发电机电容电流的测量及数据分析
电容测量方法
电容测量方法电容是电路中常见的元件之一,它具有存储电荷的特性,在电子电路设计和故障排除中起着重要作用。
因此,准确测量电容值对于电子工程师来说至关重要。
本文将介绍几种常见的电容测量方法,帮助读者更好地理解和应用电容测量技术。
首先,最简单的电容测量方法是使用万用表。
万用表是一种常用的电子测量仪器,可以测量电压、电流和电阻等。
在测量电容时,只需要将万用表选择到电容测量档位,然后将被测电容两端与万用表的测试引脚相连,即可读取电容值。
这种方法简单直接,适用于一般电容测量,但精度相对较低。
其次,可以使用LCR(电感、电容、电阻)桥进行电容测量。
LCR桥是一种精密的电子测量仪器,可以同时测量电感、电容和电阻的数值。
在进行电容测量时,只需要将被测电容连接到LCR桥的电容测量端口,然后通过调节桥路平衡,即可得到较为精确的电容值。
这种方法适用于对电容精度要求较高的场合,如精密仪器的维修和校准。
另外,还可以利用示波器进行电容测量。
示波器是一种用于显示电信号波形的仪器,通过测量电容充放电的时间常数,可以间接计算出电容的数值。
在测量时,将被测电容与电阻串联,然后通过示波器观察电容充放电过程的波形,根据波形的时间常数计算出电容值。
这种方法适用于需要快速测量电容的场合,但对示波器的使用要求较高。
最后,还可以利用微处理器进行电容测量。
现代微处理器具有较高的计算和数据处理能力,可以通过测量电容充放电的时间来计算出电容值。
在测量时,将被测电容与微处理器的输入输出端口相连,然后通过程序控制充放电过程,并测量时间来计算电容值。
这种方法适用于需要自动化测量和数据处理的场合,但需要一定的程序设计和硬件支持。
综上所述,电容测量方法有多种多样,可以根据实际需求选择合适的方法进行测量。
在进行电容测量时,应根据具体情况选择合适的测量仪器和方法,以确保测量结果的准确性和可靠性。
希望本文介绍的电容测量方法能够对读者有所帮助,谢谢阅读!。
电容电流计算书
电容电流的计算书电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。
1.架空线路的电容电流可按下式估算:I C =(2.7~3.3)U e L×10-3 (F-1)式中:L——线路的长度(㎞);U e——线路系统电压(线电压KV)I C ——架空线路的电容电流(A);2.7 ——系数,适用于无架空地线的线路;3.3 ——系数,适用于有架空地线的线路;同杆双回线路的电容电流为单回路的1.3~1.6倍。
亦可按附表1所列经验数据查阅。
附表1 架空线路单相接地电容电流(A/km)2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算I C=0.1U e L (F-2)按电容计算电容电流具有金属保护层的三芯电缆的电容值见附表2。
附表2 具有金属保护层的三芯电缆每相对地电容值(µF/㎞)将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。
单相接地电容电流可由下式求出: I C =3 U e ωC ×10-3(F-3)其中 ω=2πf e式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz );C —— 厂用电系统每相对地电容(µF );2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。
6kV 电缆线路=I C 6S 22002.84S95++U e (A ) (F-4)10kV 电缆线路 =I C 0.23S22001.44S95++U e(A ) (F-5) 式中 S —— 电缆截面 (㎜²)U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。
附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞)2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。
发电机电气试验方法及标准
发电机电气试验方法及标准一.高压发电机第一部分:定子部件1.直流电阻2.目的:检查绕组的焊头是否出问题等原因测试环境:冷状态下进行测试工具:直流电阻电桥数据处理:各项的测试应做以下处理数据处理(I max-I min)/I平均≤2%结果判定:测试值必须满足以上的关系,不满足就应检查定子线圈。
3.绝缘电阻目的:检测线圈的绝缘电阻的大小,为以后的试验确定安全保证。
测试环境:常温下测试,记录数据要记录当前的温度。
