2010-2011-2线性代数试卷及答案
线性代数考试试卷及参考答案(A卷)

,,t α是AX t t c α++仍t c ++= .满足条件3.m n ⨯矩阵A ()12,,,n ααα=,方程组=AX B 有解的充要条件是( ).()A 12,,,n ααα线性无关; ()B 12,,,,n B ααα线性相关; ()C 12,,,,n B ααα线性无关; ()D 12,,,n ααα与12,,,,n αααB 等价.4. 设A 是n n ⨯矩阵,则下列结论错误的是( ).()A AX =B 无解时,0=A ; ()B AX =B 有无穷多个解时,0=A ;()C 若0=A ,则AX =B 无解; ()D AX =B 有惟一解时,0≠A .5.二次型2122213212x x x x )x ,x ,x (f -+=的矩阵是( ).(A )⎥⎦⎤⎢⎣⎡-1021; (B )⎥⎦⎤⎢⎣⎡--1111;(C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000010021;(D )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000011011.三.计算下列各题(本题满分为55分)1. 已知行列式512345222113124527,1112243150D == 求414243A A A ++和4445A A +. 其中4(1,2,3,4,5)j A j =为5D 中第4行第j 列元素的代数余子式.(本题满分为10分);2.(本题满分为15分)已知矩阵1111222233334444⎛⎫⎪⎪= ⎪⎪⎝⎭A ,求100A ...3.(本题满分为15分)问a b 、取何值时123423423412340221(3)223231x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩无解?有唯一解?有无穷多解?并在有无穷多解时求出通解..4.(本题满分为15分)已知20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与20000001B y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似, (1)求x 与y ;(2)求一个满足1P AP B -=的可逆阵P .四.证明(本题满分为10分)设A 是n 阶矩阵,证明:对于任意的B ,=AX B 都有解的充分必要条件是0≠A .线性代数试题答案与评分标准一、填空题1、62、-1283、(),i j E4、15、0k > 二、选择题1、B2、B3、D4、C5、D 三、计算题1、由已知条件得 41424344454142434445(111)(22)27,(222)(11)0.A A A A A A A A A A ⋅+⋅+⋅+⋅+⋅=⎧⎨⋅+⋅+⋅+⋅+⋅=⎩ ………………(5分)解方程得41424344459;18.A A A A A ++=-+= ………………(10分)2.将A 写成两个矩阵的乘积,即()11111222221111,3333344444⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A ……(5分) 故 ()()()100111222111111111111.333444⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ………………(10分) 由于()12111110,34⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭则 ()10099999911111222221011111010.3333344444⎛⎫⎛⎫⎪ ⎪⎪ ⎪=== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A A ……(15分)………………(15分)3、11110111100122101221(/)012(3)2002(2)01323100210B A b a b a b a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==→⎢⎥⎢⎥----+⎢⎥⎢⎥--⎣⎦⎣⎦111101111001221012210021000210002(2)01000(1)(2)1a a a b a a b ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥--⎢⎥⎢⎥-+---+⎣⎦⎣⎦(5分) 2,1a b =≠-且无解;2a ≠有唯一解;2,1a b ==-且有无穷多解。
线性代数测试试卷及答案

线性代数测试试卷及答案线性代数(A 卷)⼀﹑选择题(每⼩题3分,共15分)1. 设A ﹑B 是任意n 阶阵,那么下列等式必成⽴的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+2. 如果n 元齐次线性程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4. 设实⼆次型11212222(,)(,)41x f x x x x x ??= ? ?-的矩阵为A ,那么( )(A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ?-?? (D) 1001A ??=5. 若阵A 的⾏列式0A =,则( ) (A) A 的⾏向量组和列向量组均线性相关 (B)A 的⾏向量组线性相关,列向量组线性⽆关 (C) A 的⾏向量组和列向量组均线性⽆关 (D)A 的列向量组线性相关,⾏向量组线性⽆关⼆﹑填空题(每⼩题3分,共30分)1 如果⾏列式D 有两列的元对应成⽐例,那么该⾏列式等于;2. 设100210341A -?? ?=- ? ?-??,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是⾮齐次线性程组AX b =的解,若λαµβ+也是它的解, 那么λµ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则⾏列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为; 9. 若⼆次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值围为;10. 设A 为n 阶阵,且满⾜2240A A I +-=,这⾥I 为n 阶单位矩阵,那么1A -= . 三﹑计算题(每⼩题9分,共27分)1. 已知210121012A ?? ?= ? ,100100B ?? ?= ? ???,求矩阵X 使之满⾜AX X B =+.2. 