1999美国数学建模数学竞赛试题及翻译

合集下载

历届美国数学建模竞赛赛题(汉语版)

历届美国数学建模竞赛赛题(汉语版)

历届美国数学建模竞赛赛题, 1985-2006AMCM1985问题-A 动物群体的管理AMCM1985问题-B 战购物资储备的管理AMCM1986问题-A 水道测量数据AMCM1986问题-B 应急设施的位置AMCM1987问题-A 盐的存贮AMCM1987问题-B 停车场AMCM1988问题-A 确定毒品走私船的位置AMCM1988问题-B 两辆铁路平板车的装货问题AMCM1989问题-A 蠓的分类AMCM1989问题-B 飞机排队AMCM1990问题-A 药物在脑内的分布AMCM1990问题-B 扫雪问题AMCM1991问题-A 估计水塔的水流量AMCM1992问题-A 空中交通控制雷达的功率问题AMCM1992问题-B 应急电力修复系统的修复计划AMCM1993问题-A 加速餐厅剩菜堆肥的生成AMCM1993问题-B 倒煤台的操作方案AMCM1994问题-A 住宅的保温AMCM1994问题-B 计算机网络的最短传输时间AMCM1995问题-A 单一螺旋线AMCM1995问题-B A1uacha Balaclava学院AMCM1996问题-A 噪音场中潜艇的探测AMCM1996问题-B 竞赛评判问题AMCM1997问题-A Velociraptor(疾走龙属)问题AMCM1997问题-B为取得富有成果的讨论怎样搭配与会成员AMCM1998问题-A 磁共振成像扫描仪AMCM1998问题-B 成绩给分的通胀AMCM1999问题-A 大碰撞AMCM1999问题-B “非法”聚会AMCM1999问题- C 大地污染AMCM2000问题-A空间交通管制AMCM2000问题-B: 无线电信道分配AMCM2000问题-C:大象群落的兴衰AMCM2001问题- A: 选择自行车车轮AMCM2001问题-B:逃避飓风怒吼(一场恶风…)AMCM2001问题-C我们的水系-不确定的前景AMCM2002问题-A风和喷水池AMCM2002问题-B航空公司超员订票AMCM2002问题-C蜥蜴问题AMCM2003问题-A: 特技演员AMCM2003问题-C航空行李的扫描对策AMCM2004问题-A:指纹是独一无二的吗?AMCM2004问题-B:更快的快通系统AMCM2004问题-C:安全与否?AMCM2005问题-A:.水灾计划AMCM2005问题-B:TollboothsAMCM2005问题-C:.Nonrenewable ResourcesAMCM2006问题-A:用于灌溉的自动洒水器的安置和移动调度AMCM2006问题-B:通过机场的轮椅AMCM2006问题-C:在与HIV/爱滋病的战斗中的交易AMCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。

MCM美国大学生数学建模比赛2000-2011年题目

MCM美国大学生数学建模比赛2000-2011年题目

2000 Mathemat ical Contest in ModelingThe ProblemsProblem A: Air traffic ControlProblem B: Radio Channel AssignmentsProblem A Air traffic ControlDedicated to the memory of Dr. Robert Machol, former chief scientist of the Federal Aviation AgencyTo improve safety and reduce air traffic controller workload, the Federal Aviation Agency (FAA) is considering adding software to the air traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA has posed the following problems.Requirement A: Given two airplanes flying in space, when should the air traffic controller consider the objects to be too close and to require intervention?Requirement B: An airspace sector is the section of three-dimensional airspace that one air traffic controller controls. Given any airspace sector, how do we measure how complex it is from an air traffic workload perspective? To what extent is complexity determined by the number of aircraft simultaneously passing through that sector (1) at any one instant? (2) during any given interval of time?(3) during a particular time of day? How does the number of potential conflicts arising during those periods affect complexity?Does the presence of additional software tools to automatically predict conflicts and alert the controller reduce or add to this complexity?In addition to the guidelines for your report, write a summary (no more than two pages) that the FAA analyst can present to Jane Garvey, the FAA Administrator, to defend your conclusions.Problem BRadio Channel AssignmentsWe seek to model the assignment of radio channels to a symmetric network of transmitter locations over a large planar area, so as to avoid interference. One basic approach is to partition the region into regular hexagons in a grid (honeycomb-style), as shown in Figure 1, where a transmitter is located at the center of each hexagon.Figure 1An interval of the frequency spectrum is to be allotted for transmitter frequencies. The interval will be divided into regularly spaced channels, which we represent by integers 1, 2, 3, ... . Each transmitter will be assigned one positive integer channel. The same channel can be used at many locations, provided that interference from nearby transmitters is avoided. Our goal is to minimize the width of the interval in the frequency spectrum that is needed to assign channels subject to some constraints. This is achieved with the concept of a span. The span is the minimum, over all assignments satisfying the constraints, of the largest channel used at any location. It is not required that every channel smaller than the span be used in an assignment that attains the span.Let s be the length of a side of one of the hexagons. We concentrate on the case that there are two levels of interference.Requirement A: There are several constraints on frequency assignments. First, no two transmitters within distance 4s of each other can be given the same channel. Second, due to spectral spreading, transmitters within distance 2s of each other must not be given the same or adjacent channels: Their channels must differ by at least 2. Under these constraints, what can we say about the span in,Requirement B: Repeat Requirement A, assuming the grid in the example spreads arbitrarily far in all directions.Requirement C: Repeat Requirements A and B, except assume now more generally that channels for transmitters within distance 2s differ by at least some given integer k, while those at distance at most 4s must still differ by at least one. What can we say about the span and about efficient strategies for designing assignments, as a function of k?Requirement D: Consider generalizations of the problem, such as several levels of interference or irregular transmitter placements. What other factors may be important to consider?Requirement E: Write an article (no more than 2 pages) for the local newspaper explaining your findings.2001Problem A: Choosing a Bicycle WheelCyclists have different types of wheels they can use on their bicycles. The two basic types of wheels are those constructed using wire spokes and those constructed of a solid dis k (see Figure 1) The spoked wheels are lighter, but the solid wheels are more aerodynamic. A solid wheel is never used on the front for a road race but can be used on the rear of the bike.Professional cyclists look at a racecourse and make an educated guess as to what kind of wheels should be used. The decision is based on the number and steepness of the hills, the weather, wind speed, the competition, and other considerations. The director sportif of your favorite team would like to have a better system in place and has asked your team for information to help determine what kind of wheel should be used for a given course.Figure 1: A solid wheel is shown on the left and a spoked wheel is shown on theright.The director sportif needs specific information to help make a decision and has asked your team to accomplish the tasks listed below. For each of the tasks assume that the same s poked wheel will always be used on the front but there is a choice of wheels for the rear.Task 1. Provide a table giving the wind speed at which the power required for a solid rear wheel is less than for a spoked rear wheel. The table should include the windspeeds for different road grades starting from zero percent to ten percent in onepercent increments. (Road grade is defined to be the ratio of the total rise of a hilldivided by the length of the road. If the hill is viewed as a triangle, the grade is the sine of the angle at the bottom of the hill.) A rider starts at the bottom of the hill at a speed of 45 kph, and the deceleration of the rider is proportional to the road grade. A riderwill lose about 8 kph for a five percent grade over 100 meters.∙Task 2. Provide an example of how the table could be used for a specific time trial course.∙Task 3. Determine if the table is an adequate means for deciding on the wheel configuration and offer other suggestions as to how to make this decision.Problem B: Escaping a Hurricane's Wrath (An Ill Wind...)Evacuating the coast of South Carolina ahead of the predicted landfall of Hurricane Floyd in 1999 led to a monumental traffic jam. Traffic slowed to a standstill on Interstate I-26, which is the principal route going inland from Charleston to the relatively safe haven of Columbia in the center of the state. What is normally an easy two-hour drive took up to 18 hours to complete. Many cars simply ran out of gas along the way. Fortunately, Floyd turned north a nd spared the state this time, but the public outcry is forcing state officials to find ways to avoid a repeat of this traffic nightmare.The principal proposal put forth to deal with this problem is the reversal of traffic on I-26, so that both sides, including the coastal-bound lanes, have traffic headed inland from Charleston to Columbia. Plans to carry this out have been prepared (and posted on the Web) by the South Carolina Emergency Preparedness Division. Traffic reversal on principal roads leading i nland from Myrtle Beach and Hilton Head is also planned.A simplified map of South Carolina is shown. Charleston has approximately 500,000 people, Myrtle Beach has about 200,000 people, and another 250,000 people are spread out along the rest of the coastal strip. (More accurate data, if sought, are widely available.)The interstates have two lanes of traffic in each direction except in the metropolitan areas where they have three. Columbia, another metro area of around 500,000 people, does not have sufficient hotel space to accommodate the evacuees (including some coming from farther north by other routes), so some traffic continues outbound on I-26 towards Spartanburg; on I-77 north to Charlotte; and on I-20 east to Atlanta. In 1999, traffic leaving Columbia going northwest was moving only very slowly. Construct a model for the problem to investigate what strategies may reduce the congestion observed in 1999. Here are the questions that need to be addressed:1.Under what conditions does the plan for turning the two coastal-bound lanes of I-26into two lanes of Columbia-bound traffic, essentially turning the entire I-26 intoone-way traffic, significantly improve evacuation traffic flow?2.In 1999, the simultaneous evacuation of the state's entire coastal region was ordered.Would the evacuation traffic flow improve under an alternative strategy that staggers the evacuation, perhaps county-by-county over some time period consistent with thepattern of how hurricanes affect the coast?3.Several smaller highways besides I-26 extend inland from the coast. Under whatconditions would it improve evacuation flow to turn around traffic on these?4.What effect would it have on evacuation flow to establish more temporary shelters inColumbia, to reduce the traffic leaving Columbia?5.In 1999, many families leaving the coast brought along their boats, campers, andmotor homes. Many drove all of their cars. Under what conditions should there berestrictions on vehicle types or numbers of vehicles brought in order to guaranteetimely evacuation?6.It has been suggested that in 1999 some of the coastal residents of Georgia and Florida,who were fleeing the earlier predicted landfalls of Hurricane Floyd to the south, came up I-95 and compounded the traffic problems. How big an impact can they have on the evacuation traffic flow? Clearly identify what measures of performance are used tocompare strategies. Required: Prepare a short newspaper article, not to exceed twopages, explaining the results and conclusions of your study to the public.Clearly identify what measures of performance are used to compare strategies.Required: Prepare a short newspaper article, not to exceed two pages, explaining the results and conclusions of your study to the public.2002 Mathemat ical Contest in ModelingThe ProblemsProblem AAuthors: Tjalling YpmaTit le: Wind and WatersprayAn ornamental fountain in a large open plaza surrounded by buildings squirts water high into the air. On gusty days, the wind blows spray from the fountain onto passersby. The water-flow from the fountain is controlled by a mechanism linked to an anemometer (which measures wind speed and direction) located on top of an adjacent building. The objective of this control is to provide passersby with an acceptable balance between an attractive spectacle and a soaking: The harder the wind blows, the lower the water volume and height to which the water is squirted, hence the less spray falls outside the pool area.Your task is to devise an algorithm which uses data provided by the anemometer to adjust the water-flow from the fountain as the wind conditions change.Problem BAuthors: Bill Fox and Rich WestTit le: Airline OverbookingYou're all packed and ready to go on a trip to visit your best friend in New York City. After you check in at the ticket counter, the airline clerk announces that your flight has been overbooked. Passengers need to check in immediately to determine if they still have a seat.Historically, airlines know that only a certain percentage of passengers who have made reservations on a particular flight will actually take that flight. Consequently, most airlines overbook-that is, they take more reservations than the capacity of the aircraft. Occasionally, more passengers will want to take a flight than the capacity of the plane leading to one or more passengers being bumped and thus unable to take the flight for which they had reservations.Airlines deal with bumped passengers in various ways. Some are given nothing, some are booked on later flights on other airlines, and some are given some kind of cash or airline ticket incentive.Consider the overbooking issue in light of the current situa tion:Less flights by airlines from point A to point BHeightened security at and around airportsPassengers' fearLoss of billions of dollars in revenue by airlines to dateBuild a mathematical model that examines the effects that different overbooking schemes have on the revenue received by an airline company in order to find an optimal overbooking strategy,i.e., the number of people by which an airline should overbook a particular flight so that the company's revenue is maximized. Insure that your model reflects the issues above, and consider alternatives for handling "bumped" passengers. Additionally, write a short memorandum to the airline's CEO summarizing your findings and analysis.2003 MCM ProblemsPROBLEM A: The Stunt PersonAn exciting action scene in a m ovie is going to be filmed, and you are the stunt coordinator! A stunt person on a m otorcycle will jump over an elephant and land in a pile of cardboard boxes to cushion their fall. You need to protect the stunt person, and also use relatively few cardboard boxes (lower cost, not seen by cam era, etc.).Your job is to:∙determine what size boxes to use∙determine how many boxes to use∙determine how the boxes will be stacked∙determine if any modifications to the boxes would help∙generalize to different combined weights (stunt person & motorcycle) and different jump heightsNote that, in "Tomorrow Never Dies", the Jam es Bond character on a m otorcycle jumps over a helicopter.PROBLEM B: G amma Knife Treat ment PlanningStereotactic radiosurgery delivers a single high dose of ionizing radiation to a radiographically well-defined, sm all intracranial 3D brain tum or without delivering any significant fraction of the prescribed dose to the surrounding brain tissue. Three modalities are commonly used in this area; they are the gamma knife unit, heavy charged particle beam s, and external high-energy photon beams from linear accelerators.The gamma knife unit delivers a single high dose of ionizing radiation emanating from201 cobalt-60 unit sources through a heavy helmet. All 201 beams simultaneously intersect at the isocenter, resulting in a spherical (approximately) dose distribution at the effective dose levels. Irradiating the isocenter to deliver dose is termed a “shot.” Shots can be represented as diff erent spheres. Four interchangeable outer collimator helmets with beam channel diameters of 4, 8, 14,and 18 mm are available for irradiating different size volumes. For a target volum e larger than one shot, m ultiple shots can be used to cover the entire t arget. In practice, m ost target volum es are treated with 1 to 15 shots. The target volum e is a bounded, three-dimensional digital image that usually consists of m illions of points.The goal of radiosurgery is to deplete tum or cells while preserving norma l structures. Since there are physical limitations and biological uncertainties involved in this therapy process, a treatm ent plan needs to account for all those limitations and uncertainties. In general, an optimal treat m ent plan is designed to m eet the following requirements.1.Minimize the dose gradient across the target volume.2.Match specified isodose contours to the target volumes.3.Match specified dose-volume constraints of the target and critical organ.4.Minimize the integral dose to the entire volume of normal tissues or organs.5.Constrain dose to specified normal tissue points below tolerance doses.6.Minimize the maximum dose to critical volumes.In gamma unit treatm ent planning, we have the following constraints:1.Prohibit shots from protruding outside the target.2.Prohibit shots from overlapping (to avoid hot spots).3.Cover the target volume with effective dosage as much as possible. But at least 90% ofthe target volume must be covered by shots.e as few shots as possible.Your tasks are to formulate the optim al treat m ent planning for a gamma knife unit as a sphere-packing problem, and propose an algorithm to find a solution. While designing your algorithm, you must keep in mind that your algorithm must be reasonably efficient.2003 ICM ProblemPROBLEM C:To view and print problem C, you will need to have the Adobe Acrobat Reader installed in your Web browser. Downloading and installing acrobat is simple, safe, and only takes a few minutes. Download Acrobat Here.2004 MCM ProblemsPROBLEM A: Are Fingerprints Unique?It is a commonplace belief that the thumbprint of every human who has ever lived is different. Develop and analyze a model that will allow you to assess the probability that this is true. Compare the odds (that you found in this problem) of misidentification by fingerprint evidence against the odds of misidentification by DNA evidence.PROBLEM B: A Faster QuickPass System"QuickPass" systems are increasingly appearing to reduce people's time waiting in line, whether it is at tollbooths, amusement parks, or elsewhere. Consider the design of a QuickPass system for an amusement park. The amusement park has experimented by offering QuickPasses for several popular rides as a test. The idea is that for certain popular rides you can go to a kiosk near that ride and insert your daily park entrance ticket, and out will come a slip that states that you can return to that ride at a specific time later. For example, you insert your daily park entrance ticket at 1:15 pm, and the QuickPass states that you can come back between 3:30 and 4:30 pm when you can use your slip to enter a second, and presumably much shorter, line that will get you to the ride faster. To prevent people from obtaining QuickPasses for several rides at once, the QuickPass machines allow you to have only one active QuickPass at a time.You have been hired as one of several competing consultants to improve the operation of QuickPass. Customers have been complaining about some anomalies in the test system. For example, customers observed that in one instance QuickPasses were being offered for a return time as long as 4 hours later. A short time later on the same ride, the QuickPasses were given for times only an hour or so later. In some instances, the lines for people with Quickpasses are nearly as long and slow as the regular lines.The problem then is to propose and test schemes for issuing QuickPasses in order to increase people's enjoyment of the amusement park. Part of the problem is to determine what criteria to use in evaluating alternative schemes. Include in your report a non-technical summary for amusement park executives who must choose between alternatives from competing consultants.2005 MCM ProblemsPROBLEM A: Flood PlanningLake Murray in central South Carolina is formed by a large earthen dam, which was completed in1930 for power production. Model the flooding downstream in the event there is a catastrophic earthquake that breaches the dam.Two particular questions:Rawls Creek is a year-round stream that flows into the Saluda River a short distance downriver from the dam. How much flooding will occur in Rawls Creek from a dam failure, and how far back will it extend?Could the flood be so massive downstream that water would reach up to the S.C. State Capitol Building, which is on a hill overlooking the Congaree River?PROBLEM B: TollboothsHeavily-traveled toll roads such as the Garden State Parkway , Interstate 95, and so forth, are multi-lane divided highways that are interrupted at intervals by toll plazas. Because collecting tolls is usually unpopular, it is desirable to minimize motorist annoyance by limiting the amount of traffic disruption caused by the toll plazas. Commonly, a much larger number of tollbooths is provided than the number of travel lanes entering the toll plaza. Upon entering the toll plaza, the flow of vehicles fans out to the larger number of tollbooths, and when leaving the toll plaza, the flow of vehicles is required to squeeze back down to a number of travel lanes equal to the number of travel lanes before the toll plaza. Consequently, when traffic is heavy, congestion increases upon departure from the toll plaza. When traffic is very heavy, congestion also builds at the entry to the toll plaza because of the time required for each vehicle to pay the toll.Make a model to help you determine the optimal number of tollbooths to deploy in a barrier-toll plaza. Explicitly consider the scenario where there is exactly one tollbooth per incoming travel lane. Under what conditions is this more or less effective than the current practice? Note that the definition of "optimal" is up to you to determine.2006 MCM ProblemsPROBLEM A: Posit ioning and Moving Sprinkler Systems for Irrigat ionThere are a wide variety of techniques available for irrigating a field. The technologies range from advanced drip systems to periodic flooding. One of the systems that is used on smaller ranches is the use of "hand move" irrigation systems. Lightweight aluminum pipes with sprinkler heads are put in place across fields, and they are moved by hand at periodic intervals to insure that the whole field receives an adequate amount of water. This type of irrigation sys tem is cheaper and easier to maintain than other systems. It is also flexible, allowing for use on a wide variety of fields and crops. The disadvantage is that it requires a great deal of time and effort to move and set up the equipment at regular intervals.Given that this type of irrigation system is to be used, how can it be configured to minimize the amount of time required to irrigate a field that is 80 meters by 30 meters? For this task you are asked to find an algorithm to determine how to irrigate the rectangular field that minimizes the amount of time required by a rancher to maintain the irrigation system. One pipe set is used in the field. Y ou should determine the number of sprinklers and the spacing between sprinklers, and you should find a sch edule to move the pipes, including where to move them.A pipe set consists of a number of pipes that can be connected together in a straight line. Each pipe has a 10 cm inner diameter with rotating spray nozzles that have a 0.6 cm inner diameter. When pu t together the resulting pipe is 20 meters long. At the water source, the pressure is 420 Kilo- Pascal’s and has a flow rate of 150 liters per minute. No part of the field should receive more than 0.75 cm per hour of water, and each part of the field should receive at least 2 centimeters of water every 4 days. The total amount of water should be applied as uniformly as possiblePROBLEM B: Wheel Chair Access at AirportsOne of the frustrations with air travel is the need to fly through multiple airports, and each stop generally requires each traveler to change to a different airplane. This can be especially difficult for people who are not able to easily walk to a different flight's waiting area. One of the ways that an airline can make the transition easier is to provide a wheel chair and an escort to those people who ask for help. It is generally known well in advance which passengers require help, but it is not uncommon to receive notice when a passenger first registers at the airport. In rare instances an airline may not receive notice from a passenger until just prior to landing.Airlines are under constant pressure to keep their costs down. Wheel chairs wear out and are expensive and require maintenance. There is also a cost for making the escorts available. Moreover, wheel chairs and their escorts must be constantly moved around the airport so that they are available to people when their flight lands. In some large airports the time required to move across the airport is nontrivial. The wheel chairs must be stored somewhere, but space is expensive and severely limited in an airport terminal. Also, wheel chairs left in high traffic areas represent a liability risk as people try to move around them. Finally, one of the biggest costs is the cost of holding a plane if someone must wait for an escort and becomes late for their flight. The latter cost is especially troubling because it can affect the airline's average flight delay which can lead to fewer ticket sales as potential customers may choose to avoid an airline.Epsilon Airlines has decided to ask a third party to help them obtain a detailed analysis of the issues and costs of keeping and maintaining wheel chairs and escorts available for passengers. The airline needs to find a way to schedule the movement of wheel chairs throughout each day in a cost effective way. They also need to find and define the costs for budget planning in both the short and long term.Epsilon Airlines has asked your consultant group to put together a bid to help them solve their problem. Your bid should include an overview and analysis of the situation to help them decide if you fully understand their problem. They require a detailed description of an algorithm that you would like to implement which can determine where the escorts and wheel chairs should be and how they should move throughout each day. The goal is to keep the total costs as low as possible. Your bid is one of many that the airline will consider. You must make a strong case as to why your solution is the best and show that it will be able to handle a wide range of airports under a variety of circumstances.Your bid should also include examples of how the algorithm would work for a large (at least 4 concourses), a medium (at least two concourses), and a small airport (one concourse) under high and low traffic loads. You should determine all potential costs and balance their respective weights. Finally, as populations begin to include a higher percentage of older people who have more time to travel but may require more aid, your report should include projections of potential costs and needs in the future with recommendations to meet future needs.2007 MCM ProblemsPROBLEM A: G errymanderingThe United States Constitution provides that the House of Representatives shall be composed of some number (currently 435) of individuals who are elected from each state in proportion to the state’s population relative to that of the country as a whole. While this provides a way of determining how many representatives each state will have, it says nothing about how the district represented by a particular representative shall be determined geographically. This oversight has led to egregious (at least some people think so, usually not the incumbent) district shapes that look “un natural” by some standards.Hence the following question: Suppose you were given the opportunity to draw congressional districts for a state. How would you do so as a purely “baseline” exercise to create the “simplest” shapes for all the districts in a state? The rules include only that each district in the state must contain the same population. The definition of “simple” is up to you; but you need to make a convincing argument to voters in the state that your solution is fair. As an application of your method, draw geographically simple congressional districts for the state of New Y ork.PROBLEM B: The Airplane Seat ing ProblemAirlines are free to seat passengers waiting to board an aircraft in any order whatsoever. It has become customary to seat passengers with special needs first, followed by first-class passengers (who sit at the front of the plane). Then coach and business-class passengers are seated by groups of rows, beginning with the row at the back of the plane and proceeding forward.Apart from consideration of the passengers’ wait time, from the airline’s point of view, time is money, and boarding time is best minimized. The plane makes money for the airline only when it is in motion, and long boarding times limit the number of trips that a plane can make in a day.The development of larger planes, such as the Airbus A380 (800 passengers), accentuate the problem of minimizing boarding (and deboarding) time.Devise and compare procedures for boarding and deboarding planes with varying numbers of passengers: small (85–210), midsize (210–330), and large (450–800).Prepare an executive summary, not to exceed two single-spaced pages, in which you set out your conclusions to an audience of airline executives, gate agents, and flight crews.Note: The 2 page executive summary is to be included IN ADDITION to the reports required by the contest guidelines.An article appeared in the NY Times Nov 14, 2006 addressing procedures currently being followed and the importance to the airline of finding better solutions. The article can be seen at: http://travel2.nyt /2006/11/14/business/14boarding.ht ml2008 MCM ProblemsPROBLEM A: Take a Bat hConsider the effects on land from the melting of the north polar ice cap due to the predicted increase in global temperatures. Specifically, model the effects on the coast of Florida every ten years for the next 50 years due to the melting, with particular attention given to large metropolitan areas. Propose appropriate responses to deal with this. A careful discussion of the data used is an important part of the answer.PROBLEM B: Creat ing Sudoku PuzzlesDevelop an algorithm to construct Sudoku puzzles of varying difficulty. Develop metrics to define a difficulty level. The algorithm and metrics should be extensible to a varying number of difficulty levels. You should illustrate the algorithm with at least 4 difficulty levels. Your algorithm should guarantee a unique solution. Analyze the complexity of your algorithm. Your objective should be to minimize the complexity of the algorithm and meet the above requirements.2009 MCM Problems。