测试工具:兆欧表注意事项:在绝缘电阻测试的过程中,在每项测试完之后应该对绕组充分放电,不然会造成严重的后果测试方法:在测量前应充分对地放点,注意机械调零,在测试的时候除开被测项,其他的各项都应该接地,测试的时候记录测试时间为15s和60s时的电阻值,在测试后计算吸收比,吸收比=R60/R15吸收比应满足大于2,而且各个项的绝缘电阻不平衡系数不应大于2(不平衡系数指最大一项的R60与最小一项R60之比)4.直流耐电压.目的:在较高的电压下发现绕组绝缘的缺陷测试环境:常温下进行试验测试工具:直流耐压设备一套测试方法:利用调压器调节电压使高压侧直流电压为0.5U N、1.0 U N、1.5 U N、2.0 U N、2.5 U N、3.0U N每阶段要停留一分钟的耐压试验时间,并在试验的时候记录各个电压时候的电流值。
每项在测试的时候其他项都必须接地。
而且在电压相同的时候各个项的电流值应该比较相近。
在规定的试验电压下,各相泄漏电流的差别不应大于最小值的50%。
注意事项:在测试的时候由于是高压,因此在测试的时候要注意安全,小心周围环境。
在每项测试完之后必须充分放电,否则容易造成事故。
必须注意的就是,测温线圈的接线头必须接地。
5.交流耐电压目的:检查线圈之间的绝缘性能测试环境:常温下进行试验测试工具:耐电压试验设备一套测试方法:发电机定子的交流耐压试验在制作的过程中一共有三个阶段要测试,下面就分别介绍试验的方法:(1)、单个线圈的交流耐电压试验,每次基本上做10个线圈的耐电压试验,试验方法是:在工作台上面放木方,木方里面用海绵等软性有弹性的材料包扎一圈,必须要厚点的,外面包0.1mm左右的铝铂,并且用铜丝将其绑好,在整个线圈的低阻部分必选全放在木方上方。
发电机特性试验要点
发电机特性试验要点发电机特性试验是对发电机进行性能测试的一种方法,通过测试可以了解发电机的各项性能指标,为发电机的选型和使用提供依据。
本文将介绍发电机特性试验的要点。
一、试验前准备1.检查试验设备是否正常工作,包括发电机、电源、测量仪器等。
2.检查试验环境是否符合要求,包括温度、湿度、气压等。
3.检查试验样机是否符合要求,包括额定功率、额定电压、额定电流等。
二、试验内容1.空载试验空载试验是指在发电机未接负载的情况下进行的试验。
试验时,将发电机的输出端接到电阻箱或电容器上,调节电阻箱或电容器的阻值或容值,使发电机输出电压稳定在额定电压下,记录此时的输出电流和功率。
2.短路试验短路试验是指在发电机输出端短接的情况下进行的试验。
试验时,将发电机的输出端短接,调节电源电压,使发电机输出电流稳定在额定电流下,记录此时的输出电压和功率。
3.负载试验负载试验是指在发电机接负载的情况下进行的试验。
试验时,将发电机的输出端接到负载上,调节负载电阻或容值,使发电机输出电压稳定在额定电压下,记录此时的输出电流和功率。
三、试验结果分析1.空载试验结果分析空载试验结果可以得到发电机的空载电流和空载功率,通过计算可以得到发电机的空载电功率因数和空载电流谐波含量。
2.短路试验结果分析短路试验结果可以得到发电机的短路电压和短路功率,通过计算可以得到发电机的短路阻抗和短路电流谐波含量。
3.负载试验结果分析负载试验结果可以得到发电机的负载电流和负载功率,通过计算可以得到发电机的负载电功率因数和负载电流谐波含量。
四、试验注意事项1.试验时应注意安全,避免触电和短路等事故的发生。
2.试验时应注意测量仪器的精度和准确性,避免误差的发生。
3.试验时应注意试验环境的稳定性,避免环境因素对试验结果的影响。
4.试验结果应进行综合分析,得出准确的结论。
以上就是发电机特性试验的要点,希望对您有所帮助。
发电机定子单相接地故障电流的计算和测试
22第44卷 第4期2021年4月Vol.44 No.4Apr.2021水 电 站 机 电 技 术Mechanical & Electrical Technique of Hydropower Station1 引言发电机定子接地故障是最常见的发电机故障,大型发电机组在发生接地故障时会产生较大的对地电容电流,为将接地故障电流限制在允许范围内,中性点常采用消弧线圈接地方式运行,而测试发电机定子单相接地故障电流是为了检验发电机在发生单相接地时消弧线圈是否能够有效地补偿故障电流,保证接地电弧瞬间熄灭,以消除弧光间歇接地过电压,防止事故进一步扩大为匝间或相间短路。
需要知道发电机单相接地故障电流的大小,究其原因,主要有3点。
(1)发电机的定子一点接地保护动作出口方式的整定和这个电流大小有关。
根据DLT 684-2012《大型发电机变压器继电保护整定计算导则》的规定,当发电机定子单相接地故障电流大小超过规定值,发电机定子一点接地保护动作后就必须出口跳闸停机,而小于这个值,则允许保护仅动作于告警,由运行值班人员确认后,采取转移负荷解列停机的方式进行处置。
(2)知道中性点不接地时发电机单相接地故障电容电流的大小后,与消弧线圈标注的补偿电流比较,可以定性地判断消弧线圈是否工作在欠补偿状态。