求⾏列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的⼀个最⼤⽆关组和秩.四﹑(10分)设有齐次线性程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=??-++=??++-=? 问当λ取值时, 上述程组(1)有唯⼀的零解﹔(2)有⽆穷多个解,并求出这些解. 五﹑(12分)求⼀个正交变换X PY =,把下列⼆次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑(6分)已知平⾯上三条不同直线的程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于⼀点的充分必要条件为0a b c ++=.线性代数(A 卷)答案⼀﹑1. D 2. C 3. B 4. A 5. A⼆﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解由AX X B =+得1()X A I B -=-. (2分) 下⾯求1()A I --. 由于110111011A I ?? ?-= ? ???(4分)⽽1()A I --=011111110-?? ?- ? ?-??. (7分)所以10111001()11101111100011X A I B --?????? ??? ?=-=-=- ??? ? ??? ?--??????. (9分)2. 解1234234134124123=10234103411041210123123413411014121123= (4分) 123401131000440004-=-- (8分) 160= (9分) .3. 解由于3112341234011301131301053307330733r r ------ - ------324212345011300212700424r r r r -??---+ ?--?? 43123401132002120000r r -??-- +(6分) 故向量组的秩是 3 ,123,,ααα是它的⼀个最⼤⽆关组。
历年自考线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++221121c a c a b b ( B )A .n m -B .m n -C .n m +D .)(n m +-m n n m c c b b a a b b c a c a b b -=+-=+=++21212121221121.2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACBB .CABC .CBAD .BCABCA CA B AC B C BA C AB ABC =====)()()()(.3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8-B .2-C .2D .88||)2(|2|||||3-=-=-=A A A B .4.⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=333231232221131211333a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=100030001P ,⎪⎪⎪⎭⎫⎝⎛=100013001Q ,则=B ( B )A .PAB .APC .QAD .AQ⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a AP ⎪⎪⎪⎭⎫ ⎝⎛100030001B a a a a a a a a a =⎪⎪⎪⎭⎫⎝⎛=333231232221131211333. 5.已知A 是一个43⨯矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关C .由1个非零向量组成的向量组线性相关D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出D .β必能由321,,ααα线性表出注:321,,ααα是βααα,,,321的一个极大无关组.8.设A 为n m ⨯矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于mB .等于mC .小于nD .等于n注:方程组Ax =0有n 个未知量.9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T AB .2AC .1-AD .*A|||)(|||A E A E A E T T -=-=-λλλ,所以A 与T A 有相同的特征值.10.二次型212322213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3222123221321)(),,(y y x x x x x x f +=++=,正惯性指数为2.二、填空题(本大题共10小题,每小题2分,共20分) 11.行列式2010200920082007的值为_____________. 21098720002000200020002010200920082007-=+=.12.设矩阵⎪⎪⎭⎫ ⎝⎛-=102311A ,⎪⎪⎭⎫ ⎝⎛=1002B ,则=B A T_____________. ⎪⎪⎪⎭⎫ ⎝⎛-=130121B A T ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛1602221002. 13.设T )2,0,1,3(-=α,T )4,1,1,3(-=β,若向量γ满足βγα32=+,则=γ__________.T T T )8,3,5,3()4,0,2,6()12,3,3,9(23-=---=-=αβγ.14.设A 为n 阶可逆矩阵,且nA 1||-=,则|=-||1A _____________. n A A -==-||1||1. 15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则=||A _____________.n 个方程、n 个未知量的Ax =0有非零解,则=||A 0.16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为_____________.⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=130111312111A ,基础解系所含解向量的个数为123=-=-r n .17.设n 阶可逆矩阵A 的一个特征值是3-,则矩阵1231-⎪⎭⎫⎝⎛A 必有一个特征值为_________.A 有特征值3-,则231A 有特征值3)3(312=-,1231-⎪⎭⎫⎝⎛A 有特征值31.18.