美国数学建模竞赛题目(1985--2009年)

美国数学建模竞赛题目(1985--2009年)

美国数学建模竞赛题目1985年:A题:动物群体的管理B题:战略物资储备的管理问题1986年:A题:海底地型测量问题B题:应急设施的优化选址问题1987年:A题:堆盐问题(盐堆稳定性问题)B题:停车场安排问题1988年:A题:确定毒品走私船位置B题:平板列车车厢的优化装载1989年:A题:蠓虫识别问题;最佳分类与隔离B题:飞机排队模型1990年:A题:脑中多巴胺的分布B题:铲雪车的路径与效率问题1991年:A题:估计水塔的水流量B题:通信网络费用问题1992年:A题:雷达系统的功率与设计式样B题:紧急修复系统的研制1993年:A题:堆肥问题B题:煤炭装卸场的最优操作1994年:A题:保温房屋设计问题B题:计算机网络的最小接通时间1996年:A题:大型水下物体的探测B题:快速遴选优胜者问题1997年:A题:恐龙捕食问题B题:会议混合安排问题1998年:A题:MRI图象处理问题B题:分数贬值问题1999年:A题:小星体撞击地球问题B题:公用设施的合法容量问题C题:确定环境污染的物质、位置、数量和时间的问题2000年:A题:空间交通管制B题:无线电信道分配C题:大象群落的兴衰2001年:A题:选择自行车车轮B题:逃避飓风怒吼C题:我们的水系-不确定的前景2002年:A题:风和喷水池B题:航空公司超员订票C题:如果我们过分扫荡自己的土地,将会失去各种各样的蜥蜴。

2003年:A题:特技演员B题:Gamma刀治疗方案C题:航空行李的扫描对策2004年:A题:指纹是独一无二的吗?B题:更快的快通系统C题:安全与否?2005年:A题:flood planningB题:tollboothsC题: Nonrenewable Resources2006年:A题:Positioning and Moving SprinklerSystems for IrrigationB题:Wheel Chair Access at AirportsC题:Trade-offs in the fight againstHIV/AIDS2007年:A题:GerrymanderingB题:The Airplane Seating ProblemC题:Organ Transplant: The Kidney Exchange Problem2008年:A题:Take a BathB题:Creating Sudoku PuzzlesC题:Finding the Good in Health Care Systems2009年:A题:Designing a Traffic CircleB题:Energy and the Cell PhoneC题:Creating Food Systems: Re-Balancing Human-Influenced Ecosystems。

美国imo数学竞赛试题及答案

美国imo数学竞赛试题及答案

美国imo数学竞赛试题及答案问题1:代数问题设\( a, b, c \) 是正实数,满足 \( a + b + c = 1 \)。

证明:\[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 9 \]问题2:几何问题在三角形 \( ABC \) 中,点 \( D \) 和 \( E \) 分别是边 \( BC \) 和 \( AC \) 上的点,使得 \( AD \) 平行于 \( BE \)。

如果\( \angle A = 60^\circ \),证明 \( \angle ADB = \angle BEC \)。

问题3:数论问题给定一个正整数 \( n \),证明对于所有 \( n \) 的倍数 \( k \),\( k \) 除以 \( n \) 的余数等于 \( k \) 除以 \( n+1 \) 的余数。

问题4:组合问题有 \( 2n \) 个不同的球和 \( n \) 个相同的盒子。

证明至少有一个盒子包含至少 \( 3 \) 个球。

问题5:不等式问题证明对于所有正实数 \( x \) 和 \( y \),以下不等式成立:\[ \sqrt{x^2 + y^2} + \sqrt{2xy} \geq x + y \]答案问题1:代数问题由柯西不等式,我们知道:\[ (a + b + c)\left(\frac{1}{a} + \frac{1}{b} +\frac{1}{c}\right) \geq (1 + 1 + 1)^2 \]因为 \( a + b + c = 1 \),所以:\[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 9 \]问题2:几何问题由于 \( AD \) 平行于 \( BE \),根据相似三角形的性质,我们有\( \triangle ABD \sim \triangle CBE \)。

建模美赛C题带翻译

建模美赛C题带翻译

Problem C: “Cooperate and navigate”Traffic capacity is limited in many regions of the United States due to the number of lanes of roads. For example, in the Greater Seattle area drivers experience long delays during peak traffic hours because the volume of traffic exceeds the designed capacity of the road networks. This is particularly pronounced on Interstates 5, 90, and 405, as well as State Route 520, the roads of particular interest for this problem.Self-driving, cooperating cars have been proposed as a solution to increase capacity of highways without increasing number of lanes or roads. The behavior of these cars interacting with the existing traffic flow and each other is not well understood at this point.The Governor of the state of Washington has asked for analysis of the effects of allowing self-driving, cooperating cars on the roads listed above in Thurston, Pierce, King, and Snohomish counties. (See the provided map and Excel spreadsheet). In particular, how do the effects change as the percentage of self-driving cars increases from 10% to 50% to 90%? Do equilibria exist? Is there a tipping point where performance changes markedly? Under what conditions, if any, should lanes be dedicated to these cars? Does your analysis of your model suggest any other policy changes?Your answer should include a model of the effects on traffic flow of the number of lanes, peak and/or average traffic volume, and percentage of vehicles using self-driving, cooperating systems. Your model should address cooperation between self-driving cars as well as the interaction between self- driving and non-self-driving vehicles. Your model should then be applied to the data for the roads of interest, provided in the attached Excel spreadsheet.Your MCM submission should consist of a 1 page Summary Sheet, a 1-2 page letter to the Governor’s office, and your solution (not to exceed 20 pages) for a maximum of 23 pages. Note: The appendix and references do not count toward the 23 page limit. Some useful background information:On average, 8% of the daily traffic volume occurs during peak travel hours.•The nominal speed limit for all these roads is 60 miles per hour.•Mileposts are numbered from south to north, and west to east.•Lane widths are the standard 12 feet.•Highway 90 is classified as a state route until it intersects Interstate 5.•In case of any conflict between the data provided in this problem and any other source, use the data provided in this problem.Definitions:milepost: A marker on the road that measures distance in miles from either the start of the route or astate boundary.average daily traffic: The average number of cars per day driving on the road.interstate: A limited access highway, part of a national system.state route: A state highway that may or may not be limited access.route ID: The number of the highway.increasing direction: Northbound for N-S roads, Eastbound for E-W roads.decreasing direction: Southbound for N-S roads, Westbound for E-W roads.问题C:“合作和导航”由于道路的数量,美国许多地区的交通容量有限。

数学建模英文版习题与答案

数学建模英文版习题与答案

数学建模第一章 Modeling Change1.Difference equation (差分方程) Example 1. A Savings CertificateSuppose that you deposited $1,000 into your saving account initially. The interest is paid each month at a rate of 1% per month, then the value of your account will be as follows :Letn=number of months,n a =the value of the account after n monthsThen we have ,01.01n n n n a a a a =-=∆+ So the difference equation is n n n a a a 01.01+=+ We have the dynamical system(动态系统) model{1000,.......2,1,001.10,1===+a n a a n n*Suppose you withdraw(提取) $50 each month,then the change is5001.01-=-=∆+n n n n a a a aTherefore the model becomes{1000....2,1,0,5001.101==-=+a n a a n n1.2动态方程,1b ra a n n +=+r and b are constants.(1≠r )An equilibrium value(均衡值)(or fixed point(不动点))of a dynamical system )(1n n a f a =+is a solution a to equation a=f(a),which means that,if a a =0,then all a a n = Thus in this case the equilibrium value is rb a -=1 1st month $1,000 0a 3a 2a 1a 4th month $1,030.30 3rd month $1,020.10 2nd month $1,010Nowbra a b ra a n n +=+=+1Therefore )(1a a r a a n n -=-+Set a a b n n -=, then n n rb b =+1,thus 0b r b n n =,i.e, )(0a a r a a n n -=- hence rbr b a r a n n -+--=1)1(0 In practice, we may write rbc r a n n -+*=1 write C to be determined by 0a 1.3差分方程组【求均衡点 实际意义 说明参数】 Example 1. A Car Rental CompanyA car rental company operates in Orlando and Tampa. A traveler will rent a car in one city and return the car in either of the cities. The company wants to know if there are sufficiently many cars in each city.Let On=number of.cars in Orlando after n days Tn=number of cars in Tampa after n days Then the model is{nn n n n n T O T T O O 7.04.03.06.011+=+=++ To find the equilibrium value:{TO T T O O 7.04.03.06.0+=+=So 4O=3T ,i.e.,if 730=O Total cars and 740=T Total cars,then n O and n T will be unchanged.第二章 The Modeling Process, Proportionality, and Geometric Similarity(几何相似)【写一定的假设(Assumption )要明确合理】 We already know kx y x y =⇔∝,k is constant.We may also consider .,,ln ,2etc e y x y x y x ∝∝∝Also y=mx+b is a usual assumption,i.e.,x b y ∝-.Geometrically, it is a straight line,which is easy to spot. Example 2. Modeling a Bass (欧洲鲈鱼) Fishing DerbyA fishing club will hold a fishing contest. In order to be environment friendly, the fish will be released immediately after caught. How to determine the weight of a fish?Problem Identification: Determine the weight of a fish in terms of some easily measurable dimensions(度量)Assumption: All fishes are geometrically similar, and the density of a bass is constant.Thus weight W ∝volume V ∝length 3L .that is,3kL W =Model Refinement: We only assume that the cross sectional areas are similar and use another dimension – girth g.Assume effective V ≈ length ⨯average cross sectional areaNow effective length ∝L average cross sectional area ∝2gThus ∝W L 2g ,i.e.,2kLg W =第三章 Least-Squares Criterion:Minimize the sum of the squares of deviations.(最小二乘法)【怎样画散点图 画趋势线 怎样运用最小二乘法公式】 Fitting a Straight LineGiven a collection of data(i i y x ,),i=1,.....m,and a linear model y=ax+b Recall the deviation of the model y=f(x) at (i i y x ,) is )(i i x f y - Thus the least-squares criterion is to minimize 2121)())((∑∑==--=-=mi iimi iib ax y x f y S79LCrossTherefore we need to solve for a and b from0)1()(20)()(211=---=∂∂=---=∂∂∑∑==mi i i i mi i i b ax y b S x b ax y a S That is∑∑∑∑∑=+=+ii i i i i y mb a x y x b x a x )()()(2We get 最小二乘法公式(其中m 为数据个数))(,)()(,)(22222截距斜率Intercept x x m x y x y x b Slope x x m y x y x m a i iii i i i i i i i i i ∑∑∑∑∑∑∑∑∑∑∑--=--=第四章 Experimental Modeling 【给出一个散点图再给出数据然后怎样变化可让散点图直一点】Thus if the original curve is (1)concave up:(凸)Then usey or lny to squeeze the tail downward,OR use 2x or 3x to stretch the tail to theright(2) concave down:(凹):Then use 2y or 3y to stretch the tail up-ward,OR usex or lnx to squeeze the tail to the left第五章 Simulation Modeling 【给一个随机现象描述模拟过程(random number 随机数) 按概率来分 用公式语言描述结果】Monte Carlo Fair Dice Algorithm Flip of a Fair Coin (抛硬币): Head Tail0 0.51Let x be a random number in [0,1],define掷骰子第九章. Graphs of Functions as Models (量纲分析) Mass(质量) M Momentum (动量) 1-MTLLength(长度) LWork (功) 22-T ML Velocity (速度)1-LTDensity (密度) 3-ML Acceleration (加速度) 2-LT Viscosity (摩擦系数) 11--T ML Specific weight(重量) 22--T ML Pressure (压力) 21--T ML Force (力) 2-MTL Surface tension(张力) 2-MT Frequency (频率) 1-T Power (功率) 32-T ML Angular velocity (角速度) 1-T Rotational inertia (惯性) 2MLAngular acceleration (角加速度) 2-TTorque (转力距) 22-T ML Angular momentum (角动量) 12-T MLEntropy (能量) 22-T ML Energy (能量)22-T MLHeat22-L MLExample 1. Drag Force on a SubmarineWe are interested in the drag force experienced by a submarine. The main factors are Fluid velocity v,Characteristic dimension r (the length),Fluid density ρ,Fluid viscosity μ.Thus the model is f(D,v,r,ρ,μ)=0We haveD v rρμ2-MTL1-LT L 3-ML11--TMLTo find dimensionless(量纲) products 1)()()()()(11312=-----edcba TMLMLLLTMLTWe haveChoose a and e as free variables,then(1)a=1,e=0:b= -2,d=-1,c= -2,thusρρ221221rvDrDv==∏---(2)a=0,e=1:b= -1,d= -1,c= -1,thusρμμρvrrv==∏---1112Note that21∏is the Reynolds numberHence we have the model )(21∏=∏h,this is )(22ρμρvrhrvD=Suppose we use the model to test the drag force with rrm101=第十章Graphs of Functions as Models【军备竞赛能源危机】军备竞赛 Observations:(1) y is increasing, that is, y'>0. (2) y is concave up, that is, y''≤ 0. (3) If x=my, then y=y0 /sm.We propose the continuous model10,/0<<=s S y y y x ,Similary 10,/0<<=t t x x xy (S,t 为各自的生存率) (1) Change in 0y :If X increases its civil defense, then 0y and y' both increase. Therefore the curve y=f(x) shifts upward and has a larger slope than before.On the other hand, if missiles of Y are more effective, then 0y and y' decrease. Therefore the curve shifts downward and has a smaller slope than before.(2) Change in s:If missiles of Y are well protected, then s increases and y' decreases. Therefore the curve y=f(x) rotates downward and has a smaller slope than before.On the other hand, if the technology and weapon effectiveness of X ’s missiles is improved, then s decreases and y' increases. Therefore the curve rotates upward and has a larger slope than before.(3) Change in exchange ratio e=x/y:If X uses multiple warheads, then e increases. Therefore the curve y=f(x) rotates upward and has a larger slope than before.能源危机(供求曲线)SupposeS(q) = p* + α(q – q*), D(q) = p* – β(q – q*).After a tax of t, the new supply curve is S'(q).The new supply curve isS'(q) = p* + t + α(q – q*).To find the new equilibrium: S'(q) = D(q), that is, p* + t +α(q – q*) = p* – β(q – q*). Thusq1 = q* – t /(α+β) p1 = p* + βt /(α+β). Hence the price increase is p1 – p* = βt /(α+β). Thus,When D(q) is very steep, consumers will pay a larger portion of the tax; When S(q) is very steep, the industry will pay a larger portion of the tax.第十一章 Modeling with a Differential Equation 【画解的曲线(积分曲线)】 Example: Sketch solution curves (integral curves):)2)(1('-+=y y y Equilibrium: y = – 1, y = 2Equilibrium point y* is stable ify(t) →y* when y0 is close to y*Therefore the equilibrium y* = –1 is stable but y* = 2 is unstable.Example: Sketch solution curves (integral curves)第十二章Modification: If there is no competition, the model is{y k ym dt dy x k xa dt dx )1()1(21-=-=Logistic modelThen the model with competition is{ymnxkymdtdyxabykxadtdx)1()1(21--=--=。