(3)消弧线圈投入后发电机单相接地故障电流必须小于制造厂的规定,制造厂无明确规定时,这个电流应小于15 A,否则在运行中发生定子绕组内部单相接地故障,有可能对定子铁心造成不可修复的损伤。
本文以万安水力发电厂1号发电机为例,通过简单估算和现场实测这两种方法对发电机定子单相接地故障电流进行讨论,所得结论不一定适合其它发电厂,仅供同行参考。
2 发电机定子单相接地故障电流的计算发电机定子单相接地故障点可能在定子绕组从机端到中性点的任意位置,但因为机端对地电压最高,所以在机端发生单相接地故障时故障电流最大,因此,我们只计算机端单相接地时的故障电流。
电容测量方法
电容测量方法
电容测量方法:
1. 手动测量法: 使用电容表和外部电源进行测量。
将电容器与电容表连接,然后通过外部电源施加直流电压,记录电容表的读数。
根据所施加的电压和电容表的读数计算电容值。
2. 充放电法: 利用充电和放电的过程来测量电容值。
首先将电容器充电到一定电压,然后通过计算充电过程中电流的变化率得到电容值。
同样地,通过放电过程中电流的变化率也可以得到电容值。
3. 振荡法: 这种方法使用电容和电感组成的谐振电路来测量电容值。
通过测量谐振频率可以计算得到电容值。
4. 桥式测量法: 利用电容器与其他电阻或电感连接成电容桥电路,通过调节电桥平衡得到电容值。
这种方法适用于测量小电容值。
5. 示波器法: 利用示波器测量电容器在充放电过程中电压的变化曲线,通过计算波形特征来得到电容值。
注意:以上方法都需要合适的测量设备和相关电路,且在进行测量时需要注意安全操作,避免电击等意外发生。
三相电容容量测试方法
三相电容容量测试方法
三相电容容量测试方法可以分为两种:直接测量法和间接测量法。
1. 直接测量法:
- 首先,断开电容器与电源之间的连接,并确保电容器已经放电。
- 使用合适的测试仪器,如电桥或电容测试仪,将其连接到电容器的引线上。
- 通过测试仪器进行测量,记录下电容器的电容值。
这个值即为电容器的容量。
2. 间接测量法:
- 首先,需要知道电容器的额定电压和额定频率。
- 将电容器与一个已知电容值的标准电容器串联,组成一个电容分压器。
- 将电容分压器连接到一个电压源,并将电压源的频率设置为电容器的额定频率。
- 测量电容分压器输出电压和输入电压之间的比值,即为电容器的容量与标准电容器的容量之比。
- 根据已知标准电容器的容量,可以计算出待测电容器的容量。
无论使用哪种方法,都需要遵循安全操作规程,并确保在合适的环境下进行测试。
另外,根据实际情况选择合适的测试仪器和方法,以获得准确可靠的测试结果。
发电机电气试验方法及标准
发电机电气试验方法及标准一.高压发电机第一部分:定子部件1.直流电阻2.目的:检查绕组的焊头是否出问题等原因测试环境:冷状态下进行测试工具:直流电阻电桥数据处理:各项的测试应做以下处理数据处理(I max-I min)/I平均≤2%结果判定:测试值必须满足以上的关系,不满足就应检查定子线圈。
3.绝缘电阻目的:检测线圈的绝缘电阻的大小,为以后的试验确定安全保证。
测试环境:常温下测试,记录数据要记录当前的温度。
测试工具:兆欧表注意事项:在绝缘电阻测试的过程中,在每项测试完之后应该对绕组充分放电,不然会造成严重的后果测试方法:在测量前应充分对地放点,注意机械调零,在测试的时候除开被测项,其他的各项都应该接地,测试的时候记录测试时间为15s和60s时的电阻值,在测试后计算吸收比,吸收比=R60/R15吸收比应满足大于2,而且各个项的绝缘电阻不平衡系数不应大于2(不平衡系数指最大一项的R60与最小一项R60之比)4.直流耐电压.目的:在较高的电压下发现绕组绝缘的缺陷测试环境:常温下进行试验测试工具:直流耐压设备一套测试方法:利用调压器调节电压使高压侧直流电压为0.5U N、1.0 U N、1.5 U N、2.0 U N、2.5 U N、3.0U N每阶段要停留一分钟的耐压试验时间,并在试验的时候记录各个电压时候的电流值。
每项在测试的时候其他项都必须接地。
而且在电压相同的时候各个项的电流值应该比较相近。
在规定的试验电压下,各相泄漏电流的差别不应大于最小值的50%。
注意事项:在测试的时候由于是高压,因此在测试的时候要注意安全,小心周围环境。
在每项测试完之后必须充分放电,否则容易造成事故。
必须注意的就是,测温线圈的接线头必须接地。
5.交流耐电压目的:检查线圈之间的绝缘性能测试环境:常温下进行试验测试工具:耐电压试验设备一套测试方法:发电机定子的交流耐压试验在制作的过程中一共有三个阶段要测试,下面就分别介绍试验的方法:(1)、单个线圈的交流耐电压试验,每次基本上做10个线圈的耐电压试验,试验方法是:在工作台上面放木方,木方里面用海绵等软性有弹性的材料包扎一圈,必须要厚点的,外面包0.1mm左右的铝铂,并且用铜丝将其绑好,在整个线圈的低阻部分必选全放在木方上方。
发电机灭磁过压保护装置的测及分析