设矩阵⎪⎪⎪⎭⎫⎝⎛----=00202221x A 的特征值为2,1,4-,则数=x _____________.由21401-+=++x ,得=x 2.19.已知⎪⎪⎪⎪⎭⎫⎝⎛=10002/102/1b a A 是正交矩阵,则=+b a _____________. 由第1、2列正交,即它们的内积0)(21=+b a ,得=+b a 0.20.二次型323121321624),,(x x x x x x x x x f ++-=的矩阵是_____________.⎪⎪⎪⎭⎫ ⎝⎛--031302120. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式333222c c b b a a c b a cb a D +++=的值. 解:222333222333222111c b a c b a abc c b a c b a c b a c c b b a a c b a c b aD ==+++= 2222222200111a c a b ac ab abc a c a b a c ab abc ----=----=))()((11))((b c a c a b abc ac a b a c a b abc ---=++--=.22.已知矩阵)3,1,2(=B ,)3,2,1(=C ,求(1)C B A T =;(2)2A .解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==963321642)3,2,1(312C B A T;(2)注意到13312)3,2,1(=⎪⎪⎪⎭⎫⎝⎛=T CB ,所以131313)())((2=====A C B C CB B C B C B A T T T T T ⎪⎪⎪⎭⎫ ⎝⎛963321642.23.设向量组T 4T 3T 2T 1(1,1,1,1),)0,3,1,1(,(1,2,0,1),(2,1,3,1)=--===αααα,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--==1011130311211112),,,(4321ααααA →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1112130311211011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1110233001101011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000200001101011→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000100001101101,向量组的秩为3,421,,ααα是一个极大无关组,213ααα+-=.24.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A ,⎪⎪⎪⎭⎫⎝⎛--=315241B .(1)求1-A ;(2)解矩阵方程B AX =. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛=100010001100210321),(E A →⎪⎪⎪⎭⎫ ⎝⎛--100210301100010021→⎪⎪⎪⎭⎫ ⎝⎛--100210121100010001,1-A ⎪⎪⎪⎭⎫⎝⎛--=100210121; (2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--100210121⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--3111094315241.25.问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).解:⎪⎪⎪⎭⎫ ⎝⎛=63222204321),(a b A →⎪⎪⎪⎭⎫ ⎝⎛---23202204321a →⎪⎪⎪⎭⎫ ⎝⎛-03002204321a a .3≠a 时,3)(),(==A r b A r ,有惟一解,此时→),(b A ⎪⎪⎪⎭⎫ ⎝⎛010********a →⎪⎪⎪⎭⎫⎝⎛010********* →⎪⎪⎪⎭⎫ ⎝⎛010*********→⎪⎪⎪⎭⎫ ⎝⎛010*********,⎪⎩⎪⎨⎧===012321x x x ; 3=a 时,n A r b A r <==2)(),(,有无穷多解,此时→),(b A ⎪⎪⎪⎭⎫⎝⎛000023204321→⎪⎪⎪⎭⎫ ⎝⎛000023202001→⎪⎪⎪⎭⎫ ⎝⎛000012/3102001,⎪⎪⎩⎪⎪⎨⎧=-==333212312x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛12/30012k ,其中k 为任意常数.26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A 的三个特征值分别为5,2,1,求正的常数a 的值及可逆矩阵P ,使⎪⎪⎪⎭⎫ ⎝⎛=-5000200011AP P .解:由521)9(23323030002||2⨯⨯=-===a a aa a A ,得42=a ,2=a .=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----320230002λλλ.对于11=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----220220001→⎪⎪⎪⎭⎫ ⎝⎛000110001,⎪⎩⎪⎨⎧=-==333210x x x x x ,取=1p ⎪⎪⎪⎭⎫ ⎝⎛-110;对于22=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----120210000→⎪⎪⎪⎭⎫ ⎝⎛000100010,⎪⎩⎪⎨⎧===003211x x x x ,取=2p ⎪⎪⎪⎭⎫⎝⎛001;对于53=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--220220003→⎪⎪⎪⎭⎫ ⎝⎛-000110001,⎪⎩⎪⎨⎧===333210x x x x x ,取=3p ⎪⎪⎪⎭⎫ ⎝⎛110.令⎪⎪⎪⎭⎫ ⎝⎛-==101101010),,(321p p p P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P .四、证明题(本题6分)27.设A ,B ,B A +均为n 阶正交矩阵,证明111)(---+=+B A B A .