美国(MCM)(ICM)试题(96年-09年)(英文版)

美国(MCM)(ICM)试题(96年-09年)(英文版)

美国大学生数学建模竞赛试题1996 American MCM Problems Problem AThe world's oceans contain an ambient noise field. Seismic disturbances, surface shipping, and marine mammals are sources that, in different frequency ranges,contribute to this field. We wish to consider how this ambient noise might be used to detect large moving objects, e.g., submarines located below the ocean surface. Assuming that a submarine makes no intrinsic noise, developa method for detecting the presence of a moving submarine, its size, and its direction of travel, using only information obtained by measuring changes to the ambient noise field. Begin with noise at one fixed frequency and amplitude.Problem BWhen determining the winner of a competition like the Mathematical Contest inModeling, there are generally a large number of papers to judge. Let's saythere are P=100 papers.A group of J judges is collected to accomplish thejudging. Funding for the contest constains both the number of judges that canbe obtained and amount of time that they can judge. For eample if P=100, thenJ=8 is typical.Ideally, each judge would read paper and rank-order them, but there are toomany papers for this. Instead, there will be a number of screening rounds inwhich each judge will read some number of papers and give them scores. Thensome selection scheme is used to reduce the number of papers under consideration: If the papers are rank-ordered, then the bottom 30% that eachjudge rank-orders could be rejected. Alternatively, if the judges do not rank-order, but instead give them numerical score (say, from 1 to 100),then all papers below some cut-off level could be rejected.The new pool of papers is then passed back to the judges, and the process is repeated.A concern is then the total number of papers that judge reads must besubstantially less than P. The process is stopped when there are only W papersleft. There are the winners. Typically for P=100, W=3.Your task is to determine a selection scheme, using a combination of rank-ordering, numerical scoring, and other methods, by which the final Wpapers will include only papers from among the "best" 2W papers. (By "best",we assume that there is an absolute rank-ordering to which all judges wouldagree.) For example, the top three papers. Among all such methods, the one thatrequired each judge to read the least number of papers is desired.Note the possibility of systematic bias in a numerical scoring scheme. For example, for a specific collection of papers, one judge could average 70points, while another could average 80 points. How would you scale your schemeto accommodate for changes in the contest parameters (P, J, and W)?1997 American MCM ProblemsProblem A The Velociraptor ProblemThe velociraptor,Velociraptor mongoliensis, was a predatory dinosaur that lived during the late Cretaceous period, approximately 75 million years ago. Paleontologists think that it was a very tenacious hunter, and may have hunted in pairs or largerpacks .Unfortunately, there is no way to observe its hunting behavior in the wild as can be done with modern mammalian predators. A group of paleontologists has approached your team and asked for help in modeling the hunting behavior of the velociraptor. They hope to compare your results with field data reported by biologists studying the behaviors of lions, tigers, and similar predatory animals.The average adult velociraptor was 3 meters long with a hip height of 0.5 meters and an approximate mass of 45 kg. It is estimated that the animal could run extremely fast at speed of 60 km/hr for about 15 seconds. After the initial burst of speed ,the animal needed to stop and recover from a buildup of lactic acid in its muscles.Suppose that velociraptor preyed on Thescelosaurus neglectus, a herbivorous biped approximately the same size as the Velociraptor. A biomachanical analysis of a fossilized Thescelosaurus indicates that it could run at a speed of about 50 km/hr. for long period of time.Part1Assuming the velociraptor is a solitary hunter, design a mathematical model that describe a hunting strategy for a single velociraptor stalking and chasing a single Thescelosaurus as well as the evasive strategy of the prey. Assume that the Thescelosaurus can always detect the velociraptor when it comes within 15 meters .but may detect the predator at even greater ranges (up to 50 meters depending upon the habitat and weather conditions. Additionally ,due to its physical structure and strength, the velociraptorhas a limited turning radius when running at full speed. This radius is estimated to be three times the animal's hip height. On the other hand, the Thescelosaurus is extremely agile and has a turning radius of 0.5 meters.Part2Assuming more realistically that the velociraptor hunted in pairs, design a new model that describes a hunting strategy for two velociraptor stalking and chasing a single Thescelosaurus as well as the evasive strategy of the prey. Use the other assumptions and limitations given in Part 1.Problem B Mix Well For Fruitful DiscussionsSmall group meeting for the discussions of important issues, particular long-range planning ,are gaining popularity. It is believed that large groups discourage productive discussion and that a dominant personality will usually control and direct the discussion. Thus ,in corporate board meetings the board will meet in small groups to discuss issues before meeting as a whole, these smaller groups still tun the risk of control by a dominant personality. In an attempt to reduce this danger it is common to schedule several sessions with a different mix of people in each group.A meeting of An Tostal Corporation will be attended by 29 Board Members of which nine are in-house members(i.e., corporate employees).The meeting is to be an all-day affair with three sessions scheduled for the morning and four for the afternoon. Each session will take 45 minutes, beginning on the hour from 9:00 A.M. to 4:00 P.M., with lunch scheduled at noon. Each morning session will consist of six discussion groups with each discussion group led by one of the corporation's six senior officers. None of these officers are board members. Thus each senior officers will not be involved in the afternoon sessions and each of these sessions will consist of only four different discussion groups.The president of the corporation wants a list of board-member assignment to discussion groups for each of the seven sessions. The assignments should achieve as much of a mix of the members as much as possible. The ideal assignment would have each board member in a discussion group the same number of times while minimizing common membership of groups for the different sessions.The assignment should also satisfy the following criteria:1.For the morning sessions ,no board member should be in the same senior officer's discussion group twice.2.No discussion group should contain a disproportionate number of in-house members.Give a list of assignments for members 1-9 and 10-29 and officers 1-6.Indicate how well the criteria in the previous paragraphs are met. Since it is possible that some board members will cancel at the last minute or that some not scheduled will show up, an algorithm that the secretary could use to adjust the assignments with an hour's notice would be appreciated. It would be ideal if the algorithm could also be used to make assignments for future meetings involving different levels of participation for each type of attendee.1998 American MCM ProblemsProblem A MRI ScannersIntroductionIndustrial medical diagnostic machines known as Magnetic Resonance Imager (MRI) scan a three-dimensional object such as a brain, and deliver their results in the form of a three-dimensional array of pixel. Each pixel consists of one number indicating a color or a shade of gray that encodes a measure of water concentration in a small region of the scanned object at the location of the pixel .For instance,0 can picture high water concentration in black (ventricles, blood vessels),128 can picture a medium water concentration in gray(brain nuclei and gray matter),and 255 can picture a low water density in white (liquid-rich white matter consisting of myelinated axons).Such MRI scanners also include facilities to picture on a screen any horizontal or vertical slice through the three-dimensional array (slices are parallel to any of the three Cartesian coordinate axes ).Algorithms for picturing slices through oblique planes ,however ,are proprietary .Current algorithms are limited in terms of the angles and parameter options available ;are implemented only on heavily used dedicated workstations ;lack input capabilities for marking points in the picture before slicing; and tend to blur and "feather out" sharp boundaries between the original pixels.A more faithful, flexible algorithm implemented on a personal computer would be useful.(1)for planning minimally invasive treatments,(2)for calibrating the MRI machines,(3)for investigating structures oriented obliquely in space, such as post-mortem tissue sections in a animal research,(4)for enabling cross-sections at any angle through a brain atlas consisting (4)for enabling cross-sections at any angle through a brain atlas consistingof black-and-white line drawingTo design such an algorithm, one can access the value and locations of the pixels, but not the initial data gathered by the scanners.ProblemDesign and test an algorithm that produces sections of three-dimensional arrays by planes in any orientation in space, preserving the original gray-scale value as closely as possible.Data SetsThe typical data set consists of a three-dimensional array A of numbers A(i,j,k) which indicates the density A(i,j,k) of the object at the location (x,y,z)i,j,k. Typically A(i,j,k) can range from 0 to 255.In most applications the data set is quite large.Teams should design data sets to test and demonstrate their algorithms. The data sets should reflect conditions likely Teams should design data sets to test and demonstrate their algorithms. The data sets should reflect conditions likely to be of diagnostic interest. Teams should also characterize data sets the limit the effectiveness of their algorithms.SummaryThe algorithm must produce a picture of the slice of the three-dimensional array by a plane in space. The plane can have any orientation and any location in space.(The plane can miss some or all data points.)The result of the algorithm should be a model of the density of the scanned object over the selected plane.Problem B Grade InflationBackgroundSome college administrators are concerned about the grading at A Better Class(ABC) college. On average, the faculty at ABC have been giving out high grades(the average grade now given out is an A-),and it is impossible to distinguish between the good and mediocre students .The terms of a very generous scholarship only allow the top 10% of the students to be funded, so a class ranking is required.The dean had the thought of comparing each student to the other students in each class ,and using this information to build up a ranking. For example, if a student obtains an A in a class in which all students obtain an A, then this student is only "average" in this class. On the other hand, if a student obtain the only A in a class, then that student is clearly "above average". Combining information from several classes might allow students to be placed in deciles (top 10%,next 10%,ect.)across the college.ProblemAssuming that the grades given out are(A+,A-,B+,B-,...)can the dean's idea be made to work?Assuming that the grades given out are only (A,B,C,...)can the dean's idea be made to work?Can any other schemes produce a desired ranking?A concern is that the grade in a single class could change many student's deciles. Is this possible?Data SetsTeams should design data sets to test and demonstrate their algorithms. Teams should characterize data sets that limit the effectiveness of their algorithms.Mathematical Contest in Modeling 1999 ProblemsProblem A - Deep ImpactFor some time, the National Aeronautics and Space Administration (NASA) has been considering the consequences of a large asteroid impact on the earth.As part of this effort, your team has been asked to consider the effects of such an impact were the asteroid to land in Antarctica. There are concerns that an impact there could have considerably different consequences than one striking elsewhere on the planet.You are to assume that an asteroid is on the order of 1000 m in diameter, and that it strikes the Antarctic continent directly at the South Pole.Your team has been asked to provide an assessment of the impact of such an asteroid. In particular, NASA would like an estimate of the amount and location of likely human casualties from this impact, an estimate of the damage done to the food production regions in the oceans of the southern hemisphere, and an estimate of possible coastal flooding caused by large-scale melting of the Antarctic polar ice sheet.Problem B - Unlawful AssemblyMany public facilities have signs in rooms used for public gatherings which state that it is "unlawful" for the rooms to be occupied by more than a specified number of people. Presumably, this number is based on the speed with which people in the room could be evacuated from the room's exits in case of an emergency. Similarly, elevators and other facilities often have "maximum capacities" posted.Develop a mathematical model for deciding what number to post on such a sign as being the "lawful capacity". As part of your solution discuss criteria, other than public safety in the case of a fire or other emergency, that might govern the number of people considered "unlawful" to occupy the room (or space). Also, for the model that you construct, consider the differences between a room with movable furniture such as a cafeteria (with tables and chairs), a gymnasium, a public swimming pool, and a lecture hall with a pattern of rows and aisles. You may wish to compare and contrast what might be done for a variety of different environments: elevator, lecture hall, swimming pool, cafeteria, or gymnasium. Gatherings such as rock concerts and soccer tournaments may present special conditions.Apply your model to one or more public facilities at your institution (or neighboring town). Compare your results with the stated capacity, if one is posted. If used, your model is likely to be challenged by parties with interests in increasing the capacity. Write an article for the local newspaper defending your analysis.2000 Mathematical Contest in ModelingProblem A Air traffic ControlDedicated to the memory of Dr. Robert Machol, former chief scientist of the Federal Aviation Agency To improve safety and reduce air traffic controller workload, the Federal Aviation Agency (FAA) is considering adding software to the air traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA has posed the following problems.Requirement A: Given two airplanes flying in space, when should the air traffic controller consider the objects to be too close and to require intervention?Requirement B: An airspace sector is the section of three-dimensional airspace that one air traffic controller controls. Given any airspace sector, how do we measure how complex it is from an air traffic workload perspective? To what extent is complexity determined by the number of aircraft simultaneously passing through that sector (1) at any one instant?(2) during any given interval of time?(3) during a particular time of day? How does the number of potential conflicts arising during those periods affect complexity?Does the presence of additional software tools to automatically predict conflicts and alert the controller reduce or add to this complexity?In addition to the guidelines for your report, write a summary (no more than two pages) that the FAA analyst can present to Jane Garvey, the FAA Administrator, to defend your conclusions.Problem B Radio Channel AssignmentsWe seek to model the assignment of radio channels to a symmetric network of transmitter locations over a large planar area, so as to avoid interference. One basic approach is to partition the region into regular hexagons in a grid (honeycomb-style), as shown in Figure 1, where a transmitter is located at the center of each hexagon.Figure 1An interval of the frequency spectrum is to be allotted for transmitter frequencies. The interval will be divided into regularly spaced channels, which we represent by integers 1, 2, 3, ... . Each transmitter will be assigned one positive integer channel. The same channel can be used at many locations, provided that interference from nearby transmitters is avoided. Our goal is to minimize the width of the interval in the frequency spectrum that is needed to assign channels subject to some constraints. This is achieved with the concept of a span. The span is the minimum, over all assignments satisfying the constraints, of the largest channel used at any location. It is not required that every channel smallerthan the span be used in an assignment that attains the span.Let s be the length of a side of one of the hexagons. We concentrate on the case that there are two levels of interference.Requirement A: There are several constraints on frequency assignments. First, no two transmitters within distance of each other can be given the same channel. Second, due to spectral spreading, transmitters within distance 2s of each other must not be given the same or adjacent channels: Their channels must differ by at least 2. Under these constraints, what can we say about the span in,Requirement B: Repeat Requirement A, assuming the grid in the example spreads arbitrarily far in all directions.Requirement C: Repeat Requirements A and B, except assume now more generally that channels for transmitters within distance differ by at least some given integer k, while those at distance at most must still differ by at least one. What can we say about the span and about efficient strategies for designing assignments, as a function of k?Requirement D: Consider generalizations of the problem, such as several levels of interference or irregular transmitter placements. What other factors may be important to consider?Requirement E: Write an article (no more than 2 pages) for the local newspaper explaining your findings.2001 Mathematical Contest in Modeling (MCM)Problem A: Choosing a Bicycle WheelCyclists have different types of wheels they can use on their bicycles. The two basic typesof wheels are those constructed using wire spokes and those constructed of a solid disk (see Figure 1) The spoked wheels are lighter, but the solid wheels are more aerodynamic.A solid wheel is never used on the front for a road race but can be used on the rear of the bike.Professional cyclists look at a racecourse and make an educated guess as to what kind of wheels should be used. The decision is based on the number and steepness of the hills, the weather, wind speed, the competition,and other considerations. The director sportif of your favorite team would like to have a better system in place and has asked your team for information to help determine what kind of wheel should be used fora given course.Figure 1: A solid wheel is shown on the left and a spoked wheel is shown on the right. The director sportif needs specific information to help make a decision and has asked your team to accomplish the tasks listed below. For each of the tasks assume that the same spoked wheel will always be used on the front butthere is a choice of wheels for the rear.Task 1. Provide a table iving the wind peed at which the power required for a solid rear wheel is less than for a spoked rear wheel. The table should include the wind speeds for different road grades starting from zero percent to ten percent in one percent increments. (Road grade is defined to be the ratio of the total rise of a hill divided by the length of the road. If the hill is viewed as a triangle, the grade is the sine of the angle at the bottom of the hill.) A rider starts at the bottom of the hill at a speed of 45 kph, and the deceleration of the rider is proportional to the road grade.A rider will lose about 8 kph for a five percent grade over 100 meters.Task 2. Provide an example of how the table could be used for a specific time trial courseTask 3. Determine if the table is an adequate means for deciding on the wheel configuration and offer other suggestions as to how to make this decision.Problem B: Escaping a Hurricane's Wrath (An Ill Wind...)Evacuating the coast of South Carolina ahead of the predicted landfallof Hurricane Floydin 1999 led to a monumental traffic jam. Traffic slowed to a standstill on Interstate I-26, which is the principal route going inland from Charleston to the relatively safe haven of Columbia in the center of the state. What is normally an easy two-hour drive took up to 18 hours to complete. Many cars simply ran out of gas along the way.Fortunately, Floyd turned north and spared the state this time, but the public outcry is forcing state officials to find ways to avoid a repeat of this traffic nightmare.The principal proposal put forth to deal with this problem is the reversalof traffic onI-26, so that both sides, including the coastal-bound lanes,have traffic headed inland from Charleston to Columbia. Plans to carry this out have been prepared (and posted on the Web)by the South Carolina Emergency Preparedness Division. Traffic reversal on principal roads leading inland from Myrtle Beach and Hilton Head is also planned.A simplified map of South Carolina is shown. Charleston has approximately 500,000 people, Myrtle Beach has about 200,000 people, and another 250,000 people are spread out along the rest of the coastal strip. (More accurate data,if sought, are widely available.)The interstates have two lanes of traffic in each direction except in the metropolitan areas where they have three. Columbia, another metro area of around 500,000 people, does not have sufficient hotel space to accommodate the evacuees (including some coming from farther northby other routes), so some traffic continues outbound on I-26 towards Spartanburg; on I-77 north to Charlotte; and on I-20 east to Atlanta. In 1999, traffic leaving Columbia going northwest was moving only very slowly. Construct a model for the problem to investigate what strategies may reduce the congestion observed in 1999. Here are the questions that need to be addressed:1.Under what conditions does the plan for turning the two coastal-bound lanes of I-26 into two lanes of Columbia-bound traffic, essentially turning the entire I-26 into one-way traffic, significantly improve evacuation traffic flow?2.In 1999, the simultaneous evacuation of the state's entire coastal region was ordered. Would the evacuation traffic flow improve under an alternative strategy that staggers the evacuation, perhaps county-by-county over some time period consistent with the pattern of how hurricanes affect the coast?3.Several smaller highways besides I-26 extend inland from the coast. Under what conditions would it improve evacuation flow to turn around traffic on these?4.What effect would it have on evacuation flow to establish more temporary shelters in Columbia, to reduce the traffic leaving Columbia?5.In 1999, many families leaving the coast brought along their boats, campers, and motor homes. Many drove all of their cars. Under what conditions should there be restrictionson vehicle types or numbers of vehicles brought in order to guarantee timely evacuation? 6.It has been suggested that in 1999 some of the coastal residents of Georgia and Florida, who were fleeing the earlier predicted landfalls of Hurricane Floyd to the south, came upI-95 and compounded the traffic problems. How big an impact can they have on the evacuation traffic flow? Clearly identify what measures of performance are used to compare strategies. Required: Prepare a short newspaper article, not to exceed two pages,explaining the results and conclusions of your study to the public.问题 A: 选择自行车车轮骑自行车的人有几种不同类型的车轮可以用在他们的自行车上。