发电机灭磁过压保护装置的测及分析摘要:灭磁就是在发电机组的内部发生故障时,在转子绝缘允许的情况下,尽快地将发电机转子绕组中励磁电流所产生的磁场减弱到尽可能小的过程。
氧化锌非线性电阻由于其灭磁速度快,限压效果好等特点,已经被国内大中型发电机组广泛采用,所以对于氧化锌电阻的常规监测也显得尤为重要,灭磁装置作为发电机组安全的最后屏障,其运行的可靠性和安全性也被各大电厂所重视。
关键词:灭磁电阻漏电流导通值一、发电机励磁的参数及灭磁装置的工作原理介绍励磁系统正常停机,调节器自动逆变灭磁;事故停机,跳灭磁开关FMK将磁场能量转移到高能氧化锌非线性电阻60FR 中灭磁。
当发电机处于非正常运行状态时,将在转子回路中产生很高的感应电压,此时安装在转子回路中的转子过电压检测单元CF1模块将检测到转子正向过电压信号,触发60SCR可控硅元件,非线性电阻60FR电阻导通将产生的过电压抑制。
二、对灭磁过压保护装的测试1、试验方案1.1转子绕组侧保护特性试验:1.1.1正向触发回路元件特性测试,1.1.2反向过电压保护整定值特性测试、将1#功率柜、2#功率柜、3#功率柜的交流刀闸断开,灭磁开关分闸,将灭磁专用测试台的交流高压直接接在转子正负两端。
同时按图接上录波器(示波器分压电阻10:1)手动升压T1调压器,观察录波器波形,当保护装置动作时,保存录波波形。
以上试验进行两次。
保护特性测试电路图转子侧正向过电压触发电压保护特性测试(第1次)正向过电压保护触发值2130V,反向过电压保护整定值1000V。
转子侧正向过电压触发电压保护特性测试(第2次)1.2转子侧氧化锌特性测试。
试验仪器:HK-II氧化锌直流参数测试仪万用表实验前用万用表测量60R1~60R18熔断器,熔断器导通正常。
拆除熔断器,用氧化锌直流参数测试仪测试转子侧氧化锌的电气参数。
转子侧氧化锌单元U10mA电压及漏电流测试结果气温25 °c1.3转子侧氧化锌反向限压保护特性测试。
发电机局部放电在线监测电测法有哪些主要方法
发电机局部放电在线监测电测法有哪些主要方法.txt我的人生有A 面也有B面,你的人生有S面也有B面。
失败不可怕,关键看是不是成功他妈。
现在的大学生太没素质了!过来拷毛片,居然用剪切!有空学风水去,死后占个好墓也算弥补了生前买不起好房的遗憾。
发电机局部放电在线监测电测法有哪些主要方法?发电机局部放电在线监测,目前以电测法的脉冲电流法(ERA)为主流方法。
根据检测装置响应带宽,发电机绝缘的局部放电装置可分为窄带检测装置和宽带检测装置,目前的检测设备普遍都采用宽带装置。
发电机在线局部放电监测的首要关键技术之一是如何取得故障信号,也即根据传感器而对应的检测技术。
根据发电机的局部放电在线检测传感器的型式和布置,主要有以下几种监测方法:(1)发电机中性点耦合射频监测法。
其理论原理是:当发电机内任何部位产生局部放电时,都会产生频率很宽的电磁波,而发电机内任何地方产生的相应的射频(Radio Frequency)电流会流过中性点接地线,因而局部放电的传感器可以选择在中性点接地线上,从而提取局部放电的电磁信号。
发电机主绝缘上的局部放电可以看作是一个点信号源,由局部放电所引起的电磁扰动在空间内产生的电磁波,由于发电机不同槽间电磁耦合比较弱,所以可以用传输线理论来分析脉冲在绕组中的传播,即绕组中的放电脉冲以一定的速度沿绕组传播。
根据这种理论,在发电机中性点处安装宽频电流互感器,就可以监测到局部放电高频放电波形,以监测发电机内部放电量及放电量变化。
射频监测法利用宽频带的高频电流传感器从发电机定子绕组中性线上拾取高频放电信号,以反映定子线圈内部放电现象。
这种监测法的优点是中性线对地电位低,高频CT传感器制作与安装相对容易;缺点是由于信号衰减厉害,对信号处理技术要求较高。
另外,不同大小的发电机,其槽间的电磁耦合差异较大,并不都是可以忽略的,故传输线理论分析有很大的误差,尤其对槽数多的大型水轮发电机。
(2)便携式电容耦合监测法。
电容的测量原理
电容的测量原理
电容的测量原理是指通过对电容两端加电压或者施加电场,测量电容器所存储的电荷量,以及在给定电压下电容器的电位变化情况,进而计算出电容器的电容值。
在直流电路中,可以通过给电容器充电的方式进行测量。
当电容器两端施加直流电压时,电容器会逐渐充电,而充电过程中电容器两端的电压值会逐渐增加,直到等于施加的电压值。
根据电容器充电公式Q=CU(Q为电容器所存储的电荷量,C为
电容器的电容值,U为电容器两端的电压),可以通过测量电容器两端的电压和知道给定的电压值,计算出电容器的电容值。
在交流电路中,使用交流电源和一个已知电阻构建一个简单的带电容的电路,通过测量电容器两端的电压和电流的相位差,以及电流大小,可以计算出电容器的电容值。
因为交流电路下,电压和电流之间存在相位差,并且与电容器的电容值有关。
通常情况下,使用示波器测量电压和电流,并通过计算可以得出电容值。
此外,还可以利用电容测量仪来测量电容值。