证:A ,B ,B A +均为n 阶正交阵,则1-=A A T ,1-=B B T ,1)()(-+=+B A B A T ,所以111)()(---+=+=+=+B A B A B A B A T T T .全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵),,(321ααα=A ,其中i α(3,2,1=i )为A 的列向量,若=||B 6|),,2(|3221=+αααα,则=||A ( C ) 6|),,2(||),,(|||3221321=+==αααααααA .A .12-B .6-C .6D .122.计算行列式=----32320200051020203( A )A .180-B .120-C .120D .18018030)2(310203)2(32005102203332320200051020203-=⨯-⨯=⨯-⨯=--⨯=----. 3.若A 为3阶方阵且2||1=-A ,则=|2|A ( C ) A .21B .2C .4D .821||=A ,4218||2|2|3=⨯==A A . 4.设4321,,,αααα都是3维向量,则必有( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .1α不可由432,,ααα线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则=)(A r ( C ) A .2B .3C .4D .5由2)(6=-A r ,得=)(A r 4.6.设A 、B 为同阶方阵,且)()(B r A r =,则( C ) A .A 与B 相似B .||||B A =C .A 与B 等价D .A 与B 合同注:A 与B 有相同的等价标准形.7.设A 为3阶方阵,其特征值分别为0,1,2,则=+|2|E A ( D ) A .0B .2C .3D .24E A 2+的特征值分别为2,3,4,所以24234|2|=⨯⨯=+E A .8.若A 、B 相似,则下列说法错误..的是( B ) A .A 与B 等价B .A 与B 合同C .||||B A =D .A 与B 有相同特征值注:只有正交相似才是合同的.9.若向量)1,2,1(-=α与),3,2(t =β正交,则=t ( D )A .2-B .0C .2D .4由内积062=+-t ,得=t 4.10.设3阶实对称矩阵A 的特征值分别为0,1,2,则( B ) A .A 正定B .A 半正定C .A 负定D .A 半负定对应的规范型002232221≥⋅++z z z ,是半正定的. 二、填空题(本大题共10小题,每小题2分,共20分)11.设⎪⎪⎪⎭⎫ ⎝⎛-=421023A ,⎪⎪⎭⎫⎝⎛--=010112B ,则=AB ______________.=AB ⎪⎪⎪⎭⎫ ⎝⎛-421023⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛--224010356010112. 12.设A 为3阶方阵,且3||=A ,则=-|3|1A ______________.9313||13||3|3|33131=⋅=⋅==--A A A . 13.三元方程1321=++x x x 的通解是______________.⎪⎩⎪⎨⎧==--=33223211x x x x x x x ,通解是⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101100121k k . 14.设)2,2,1(-=α,则与α反方向的单位向量是______________.)2,2,1(31||||1--=-αα.15.设A 为5阶方阵,且3)(=A r ,则线性空间}0|{==Ax x W 的维数是______________.}0|{==Ax x W 的维数等于0=Ax 基础解系所含向量的个数:235=-=-r n .16.1251)2/1(25||15|5|331-=⨯⨯-=⋅=-A A .17.若A 、B 为5阶方阵,且0=Ax 只有零解,且3)(=B r ,则=)(AB r ______________.0=Ax 只有零解,所以A 可逆,从而=)(AB r 3)(=B r .18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--110101012所对应的二次型=),,(321x x x f ______________.32212321321222),,(x x x x x x x x x f +-+=.19.设3元非齐次线性方程组b Ax =有解⎪⎪⎪⎭⎫ ⎝⎛=3211α,⎪⎪⎪⎭⎫⎝⎛-=3 2 12α,且2)(=A r ,则b Ax =的通解是______________.⎪⎪⎪⎭⎫ ⎝⎛=-001)(2121αα是0=Ax 的基础解系,b Ax =的通解是⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛001321k . 20.设⎪⎪⎪⎭⎫ ⎝⎛=321α,则T A αα=的非零特征值是______________.由14321)3,2,1(=⎪⎪⎪⎭⎫ ⎝⎛=ααT ,可得A A T T T 1414)(2===αααααα,设A 的非零特征值是λ,则λλ142=,14=λ.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式2000102000002000002010002=D .解:连续3次按第2行展开,243821128201020102420010200002010022=⨯=⨯=⨯=⨯=D . 22.设矩阵X 满足方程⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-021102341010100001200010002X ,求X .解:记⎪⎪⎪⎭⎫ ⎝⎛-=200010002A ,⎪⎪⎪⎭⎫ ⎝⎛=010100001B ,⎪⎪⎪⎭⎫⎝⎛---=021102341C ,则C AXB =,⎪⎪⎪⎭⎫ ⎝⎛-=-2/100010002/11A ,⎪⎪⎪⎭⎫ ⎝⎛=-010*******B ,11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛-=10002000121⎪⎪⎪⎭⎫ ⎝⎛---021102341⎪⎪⎪⎭⎫⎝⎛010100001⎪⎪⎪⎭⎫ ⎝⎛---=021********⎪⎪⎪⎭⎫ ⎝⎛010100001⎪⎪⎪⎭⎫⎝⎛---=20102443121. 