1999年世界大学生数学竞赛复试试题及详细答案

1999年世界大学生数学竞赛复试试题及详细答案
−1 6n . ∞
if n is divisible by 5, otherwise it is
1 5·6n . n
Thus,
k=1
p5k is
1 5
+
4 5·6n
if n is divisible by 5, otherwise it is

3. Assume that x1 , . . . , xn ≥ −1 and
i=1
x3 i = 0. Prove that
n
xi ≤
i=1
n 3.
(20 points)
2
Solution. The inequality 3 1 1 0 ≤ x3 − x + = (x + 1) x − 4 4 2 holds for x ≥ −1. Substituting x1 , . . . , xn , we obtain

f (x) =
k=1
p k xk =
x + x2 + x3 + x4 + x5 + x6 6
n
.
(The last equality can be easily proved by induction.)

Our goal is to compute the sum
k=1 ∞
π π p5k . Let ε = cos 25 + i sin 25 be the first 5th root of unity. Then
6th INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS Keszthely, 1999. Problems and solutions on the second day

历年美国大学生数学建模竞赛试题MCM.(翻译版)doc

历年美国大学生数学建模竞赛试题MCM.(翻译版)doc

1985 年美国大学生数学建模竞赛MCM 试题1985年MCM:动物种群选择合适的鱼类和哺乳动物数据准确模型。

模型动物的自然表达人口水平与环境相互作用的不同群体的环境的重要参数,然后调整账户获取表单模型符合实际的动物提取的方法。

包括任何食物或限制以外的空间限制,得到数据的支持。

考虑所涉及的各种数量的价值,收获数量和人口规模本身,为了设计一个数字量代表的整体价值收获。

找到一个收集政策的人口规模和时间优化的价值收获在很长一段时间。

检查政策优化价值在现实的环境条件。

1985年MCM B:战略储备管理钴、不产生在美国,许多行业至关重要。

(国防占17%的钴生产。

1979年)钴大部分来自非洲中部,一个政治上不稳定的地区。

1946年的战略和关键材料储备法案需要钴储备,将美国政府通过一项为期三年的战争。

建立了库存在1950年代,出售大部分在1970年代初,然后决定在1970年代末建立起来,与8540万磅。

大约一半的库存目标的储备已经在1982年收购了。

建立一个数学模型来管理储备的战略金属钴。

你需要考虑这样的问题:库存应该有多大?以什么速度应该被收购?一个合理的代价是什么金属?你也要考虑这样的问题:什么时候库存应该画下来吗?以什么速度应该是画下来吗?在金属价格是合理出售什么?它应该如何分配?有用的信息在钴政府计划在2500万年需要2500万磅的钴。

美国大约有1亿磅的钴矿床。

生产变得经济可行当价格达到22美元/磅(如发生在1981年)。

要花四年滚动操作,和thsn六百万英镑每年可以生产。

1980年,120万磅的钴回收,总消费的7%。

1986 年美国大学生数学建模竞赛MCM 试题1986年MCM A:水文数据下表给出了Z的水深度尺表面点的直角坐标X,Y在码(14数据点表省略)。

深度测量在退潮。

你的船有一个五英尺的草案。

你应该避免什么地区内的矩形(75200)X(-50、150)?1986年MCM B:Emergency-Facilities位置迄今为止,力拓的乡牧场没有自己的应急设施。

历届美国数学建模竞赛赛题

历届美国数学建模竞赛赛题

? 对正常组织或器官的整个体积照射要剂量总和最小
对指定的正常组织点的剂量要限制在忍耐剂量以下?
使关键体积所需的最大剂量达到最小?
在Gamma单元治疗方案中,有以下限制:
禁止“shot”伸展到目标以外?
禁止“shot”交迭(避免热点)?
? 用有效的剂量覆盖尽可能多的目标体积,但至少90%目标体积要被“shot”覆盖
你的任务是设计一个算法,随着风力条件的变化,运用风速计给出的数据来调整由喷泉射出的水流。
AMCM2002问题-B航空公司超员订票
你备好行装准备去旅行,访问New York城的一位挚友。在检票处登记之后,航空公司职员告诉说,你的航班已经超员订票。乘客们应当马上登记以便确定他们是否还有一个座位。
任务1. 提供一个给出风速的表格,在这种速度下实体后轮所需要的体能少于辐条后轮。这个表格应当包括相应于从百分之零到百分之十增量为百分之一的不同公路陡度的风速。(公路陡度定义为一座山丘的总升高除以公路长度。如果把山丘看作一个三角形,它的陡度是指山脚处倾角的正弦。)一位骑手以初始速度45kph从山脚出发,他的减速度与公路陡度成正比。对于百分之五的陡度,骑上100米车速要下降8kph左右。
2005A.水灾计划
南卡罗来纳州中部的磨累河是由北部的一个巨大水坝形成的,这是在1930年为了发电而修建的,模拟一起洪水淹没下游的事件,这起事件是由于一次灾难性的地震损毁了水坝造成的。
两个问题:
Rawls Creek是水坝下游流入Saluda河的一条终年流动的河流,则当水坝损毁后在Rawls Creek将会出现多大的洪流,洪水的波及面将有多大?
AMCM2002问题-A风和喷水池
在一个楼群环绕的宽阔的露天广场上,装饰喷泉把水喷向高空。刮风的日子,风把水花从喷泉吹向过路行人。喷泉射出的水流受到一个与风速计(用于测量风的速度和方向)相连的机械装置控制,前者安装在一幢邻近楼房的顶上。这个控制的实际目标,是要为行人在赏心悦目的景象和淋水浸湿之间提供可以接受的平衡:风刮得越猛,水量和喷射高度就越低,从而较少的水花落在水池范围以外。

