的动能是UeB.电子从B 板到达C 板动能变化量为零C.电子到达D 板时动能是3UeD.电子在A 板和D 板之间做往复运动 答案 C解析 电子在AB 之间做匀加速运动,且eU =ΔE k ,选项A 正确;电子在BC 之间做匀速运动,选项B 正确;在CD 之间做匀减速运动,到达D 板时,速度减为零,选项C 错误,选项D 正确. 4.如图4,一充电后的平行板电容器的两极板相距l .在正极板附近有一质量为M 、电荷量为q (q >0)的粒子;在负极板附近有另一质量为m 、电荷量为-q 的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距25l 的平面.若两粒子间相互作用力可忽略,不计重力,则M ∶m 为( )图4A.3∶2B.2∶1C.5∶2D.3∶1答案 A解析 因两粒子同时经过一平行于正极板且与其相距25l 的平面,电荷量为q 的粒子通过的位移为25l ,电荷量为-q 的粒子通过的位移为35l ,由牛顿第二定律知它们的加速度分别为a 1=qE M ,a 2=qEm,由运动学公式有25l =12a 1t 2=qE 2M t 2① 35l =12a 2t 2=qE 2mt 2②①②得M m =32.B 、C 、D 错,A 对. 5.如图5所示,静止的电子在加速电压U 1的作用下从O 经P 板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压U 2的作用下偏转一段距离.现使U 1加倍,要想使电子射出电场的位置不发生变化,应该( )图5A.使U 2变为原来的2倍B.使U 2变为原来的4倍C.使U 2变为原来的2倍D.使U 2变为原来的12倍答案 A解析 电子加速有qU 1=12mv 2电子偏转有y =12·qU 2md (l v 0)2联立解得y =U 2l 24U 1d,显然选A.6.如图6所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么( )图6A.经过加速电场的过程中,静电力对氚核做的功最多B.经过偏转电场的过程中,静电力对氚核做的功最多C.三种原子核打在屏上的速度一样大D.三种原子核都打在屏的同一位置上 答案 D解析 同一加速电场、同一偏转电场,三种原子核带电荷量相同,故在同一加速电场中静电力对它们做的功都相同,在同一偏转电场中静电力对它们做的功也相同,A 、B 错;由于质量不同,所以三种原子核打在屏上的速度不同,C 错;再根据偏转距离公式y =l 2U 24dU 1知,偏转距离与带电粒子无关,D 对.7.如图7所示,M 、N 是真空中的两块平行金属板,质量为m 、电荷量为q 的带电粒子,以初速度v 0由小孔进入电场,当M 、N 间电压为U 时,粒子恰好能到达N 板,如果要使这个带电粒子到达M 、N 板间距的12后返回,下列措施中能满足要求的是(不计带电粒子的重力)( )图7A.使初速度减为原来的12B.使M 、N 间电压加倍C.使M 、N 间电压提高到原来的4倍D.使初速度和M 、N 间电压都减为原来的12答案 BD解析 由qE ·l =12mv 20,知当v 0变为22v 0时l 变为l 2; 因为qE =q U d,所以qE ·l =q U d ·l =12mv 20,通过分析知B 、D 选项正确.8.如图8所示,一电子沿x 轴正方向射入匀强电场,在电场中的运动轨迹为OCD ,已知OA =AB ,电子过C 、D 两点时竖直方向的分速度为v Cy 和v Dy ;电子在OC 段和OD 段动能的变化量分别为ΔE k1和ΔE k2,则( )图8A.v Cy ∶v Dy =1∶2B.v Cy ∶v Dy =1∶4C.ΔE k1∶ΔE k2=1∶3D.ΔE k1∶ΔE k2=1∶4答案 AD解析 电子沿Ox 轴射入匀强电场,做类平抛运动,水平方向做匀速直线运动,已知OA =AB ,则电子从O 到C 与从C 到D 的时间相等.电子在竖直方向上做初速度为零的匀加速运动,则有v Cy =at OC ,v Dy =at OD ,所以v Cy ∶v Dy =t OC ∶t OD =1∶2,故A 正确,B 错误;根据匀变速直线运动的推论可知,在竖直方向上:y OC ∶y OD =1∶4,根据动能定理得ΔE k1=qEy OC ,ΔE k2=qEy OD ,则得,ΔE k1∶ΔE k2=1∶4.故C 错误,D 正确.9.如图9所示,两金属板(平行)分别加上如下列选项中的电压,能使原来静止在金属板中央的电子(不计重力)有可能做往返运动的U -t 图象应是(设两板距离足够大)( )图9答案 BC解析 由A 图象可知,电子先做匀加速运动,12T 时速度最大,从12T 到T 内做匀减速运动,T时速度减为零.然后重复一直向一个方向运动不往返.由B 图象可知,电子先做匀加速运动,14T 时速度最大,从14T 到12T 内做匀减速运动,12T 时速度减为零;从12T 到34T 反向匀加速运动,34T 时速度最大,从34T 到T 内做匀减速运动,T 时速度减为零,回到出发点.然后重复往返运动.