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛------089514431311311→⎪⎪⎪⎭⎫⎝⎛------176401764011311→⎪⎪⎪⎭⎫⎝⎛---000001764011311 →⎪⎪⎪⎭⎫ ⎝⎛---0000017640441244→⎪⎪⎪⎭⎫ ⎝⎛--000001764053604→⎪⎪⎪⎭⎫ ⎝⎛----000004/14/72/3104/54/32/301,⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=-+=4433432431472341432345x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3012/32/3004/14/521k k ,21,k k 都是任意常数. 24.求向量组)4,1,2,1(1-=α,)4,10,100,9(2=α,)8,2,4,2(3---=α的秩和一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=844210141002291),,(321TT T ααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21121012501291→⎪⎪⎪⎪⎪⎭⎫⎝⎛--08001900410291 →⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010291→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010201,向量组的秩为2,21,αα是一个极大无关组.25.已知⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量T )1,1,1(-=ξ,求b a ,及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设λ是ξ所对应的特征值,则λξξ=A ,即⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---1111112135212λb a ,从而⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛++-λλλ121b a ,可得3-=a ,0=b ,1-=λ; 对于1-=λ,解齐次方程组0)(=-x A E λ:=-A E λ=⎪⎪⎪⎭⎫ ⎝⎛+-+---201335212λλλ⎪⎪⎪⎭⎫ ⎝⎛----101325213→⎪⎪⎪⎭⎫⎝⎛----213325101→⎪⎪⎪⎭⎫ ⎝⎛110220101→⎪⎪⎪⎭⎫ ⎝⎛000110101,⎪⎩⎪⎨⎧=-=-=333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛--111,属于1-=λ的全部特征向量为k ⎪⎪⎪⎭⎫⎝⎛--111,k 为任意非零实数.26.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A ,试确定a 使2)(=A r .解:⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A →⎪⎪⎪⎭⎫ ⎝⎛----a 12121122211→⎪⎪⎪⎭⎫ ⎝⎛----233023302211a →⎪⎪⎪⎭⎫⎝⎛--a 00023302211,0=a 时2)(=A r . 四、证明题(本大题共1小题,6分)27.若321,,ααα是b Ax =(0≠b )的线性无关解,证明,12αα-13αα-是对应齐次线性方程组0=Ax 的线性无关解.证:因为321,,ααα是b Ax =的解,所以12αα-,13αα-是0=Ax 的解;设0)()(132121=-+-ααααk k ,即0)(3221121=++--αααk k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧===--0002121k k k k ,只有零解021==k k ,所以,12αα-13αα-线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数试卷及其答案

试卷一一、判断题。
在每小题后面的小括号内打“√”号或“×”号1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。
( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。
( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =,则0≠D 。
( )4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组也为此方程组的基础解系。
( ) 5. 设c b a ,,是互不相等的数,则向量组),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c是线性无关的。
( )二、单项选择题1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。
A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =.2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为 。
A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示;B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示;C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价;D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。
3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。
A. )(21)(2121211ββααα-+++k k ;B. )(21)(2121211ββααα++-+k k ;C. )(21)(2121211ββββα-+++k k ;D. )(21)(2121211ββββα++-+k k .4. 设B A ,均为)2(≥n n 阶方阵,则必有 。
完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
2010—2011学年第二学期《线性代数B1》期末考试试卷及答案

五、(本题8分)
(1) 因为b1, b2, · · · , bn两两正交, 所以 bi, bj = δij · |bi|2 =
|bi|2 = 0, i = j,
0,
i = j.