美国数学建模比赛历年试题

美国数学建模比赛历年试题

1985~2014年美国大学生数学建模竞赛题目集锦目录1985 MCM A: Animal Populations (3)1985 MCM B: Strategic Reserve Management (3)1986 MCM A: Hydrographic Data (4)1986 MCM B: Emergency-Facilities Location (4)1987 MCM A: The Salt Storage Problem (5)1987 MCM B: Parking Lot Design (5)1988 MCM A: The Drug Runner Problem (5)1988 MCM B: Packing Railroad Flatcars (6)1989 MCM A: The Midge Classification Problem (6)1989 MCM B: Aircraft Queueing (6)1990 MCM A: The Brain-Drug Problem (7)1990 MCM B: Snowplow Routing (8)1991 MCM A: Water Tank Flow (8)1991 MCM B: The Steiner Tree Problem (8)1992 MCM A: Air-Traffic-Control Radar Power (9)1992 MCM B: Emergency Power Restoration (9)1993 MCM A: Optimal Composting (11)1993 MCM B: Coal-Tipple Operations (12)1994 MCM A: Concrete Slab Floors (12)1994 MCM B: Network Design (13)1995 MCM A: Helix Construction (14)1995 MCM B: Faculty Compensation (14)1996 MCM A: Submarine Tracking (14)1996 MCM B: Paper Judging (14)1997 MCM A: The Velociraptor Problem (15)1997 MCM B: Mix Well for Fruitful Discussions (16)1998 MCM A: MRI Scanners (17)1998 MCM B: Grade Inflation (18)1999 MCM A: Deep Impact (19)1999 MCM B: Unlawful Assembly (20)2000 MCM A: Air Traffic Control (20)2000 MCM B: Radio Channel Assignments (21)2001 MCM A: Choosing a Bicycle Wheel (22)2001 MCM B: Escaping a Hurricane's Wrath (An Ill Wind...) .. (23)2002 MCM A: Wind and Waterspray (25)2002 MCM B: Airline Overbooking (26)2003 MCM A: The Stunt Person (26)2003 MCM B: Gamma Knife Treatment Planning (27)2004 MCM A: Are Fingerprints Unique? (28)2004 MCM B: A Faster QuickPass System (28)2005 MCM A: Flood Planning (29)2005 MCM B: Tollbooths (29)2006 MCM A: Positioning and Moving Sprinkler Systems for Irrigation.. 29 2006 MCM B: Wheel Chair Access at Airports (30)2007 MCM A: Gerrymandering (31)2007 MCM B: The Airplane Seating Problem (32)2008 MCM A: Take a Bath (32)2008 MCM B: Creating Sudoku Puzzles (33)2009 MCM A: Designing a Traffic Circle (33)2009 MCM B: Energy and the Cell Phone (33)2010 MCM A: The Sweet Spot (35)2010 MCM B: Criminology (35)2011 MCM A: Snowboard Course (36)2011 MCM B: Repeater Coordination (36)2012 MCM A: The Leaves of a Tree (37)2012 MCM B: Camping along the Big Long River (37)2013 MCM A: The Ultimate Brownie Pan (38)2013 MCM B: Water, Water, Everywhere (38)2014 MCM A:The Keep-Right-Except-To-Pass Rule (39)2014 MCM B:College Coaching Legends (39)1985 MCM A: Animal PopulationsChoose a fish or mammal for which appropriate data are available to model it accurately. Model the animal's natural interactions with its environment by expressing population levels of different groups in terms of the significant parameters of the environment. Then adjust the model to account for harvesting in a form consistent with the actual method by which the animal is harvested. Include any outside constraints imposed by food or space limitations that are supported by the data.Consider the value of the various quantities involved, the number harvested, and the population size itself, in order to devise a numerical quantity that represents the overall value of the harvest. Find a harvesting policy in terms of population size and time that optimizes the value of the harvest over a long period of time. Check that the policy optimizes that value over a realistic range of environmental conditions.1985 MCM B: Strategic Reserve ManagementCobalt, which is not produced in the US, is essential to a number of industries. (Defense accounted for 17% of the cobalt production in 1979.) Most cobalt comes from central Africa, a politically unstable region. The Strategic and Critical Materials Stockpiling Act of 1946 requires a cobalt reserve that will carry the US through a three-year war. The government built up a stockpile in the 1950s, sold most of it off in the early 1970s, and then decided to build it up again in the late 1970s, with a stockpile goal of 85.4 million pounds. About half of this stockpile had been acquired by 1982.Build a mathematical model for managing a stockpile of the strategic metal cobalt. You will need to consider such questions as:▪How big should the stockpile be?▪At what rate should it be acquired?▪What is a reasonable price to pay for the metal?You will also want to consider such questions as:▪At what point should the stockpile be drawn down?▪At what rate should it be drawn down?▪At what price is it reasonable to sell the metal?▪How should it be allocated?Useful Information on CobaltThe government has projected a need ot 25 million pounds of cobalt in 1985.The U.S. has about 100 million pounds of proven cobalt deposits. Production becomes economically feasible when the price reaches $22/lb (as occurred in 1981). It takes four years to get operations rolling, and thsn six million pounds per year can be produced.In 1980, 1.2 million pounds of cobalt were recycled, 7% of total consumption.1986 MCM A: Hydrographic DataThe table below gives the depth Z of water in feet for surface points with rectangular coordinates X, Y in yards [table of 14 data points omitted]. The depth measurements were taken at low tide. Your ship has a draft of five feet. What region should you avoid within the rectangle (75,200) x (-50, 150)?The township of Rio Rancho has hitherto not had its own emergency facilities. It has secured funds to erect two emergency facilities in 1986, each of which will combine ambulance, fire, and police services. Figure 1 indicates the demand [figure omitted], or number of emergencies per square block, for 1985. The ―L‖ region in the north is an obstacle, while the rectangle in the south is a part with shallow pond. It takes an emergency vehicle an average of 15 seconds to go one block in the N-S direction and 20 seconds in the E-Wdirection. Your task is to locate the two facilities so as to minimize the total response time.▪Assume that the demand is concentrated at the center of the block and that the facilities will be located on corners.▪Assume that the demand is uniformly distributed on the streets bordering each block and that the facilities may be located anywhere on the streets.1987 MCM A: The Salt Storage ProblemFor approximately 15 years, a Midwestern state has stored salt used on roads in the winter in circular domes. Figure 1 shows how salt has been stored in the past. The salt is brought into and removed from the domes by driving front-end loaders up ramps of salt leading into the domes. The salt is piled 25 to 30 ft high, using the buckets on the front-end loaders.Recently, a panel determined that this practice is unsafe. If the front-end loader gets too close to the edge of the salt pile, the salt might shift, and the loader could be thrown against the retaining walls that reinforce the dome. The panel recommended that if the salt is to be piled with the use of the loaders, then the piles should be restricted to a matimum height of 15 ft.Construct a mathematical model for this situation and find a recommended maximum height for salt in the domes.1987 MCM B: Parking Lot DesignThe owner of a paved, 100' by 200' , corner parking lot in a New England town hires you to design the layout, that is, to design how the ``lines are to be painted. You realize that squeezing as many cars into the lot as possible leads to right-angle parking with the cars aligned side by side. However, inexperienced drivers have difficulty parking their cars this way, which can give rise to expensive insurance claims. To reduce the likelihood of damage to parked vehicles, the owner might then have to hire expert drivers for ``valet parking. On the other hand, most drivers seem to have little difficulty in parking in one attempt if there is a large enough ``turning radius'' from the access lane. Of course, the wider the access lane, the fewer cars can be accommodated in the lot, leading to less revenue for the parking lot owner.1988 MCM A: The Drug Runner ProblemTwo listening posts 5.43 miles apart pick up a brief radio signal. The sensing devices were oriented at 110 degrees and 119 degrees, respectively, when the signal was detected; and they are accurate to within 2 degrees. The signalcame from a region of active drug exchange, and it is inferred that there is a powerboat waiting for someone to pick up drugs. it is dusk, the weather is calm, and there are no currents. A small helicopter leaves from Post 1 and is able to fly accurately along the 110 degree angle direction. The helicopter's speed is three times the speed of the boat. The helicopter will be heard when it gets within 500 ft of the boat. This helicopter has only one detection device, a searchlight. At 200 ft, it can just illuminate a circular region with a radius of 25 ft.▪Develop an optimal search method for the helicopter.▪Use a 95% confidence level in your calculations.1988 MCM B: Packing Railroad FlatcarsTwo railroad flatcars are to be loaded with seven types of packing crates. The crates have the same width and height but varying thickness (t, in cm) and weight (w, in kg). Table 1 gives, for each crate, the thickness, weight, and number available [table omitted]. Each car has 10.2 meters of length available for packing the crates (like slices of toast) and can carry up to 40 metric tons. There is a special constraint on the total number of C_5, C_6, and C_7 crates because of a subsequent local trucking restriction: The total space (thickness) occupied by these crates must not exceed 302.7 cm. Load the two flatcars (see Figure 1) so as to minimize the wasted floor space [figure omitted].1989 MCM A: The Midge Classification ProblemTwo species of midges, Af and Apf, have been identified by biologists Grogan and Wirth on the basis of antenna and wing length (see Figure 1). It is important to be able to classify a specimen as Af of Apf, given the antenna and wing length.1. Given a midge that you know is species Af or Apf, how would you goabout classifying it?2. Apply your method to three specimens with (antenna, wing) lengths(1.24,1.80),(1.28,1.84),(1.40,2.04).3. Assume that the species is a valuable pollinator and species Apf is acarrier of a debilitating disease. Would you modify your classificationscheme and if so, how?1989 MCM B: Aircraft QueueingA common procedure at airports is to assign aircraft (A/C) to runways on afirst-come-first-served basis. That is, as soon as an A/C is ready to leave the gate (―push-back‖), the pilot calls ground control and is added to the queue. Suppose that a control tower has access to a fast online database with the following information for each A/C:▪the time it is scheduled for pushback;▪the time it actually pushes back; the number of passengers who are scheduled to make a connection at the next stop, as well as the time to make that connection; and▪the schedule time of arrival at its next stop Assume that there are seven types of A/C with passenger capacities varying from 100 to 400 in steps of50. Develop and analyze a mathematical model that takes into accountboth the travelers' and airlines' satisfaction.1990 MCM A: The Brain-Drug ProblemResearches on brain disorders test the effects of the new medical drugs – for example, dopamine against Parkinson's disease – with intracerebral injections. To this end, they must estimate the size and the sape of the spatial distribution of the drug after the injection, in order to estimate accurately the region of the brain that the drug has affected.The research data consist of the measurements of the amounts of drug in each of 50 cylindrical tissue samples (see Figure 1 and Table 1). Each cylinder has length 0.76 mm and diameter 0.66 mm. The centers of the parallel cylinders lie on a grid with mesh 1mm X 0.76mm X 1mm, so that the sylinders touch one another on their circular bases but not along their sides, as shown in the accompanying figure. The injection was made near the center of the cylinder with the highest scintillation count. Naturally, one expects that there is a drug also between the cylinders and outside the region covered by the samples.Estimate the distribution in the region affected by the drug.One unit represents a scintillation count, or 4.753e-13 mole of dopamine. For example, the table shows that the middle rear sylinder contails 28353 units. Table 1. Amounts of drug in each of 50 cylindrical tissue samples.Rear vertical sectionThe solid lines of the map (see Figure 1) represent paved two-lane county roads in a snow removal district in Wicomico County, Maryland [figure omitted]. The broken lines are state highways. After a snowfall, two plow-trucks are dispatched from a garage that is about 4 miles west of each of the two points (*) marked on the map. Find an efficient way to use the two trucks to sweep snow from the county roads. The trucks may use the state highways to access the county roads. Assume that the trucks neither break down nor get stuck and that the road intersections require no special plowing techniques.1991 MCM A: Water Tank FlowSome state water-right agencies require from communities data on the rate of water use, in gallons per hour, and the total amount of water used each day. Many communities do not have equipment to measure the flow of water in or out of the municipal tank. Instead, they can measure only the level of water in the tank, within 0.5% accuracy, every hour. More importantly, whenever the level in the tank drops below some minimum level L, a pump fills the tank up to the maximum level, H; however, there is no measurement of the pump flow either. Thus, one cannot readily relate the level in the tank to the amount of water used while the pump is working, which occurs once or twice per day, for a couple of hours each time. Estimate the flow out of the tank f(t) at all times, even when the pump is working, and estimate the total amount of water used during the day. Table 1 gives real data, from an actual small town, for oneday[ table omitted]. The table gives the time, in, since the first measurement, and the level of water in the tank, in hundredths of a foot. For example, after 3316 seconds, the depth of water in the tank reached 31.10 feet. The tank is a vertical circular cylinder, with a height of 40 feet and a diameter of 57 feet. Usually, the pump starts filling the tank when the level drops to about 27.00 feet, and the pump stops when the level rises back to about 35.50 feet.1991 MCM B: The Steiner Tree ProblemThe cost for a communication line between two stations is proportional to the length of the line. The cost for conventional minimal spanning trees of a set of stations can often be cut by introducing ―phantom‖ stations and then constructing a new Steiner tree. This device allows costs to be cut by up to13.4% (= 1- sqrt(3/4)). Moreover, a network with n stations never requires more than n-2 points to construct the cheapest Steiner tree. Two simple cases are shown in Figure 1.For local networks, it often is necessary to use rectilinear or ―checker-board‖ distances, instead of straight Euclidean lines. Distances in this metric are computed as shown in Figure 2.Suppose you wish to design a minimum costs spanning tree for a local network with 9 stations. Their rectangular coordinates are: a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0) i(10,3). You are restricted to using rectiline ar lines. Moreover, all ―phantom‖ stations must be located at lattice points (i.e., the coordinates must be integers). The cost for each line is its length.1. Find a minimal cost tree for the network.2. Suppose each stations has a cost w*d^(3/2), where d=degree of thestation. If w=1.2, find a minimal cost tree.3. Try to generalize this problem1992 MCM A: Air-Traffic-Control Radar PowerYou are to determine the power to be radiated by an air-traffic-control radar at a major metropolitan airport. The airport authority wants to minimize the power of the radar consistent with safety and cost. The authority is constrained to operate with its existing antennae and receiver circuitry. The only option that they are considering is upgrading the transmitter circuits to make the radar more powerful. The question that you are to answer is what power (in watts) must be released by the radar to ensure detection of standard passenger aircraft at a distance of 100 kilometers.1992 MCM B: Emergency Power RestorationPower companies serving coastal regions must have emergency response systems for power outages due to storms. Such systems require the input of data that allow the time and cost required for restoration to be estimated and the ―value‖ of the outage judged by objective criteria. In the past, Hypothetical Electric Company (HECO) has been criticized in the media for its lack of a prioritization scheme.You are a consultant to HECO power company. HECO possesses a computerized database with real time access to service calls that currently require the following information:▪time of report,▪type of requestor,▪estimated number of people affected, and▪location (x,y).Cre sites are located at coordinates (0,0) and (40,40), where x and y are in miles. The region serviced by HECO is within -65 < x < 60 and -50 < y < 50. The region is largely metropolitan with an excellent road network. Crews must return to their dispatch site only at the beginning and end of shift. Company policy requires that no work be initiated until the storm leaves the area, unless the facility is a commuter railroad or hospital, which may be processed immediately if crews are available.HECO has hired you to develop the objective criteria and schedule the work for the storm restoration requirements listed in Table 1 using their work force described in Table 2. Note that the first call was received at 4:20 A.M. and that the storm left the area at 6:00 A.M. Also note that many outages were not reported until much later in the day.HECO has asked for a technical rep ort for their purposes and an ―executive summary‖ in laymen's terms that can be presented to the media. Further, they would like recommendations for the future. To determine your prioritized scheduling system, you will have to make additional assumptions. Detail those assumptions. In the future, you may desire additional data. If so, detail the information desired.Table 1. Storm restoration requirements. (table incomplete)An environmentally conscious institutional cafeteria is recycling customers' uneaten food into compost by means of microorganisms. Each day, the cafeteria blends the leftover food into a slurry, mixes the slurry with crisp salad wastes from the kitchen and a small amount of shredded newspaper, and feeds the resulting mixture to a culture of fungi and soil bacteria, which digest slurry, greens, and papers into usable compost. The crisp green provide pockets of oxygen for the fungi culture, and the paper absorbs excess humidity. At times, however, the fungi culture is unable or unwilling to digest as much of the leftovers as customers leave; the cafeteria does not blame the chef for the fungi culture's lack of appetite. Also, the cafeteria has received offers for the purchase of large quantities of it compost. Therefore, the cafeteria is investigating ways to increase its production of compost. Since it cannot yet afford to build a new composting facility, the cafeteria seeks methods to accelerate the fungi culture's activity, for instance, by optimizing the fungi culture's environment (currently held at about 120 F and 100% humidity), or by optimizing the composition of the moisture fed to the fungi culture, or both. Determine whether any relation exists between the proportions of slurry, greens, and paper in the mixture fed to the fungi culture, and the rate at which the fungi culture composts the mixture. if no relation exists, state so. otherwise, determine what proportions would accelerate the fungi culture's activity. In addition to the technical report following the format prescribed in the contest instructions, provide a one-page nontechnical recommendation forimplementation for the cafeteria manager. Table 1 shows the composition of various mixtures in pounds of each ingredient kept in separate bins, and the time that it took the fungi to culture to compost the mixtures, from the date fed to the date completely composted [table omitted].1993 MCM B: Coal-Tipple OperationsThe Aspen-Boulder Coal Company runs a loading facility consisting of a large coal tipple. When the coal trains arrive, they are loaded from the tipple. The standard coal train takes 3 hours to load, and the tipple's capacity is 1.5 standard trainloads of coal. Each day, the railroad sends three standard trains to the loading facility, and they arrive at any time between 5 A.M. and 8 P.M. local time. Each of the trains has three engines. If a train arrives and sits idle while waiting to be loaded, the railroad charges a special fee, called a demurrage. The fee is $5,000 per engine per hour. In addition, a high-capacity train arrives once a week every Thursday between 11 A.M. and 1 P.M. This special train has five engines and holds twice as much coal as a standard train. An empty tipple can be loaded directly from the mine to its capacity in six hours by a single loading crew. This crew (and its associated equipment) cost $9,000 per hour. A second crew can be called out to increase the loading rate by conducting an additional tipple-loading operation at the cost of $12,000 per hour. Because of safety requirements, during tipple loading no trains can be loaded. Whenever train loading is interrupted to load the tipple, demurrage charges are in effect.The management of the Coal Company has asked you to determine the expected annual costs of this tipple's loading operations. Your analysis should include the following considerations:▪How often should the second crew be called out?▪What are the expected monthly demurrage costs?▪If the standard trains could be scheduled to arrive at precise times, what daily schedule would minimize loading costs? Would a third tipple-loading crew at $12,000 per hour reduce annual operations costs?▪Can this tipple support a fourth standard train every day?1994 MCM A: Concrete Slab FloorsThe U.S. Dept. of Housing and Urban Development (HUD) is considering constructing dwellings of various sizes, ranging from individual houses to large apartment complexes. A principal concern is to minimize recurring costs to occupants, especially the costs of heating and cooling. The region in which the construction is to take place is temperate, with a moderate variation in temperature throughout the year.Through special construction techniques, HUD engineers can build dwellings that do not need to rely on convection- that is, there is no need to rely on opening doors or windows to assist in temperature variation. The dwellings will be single-story, with concrete slab floors as the only foundation. You have been hired as a consultant to analyze the temperature variation in the concrete slab floor to determine if the temperature averaged over the floor surface can be maintained within a prescribed comfort zone throughout the year. If so, what size/shape of slabs will permit this?Part 1, Floor Temperature: Consider the temperature variation in a concrete slab given that the ambient temperature varies daily within the ranges given Table 1. Assume that the high occurs at noon and the low at midnight. Determine if slabs can be designed to maintain a temperature averaged over the floor surface within the prescribed comfort zone considering radiation only. Initially, assume that the heat transfer into the dwelling is through the exposed perimeter of the slab and that the top and bottom of the slabs are insulated. Comment on the appropriateness and sensitivity of these assumptions. If you cannot find a solution that satisfies Table 1, can you find designs that satisfy a Table 1 that you propose?and extend the analysis to temperature variation within the single-story dwelling. Can the house be kept within the comfort zone?Part 3, Cost of Construction: Suggest a design that considers HUD's objective of reducing or eliminating heating and cooling costs, considering construction restrictions and costs.1994 MCM B: Network DesignIn your company, information is shared among departments on a daily basis. This information includes the previous day's sales statistics and current production guidance. It is important to get this information out as quickly as possible. [Network diagram (with 5 nodes and 7 capacitated edges) omitted.] We are interested in scheduling transfers in an optimal way to minimize the total time it takes to complete them all. This minimum total time is called the makespan. Consider the three following situations for your company: [Three more network diagrams (on roughly 20 nodes each) omitted.]1995 MCM A: Helix ConstructionA small biotechnological company must design, prove, program and test a mathematical algorithm to locate ―in real time‖ all the inter sections of a helix and a plane in general positions in space. Design, justify, program and test a method to compute all the intersections of a plane and a helix, both in general positions (at any locations and with any orientations) in space. A segment of the helix may represent, for example, a helicoidal suspension spring or a piece of tubing in a chemical or medical apparatus. Theoretical justification of the proposed algorithm is necessary to verify the solution from several points of view, for instance, through mathematical proofs of parts of the algorithm, and through tests of the final program with known examples. Such documentation and tests will be required by government agencies for medical use.1995 MCM B: Faculty CompensationAluacha Balaclava College, and undergraduate facility, has just hired a new Provost whose first priority is the institution of a fair and reasonablefaculty-compensation plan. She has hired your consulting team to design a compensation system that reflects the following circumstances and principles: [Three paragraphs of details omitted] Design a new pay system, first without cost-of-living increases. Incorporate cost-of-living increases, and then finally, design a transition process for current faculty that will move all salaries towards your system without reducing anyone's salary. The Provost requires a detailed compensation system plan for implementation, as well as a brief, clear, executive summary outlining the model, its assumptions, strengths, weaknesses and expected results, which she can present to the Board and faculty. [A detailed table of current salaries is omitted.]1996 MCM A: Submarine TrackingThe world's oceans contain an ambient noise field. Seismic disturbances, surface shipping, and marine mammals are sources that, in different frequency ranges, contribute to this field. We wish to consider how this ambient noise might be used to detect large maving objects, e.g., submarines located below the ocean surface. Assuming that a submarine makes no intrinsic noise, develop a method for detecting the presence of a moving submarine, its speed, its size, and its direction of travel, using only information obtained by measuring changes to the ambient noise field. Begin with noise at one fixed frequency and amplitude.1996 MCM B: Paper JudgingWhen determining the winner of a competition like the Mathematical Contest in Modeling, there are generally a large number of papers to judge. Let's say there are P=100 papers. A group of J judges is collected to accomplish the。

数模1998-2016年历年美赛题目(中文)

数模1998-2016年历年美赛题目(中文)

2016 年美赛题目翻译Program A一个人用热水从一个水龙头里灌满一个浴缸,然后安顿在浴缸中,清洗和放松。

不幸的是,浴缸不是一个温泉式浴缸,一个二次加热系统和循环射流,而是一个简单的水容器。

过了一会儿,洗澡就明显地凉快,所以人增加了一个恒定滴热水从水龙头加热洗浴用水。

该浴缸的设计是在这样一种方式,当浴缸达到容量,多余的水通过溢流泄流。

在空间和时间上开发一个浴缸的水的温度模型,以确定最佳的策略,在浴缸的人可以采取保持温度,即使在整个浴缸和尽可能接近的初始温度,没有浪费太多的水。

使用你的模型来确定你的策略取决于浴缸的形状和体积,浴缸的形状/体积/温度,浴缸中的人的运动。

如果这个人用了一个泡泡浴剂,而最初填充浴缸,以协助清洗,这会影响你的模型的结果?除了要求的一页摘要MCM提交,你的报告必须包括一一页的非技术性解释的浴缸,描述你的策略,解释为什么它是如此难以在洗澡水温度得到均匀地保持用户Program B小碎片在轨道上绕地球金额已日益受到关注。

据估计,超过50万件的空间碎片,也被称为轨道碎片,目前都正在跟踪的潜在危害飞船。

这个问题本身在新闻媒体上变得更广泛的讨论时,俄罗斯卫星的Kosmos-2251和美国铱卫星-33 2009年2月10日,上相撞。

已经提出许多方法以除去碎屑。

这些方法包括小的,基于空间的水射流,并用于针对碎片的特定部分高能激光器和大型卫星,旨在清扫杂物,等等。

碎片的大小和质量范围从漆片的废弃卫星。

碎片“高速轨道捕获做出困难。

开发时间依赖模型来确定一个私人公司可以采取作为一个商业机会,以解决空间碎片问题的替代品的最佳替代品或组合。

您的模型应该包括成本,风险,收益定量和/或定性的估计,以及其他的重要因素。

您的模型应该能够评估独立的替代方案以及替代品的组合,并能够探索各种重要的“如果什么?”的情景。

使用你的模型,确定经济上有吸引力的机会是否存在没有这样的机会是可能的。

如果可行的商业机会的存在作为替代的解决方案,提供了用于去除碎屑的不同选项的比较,并包括特定建议作为对碎片应如何除去。

美国大学生数学建模竞赛试题_ICM_Problem_D

美国大学生数学建模竞赛试题_ICM_Problem_D
Possible Data Sources:
As you develop your model and prepare to test it, you will need to assemble a collection of data. Below are just some examples of the types of data you may find useful in this project. Depending on your exact model, some types of data may be very important and others may be entirely irrelevant. In addition to the sample sources provided below, you might want to consider a few important world events throughout history – if some recent big news events, such as the rumors of country-turned-pop singer Taylor Swift’s possible engagement had instead happened in 1860, what percentage of the population would know about it and how quickly; likewise, if an important person was assassinated today, how would that news spread? How might that compare to the news of US President Abraham Lincoln’s assassination?