电容测量仪通过改变电容器充电和放电的时间,并测量电容器两端的电压,从而计算出电容值。
总之,通过对电容器所存储的电荷和电压的测量,结合相关的物理公式,可以测量电容器的电容值。
电容检验作业指导
电容检验作业指导
引言概述:
电容检验是电子创造过程中的重要环节,能够确保产品的质量和性能。
本文将详细介绍电容检验的作业指导,匡助操作人员正确进行电容检验,提高检验效率和准确性。
一、检查电容外观
1.1 确保电容外壳完整无损
1.2 检查电容外壳是否有生锈或者腐蚀现象
1.3 注意观察电容外壳是否有漏电现象
二、测量电容参数
2.1 使用万用表测量电容的容量值
2.2 检查电容的极性是否正确
2.3 测量电容的漏电流值
三、检查电容引脚连接
3.1 确保电容引脚连接坚固
3.2 检查引脚焊接是否完好
3.3 注意观察引脚是否有松动现象
四、检验电容绝缘性能
4.1 使用绝缘电阻表测量电容的绝缘电阻
4.2 检查电容是否有漏电现象
4.3 注意观察电容绝缘层是否受损
五、记录检验结果
5.1 将检验结果准确记录在检验报告中
5.2 根据检验结果判断电容是否合格
5.3 如发现不合格情况,及时处理并记录处理过程
通过以上作业指导,操作人员能够正确、全面地进行电容检验工作,确保产品质量和性能符合标准要求。
希翼本文能够匡助读者更好地掌握电容检验技巧,提高工作效率和准确性。
测量电容器的电容
测量电容器的电容电容器是电子电路中常见的元件之一,它用于储存和释放电能。
在实际应用中,准确地测量电容器的电容是非常重要的,因为电容器的电容值直接影响着电路的性能和稳定性。
本文将介绍几种常见的方法来测量电容器的电容。
一、使用数字电表测量电容当我们需要测量电容较小的电容器时,可以使用数字电表进行测量。
数字电表通常具有电容测量功能,操作简单方便。
步骤如下:1. 将电容器与数字电表连接,注意连接的极性。
2. 设置数字电表的电容测量档位。
3. 将电容器充电,然后断开充电电源。
4. 记录数字电表显示的电容值。
二、使用示波器测量电容示波器也可以用来测量电容器的电容。
示波器能够显示电容器充电和放电的过程,从而计算得出电容值。
步骤如下:1. 将电容器与示波器连接。
一端连接示波器的信号输入端,另一端连接示波器的地端。
2. 设置示波器的时间基准,使波形显示适当的时间范围。
3. 施加一个直流电压或脉冲信号到电容器上。
4. 观察示波器上的电压波形,记录充电和放电的时间间隔。
5. 根据充电和放电的时间间隔计算电容值。
三、使用LC振荡电路测量电容LC振荡电路也可以用来测量电容器的电容。
LC振荡电路是由电感和电容构成的,并通过测量振荡频率推导出电容值。
步骤如下:1. 将电容器与LC振荡电路连接。
电容器连接在电感的并联分支上。
2. 施加一个脉冲信号或者调节电源使LC振荡电路开始振荡。
3. 测量LC振荡电路的振荡频率。
4. 根据振荡频率计算电容值。
四、使用RC恒流放电法测量电容RC恒流放电法也是测量电容器电容的一种方法。
通过测量电容器放电的时间来计算电容值。
步骤如下:1. 将电容器与电阻串联连接。
2. 施加一个电压或电流信号到电容器上。
3. 记录电容器放电的时间。
4. 根据放电时间和电阻值计算电容值。
总结:以上介绍了几种常见的测量电容器电容的方法,包括使用数字电表、示波器、LC振荡电路和RC恒流放电法。
选择合适的方法取决于电容器的大小、测量精度和实际应用需求。
直流电机实验报告
电机实验报告电气1209高树伦12292002实验一:他励直流发电机一、实验电路图按图接线:图中直流发电机G 选用DJ15,其额定值P N=100W,U N=180V,I N=0.5A,n N=1600r/min。
校正直流测功机MG 作为G 的原动机(按他励电动机接线)。
MG、G 及TG 由联轴器直接连接。
开关S 选用D51组件。
R f1 选用D44 的1800Ω变阻器,R f2 选用D42 的900Ω变阻器,并采用分压器接法。
R1 选用D44 的180Ω变阻器。
R2 为发电机的负载电阻选用D42,采用串并联接法(900Ω与900Ω电阻串联加上900Ω与900Ω并联),阻值为2250Ω。
当负载电流大于0.4 A 时用并联部分,而将串联部分阻值调到最小并用导线短接。
直流电流表、电压表选用D31、并选择合适的量程。
二、实验器材三、实验步骤(1)测空载特性1)把发电机G 的负载开关S 打开,接通控制屏上的励磁电源开关,将R f2 调至使G 励磁电流最小的位置。
2)使MG 电枢串联起动电阻R1 阻值最大,R f1 阻值最小。
仍先接通控制屏下方左边的励磁电源开关,在观察到MG 的励磁电流为最大的条件下,再接通控制屏下方右边的电枢电源开关,起动直流电动机MG,其旋转方向应符合正向旋转的要求。
3)电动机MG 起动正常运转后,将MG 电枢串联电阻R1 调至最小值,将MG 的电枢电源电压调为220V,调节电动机磁场调节电阻R f1,使发电机转速达额定值,并在以后整个实验过程中始终保持此额定转速不变。