设λ1b1 + λ2b2 + · · · + λnbn = 0, 用bi作内积得:λi bi, bi = 0 ⇒ λi = 0, i = 1, 2, · · · , n.
因为βj = n akjbk ⇒ βj = (b1, b2, · · · , bn) a1... j (j > r).
k=1
anj
所以βj (j > r)是β1, β2, · · · , βr的线性组合. 下面只要说明β1, β2, · · · , βr线性无关即可.
设λ1β1 + λ2β2 + · · · + λrβr = (β1, β2, · · · , βr) λ...1 = 0,
第 4 页 共 10 页
—————————————————————————– 答 题 时 不 要 超 过 此 线 —————————————————————————–
得分 评卷人
五、(本题15分)
已知二次型Q(x1, x2, x3) = 3x21 + 2x22 + 3x23 − 2x1x3。 (1) 写出二次型Q(x1, x2, x3)对应的矩阵A,和Q(x1, x2, x3)的矩阵式。 (2) 求正交变换P ,使x = P y把Q(x1, x2, x3)化为标准形。 (3) 二次型是正定的、负定的还是不定的,为什么? (4) 指出Q(x1, x2, x3) = 1的几何意义。
=
。
(8) 设P3[x]为 次 数 小 于 等 于3的 实 系 数 多 项 式 全 体 构 成 的 线 性 空 间 。 定
2010-2011第一学期线性代数期末试卷A(1)及答案

西南财经大学200 - 200 学年第 学期专业 科 级( 年级 学期)学 号 评定成绩 (分) 学生姓名 担任教师《线性代数》期末闭卷考试题(下述 一 — 四 题全作计100分, 两小时完卷)考试日期:试 题 全 文:一、 填空题(共5小题,每题2分)1、211121112---= 2、设A 是m n ⨯矩阵,B 是p m ⨯矩阵,则T T A B 是______矩阵。
3、设αβ、线性无关,则k αββ+、线性无关的充要条件是_______。
4、设αβ、为n 维非零列向量,则T R ()αβ=_________。
5、设3阶矩阵-1A 的特征值为-1、2、1,则A =_____。
二、选择题(共10小题,每题2分)1、设A 、B 为n 阶矩阵,则下列说法正确的是( )(A )、=B+AA B + (B )AB =BA(C )、T(AB )=TTA B (D )若AB A =,则B E =2、若某个线性方程组相应的齐次线性方程组仅有零解,则该线性方程组( ) (A)、有无穷解 (B)、有唯一解 (C)、无解 (D )、以上都不对3、一个向量组的极大线性无关组( )(A)、个数唯一 (B)、个数不唯一(C)、所含向量个数唯一 (D)、所含向量个数不唯一 4、若3阶方阵A 与B 相似,且A 的特征值为2、3、5,则B-E =( )。
(A)、 30 (B)、 8 (C)、11 (D)、75、若m n ⨯矩阵A 的秩为m,则方程组A X B =( )。
(A)、有唯一解 (B )、有无穷解 (C)、有解 (D)、 可能无解6、设A 为3阶方阵,且1A 2=,则1*2A A -+=( )。
(A)、 8 (B)、16 (C)、10 (D)、127、已知行列式D 的第一行元素都是4,且D=-12,则D 中第一行元素代数余子式之和为( )。
(A)、0 (B)、-3 (C)、-12 (D)、4 8、设A 、B 都是正定矩阵,则( ) (A)、AB,A+B 一定都是正定矩阵(B)、AB 是正定矩阵,A+B 不是正定矩阵(C)、AB 不一定是正定矩阵,A+B 是正定矩阵 (D)、AB 、A+B 都不是正定矩阵9、设A 是n 阶方阵,且k A O =(k 是正整数),则( )(A )、A O = (B )、A 有一个不为零的特征值 (C)、 A 的特征值全为零 (D )、A 有n 个线性无关的特征向量 10、已知2阶实对称矩阵A 满足232A A E O -+=,则A ( ) (A)、正定 (B)、半正定 (C )、负定 (D)、不定三、计算题(共8小题,每题8分)1、计算四阶行列式01001100100k