数学建模基础(入门必备)

数学建模基础(入门必备)

一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

2000-2013美国数学建模竞赛(MCM、ICM)历年试题汇总

2000-2013美国数学建模竞赛(MCM、ICM)历年试题汇总

目录2000 年美国大学生数学建模竞赛MCM、ICM 试题 (3)2000 MCM A: Air Traffic Control (3)2000 MCM B: Radio Channel Assignments (3)2000 ICM: Elephants: When is Enough, Enough? (5)2001 年美国大学生数学建模竞赛MCM、ICM 试题 (7)2001 MCM A: Choosing a Bicycle Wheel (7)2001 MCM B: Escaping a Hurricane's Wrath (An Ill Wind...). (8)2001 ICM: Our Waterways - An Uncertain Future (10)2002 年美国大学生数学建模竞赛MCM、ICM 试题 (14)2002 MCM A: Wind and Waterspray (14)2002 MCM B: Airline Overbooking (14)2002 ICM: Scrub Lizards (15)2003 年美国大学生数学建模竞赛MCM、ICM 试题 (19)2003 MCM A: The Stunt Person (19)2003 MCM B: Gamma Knife Treatment Planning (19)2003 ICM: Aviation Baggage Screening Strategies: To Screen or Not to Screen, that is the Question (20)2004 年美国大学生数学建模竞赛MCM、ICM 试题 (24)2004 MCM A: Are Fingerprints Unique? (24)2004 MCM B: A Faster QuickPass System (24)2004 ICM: To Be Secure or Not to Be? (24)2005 年美国大学生数学建模竞赛MCM、ICM 试题 (25)2005 MCM A: Flood Planning (25)2005 MCM B: Tollbooths (25)2005 ICM: Nonrenewable Resources (25)2006 年美国大学生数学建模竞赛MCM、ICM 试题 (27)2006 MCM A: Positioning and Moving Sprinkler Systems for Irrigation (27)2006 MCM B: Wheel Chair Access at Airports (27)2006 ICM: Trade-offs in the fight against HIV/AIDS (28)2007 年美国大学生数学建模竞赛MCM、ICM 试题 (32)2007 MCM A: Gerrymandering (32)2007 MCM B: The Airplane Seating Problem (32)2007 ICM: Organ Transplant: The Kidney Exchange Problem (33)2008 年美国大学生数学建模竞赛MCM、ICM 试题 (38)2008 MCM A: Take a Bath (38)2008 MCM B: Creating Sudoku Puzzles (38)2008 ICM: Finding the Good in Health Care Systems (38)2009 年美国大学生数学建模竞赛MCM、ICM 试题 (40)2009 MCM A: Designing a Traffic Circle (40)2009 MCM B: Energy and the Cell Phone (40)2009 ICM: Creating Food Systems: Re-Balancing Human-Influenced Ecosystems41 2010年美国大学生数学建模竞赛 MCM、ICM 试题 (42)2010 MCM A: The Sweet Spot (42)2010 MCM B: Criminology (43)2010 ICM: The Great Pacific Ocean Garbage Patch (44)2011年美国大学生数学建模竞赛 MCM、ICM 试题 (45)2011 MCM A: Snowboard Course (45)2011 MCM B: Repeater Coordination (45)2011 ICM: Environmentally and Economically Sound (46)2012年美国大学生数学建模竞赛 MCM、ICM 试题 (48)2012 MCM A: The Leaves of a Tree (48)2012 MCM B: Camping along the Big Long River (50)2012 ICM: Modeling for Crime Busting (51)2013年美国大学生数学建模竞赛 MCM、ICM 试题 (59)2013 MCM A: The Ultimate Brownie Pan (59)2013 MCM B: Water, Water, Everywhere (61)2013 ICM: NetworkModeling of Earth's Health (62)2000 年美国大学生数学建模竞赛MCM、ICM 试题2000 MCM A: Air Traffic ControlTo improve safety and reduce air traffic controller workload, the Federal Aviation Agency (FAA) is considering adding software to the air traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analysit at the FAA has posed the following problems.Requirement A: Given two airplanes flying in space, when should the air traffic controller consider the objects to be too close and to require intervention? Requirement B: And airspace sector is the section of three-dimensional airspace that one air traffic controller controls. Given any airspace sector, how do we measure how complex it is from an air traffic workload perspective? To what extent is complexity determined by the number of aircraft simultaneously passing through that sector1.at any one instant?2.during any given interval of time?3.during a particular time of day?How does the number of potential conflicts arising during those periods affect complexity? Does the presence of additional software tools to automatically predict conflicts and alert the controller reduce or add to this complexity? In addition to the guidelines for your report, write a summary (no more than two pages) that the FAA analyst can present to Jane Garvey, the FAA Administrator, to defend your conclusions.2000 MCM B: Radio Channel AssignmentsWe seek to model the assignment of radio channels to a symmetric network of transmitter locations over a large planar area, so as to avoid interference. One basic approach is to partition the region into regular hexagons in a grix (honeycomb-style), as shown in Figure 1, where a transmitter is located at the center of each hexagon.An interval of the frequency spectrum is to be alloted for transmitter frequencies. The interval will be divided into regularly spaced channels, which we represent by integers 1,2,3, … . Each transmitter wil be assigned one positive integer channel. The same channel can be used at many locations, provided that interference from nearby transmitters is avoided.Our goal is to minimize the width of the interval in the frequency spectrum that is needed to assugn channels subject to some constraints. This is achieved with the concept of a span. The span is the minimum, over all assignments satisfying the constraints, of the largest channel used at any location. It is not required that every channel smaller than the span be used in an assignment that attains the span.Let s be the length of a side of one of the hexagons. We concentrate on the case that there are two levels of interference.Requirement A: There are several contrainsts on the frequency assignments. First, no two transmitters within distance 4s of each other can be given the same channel. Second, due to spectral spreading, transmitters within distance 2s of each other must not be given the same or adjacent channels: Their channels must differ by at least 2. Under these contraints, what can we say about the span in Figure 1?Requirement B: Repeat Requirement A, assuming the grid in the example spreads arbitrarily far in all directions.Requirement C: Repeat Requirements A and B, except assume now more generally that channels for transmitters within distance 2s differ by at least some given integer k, while those at distance at most 4s must still differ by at least one. What cna we say about the span and about efficient strategies for designing assignments, as a function of k?Requirement D: Consider generalizations of the problem, such as several levels of interference or irregular transmitter placements. What other factors may be important to consider?Requirement E: Write an article (no more than 2 pages) for the local newspaper explaining your findings.2000 ICM: Elephants: When is Enough, Enough?“Ultimately, if a habitat is undesirably changed by elephants, then their removal should be considered -even by culling.”National Geographic (Earth Almanac) –December 1999 A large National Park in South Africa contains approximately 11,000 elephants. Management policy requires a healthy environment that can maintain a stable herf of 11,000 elephants. Each year park rangers count the elephant population. During the past 20 years whole herds have been removed to keep the population as close to 11,000 as possible. The process involved shooting (for the most part) and occasionally relocating approximately 600 to 800 elephants per year.Recently, there has been a public outcry against the shooting of these elephants. In addition, it is no longer feasible to relocate even a small population of elephants each year. A contraceptive dart, however, has been developed that can prevent a mature elephant cow from conceiving for a period of two years.Here is some information about eh elephants in the Park:∙There is very little emigration of immigration of elephants.∙The gender ratio is very close to 1:1 and control measures have endeavored to maintain parity.∙The gender ratio of newborn calves is also about 1:1. Twins are born about 1.35% of the time.∙Cows first conceive between the ages of 10 and 12 and produce, on average, a calf every 3.5 years until they reach an age of about 60.Gestation is approximately 22 months.∙The contraceptive dart causes an elephant cow to come into oestrus every month (but not conceiving). Elephants usually have courtship only once in 3.5 years, so the monthly cycle can cause additional stress.∙ A cow can be darted every year without additional detrimental effects. A mature elephant cow will not be able to conceive for 2 years after thelast darting.∙Between 70% and 80% of newborn calves survive to age 1 year.Thereafter, the survival rate is uniform across all ages and is very high(over 95%), until about age 60; it is a good assumption that elephantsdie before reading age 70.There is no hunting and negligible poaching in the Park.The park management has a rough data file of the approximate ages and gender of the elephants they have transported out of the region during the past 2 years. This data is available on website: icm2000data.xls. Unfortunately no data is available for the elephants that have been shot or remain in the Park.Your overall task is to develop and use models to investigate how the contraceptive dart might be used for population control. Specifically:Task 1: Develop and use a model to speculate about the likely survival rate for elephants aged 2 to 60. Also speculate about the current age structure of the elephant population.Task 2: Estimate how many cows would need to be darted each year to keep the population fixed at approximately 11,000 elephants. Show how the uncertainty in the data at your disposal affects your estimate. Comment on any changes in the age structure of the population and how this might affect tourists. (You may want to look ahead about 30-60 years.)Task 3: If it were feasible to relocate between 50 and 300 elephants per year, how would this reduce the number of elephants to be darted? Comment on the trade-off between darting and relocation.Task 4: Some opponents of darting argue that if there were a sudden loss of a large number of elephants (due to disease or uncontrolled poaching), even if darting stopped immediately, the ability of the population to grow again would be seriously impeded. Investigate and respond to this concer.Task 5: The management in the Park is skeptical about modeling. In particular, they argue that a lack of complete data makes a mockery of any attempt to use models to guide their decision. In addition to your technical report, include a carefully crafted report (3-page maximum) written explicitly for the park management that responds to their concerns and provides advice. Also suggest ways to increase the park managers confidence in your model and your conclusions.Task 6: If your model works, other elephant parks in Africa would be interested in using it. Prepare a darting plan for parks of various sizes (300-25,000 elephants), with slightly different survival rates and transportation possibilities.2001 年美国大学生数学建模竞赛MCM、ICM 试题2001 MCM A: Choosing a Bicycle WheelCyclists have different types of wheels they can use on their bicycles. The two basic types of wheels are those constructed using wire spokes and those constructed of a solid disk (see Figure 1) The spoked wheels are lighter, but the solid wheels are more aerodynamic. A solid wheel is never used on the front for a road race but can be used on the rear of the bike.Professional cyclists look at a racecourse and make an educated guess as to what kind of wheels should be used. The decision is based on the number and steepness of the hills, the weather, wind speed, the competition, and other considerations. The director sportif of your favorite team would like to have a better system in place and has asked your team for information to help determine what kind of wheel should be used for a given course.Figure 1: A solid wheel is shown on the left and a spoked wheel is shown on the right.The director sportif needs specific information to help make a decision and has asked your team to accomplish the tasks listed below. For each of the tasks assume that the same spoked wheel will always be used on the front but there is a choice of wheels for the rear.Task 1. Provide a table giving the wind speed at which the power required for a solid rear wheel is less than for a spoked rear wheel. The table should include the wind speeds for different road grades startingfrom zero percent to ten percent in one percent increments. (Roadgrade is defined to be the ratio of the total rise of a hill divided by thelength of the road. If the hill is viewed as a triangle, the grade is the sine of the angle at the bottom of the hill.) A rider starts at the bottom of the hill at a speed of 45 kph, and the deceleration of the rider is proportionalto the road grade. A rider will lose about 8 kph for a five percent grade over 100 meters.∙Task 2. Provide an example of how the table could be used for a specific time trial course.∙Task 3. Determine if the table is an adequate means for deciding on the wheel configuration and offer other suggestions as to how to make this decision.2001 MCM B: Escaping a Hurricane's Wrath (An Ill Wind...)Evacuating the coast of South Carolina ahead of the predicted landfall of Hurricane Floyd in 1999 led to a monumental traffic jam. Traffic slowed to a standstill on Interstate I-26, which is the principal route going inland from Charleston to the relatively safe haven of Columbia in the center of the state. What is normally an easy two-hour drive took up to 18 hours to complete. Many cars simply ran out of gas along the way. Fortunately, Floyd turned north and spared the state this time, but the public outcry is forcing state officials to find ways to avoid a repeat of this traffic nightmare.The principal proposal put forth to deal with this problem is the reversal of traffic on I-26, so that both sides, including the coastal-bound lanes, have traffic headed inland from Charleston to Columbia. Plans to carry this out have been prepared (and posted on the Web) by the South Carolina Emergency Preparedness Division. Traffic reversal on principal roads leading inland from Myrtle Beach and Hilton Head is also planned.A simplified map of South Carolina is shown. Charleston has approximately 500,000 people, Myrtle Beach has about 200,000 people, and another 250,000 people are spread out along the rest of the coastal strip. (More accurate data, if sought, are widely available.)The interstates have two lanes of traffic in each direction except in the metropolitan areas where they have three. Columbia, another metro area of around 500,000 people, does not have sufficient hotel space to accommodate the evacuees (including some coming from farther north by other routes), so some traffic continues outbound on I-26 towards Spartanburg; on I-77 north to Charlotte; and on I-20 east to Atlanta. In 1999, traffic leaving Columbia going northwest was moving only very slowly. Construct a model for the problem to investigate what strategies may reduce the congestion observed in 1999. Here are the questions that need to be addressed:1.Under what conditions does the plan for turning the two coastal-boundlanes of I-26 into two lanes of Columbia-bound traffic, essentiallyturning the entire I-26 into one-way traffic, significantly improveevacuation traffic flow?2.In 1999, the simultaneous evacuation of the state's entire coastal regionwas ordered. Would the evacuation traffic flow improve under analternative strategy that staggers the evacuation, perhapscounty-by-county over some time period consistent with the pattern of how hurricanes affect the coast?3.Several smaller highways besides I-26 extend inland from the coast.Under what conditions would it improve evacuation flow to turn around traffic on these?4.What effect would it have on evacuation flow to establish moretemporary shelters in Columbia, to reduce the traffic leaving Columbia?5.In 1999, many families leaving the coast brought along their boats,campers, and motor homes. Many drove all of their cars. Under whatconditions should there be restrictions on vehicle types or numbers ofvehicles brought in order to guarantee timely evacuation?6.It has been suggested that in 1999 some of the coastal residents ofGeorgia and Florida, who were fleeing the earlier predicted landfalls ofHurricane Floyd to the south, came up I-95 and compounded the traffic problems. How big an impact can they have on the evacuation trafficflow? Clearly identify what measures of performance are used tocompare strategies. Required: Prepare a short newspaper article, not to exceed two pages, explaining the results and conclusions of your study to the public.Clearly identify what measures of performance are used to compare strategies. Required: Prepare a short newspaper article, not to exceed two pages, explaining the results and conclusions of your study to the public.2001 ICM: Our Waterways - An Uncertain FutureZebra mussels, Dreissena polymorpha, are small, fingernail-sized, freshwater mollusks unintentionally introduced to North America via ballast water from a transoceanic vessel. Since their introduction in the mid 1980s, they have spread through all of the Great Lakes and to an increasing number of inland waterways in the United States and Canada. Zebra mussels colonize on various surfaces,such as docks, boat hulls, commercial fishing nets, water intake pipes and valves, native mollusks and other zebra mussels. Their only known predators, some diving ducks, freshwater drum, carp, and sturgeon, are not numerous enough to have a significant effect on them. Zebra mussels have significantly impacted the Great Lakes ecosystem and economy. Many communities are trying to control or eliminate these aquatic pests. SOURCE: Great Lakes Sea Grant Network /.Researchers are attempting to identify the environmental variables related to the zebra mussel infestation in North American waterways. The relevant factors that may limit or prevent the spread of the zebra mussel are uncertain. You will have access to some reference data to include listings of several chemicals and substances in the water system that may affect the spread of the zebra mussel throughout waterways. Additionally, you can assume individual zebra mussels grow at a rate of 15 millimeters per year with a life span between 4 - 6 years. The typical mussel can filter 1 liter of water each day.Requirement A: Discuss environmental factors that could influence the spread of zebra mussels.Requirement B: Utilizing the chemical data provided at:ap/undergraduate/contests/icm/imagesdata/LakeAChem1.xls, and the mussel population data provided at:ap/undergraduate/contests/icm/imagesdata/LakeAPopulation 1.xls model the population growth of zebra mussels in Lake A. Be sure to review the Information about the collection of the zebra mussel data. Requirement C: Utilizing additional data on Lake A from another scientist provided at :ap/undergraduate/contests/icm/imagesdata/LakeAChem2.xls and additional mussel population data provided at:ap/undergraduate/contests/icm/imagesdata/LakeAPopulation 2.xls corroborate the reasonableness of your model from Requirement B. As a result of this additional data, adjust your earlier model. Analyze the performance of your model. Discuss the sensitivity of your model. Requirement D: Utilizing the Chemical data from two lakes (Lake B and Lake C) in the United States provided atap/undergraduate/contests/icm/imagesdata/LakeB.xls and ap/undergraduate/contests/icm/imagesdata/LakeC.xls determine if these lakes are vulnerable to the spread of zebra mussels. Discuss your prediction.Requirement E: The community in the vicinity of Lake B (in requirement D) is considering specific policies for the de-icing of roadways near the lake duringthe winter season. Provide guidance to the local government officials regarding a policy on “de-icing agents.”In your guidance include predictions on the long-term impact of de-icing on the zebra mussel population. Requirement F: It has been recommended by a local community in the United States to introduce round goby fish. Zebra mussels are not often eaten by native fish species so they represent a dead end ecologically. However, round gobies greater than 100 mm feed almost exclusively on zebra mussels. Ironically, because of habitat destruction, the goby is endangered in its native habitat of the Black and Caspian Seas in Russia. In addition to your technical report, include a carefully crafted report (3-page maximum) written explicitly for the local community leaders that responds to their recommendation to introduce the round goby. Also suggest ways to help reduce the growth of the mussel within and among waterways.Information about the collection of the zebra mussel dataThe developmental state of the Zebra mussel is categorized by three stages: veligers (larvae), settling juveniles, and adults. Veligers (microscopic zebra mussel larvae) are free-swimming, suspended in the water for one to three weeks, after which they begin searching for a hard surface to attach to and begin their adult life. Looking for zebra mussel veligers is difficult because they are not easily visible by the naked eye. Settled juvenile zebra mussels can be felt on smooth surfaces like boats and motors. An advanced zebra mussel infestation can cover a surface, even forming thick mats sometimes reaching very high densities. The density of juveniles was determined along the lake using three 15×15 cm settling plates. The top plate remained in the water for the entire sampling season (S - seasonal) to estimate seasonal accumulation. The middle and bottom plates are collected after specific periods (A –alternating ) of time denoted by “Lake Days”in the data files.The settling plates are placed under the microscope and all juveniles on the undersides of the plate are counted and densities are reported as juveniles/m^2.2002 年美国大学生数学建模竞赛MCM、ICM 试题2002 MCM A: Wind and WatersprayAn ornamental fountain in a large open plaza surrounded by buildings squirts water high into the air. On gusty days, the wind blows spray from the fountain onto passersby. The water-flow from the fountain is controlled by a mechanism linked to an anemometer (which measures wind speed and direction) located on top of an adjacent building. The objective of this control is to provide passersby with an acceptable balance between an attractive spectacle and a soaking: The harder the wind blows, the lower the water volume and height to which the water is squirted, hence the less spray falls outside the pool area. Your task is to devise an algorithm which uses data provided by the anemometer to adjust the water-flow from the fountain as the wind conditions change.2002 MCM B: Airline OverbookingYou're all packed and ready to go on a trip to visit your best friend in New York City. After you check in at the ticket counter, the airline clerk announces that your flight has been overbooked. Passengers need to check in immediately to determine if they still have a seat.Historically, airlines know that only a certain percentage of passengers who have made reservations on a particular flight will actually take that flight. Consequently, most airlines overbook-that is, they take more reservations than the capacity of the aircraft. Occasionally, more passengers will want to take a flight than the capacity of the plane leading to one or more passengers being bumped and thus unable to take the flight for which they had reservations. Airlines deal with bumped passengers in various ways. Some are given nothing, some are booked on later flights on other airlines, and some are given some kind of cash or airline ticket incentive.Consider the overbooking issue in light of the current situation: Less flights by airlines from point A to point B Heightened security at and around airports Passengers' fear Loss of billions of dollars in revenue by airlines to dateBuild a mathematical model that examines the effects that different overbooking schemes have on the revenue received by an airline company in order to find an optimal overbooking strategy, i.e., the number of people by which an airline should overbook a particular flight so that the company's revenue is maximized. Insure that your model reflects the issues above, andconsider alternatives for handling “bumped”passengers. Additionally, write a short memorandum to the airline's CEO summarizing your findings and analysis.2002 ICM: Scrub LizardsThe Florida scrub lizard is a small, gray or gray-brown lizard that lives throughout upland sandy areas in the Central and Atlantic coast regions of Florida. The Florida Committee on Rare and Endangered Plants classified the scrub lizard as endangered.You will find a fact sheet on the Florida Scrub Lizard at/undergraduate/contests/mcm/contests/2002/problem s/icm2002data/scrublizard.pdfThe long-term survival of the Florida scrub lizard is dependent upon preservation of the proper spatial configuration and size of scrub habitat patches.Task 1: Discuss factors that may contribute to the loss of appropriate habitat for scrub lizards in Florida. What recommendations would you make to the state of Florida to preserve these habitats and discuss obstacles to the implementation of your recommendations?Task 2: Utilize the data provided in Table 1 to estimate the value for Fa (the average fecundity of adult lizards); Sj (the survivorship of juvenile lizards- between birth and the first reproductive season); and Sa (the average adult survivorship).Table 1Summary data for a cohort of scrub lizards captured and followed for 4 consecutive years. Hatchling lizards (age 0) do not produce eggs during the summer they are born. Average clutch size for all other females is proportional to body size according to the function y = 0.21*(SVL)-7.5, where y is the clutch size and SVL is the snout-to-vent length in mm.Year Age Total NumberLivingNumber of LivingFemalesAvg. Female Size(mm)1 0 972 495 30.32 1 180 92 45.83 2 20 11 55.84 3 2 2 56.0Task 3: It has been conjectured that the parameters Fa , Sj , and Sa , are related to the size and amount of open sandy area of a scrub patch. Utilize the data provided in Table 2 to develop functions that estimate Fa, Sj , and Sa for different patches. In addition, develop a function that estimates C, the carrying capacity of scrub lizards for a given patch.Table 2Summary data for 8 scrub patches including vital rate data for scrub lizards. Annual female fecundity (Fa), juvenile survivorship (Sj), and adult survivorship (Sa) are presented for each patch along with patch size and the amount of open sandy habitat.Patch Patch Size (ha) Sandy Habitat (ha) Fa Sj Sa Density (lizards/ha)a 11.31 4.80 5.6 0.12 0.06 58b 35.54 11.31 6.6 0.16 0.10 60c 141.76 51.55 9.5 0.17 0.13 75d 14.65 7.55 4.8 0.15 0.09 55e 63.24 20.12 9.7 0.17 0.11 80f 132.35 54.14 9.9 0.18 0.14 82g 8.46 1.67 5.5 0.11 0.05 40h 278.26 84.32 11.0 0.19 0.15 115Task 4: There are many animal studies that indicate that food, space, shelter, or even reproductive partners may be limited within a habitat patch causing individuals to migrate between patches. There is no conclusive evidence on why scrub lizards migrate. However, about 10 percent of juvenile lizards do migrate between patches and this immigration can influence the size of the population within a patch. Adult lizards apparently do not migrate. Utilizing the data provided in the histogram below estimate the probability of lizards surviving the migration between any two patches i and patch j.Table 3HistogramMigration data for juvenile lizards marked, released, and recaptured up to 6 months later. Surveys for recapture were conducted up to 750m from release sites.Task 5: Develop a model to estimate the overall population size of scrub lizards for the landscape given in Table 3. Also, determine which patches are suitable for occupation by scrub lizards and which patches would not support a viable population.Patch size and amount of open sandy habitat for a landscape of 29 patches located on the Avon Park Air Force Range. See:/undergraduate/contests/icm/2002problem/map.jpg for a map of the landscape.Patch Identification Patch Size (ha) Sandy Habitat (ha)1 13.66 5.382 32.74 11.913 1.39 0.234 2.28 0.765 7.03 3.626 14.47 4.387 2.52 1.998 5.87 2.499 22.27 8.44。