由C 图象可知,电子先做加速度减小的加速运动,14T 时速度最大,从14T 到12T 内做加速度增大的减速运动,12T 时速度减为零;从12T 到34T 反向做加速度减小的加速运动,34T 时速度最大,从34T 到T 内做加速度增大的减速运动,T 时速度减为零,回到出发点.然后重复往返运动. 由D 图象可知,电子先做匀加速运动,12T 时速度最大,从12T 到T 内做匀速运动,然后重复加速运动和匀速运动一直向一个方向运动.故选B 、C.10.如图10甲,两水平金属板间距为d ,板间电场强度的变化规律如图乙所示.t =0时刻,质量为m 的带电微粒以初速度v 0沿中线射入两板间,0~T3时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g .关于微粒在0~T 时间内运动的描述,正确的是( )图10A.末速度大小为2v 0B.末速度沿水平方向C.重力势能减少了12mgdD.克服电场力做功为mgd 答案 BC解析 因0~T 3时间内微粒匀速运动,故E 0q =mg ;在T 3~2T3时间内,粒子只受重力作用,做平抛运动,在t =2T 3时刻的竖直速度为v y 1=gT 3,水平速度为v 0;在2T3~T 时间内,由牛顿第二定律2E 0q -mg =ma ,解得a =g ,方向向上,则在t =T 时刻,v y 2=v y 1-g T3=0粒子的竖直速度减小到零,水平速度为v 0,选项A 错误,B 正确;微粒的重力势能减小了ΔE p =mg ·d 2=12mgd ,选项C 正确;从射入到射出,由动能定理可知,12mgd -W 电=0,可知克服电场力做功为12mgd ,选项D 错误;故选B 、C. 二、非选择题11.一个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图11所示.AB 与电场线夹角θ=30°,已知带电粒子的质量m =1.0×10-7kg ,电荷量q =1.0×10-10C ,A 、B 相距L =20 cm.(取g =10 m/s 2,结果保留两位有效数字)求:图11(1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向.(3)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少? 答案 见解析解析 (1)微粒只在重力和电场力作用下沿AB 方向运动,在垂直于AB 方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B 指向A ,与初速度v A 方向相反,微粒做匀减速运动.(2)在垂直于AB 方向上,有qE sin θ-mg cos θ=0 所以电场强度E =3×104N/C ,电场强度的方向水平向左.(3)微粒由A 运动到B 时的速度v B =0时,微粒进入电场时的速度最小,由动能定理得,-(mgL sin θ+qEL cos θ)=0-12mv 2A ,代入数据,解得v A =2 2 m/s.12.如图12所示,长L =0.20 m 的丝线的一端拴一质量为m =1.0×10-4kg 、带电荷量为q =+1.0×10-6C 的小球,另一端连在一水平轴O 上,丝线拉着小球可在竖直平面内做圆周运动,整个装置处在竖直向上的匀强电场中,电场强度E =2.0×103N/C.现将小球拉到与轴O 在同一水平面上的A 点,然后无初速度地将小球释放,取g =10 m/s 2.求:图12(1)小球通过最高点B 时速度的大小;(2)小球通过最高点时,丝线对小球拉力的大小. 答案 (1)2 m/s (2)3.0×10-3N解析 (1)小球由A 运动到B ,其初速度为零,电场力对小球做正功,重力对小球做负功,丝线拉力不做功,则由 动能定理有:qEL -mgL =mv2B 2v B =2 qE -mg Lm=2 m/s.(2)设小球到达B 点时,受重力mg 、电场力qE 和拉力F T B 作用,mg =1.0×10-4×10 N=1.0×10-3 N qE =1.0×10-6×2.0×103 N =2.0×10-3 N因为qE >mg ,而qE 方向竖直向上,mg 方向竖直向下,小球做圆周运动,其到达B 点时向心力的方向一定指向圆心,由此可以判断出小球一定受丝线的拉力F T B 作用,由牛顿第二定律有:F T B +mg -qE =mv 2BLF T B =mv 2B L+qE -mg =3.0×10-3N.13.虚线PQ 、MN 间存在如图13所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:图13(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104m/s (2)1.7×103N/C (3)400 V解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104m/s.(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C≈1.7×103 N/C.(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V.。

相关文档
最新文档