k k k2、设100110111A⎛⎫⎪=⎪⎪⎝⎭,且*22A BA BA E=-,求B3、设111111kA kk⎛⎫⎪=⎪⎪⎝⎭,求R(A)4、考虑向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1412,2615,1012,31407,023154321ααααα (1) 求向量组的秩;(2) 求此向量组的一个极大线性无关组,并把其余向量分别用该极大线性无关组表示.5、设T α)0,2,1(1=, Tααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.6、设12314315A a-⎛⎫⎪=-- ⎪ ⎪⎝⎭有一个2重特征值,求a 的值并讨论A 是否可对角化。
线性代数试题及答案

线性代数试题及答案线性代数(试卷⼀)1、填空题(本题总计20分,每⼩题2分)1. 排列7623451的逆序数是。
2. 若,则3. 已知阶矩阵、和满⾜,其中为阶单位矩阵,则。
4. 若为矩阵,则⾮齐次线性⽅程组有唯⼀解的充分要条件是_________5. 设为的矩阵,已知它的秩为4,则以为系数矩阵的齐次线性⽅程组的解空间维数为__2___________。
6. 设A为三阶可逆阵,,则7.若A为矩阵,则齐次线性⽅程组有⾮零解的充分必要条件是8.已知五阶⾏列式,则9. 向量的模(范数)。
10.若与正交,则⼆、选择题(本题总计10分,每⼩题2分)1. 向量组线性相关且秩为s,则(D)A.B.C.D.2. 若A为三阶⽅阵,且,则(A)A.B.C.D.3.设向量组A能由向量组B线性表⽰,则( d )A.B.C.D.4. 设阶矩阵的⾏列式等于,则等于。
c5. 设阶矩阵,和,则下列说法正确的是。
则 ,则或三、计算题(本题总计60分。
1-3每⼩题8分,4-7每⼩题9分)1. 计算阶⾏列式。
2.设A为三阶矩阵,为A的伴随矩阵,且,求.3.求矩阵的逆4. 讨论为何值时,⾮齐次线性⽅程组①有唯⼀解;②有⽆穷多解;③⽆解。
5. 求下⾮齐次线性⽅程组所对应的齐次线性⽅程组的基础解系和此⽅程6.已知向量组、、、、,求此向量组的⼀个最⼤⽆关组,并把其余向量⽤该最⼤⽆关组线性表⽰.7. 求矩阵的特征值和特征向量.四、证明题(本题总计10分)设为的⼀个解,为对应齐次线性⽅程组的基础解系,证明线性⽆关。
(答案⼀)、填空题(本题总计20分,每⼩题 2 分)15;2、3;3、;4、;5、2;6、;7、;8、0;9、3;10、1。
.⼆、选择题(本总计 10 分,每⼩题 2分 1、D;2、A;3、D;4、C;5、B、计算题(本题总计60分,1-3每⼩题8分,4-7他每⼩题9分)1、解: ------3分-------6分----------8分此题的⽅法不唯⼀,可以酌情给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东 北 大 学 考 试 试 卷(A 卷)
2010 — 2011学年 第二学期
课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄
┄ 一、 (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =⎪⎪⎪
⎭
⎫ ⎝⎛-413031002),,(321ααα, 所以,24413031002||||=-=A B
二、 (20分) 设向量组⎪⎪⎪⎭⎫ ⎝⎛-=2111α,⎪⎪⎪⎭⎫ ⎝⎛=1122α,⎪⎪⎪
⎭
⎫ ⎝⎛=a 213α线性相关,向量 ⎪⎪⎪
⎭⎫
⎝⎛=b 13β可由向量组321,,ααα线性表示,求b a ,的值。
解 由于 ⎪⎪⎪⎭⎫ ⎝⎛-=b a 1212113121),,,(321βααα⎪⎪⎪⎭
⎫ ⎝⎛---→623043303121b a ⎪
⎪⎪⎭⎫ ⎝⎛-+→21004330312
1b a
所以,.2,1=-=b a
三 (15分) 证明所有二阶实对称矩阵组成的集合V 是R 22的子空间,试在
V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基.