美国大学生数学建模竞赛翻译必备知识解析

美国大学生数学建模竞赛翻译必备知识解析

Aabsolute value 绝对值accept 接受acceptable region 接受域additivity 可加性adjusted 调整的alternative hypothesis 对立假设analysis 分析analysis of covariance 协方差分析analysis of variance 方差分析arithmetic mean 算术平均值association 相关性assumption 假设assumption checking 假设检验availability 有效度average 均值Bbalanced 平衡的band 带宽bar chart 条形图beta-distribution 贝塔分布between groups 组间的bias 偏倚binomial distribution 二项分布binomial test 二项检验Ccalculate 计算case 个案category 类别center of gravity 重心central tendency 中心趋势chi-square distribution 卡方分布chi-square test 卡方检验classify 分类cluster analysis 聚类分析coefficient 系数coefficient of correlation 相关系数collinearity 共线性column 列compare 比较comparison 对照components 构成,分量compound 复合的confidence interval 置信区间consistency 一致性constant 常数continuous variable 连续变量control charts 控制图correlation 相关covariance 协方差covariance matrix 协方差矩阵critical point 临界点critical value 临界值crosstab 列联表cubic 三次的,立方的cubic term 三次项cumulative distributionfunction 累加分布函数curve estimation 曲线估计Ddata 数据default 默认的definition 定义deleted residual 剔除残差density function 密度函数dependent variable 因变量description 描述design of experiment 试验设计deviations 差异df.(degree of freedom) 自由度diagnostic 诊断dimension 维discrete variable 离散变量discriminant function 判别函数discriminatory analysis 判别分析distance 距离distribution 分布D-optimal design D-优化设计Eeaqual 相等effects of interaction 交互效应efficiency 有效性eigenvalue 特征值equal size 等含量equation 方程error 误差estimate 估计estimation of parameters参数估计estimations 估计量evaluate 衡量exact value 精确值expectation 期望expected value 期望值exponential 指数的exponential distributon 指数分布extreme value 极值Ffactor 因素,因子factor analysis 因子分析factor score 因子得分factorial designs 析因设计factorial experiment 析因试验fit 拟合fitted line 拟合线fitted value 拟合值fixed model 固定模型fixed variable 固定变量fractional factorial design部分析因设计frequency 频数F-test F检验full factorial design 完全析因设计function 函数Ggamma distribution 伽玛分布geometric mean 几何均值group 组Hharmomic mean 调和均值heterogeneity 不齐性histogram 直方图homogeneity 齐性homogeneity of variance 方差齐性hypothesis 假设hypothesis test 假设检验Iindependence 独立independent variable 自变量independent-samples 独立样本index 指数index of correlation 相关指数interaction 交互作用interclass correlation 组内相关interval estimate 区间估计intraclass correlation 组间相关inverse 倒数的iterate 迭代Kkernal 核Kolmogorov-Smirnov test 柯尔莫哥洛夫-斯米诺夫检验kurtosis 峰度Llarge sample problem 大样本问题layer 层least-significant difference 最小显著差数least-square estimation 最小二乘估计least-square method 最小二乘法level 水平level of significance 显著性水平leverage value 中心化杠杆值life 寿命life test 寿命试验likelihood function 似然函数likelihood ratio test 似然比检验linear 线性的linear estimator 线性估计linear model 线性模型linear regression 线性回归linear relation 线性关系linear term 线性项logarithmic 对数的logarithms 对数logistic 逻辑的lost function 损失函数Mmain effect 主效应matrix 矩阵maximum 最大值maximum likelihoodestimation 极大似然估计mean squareddeviation(MSD) 均方差mean sum of square 均方和measure 衡量media 中位数M-estimator M估计minimum 最小值missing values 缺失值mixed model 混合模型mode 众数model 模型Monte Carle method 蒙特卡罗法moving average 移动平均值multicollinearity 多元共线性multiple comparison 多重比较multiple correlation 多重相关multiple correlationcoefficient 复相关系数multiple correlationcoefficient 多元相关系数multiple regression analysis多元回归分析multiple regressionequation 多元回归方程multiple response 多响应multivariate analysis 多元分析Nnegative relationship 负相关nonadditively 不可加性nonlinear 非线性nonlinear regression 非线性回归noparametric tests 非参数检验normal distribution 正态分布null hypothesis 零假设number of cases 个案数Oone-sample 单样本one-tailed test 单侧检验one-way ANOVA 单向方差分析one-way classification 单向分类optimal 优化的optimum allocation 最优配制order 排序order statistics 次序统计量origin 原点orthogonal 正交的outliers 异常值Ppaired observations 成对观测数据paired-sample 成对样本parameter 参数parameter estimation 参数估计partial correlation 偏相关partial correlation coefficient 偏相关系数partial regression coefficient 偏回归系数percent 百分数percentiles 百分位数pie chart 饼图point estimate 点估计poisson distribution 泊松分布polynomial curve 多项式曲线polynomial regression 多项式回归polynomials 多项式positive relationship 正相关power 幂P-P plot P-P概率图predict 预测predicted value 预测值prediction intervals 预测区间principal component analysis 主成分分析proability 概率probability density function 概率密度函数probit analysis 概率分析proportion 比例Qqadratic 二次的Q-Q plot Q-Q概率图quadratic term 二次项quality control 质量控制quantitative 数量的,度量的quartiles 四分位数Rrandom 随机的random number 随机数random number 随机数random sampling 随机取样random seed 随机数种子random variable 随机变量randomization 随机化range 极差rank 秩rank correlation 秩相关rank statistic 秩统计量regression analysis 回归分析regression coefficient 回归系数regression line 回归线reject 拒绝rejection region 拒绝域relationship 关系reliability 可靠性repeated 重复的report 报告,报表residual 残差residual sum of squares 剩余平方和response 响应risk function 风险函数robustness 稳健性root mean square 标准差row 行run 游程run test 游程检验Ssample 样本sample size 样本容量sample space 样本空间sampling 取样sampling inspection 抽样检验scatter chart 散点图S-curve S形曲线separately 单独地sets 集合sign test 符号检验significance 显著性significance level 显著性水平significance testing 显著性检验significant 显著的,有效的significant digits 有效数字skewed distribution 偏态分布skewness 偏度small sample problem 小样本问题smooth 平滑sort 排序soruces of variation 方差来源space 空间spread 扩展square 平方standard deviation 标准离差standard error of mean 均值的标准误差standardization 标准化standardize 标准化statistic 统计量statistical quality control 统计质量控制std. residual 标准残差stepwise regressionanalysis 逐步回归stimulus 刺激strong assumption 强假设stud. deleted residual 学生化剔除残差stud. residual 学生化残差subsamples 次级样本sufficient statistic 充分统计量sum 和sum of squares 平方和summary 概括,综述Ttable 表t-distribution t分布test 检验test criterion 检验判据test for linearity 线性检验test of goodness of fit 拟合优度检验test of homogeneity 齐性检验test of independence 独立性检验test rules 检验法则test statistics 检验统计量testing function 检验函数time series 时间序列tolerance limits 容许限total 总共,和transformation 转换treatment 处理trimmed mean 截尾均值true value 真值t-test t检验two-tailed test 双侧检验Uunbalanced 不平衡的unbiased estimation 无偏估计unbiasedness 无偏性uniform distribution 均匀分布Vvalue of estimator 估计值variable 变量variance 方差variance components 方差分量variance ratio 方差比various 不同的vector 向量Wweight 加权,权重weighted average 加权平均值within groups 组内的ZZ score Z分数Ⅱ.2 最优化方法词汇英汉对照表Aactive constraint 活动约束active set method 活动集法analytic gradient 解析梯度approximate 近似arbitrary 强制性的argument 变量attainment factor 达到因子Bbandwidth 带宽be equivalent to 等价于best-fit 最佳拟合bound 边界Ccoefficient 系数complex-value 复数值component 分量constant 常数constrained 有约束的constraint 约束constraint function 约束函数continuous 连续的converge 收敛cubic polynomialinterpolation method三次多项式插值法curve-fitting 曲线拟合Ddata-fitting 数据拟合default 默认的,默认的define 定义diagonal 对角的direct search method 直接搜索法direction of search 搜索方向discontinuous 不连续Eeigenvalue 特征值empty matrix 空矩阵equality 等式exceeded 溢出的Ffeasible 可行的feasible solution 可行解finite-difference 有限差分first-order 一阶GGauss-Newton method 高斯-牛顿法goal attainment problem 目标达到问题gradient 梯度gradient method 梯度法Hhandle 句柄Hessian matrix 海色矩阵Iindependent variables 独立变量inequality 不等式infeasibility 不可行性infeasible 不可行的initial feasible solution 初始可行解initialize 初始化inverse 逆invoke 激活iteration 迭代iteration 迭代JJacobian 雅可比矩阵LLagrange multiplier 拉格朗日乘子large-scale 大型的least square 最小二乘least squares sense 最小二乘意义上的Levenberg-Marquardtmethod列文伯格-马夸尔特法line search 一维搜索linear 线性的linear equality constraints线性等式约束linear programmingproblem 线性规划问题local solution 局部解Mmedium-scale 中型的minimize 最小化mixed quadratic and cubic polynomial interpolation and extrapolation method 混合二次、三次多项式内插、外插法multiobjective 多目标的Nnonlinear 非线性的norm 范数Oobjective function 目标函数observed data 测量数据optimization routine 优化过程optimize 优化optimizer 求解器over-determined system 超定系统Pparameter 参数partial derivatives 偏导数polynomial interpolation method多项式插值法Qquadratic 二次的quadratic interpolation method 二次内插法quadratic programming 二次规划Rreal-value 实数值residuals 残差robust 稳健的robustness 稳健性,鲁棒性Sscalar 标量semi-infinitely problem 半无限问题Sequential Quadratic Programming method序列二次规划法simplex search method 单纯形法solution 解sparse matrix 稀疏矩阵sparsity pattern 稀疏模式sparsity structure 稀疏结构starting point 初始点step length 步长subspace trust regionmethod 子空间置信域法sum-of-squares 平方和symmetric matrix 对称矩阵Ttermination message 终止信息termination tolerance 终止容限the exit condition 退出条件the method of steepestdescent 最速下降法transpose 转置Uunconstrained 无约束的under-determined system负定系统Vvariable 变量vector 矢量Wweighting matrix 加权矩阵Ⅱ.3 样条词汇英汉对照表Aapproximation 逼近array 数组a spline in b-form/b-splineb样条a spline of polynomial piece/ppform spline分段多项式样条Bbivariate spline function 二元样条函数break/breaks 断点Ccoefficient/coefficients 系数cubic interpolation 三次插值/三次内插cubic polynomial 三次多项式cubic smoothing spline 三次平滑样条cubic spline 三次样条cubic spline interpolation三次样条插值/三次样条内插curve 曲线Ddegree of freedom 自由度dimension 维数Eend conditions 约束条件Iinput argument 输入参数interpolation 插值/内插interval 取值区间Kknot/knots 节点Lleast-squaresapproximation 最小二乘拟合Mmultiplicity 重次multivariate function 多元函数Ooptional argument 可选参数order 阶次output argument 输出参数Ppoint/points 数据点Rrational spline 有理样条rounding error 舍入误差(相对误差)Sscalar 标量sequence 数列(数组)spline 样条spline approximation 样条逼近/样条拟合spline function 样条函数spline curve 样条曲线spline interpolation 样条插值/样条内插spline surface 样条曲面smoothing spline 平滑样条Ttolerance 允许精度Uunivariate function 一元函数Vvector 向量Wweight/weights 权重Ⅱ.4 偏微分方程数值解词汇英汉对照表Aabsolute error 绝对误差absolute tolerance 绝对容限adaptive mesh 适应性网格Bboundary condition 边界条件Ccontour plot 等值线图converge 收敛coordinate 坐标系Ddecomposed 分解的decomposed geometry matrix 分解几何矩阵diagonal matrix 对角矩阵Dirichlet boundary conditionsDirichlet边界条件Eeigenvalue 特征值elliptic 椭圆形的error estimate 误差估计exact solution 精确解Ggeneralized Neumann boundary condition推广的Neumann边界条件geometry 几何形状geometry descriptionmatrix 几何描述矩阵geometry matrix 几何矩阵graphical user interface(GUI)图形用户界面Hhyperbolic 双曲线的Iinitial mesh 初始网格Jjiggle 微调LLagrange multipliers 拉格朗日乘子Laplace equation 拉普拉斯方程linear interpolation 线性插值loop 循环Mmachine precision 机器精度mixed boundary condition混合边界条件NNeuman boundarycondition Neuman边界条件node point 节点nonlinear solver 非线性求解器normal vector 法向量PParabolic 抛物线型的partial differential equation偏微分方程plane strain 平面应变plane stress 平面应力Poisson's equation 泊松方程polygon 多边形positive definite 正定Qquality 质量Rrefined triangular mesh 加密的三角形网格relative tolerance 相对容限relative tolerance 相对容限residual 残差residual norm 残差范数Ssingular 奇异的sparce matrix 稀疏矩阵stiffness matrix 刚度矩阵subregion 子域Ttriangular mesh 三角形网格Uundetermined 未定的uniform refinement 均匀加密uniform triangle net 均匀三角形网络Wwave equation 波动方程Algebraic Equation代数方程Elementary Operations-Addition基础混算-加法ElementaryOperations-Subtaction基础混算-减法ElementaryOperations-Multiplication基础混算-乘法Elementary Operations-Division基础混算-除法Elementary Operation基础四则混算Decimal Operations 小数混算Fractional Operations分数混算Convert fractional no. intodecimal no.分数转小数Convert fractional no. intopercentage.分数转百分数Convert decimal no. intopercentage.小数转百分数Convert percentage into decimal no.百分数转小数Percentage百分数Numerals数字符号Common factors and multiples公因子及公倍数Sorting数字排序Area图形面积Perimeter图形周界Change Units : Time单位转换-时间Change Units : Weight 单位转换-重量Change Units :Length单位转换-长度Directed Numbers 有向数Fractional Operations 分数混算Decimal Operations 小数混算Convert fractional no. into decimal no.分数转小数Convert fractional no. into percentage.分数转百分数Convert decimal no. into percentage.小数转百分数Convert percentage into decimal no.百分数转小数Percentage百分数Indices指数Algebraic Substitution 代数代入Polynomials多项式Co-Geometry坐标几何学Solving Linear Equation解一元线性方程Solving Simultaneous Equation解联立方程Slope直线斜率Equation of Straight Line直线方程x-intercept ( Equation of St. Line )直线x轴截距y-intercept ( Equation of St. Line )直线y轴截距Factorization因式分解Quadratic Equation 二次方程x-intercept ( Quadratic Equation )二次曲线x轴截距Geometry几何学Inequalities不等式Rate and Ratio比和比例Bearing方位角Trigonometry三角学Probability概率Statistics-Graph统计学-统计图表Statistics-Measure of centraltendency统计学-量度集中趋势Salary Tax薪俸税Bridging Game汉英对对碰Indices指数Function函数Rate and Ratio比和比例Trigonometry三角学Inequalities不等式Linear Programming线性规划Co-Geometry坐标几何学Slope直线斜率Equation of Straight Line直线方程x-intercept ( Equation of St. Line )直线x轴截距y-intercept ( Equation of St. Line )直线y轴截距Factorization因式分解Quadratic Equation二次方程x-intercept ( Quadratic Equation )二次曲线x轴截距Method of Bisection分半方法Polynomials多项式Probability概率Statistics-Graph统计学-统计图表Statistics-Measure of centraltendency统计学-量度集中趋势Statistics-Measure of dispersion统计学-量度分布Statistics-Normal Distribution统计学-正态分布Surds根式Probability概率Statistics-Measure of dispersion统计学-量度离差Statistics-Normal Distribution统计学-正态分布Statistics-Binomial Distribution统计学Statistics-Poisson Distribution统计学Statistics-Geometric Distribution统计学Co-Geometry坐标几何学Sequence序列十万Hundred thousand三位数3-digit number千Thousand千万Ten million小数Decimal分子Numerator分母Denominator分数Fraction五位数5-digit number公因子Common factor公倍数Common multiple中国数字Chinese numeral平方Square平方根Square root古代计时工具Ancient timingdevice古代记时工具Ancienttime-recording device古代记数方法Ancient countingmethod古代数字Ancient numeral包含Grouping四位数4-digit number四则计算Mixed operations (Thefour operations)加Plus加法Addition加法交换性质Commutativeproperty of addition未知数Unknown百分数Percentage百万Million合成数Composite number多位数Large number因子Factor折扣Discount近似值Approximation阿拉伯数字Hindu-Arabic numeral定价Marked price括号Bracket计算器Calculator差Difference真分数Proper fraction退位Decomposition除Divide除法Division除数Divisor乘Multiply乘法Multiplication乘法交换性质Commutative property of multiplication乘法表Multiplication table乘法结合性质Associative property of multiplication被除数Dividend珠算Computation using Chinese abacus倍数Multiple假分数Improper fraction带分数mixed number现代计算工具Modern calculating devices售价Selling price万Ten thousand最大公因子Highest Common Factor (H.C.F.)最小公倍数Lowest Common Multiple (L.C.M.)减Minus / Subtract减少Decrease减法Subtraction等分Sharing 等于Equal进位Carrying短除法Short division单数Odd number循环小数Recurring decimal零Zero算盘Chinese abacus亿Hundred million增加Increase质数Prime number积Product整除性Divisibility双数Even number罗马数字Roman numeral数学mathematics, maths(BrE),math(AmE)公理axiom定理theorem计算calculation运算operation证明prove假设hypothesis, hypotheses(pl.)命题proposition算术arithmetic加plus(prep.), add(v.),addition(n.)被加数augend, summand加数addend和sum减minus(prep.), subtract(v.),subtraction(n.)被减数minuend减数subtrahend差remainder乘times(prep.), multiply(v.),multiplication(n.)被乘数multiplicand, faciend乘数multiplicator积product除divided by(prep.), divide(v.),division(n.)被除数dividend除数divisor商quotient等于equals, is equal to, isequivalent to大于is greater than小于is lesser than大于等于is equal or greater than小于等于is equal or lesser than运算符operator平均数mean算术平均数arithmatic mean几何平均数geometric mean n个数之积的n次方根倒数(reciprocal)x的倒数为1/x有理数rational number无理数irrational number实数real number虚数imaginary number数字digit数number自然数natural number整数integer小数decimal小数点decimal point分数fraction分子numerator分母denominator比ratio正positive负negative零null, zero, nought, nil十进制decimal system二进制binary system十六进制hexadecimal system权weight, significance进位carry截尾truncation四舍五入round下舍入round down上舍入round up有效数字significant digit无效数字insignificant digit代数algebra公式formula, formulae(pl.)单项式monomial多项式polynomial, multinomial 系数coefficient未知数unknown, x-factor, y-factor, z-factor等式,方程式equation一次方程simple equation二次方程quadratic equation三次方程cubic equation四次方程quartic equation不等式inequation阶乘factorial对数logarithm指数,幂exponent乘方power二次方,平方square三次方,立方cube四次方the power of four, the fourth powern次方the power of n, the nth power开方evolution, extraction二次方根,平方根square root 三次方根,立方根cube root四次方根the root of four, the fourth rootn次方根the root of n, the nth rootsqrt(2)=1.414sqrt(3)=1.732sqrt(5)=2.236常量constant变量variable坐标系coordinates坐标轴x-axis, y-axis, z-axis横坐标x-coordinate纵坐标y-coordinate原点origin象限quadrant截距(有正负之分)intercede(方程的)解solution几何geometry点point线line面plane 体solid线段segment射线radial平行parallel相交intersect角angle角度degree弧度radian锐角acute angle直角right angle钝角obtuse angle平角straight angle周角perigon底base边side高height三角形triangle锐角三角形acute triangle直角三角形right triangle直角边leg斜边hypotenuse勾股定理Pythagorean theorem钝角三角形obtuse triangle不等边三角形scalene triangle等腰三角形isosceles triangle等边三角形equilateral triangle四边形quadrilateral平行四边形parallelogram矩形rectangle长length宽width周长perimeter面积area相似similar全等congruent三角trigonometry正弦sine余弦cosine正切tangent余切cotangent正割secant余割cosecant反正弦arc sine反余弦arc cosine反正切arc tangent反余切arc cotangent反正割arc secant反余割arc cosecant补充:集合aggregate元素element空集void子集subset交集intersection并集union补集complement映射mapping函数function定义域domain, field ofdefinition值域range单调性monotonicity奇偶性parity周期性periodicity图象image数列,级数series微积分calculus微分differential导数derivative极限limit无穷大infinite(a.) infinity(n.)无穷小infinitesimal积分integral定积分definite integral不定积分indefinite integral复数complex number矩阵matrix行列式determinant圆circle圆心centre(BrE), center(AmE)半径radius直径diameter圆周率pi弧arc半圆semicircle扇形sector环ring椭圆ellipse圆周circumference轨迹locus, loca(pl.)平行六面体parallelepiped立方体cube七面体heptahedron八面体octahedron九面体enneahedron十面体decahedron十一面体hendecahedron十二面体dodecahedron二十面体icosahedron多面体polyhedron旋转rotation轴axis球sphere半球hemisphere底面undersurface表面积surface area体积volume空间space双曲线hyperbola抛物线parabola四面体tetrahedron五面体pentahedron六面体hexahedron菱形rhomb, rhombus, rhombi(pl.), diamond正方形square梯形trapezoid直角梯形right trapezoid等腰梯形isosceles trapezoid五边形pentagon六边形hexagon七边形heptagon八边形octagon九边形enneagon十边形decagon十一边形hendecagon十二边形dodecagon多边形polygon正多边形equilateral polygon相位phase周期period振幅amplitude内心incentre(BrE), incenter(AmE)外心excentre(BrE),excenter(AmE)旁心escentre(BrE),escenter(AmE)垂心orthocentre(BrE),orthocenter(AmE)重心barycentre(BrE),barycenter(AmE)内切圆inscribed circle外切圆circumcircle统计statistics平均数average加权平均数weighted average方差variance标准差root-mean-squaredeviation, standard deviation比例propotion百分比percent百分点percentage百分位数percentile排列permutation组合combination概率,或然率probability分布distribution正态分布normal distribution非正态分布abnormaldistribution图表graph条形统计图bar graph柱形统计图histogram折线统计图broken line graph曲线统计图curve diagram扇形统计图pie diagramEnglish Chineseabbreviation 简写符号;简写abscissa 横坐标absolute complement 绝对补集absolute error 绝对误差absolute inequality 绝不等式absolute maximum 绝对极大值absolute minimum 绝对极小值absolute monotonic 绝对单调absolute value 绝对值accelerate 加速acceleration 加速度acceleration due to gravity 重力加速度; 地心加速度accumulation 累积accumulative 累积的accuracy 准确度act on 施于action 作用; 作用力acute angle 锐角acute-angled triangle 锐角三角形add 加addition 加法addition formula 加法公式addition law 加法定律addition law(of probability) (概率)加法定律additive inverse 加法逆元; 加法反元additive property 可加性adjacent angle 邻角adjacent side 邻边adjoint matrix 伴随矩阵algebra 代数algebraic 代数的algebraic equation 代数方程algebraic expression 代数式algebraic fraction 代数分式;代数分数式algebraic inequality 代数不等式algebraic number 代数数algebraic operation 代数运算algebraically closed 代数封闭algorithm 算法系统; 规则系统alternate angle (交)错角alternate segment 内错弓形alternating series 交错级数alternative hypothesis 择一假设;备择假设; 另一假设altitude 高;高度;顶垂线;高线ambiguous case 两义情况;二义情况amount 本利和;总数analysis 分析;解析analytic geometry 解析几何angle 角angle at the centre 圆心角angle at the circumference 圆周角angle between a line and a plane 直angle between two planes 两平面的交角angle bisection 角平分angle bisector角平分线angle in the alternate segment 交错弓形的圆周角angle in the same segment 同弓形内的圆周角angle of depression 俯角angle of elevation 仰角angle of friction 静摩擦角; 极限角angle of greatest slope 最大斜率的角angle of inclination 倾斜角angle of intersection 相交角;交角angle of projection 投射角angle of rotation 旋转角angle of the sector 扇形角angle sum of a triangle 三角形内角和angles at a point 同顶角angular displacement 角移位angular momentum 角动量angular motion 角运动angular velocity 角速度annum(X% per annum) 年(年利率X%)anti-clockwise direction 逆时针方向;返时针方向anti-clockwise moment 逆时针力矩anti-derivative 反导数; 反微商anti-logarithm 逆对数;反对数anti-symmetric 反对称apex 顶点approach 接近;趋近approximate value 近似值approximation 近似;略计;逼近Arabic system 阿刺伯数字系统arbitrary 任意arbitrary constant 任意常数arc 弧arc length 弧长arc-cosine function 反余弦函数arc-sin function 反正弦函数arc-tangent function 反正切函数area 面积Argand diagram 阿根图, 阿氏图argument (1)论证; (2)辐角argument of a complex number 复数的辐角argument of a function 函数的自变量arithmetic 算术arithmetic mean 算术平均;等差中顶;算术中顶arithmetic progression 算术级数;等差级数arithmetic sequence 等差序列arithmetic series 等差级数arm 边array 数组; 数组arrow 前号ascending order 递升序ascending powers of X X 的升幂assertion 断语; 断定associative law 结合律assumed mean 假定平均数assumption 假定;假设asymmetrical 非对称asymptote 渐近asymptotic error constant 渐近误差常数at rest 静止augmented matrix 增广矩阵auxiliary angle 辅助角auxiliary circle 辅助圆auxiliary equation 辅助方程average 平均;平均数;平均值average speed 平均速率axiom 公理axiom of existence 存在公理axiom of extension 延伸公理axiom of inclusion 包含公理axiom of pairing 配对公理axiom of power 幂集公理axiom of specification 分类公理axiomatic theory of probability 概率公理论axis 轴axis of parabola 拋物线的轴axis of revolution 旋转轴axis of rotation 旋转轴axis of symmetry 对称轴back substitution 回代bar chart 棒形图;条线图;条形图;线条图base (1)底;(2)基;基数base angle 底角base area 底面base line 底线base number 底数;基数base of logarithm 对数的底basis 基Bayes' theorem 贝叶斯定理bearing 方位(角);角方向(角)bell-shaped curve 钟形图belong to 属于Bernoulli distribution 伯努利分布Bernoulli trials 伯努利试验bias 偏差;偏倚biconditional 双修件式; 双修件句bijection 对射; 双射; 单满射bijective function 对射函数; 只射函数billion 十亿bimodal distribution 双峰分布binary number 二进数binary operation 二元运算binary scale 二进法binary system 二进制binomial 二项式binomial distribution 二项分布binomial expression 二项式binomial series 二项级数binomial theorem 二项式定理bisect 平分;等分bisection method 分半法;分半方法bisector 等分线;平分线Boolean algebra 布尔代数boundary condition 边界条件boundary line 界(线);边界bounded 有界的bounded above 有上界的;上有界的bounded below 有下界的;下有界的bounded function 有界函数bounded sequence 有界序列brace 大括号bracket 括号breadth 阔度broken line graph 折线图calculation 计算calculator 计算器;计算器calculus (1) 微积分学; (2) 演算cancel 消法;相消canellation law 消去律canonical 典型; 标准capacity 容量cardioid 心脏Cartesian coordinates 笛卡儿坐标Cartesian equation 笛卡儿方程Cartesian plane 笛卡儿平面Cartesian product 笛卡儿积category 类型;范畴catenary 悬链Cauchy sequence 柯西序列Cauchy's principal value 柯西主值Cauchy-Schwarz inequality 柯西- 许瓦尔兹不等式central limit theorem 中心极限定理central line 中线central tendency 集中趋centre 中心;心centre of a circle 圆心centre of gravity 重心centre of mass 质量中心centrifugal force 离心力centripedal acceleration 向心加速度centripedal force force 向心力centroid 形心;距心certain event 必然事件chain rule 链式法则chance 机会change of axes 坐标轴的变换change of base 基的变换change of coordinates 坐标轴的变换change of subject 主项变换change of variable 换元;变量的换characteristic equation 特征(征)方程characteristic function 特征(征)函数characteristic of logarithm 对数的首数; 对数的定位部characteristic root 特征(征)根chart 图;图表check digit 检验数位checking 验算chord 弦chord of contact 切点弦circle 圆circular 圆形;圆的circular function 圆函数;三角函数circular measure 弧度法circular motion 圆周运动circular permutation 环形排列;圆形排列; 循环排列circumcentre 外心;外接圆心circumcircle 外接圆circumference 圆周circumradius 外接圆半径circumscribed circle 外接圆cissoid 蔓叶class 区;组;类class boundary 组界class interval 组区间;组距class limit 组限;区限class mark 组中点;区中点classical theory of probability 古典概率论classification 分类clnometer 测斜仪clockwise direction 顺时针方向clockwise moment 顺时针力矩closed convex region 闭凸区域closed interval 闭区间coaxial 共轴coaxial circles 共轴圆coaxial system 共轴系coded data 编码数据coding method 编码法co-domain 上域coefficient 系数coefficient of friction 摩擦系数coefficient of restitution 碰撞系数; 恢复系数coefficient of variation 变差系数cofactor 余因子; 余因式cofactor matrix 列矩阵coincide 迭合;重合collection of terms 并项collinear 共线collinear planes 共线面collision 碰撞column (1)列;纵行;(2) 柱column matrix 列矩阵column vector 列向量combination 组合common chord 公弦common denominator 同分母;公分母common difference 公差。