4)调节发电机励磁分压电阻R f2,使发电机空载电压达U0=1.2U N 为止。
5)在保持n=n N=1600r/min 条件下,从U0=1.2U N 开始,单方向调节分压器电阻R f2 使发电机励磁电流逐次减小,每次测取发电机的空载电压U0 和励磁电流I f,直至I f=0(此时测得的电压即为电机的剩磁电压)。
6)测取数据时U0=U N 和I f=0 两点必测,并在U0=U N 附近测点应较密。
发电机对地电容量估算方法
发电机对地电容量估算方法在电力系统工程中,对发电机的对地电容量的准确估算具有重要意义。
它不仅关系到系统的稳定性和安全性,还影响到电力设备的设计与运行。
本文将详细介绍发电机对地电容量的估算方法,以供参考。
一、发电机对地电容量的概念发电机对地电容量是指发电机定子绕组与地之间的电容值。
当发电机运行时,由于电压的作用,会在发电机对地之间产生一定的电容电流,影响发电机的性能和电力系统的稳定性。
因此,准确估算发电机对地电容量具有重要意义。
二、估算方法1.理论计算法理论计算法是根据发电机的结构参数和材料特性,通过公式计算得出对地电容量的方法。
具体步骤如下:(1)确定发电机的结构参数,如定子绕组半径、长度、绝缘材料等;(2)根据绝缘材料的介电常数,计算定子绕组与地之间的等效介电常数;(3)根据发电机的额定电压和频率,计算对地电容值;(4)将计算结果与实际测试值进行对比,修正计算公式,提高估算精度。
2.实测法实测法是通过实际测量发电机对地电容电流,再根据公式计算出对地电容量的方法。
具体步骤如下:(1)在发电机运行过程中,测量对地电容电流;(2)根据测得的电容电流和发电机的额定电压、频率,计算对地电容量;(3)为了提高估算精度,可以采用多种测量方法(如冲击法、谐振法等)进行对比分析。
3.经验公式法经验公式法是根据大量实测数据和统计分析,总结出适用于特定类型发电机的对地电容量估算公式。
这种方法简单易行,但精度相对较低,适用于初步估算。
三、注意事项1.估算发电机对地电容量时,要充分考虑发电机的实际运行条件,如温度、湿度等;2.选择合适的估算方法,结合理论计算和实测数据,提高估算精度;3.对于不同类型的发电机,其估算方法可能有所不同,需根据实际情况进行调整;4.定期对发电机对地电容量进行检测和评估,确保电力系统的安全稳定运行。
总结:本文详细介绍了发电机对地电容量的估算方法,包括理论计算法、实测法和经验公式法。
在实际应用中,应根据发电机的具体类型和运行条件,选择合适的方法进行估算,以确保电力系统的安全稳定运行。
风力发电机运行中电力和风力参数的监测
风力发电机组需要持续监测的电力参数包括电网三相电压、发电机输出的三相电流、电网频率、发电机功率因数等。
这些参数无论风力发电机组是处于并网状态还是脱网状态都被监测,用于判断风力发电机组的起动条件、工作状态及故障情况,还用于统计风力发电机组的有功功率、无功功率和总发电量。
此外,还根据电力参数,主要是发电机有功功率和功率因数来确定补偿电容的投入与切出。
1.电压测量电压测量主要检测以下故障:(1)电网冲击相电压超过450V0.2s。
(2)过电压相电压超过433V50s。
(3)低电压相电压低于329V50s。
(4)电网电压跌落相电压低于260V0.1s。
(5)相序故障。
对电压故障要求反应较快。
在主电路中设有过电压保护,其动作设定值可参考冲击电压整定保护值。
发生电压故障时风力发电机组必须退出电网,一般采取正常停机,而后根据情况进行处理。
电压测量值经平均值算法处理后可用于计算机组的功率和发电量的计算。
2.电流测量关于电流的故障有:(1)电流跌落 0.1s内一相电流跌落80%。
(2)三相不对称三相中有一相电流与其他两相相差过大,相电流相差25%,或在平均电流低于50A时,相电流相差50%。
(3)晶闸管故障软起动期间,某相电流大于额定电流或者触发脉冲发出后电流连续0.1s为0。
对电流故障同样要求反应迅速。
通常控制系统带有两个电流保护即电流短路保护和过电流保护。
电流短路保护采用断路器,动作电流按照发电机内部相间短路电流整定,动作时间。
0~0.5s。
过电流保护由软件控制,动作电流按照额定电流的2倍整定,动作时间1~3s。
电流测量值经平均值算法处理后与电压、功率因数合成为有功功率、无功功率及其他电力参数。
电流是风力发电机组并网时需要持续监视的参量,如果切人电流小于允许极限,则晶闸管导通角不再增大,当电流开始下降后,导通角逐渐打开直至完全开启。
并网期间,通过电流测量可检测发电机或晶闸管的短路及三相电流不平衡信号。
如果三相电流不平衡超出允许范围,控制系统将发出故障停机指令,风力发电机组退出电网。
发电机电容电流的测量及数据分析