解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是
二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 22的子空间。
对任意V b b b b B a a a a A ∈⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0.
总分 一 二 三 四 五 六
学 院
班 级
学 号 姓 名 …
…
………○
……………密……………
○
………
……封……
………○……
…
…
⎪⎪⎭⎫ ⎝⎛=00011A ,⎪⎪⎭⎫ ⎝⎛=01102A ,⎪⎪⎭⎫
⎝⎛=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的.
2-1
(20分) 已知三阶矩阵A 的伴随矩阵⎪⎪⎪⎭
⎫
⎝⎛=333222111*
A ,求齐次线性
方程组0=Ax 的通解.
解 由于0*≠A ,且1)(*=A R 得R(A)=2,所以,0=Ax 的解空间是1维的。
又由于0||*==E A AA ,所以,*A 的列向量是0=Ax 的解。
于是,(1,2,3)T 是0=Ax 的基础解系,所以,通解为:
R k k x ∈⎪⎪⎪
⎭
⎫
⎝⎛=,321
(15分) 设三阶实对称矩阵A 满足A A 22=,且向量T )0,1,1(-=α是齐
次方程0=Ax 的一个基础解系,求矩阵A 。
解 由0=Ax 的基础解系含一个解知A 的秩为2。
由A A 22=知A 的特征值只能为2或0,所以,A 的三个特征值为:2,2,0。
由0=αA 知α是属于特征值0的特征向量。
所以,A 的属于特征值2的特征向量必与α正交,所以,特征值2的特征向量可取为:
T )0,1,1(1=β和T )1,0,0(2=β,
于是,可构造正交矩阵:⎪⎪⎪
⎪⎪
⎪⎪⎭⎫
⎝
⎛
-=010
2
1021210
21Q 满足:Λ=AQ Q T
所以,
=Λ=T Q Q A ⎪⎪⎪
⎪⎪⎪⎪⎭⎫
⎝
⎛-
010
21021210
21⎪⎪⎪
⎭
⎫ ⎝⎛022⎪⎪⎪⎪⎪⎭
⎫ ⎝
⎛
-
02
12110002121⎪⎪⎪⎭
⎫ ⎝⎛=200011011
(15分) 某仓库有A,B,C 三种物品若干件,现按下述方案进行采购:购进原B 物品件数30%和原C 物品件数50%的A 物品;购进原A 物品件数30%的B 物品;购进原B 物品件数60%的C 物品。
试建立采购前后仓库A,B,C 三种
物品件数间的关系式。
若采购后仓库A,B,C 三种物品件数分别为290,330,380,
求采购前仓库A,B,C 三种物品的件数。
解 记采购前仓库A,B,C 三种物品件数分别为:000,,z y x ,采购后仓库A,B,C 三种物品件数分别为:
111,,z y x ,则由已知有:
⎪⎩⎪
⎨⎧+=+=++=0010
0100016.03.05.03.0z y z y x y z y x x 即:⎪
⎪⎪⎭
⎫
⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00011116.00013.05.03.01z y x z y x 所以,若380,330,290111===z y x 时,有
⎪⎪⎪⎭
⎫
⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-38033029016.00013.05.03.011
000z y x ⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=20030010038033029091.06.018.015.013.05.001
即采购前仓库A,B,C 三种物品的件数分别为100,300, 200.
2-2。