美赛数学竞赛题目

美赛数学竞赛题目

有关“美赛数学竞赛”的题目
美赛数学竞赛的题目通常涉及多个数学领域,包括代数、几何、概率统计、微积分等。

这些题目通常要求参赛者具有扎实的数学基础和较强的分析能力,能够灵活运用数学知识解决实际问题。

有关“美赛数学竞赛”的题目示例如下:
题目:在一条直线上的n个点,可以构成多少条不同的线段?
这个问题涉及到组合数学的知识,需要参赛者通过分析和推理来找到答案。

具体而言,对于n个点,每两个点可以构成一条线段,所以总共可以构成C(n, 2) = n*(n-1)/2 条不同的线段。

需要注意的是,美赛数学竞赛的题目难度较大,需要参赛者具备较高的数学水平和较强的解题能力。

同时,在解题过程中还需要注意逻辑清晰、表达准确、符合数学规范等要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1999 MCM A: Deep Impact
For some time, the National Aeronautics and Space Administration (NASA) has been considering the consequences of a large asteroid impact on the earth. As part of this effort, your team has been asked to consider the effects of such an impact were the asteroid to land in Antarctica. There are concerns that an impact there could have considerably different consequences than one striking elsewhere on the planet.
You are to assume that an asteroid is on the order of 1000 m in diameter, and that it strikes the Antarctic continent directly at the South Pole.
Your team has been asked to provide an assessment of the impact of such an asteroid. In particular, NASA would like an estimate of the amount and location of likely human casualties from this impact, an estimate of the damage done to the food production regions in the oceans of the southern hemisphere, and an estimate of possible coastal flooding caused by large-scale melting of the Antarctic polar ice sheet.
NASA(航空航天管理局)常常考虑这样一个问题:一颗较大
的小行星与地球的碰撞将会产生怎样的后果。

作为这个问题的一部分,要求你们讨论这颗小行星该到地球南极所造成的后果,有人认为其后果将于该行星撞到地球其它区域的后果有很大的不同。

你们可以假设这颗小行星的直径大约为1000米,并且立接撞在南极点处。

你们应当给出这样一次碰撞的后果的估计,特别的,NASA希望得到由这次碰撞所造成的人员伤亡的地区及数量的估计,还希望得到关于对南半球的大洋区域的农作物生长的危害的估计,以及由于南极冰层大规模融化引起的沿海洪水的一个估计。

1999 MCM B: Unlawful Assembly
Many public facilities have signs in rooms used for public gatherings which state that it is “unlawful”for the rooms to be occupied by more than a specified number of people. Presumably, this number is based on the speed with which people in the room could be evacuated from the room's exits in case of an emergency. Similarly, elevators and other facilities often have “maximum capacities” posted.
Develop a mathematical model for deciding what number to post on such a sign as being the “lawful capacity”.
As part of your solution discuss criteria, other than public safety in the case of a fire or other emergency, that might govern the number of people considered “unlawful” to occupy the room (or space). Also, for the model that you construct, consider the differences between a room with movable furniture such as a cafeteria (with tables and chairs), a gymnasium, a public swimming pool, and a lecture hall with a pattern of rows and aisles. You may wish to compare and contrast what might be done for a variety of different envirorunents: elevator, lecture hall, swimming pool, cafeteria, or gymnasium. Gatherings such as rock concerts and soccer tournaments may present special conditions.
Apply your model to one or more public facilities at your institution (or neighboring town). Compare your results with the stated capacity, if one is posted. If used, your model is likely to be challenged by parties with interests in increasing the capacity. Write an article for the local newspaper defending your analysis “非法”聚会
许多公共设施的房间都有一种标有人数的记号,当房间
中人数超过记号上人数是就视为“非法”,该数目可设定是以紧急情况从房屋出口逃出的人数为基准确定的,类似的,电梯及其他设施经常有一个“最大容量”。

建立数学模型以确定标上多大人数值才是“合法容量”,作为求解的一部分要讨论若干准则(并非在火灾或其他紧急情况下的公共安全)决定出房屋(或空间)达到“非法”聚会的人数,而且,在所建模型中要考虑几种不同的房屋结构,例如,像咖啡屋(拥有桌子和椅子)那样具有可移动家俱的房子,具有成排椅子和走廊的演训厅等,你还可以对各种不同情形进行比较与对比,例如:电梯,演讲厅,游泳池,咖啡屋或健身房等。

收集摇滚音乐会或足球比赛的相关资料也许会为你提供一些特殊的信息。

将所建模型用于你所在学院(或附近城镇)的一个或多个公共设施中,如果高设施已标有“合法”人数的话,请将模型所得结果与之比较。

如果得到使用,你的模型可能部分受到利益驱动下要增加容量的观点的挑战,为当地报刊撰写一篇文章以捍卫模型所给的分析。

相关文档
最新文档