发电机电容电流的测量及数据分析1 发电机电容的计算凌津滩电厂发电机定子绕组为波绕双层、每槽两根线棒,定子线棒采用真空压力浸渍环氧树脂浸透线圈、线圈表面涂阻燃林料,分上下层嵌放到定子槽内。
定子Z=342槽、计684根线棒,单支路每相线棒N=228根。
定子绕组对地电容,由线圈的机械尺寸、绝缘材料的电介系数所确定。
按机械尺寸、交流耐压及单相接地三种方法可计算得出,以#1机为例,分述如下。
1.1 机械尺寸进行电容的计算一般的平板极电容计算,电容与电介系数εO及εr、极板面积S成正比,与极间距离d成反比。
常用式子C0=εOεrS/d发电机的绕组电容计算,可将线棒导体展开成为一极。
包有半导体材料的线棒与铁芯是紧靠的,当另外一极同时展开。
中间的绝缘材料也展开,这是极板间的介质。
线棒导体的面积S1=(2b1+2h1)L包半导体的面积S2=(2b2+2h2)L电容极板的一侧S=(S1+S2)/4=(b1+h1+b2+h2)L/2绝缘的单边厚度d=(b2-b1)/2一根线棒的电容C0=由日立公司提供单根线棒的断面尺寸如图1。
定子铁心长度包括通风沟L=165cm。
多股裸线棒一根截面尺寸h1×b1=5.45×1.658cm包绝缘0.318cm后的尺寸h2×b2?=6.086×2.294cm环氧粉云母相对介质系数εr=4~6、取εr=5空气中的电气介质常数为εO=1/18π105、一根线棒电容C0==0.00355μF单相电容为C1=NC0=228×0.00355=0.809μF三相电容为C=3C1=3×0.809=2.427μF1.2 由交流耐压电流计算电容发电机定子交流耐压的常规方式是:三相分别耐压,而非加压相短接后与定子铁芯一同接地,这时耐压的电容实际为定子的三相电容。
发电机电阻电抗数据
发电机电阻电抗数据在电力系统中,发电机是至关重要的设备,而了解发电机的电阻电抗数据对于电力系统的设计、运行和维护都具有重要意义。
首先,我们来谈谈什么是电阻和电抗。
电阻,简单来说,就是对电流流动的阻碍作用,它会导致电能转化为热能而散失。
电阻的大小主要取决于导体的材料、长度、横截面积以及温度等因素。
而电抗呢,则是由于电感和电容对交流电产生的阻碍作用。
在发电机中,电抗主要包括电感电抗和电容电抗。
发电机的电阻数据通常包括定子电阻和转子电阻。
定子电阻是定子绕组的电阻值,它会影响发电机的效率和发热情况。
转子电阻则是转子绕组的电阻值,对发电机的启动性能和调速特性有一定的影响。
测量发电机电阻时,需要使用专门的仪器和方法。
常见的有直流电桥法、伏安法等。
这些测量方法需要在特定的条件下进行,以确保测量结果的准确性。
比如,测量时要保证发电机处于静止状态,并且绕组的温度要稳定。
接下来,再说说发电机的电抗数据。
电抗又分为感抗和容抗。
在发电机中,感抗通常占主导地位。
感抗的大小与绕组的电感量以及交流电的频率有关。
频率越高,感抗越大;电感量越大,感抗也越大。
发电机的电抗数据对于电力系统的稳定性分析非常重要。
在短路故障发生时,电抗会限制短路电流的大小,从而保护电力设备不受过大电流的损害。
同时,电抗也会影响发电机的输出电压和功率因数。
要获取发电机的电抗数据,通常需要进行一系列的试验和计算。
例如,通过空载试验和短路试验,可以得到一些基本的电抗参数。
此外,还可以利用电磁场分析软件对发电机的电磁场进行仿真计算,从而更精确地得到电抗数据。
在实际应用中,准确的发电机电阻电抗数据对于电力系统的规划和运行具有多方面的作用。
在电力系统的设计阶段,根据发电机的电阻电抗数据,可以合理选择变压器、断路器等设备的参数,以确保整个系统的安全可靠运行。
在电力系统的运行过程中,通过监测发电机的电阻电抗数据的变化,可以及时发现发电机的故障和异常情况,从而采取相应的措施进行维修和保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机电容电流的测量及数据分析
【摘要】近年来,在社会发展中,随着人们对电能用量的不断增加,对于电力系统中各设备管理也提出了新的标准。
发电机作为电力系统中不可缺少的一个环节,其安全、稳定运行对于电能输送的合理性、系统化有着极为重要的作用与意义。
本文就发电机电容电流的测量与数据分析进行探讨,并结合实际案例提出了其工作重点。
【关键词】发电机;电容;电流;测量
近年来的社会发展中,全国各地区以35KV为主的电网结构逐渐完善,为了装设和调整电力系统运行中存在的消弧线圈以及发电机工作要求,一般在电容电流测量中都是以中性点外接电容法来进行。
这种方法在应用的过程中具备着操作简单简洁、操作方法简便、工作量小和对系统运行影响小以及检测精确度高的优势,因此在目前的各系统环节和电力企业都深受人们的青睐与关注。
1.电容电流概述
1.1电容电流概念
电容电流是一种电容性电流,又被人们在工作中广泛的称之为位移电流。
这种电流不同于传统电荷定向移动所形成的电流,是一种并没有从真正的故障点流向大地的一种电流形式,是通过电容作为充放电媒介来发挥等效电流的工作模式。
这种电流模式在交流电中最为常见,这主要是由于交流电系统中电流是一直处于不断变化状态下的,这种特殊性就能促使了等效电流的持续存在。
众所周知,在目前的社会发展中带有电缆、变压器以及发电器的电力系统已经广泛的进入人们的视线,也成为现代化社会发展中不可缺少的一部分。
这种电力系统中,其各种设备中都存在着一定量的电容,而分布电容的大小主要取决于电缆的几何尺寸、电缆材料以及电缆的长度等多个方面。
因此,在目前的工作中,我们做好电容电流的研究是十分重要的,对于保障电力系统的正常持续运行有着至关重要的作用。
1.2电容电流补偿的必要性
电缆在应用的过程中实际上是通过各种绝缘电阻以及分布电容来与大地相互连接的,当人体接触到电力系统的那一时刻,触电电流可以及时的通过人体流向大地,从而造成一种闭合电路结构。
可以说在目前的工作中,电容电流是通过一定程度的电缆来对其进行控制与处理的,电网对于各地的电容分布都是通过各种电缆来进行控制的。
但是由于在工作中电缆的材料、横截面以及密度的不同造成电容的分布也不尽相同,这就要求我们在工作中对其进行及时可靠的调整。
2.工程实例概述
某发电站在建设中装设了9台发电机,其发电总容量为28万KW,,是目前我国现有的大容量、灯泡式的一种组合式机床发电厂。
其中,从一号至五号发电机都是有日立公司生产的,而六号至九号发电机是通过日立公司设计,哈尔滨电机厂生产共同完成的。
在布局和建设中,发电机的应用是严格按照《国家电厂水轮发电机组建设规章》来进行的,因此在建设中,其每台发电机的电容电流控制也较为合理。
2.1电容电流的计算
在目前的发电机组建设与布局工作中,多数地区的发电机组都实现了以智能化为主的新型管理与检测。
智能化测试系统的应用可以在工作中精确的测试出其工作中各发电机的工作量以及输出功率,并对其带荷载能力以及工作效率提出了新的标准与认识。
在目前的发电机系统中,电容电流的计算是通过所有带电参数、发电及辅助测试仪以及控制器等多个环节构成的,是以上位计算为主的计算模式,这种计算措施的应用对于发电功率而言十分有效。
2.1.1机械尺寸进行电容的计算
机械尺寸进行电容的计算。
2.1.3单相接地测量电容
(1)单相接地电容电流的测量原理
假设三相电压以A相电压为基准,且电压最大值为1,那么正常情况发电机三相的电压可表示如下:
因为三相对地存在电容,所以即便是空载发电机三相也存在微弱的电流,且分别超前电压900,和电压一样是对称。
当C相接地时,因C相的电压为零,此时A、B相对地的电压等于对C相的电压,即正常时的线电压。
所以此时的三相电压为:
可见非接地相对地的电压上升为正常倍,因为是中性点不接地系统,所以短路电流经A、B对地电容、大地与C相形成回路。
A、B对地的容抗不变,因对地电压升高倍,所以A、B相的电流数值分别比正常时升高倍,仍超前电压900,分别为:
而C三相电流为A、B相电流之和,且方向相反。
C相电流即为单相短路的总接地电流,为正常情况下单相电容电流的3倍,由这个电流计算出的电容即为三相电容。
(2)半电压下的接地试验。
(3)全电压下单相接地试验
发电机在额定电压下发生单相接地,因发电机对地电容不变,所以其接地电流应是半电压下的2倍。
实际测的电流为4.5 A,与半电压下的试验数据比较相符。
2.2电容及单相接地电流的分析
对于中性点不接地发电机,如果电容电流过大,容易损坏绕组对定子铁芯的绝缘而形成常见的单相接地故障,若不及时发现,又出现另一接地点,就会造成匝间或相间短路,使发电机受到更严重的破坏。
所以,在我国,10.5KV系统中性点不接地发电机的单相接地电流要求小于3~5A。
对于水轮机则要求小于3A。
而#1机在全电压单相接地试验中的接地电流已有4.5A[2]。
某发电机在并网后定子线圈的温度一般都在80℃~90℃,这和发电机定子电容电流过大也有关,长期运行,定会加快线棒绝缘的老化。
另外,某电厂的定子绕组单相接地保护是95%定子接地保护,对于发电机中性点附近单相接地,存在死区。
鉴于以上原因,我们要求日立公司按合同要求,无条件加装发电机消弧线圈,用以抵消电容电流,考虑到与发电机直接相连的母线及变压器显容性,为避免并网后造成串联谐振,消弧线圈采用欠补偿。
3.结束语
通过一系列的试验显示:日立公司生产的这组发电机的单相电容超标,导致发电机在单相接地电流都大于4A,某电厂9台机组,除#5机,其余8台都是2机1变的扩大单元接线,实际两机并列运行时发生定子绕组单相接地时电流可达8~9A,这还未把发电机母线和主变的电容考虑进来,为发电机工作的顺利持续进行提供了必然保证依据。
[科]
【参考文献】
[1]马朝正,阎春雨,刘晓冬.一种新的测量系统电容电流的试验方法——相对地减电容法[J].河北电力技术,1999(06).
[2]符信勇,余仁山.配电网电容电流测量及其实用性研究[J].长沙电力学院学报(自然科学版),2005(04).。