北师大版八年级下册数学期中试卷和答案知识讲解

合集下载

北师大版八年级下册数学期中考试试题及答案

北师大版八年级下册数学期中考试试题及答案

北师大版八年级下册数学期中考试试卷一、单选题1.下列不等式,不成立的是()A .﹣2>﹣12B .5>3C .0>﹣2D .5>﹣12.下列图形是中心对称图形的是()A .B .C .D .3.下列从左边到右边的变形,是因式分解的是()A .2(3)(3)9x x x -+=-B .am +bm +cm =m (a +b +c )C .(1)(3)(3)(1)y y y y +-=--+D .2422(2)yz y z z y z yz z -+=-+4.如图所示,该图案是经过()A .平移得到的B .旋转或轴对称得到的C .轴对称得到的D .旋转得到的5.已知函数y =8x -11,要使y >0,那么x 应取()A .x >118B .x <118C .x >0D .x <06.多项式3222315520m n m n m n +-的公因式是()A .5mnB .225m nC .25m nD .25mn 7.下列命题不正确的是A .等腰三角形的底角不能是钝角B .等腰三角形不能是直角三角形C .若一个三角形有三条对称轴,那么它一定是等边三角形D .两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形8.下列多项式中能用平方差公式分解因式的是()A .2 a +()2b -B .2 5m 20mn -C .22 x y --D .2 x 9-+9.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在().A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边垂直平分线的交点处C .在AC 、BC 两边中线的交点处D .在∠A 、∠B 两内角平分线的交点处10.如图,已知在△ABC 中,AB =AC ,BE 和CD 分别是∠ABC 和∠ACB 的平分线,则下列结论中,①∠ABE =∠ACD ;②BE =CD ;③OC =OB ;④CD ⊥AB ,BE ⊥AC ,正确的是()A .①B .①②C .①②③D .②③④二、填空题11.分解因式:x 2﹣4=__.12.已知:y 1=3x +2,y 2=-x +8,当x _________时,y 1>y 213.如图,∠C =90°,D 是CA 的延长线上一点,∠D =15°,且AD =AB ,则BC =_____AD .14.不等式组32x x >-⎧⎨<⎩的解集是_________.15.若22916x mxy y ++是一个完全平方式,那么m 的值是__________.16.若将点P (-3,4)向下平移2个单位,所得点的坐标是__________.17.如图,在己知的ABC ∆中,按以一下步骤作图:①分别以,B C 为圆心,大于12BC 的长为半径作弧,相交于两点,M N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,50A ∠=︒,则ACB∠的度数为___________.三、解答题18.分解因式(1)a2-b2(2)x2+2xy+y219.解不等式组:1526xx+<⎧⎨≥⎩,并在数轴上表示出不等式组的解集.20.如图,画出ABC向右平移6格后的图形21.利用因式分解进行计算:229124x xy y++,其中43x=,12y=-.22.把一批书分给小朋友,每人4本,则余9本;每人6本,则最后一个小朋友得到的书且不足3本,则共有小朋友多少人?多少本书?23.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且BD=AE,AD与CE交于点F(1)求证:AD=CE;(2)求∠DFC的度数.24.如图,点P是正方形ABCD内一点,连接PA,PB,PC,将△ABP绕点B顺时针旋转到△CBP′的位置.(1)旋转中心是点__________,旋转角度是__________.(2)连接PP′,△BPP′的形状是__________三角形.(3)若PA=2,PB=4,∠APB=135°,求PC的长.25.观察下列各式:21(1)(1)-=-+x x x32-=-++x x x x1(1)(1)432-=-+++1(1)(1)x x x x x(1)x5-1=.(2)根据前面的规律可得x n-1=(x-1).x-.(3)请按以上规律分解因式:20081参考答案1.A【分析】此题主要依据有理数的大小比较:正数大于所有负数,零大于所有负数,两个负数大小比较时,绝对值大的反而小.【详解】解:A、因为两个负数,绝对值大的反而小,所以﹣2<﹣12;B、5>3成立;C、0大于一切负数,则0>﹣2;D、正数大于一切负数,则5>﹣1.故选A.【点睛】掌握有理数的大小比较方法,特别注意:两个负数,绝对值大的反而小.2.B【分析】根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点睛】本题考查了中心对称图形的识别,解题的关键是掌握中心对称图形的概念.3.B【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A错误;B 、把一个多项式转化成几个整式积,故B 正确;C 、是乘法交换律,故C 错误;D 、没把一个多项式转化成几个整式积,故D 错误;故选B .【点睛】本题考查了因式分解的意义,利用把一个多项式转化成几个整式积是解题关键.4.B【详解】根据图案的形状可知:通过旋转和轴对称折叠旋转即可得到,因此可知B 答案正确.故选B.5.A【详解】试题解析:函数y=8x-11,要使y >0,则8x-11>0,解得x >118,故选A.6.C【分析】找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【详解】解:多项式3222315520m n m n m n +-中,各项系数的最大公约数是5,各项都含有的相同字母是m 、n ,字母m 的指数最低是2,字母n 的指数最低是1,所以它的公因式是25m n .故选C .【点睛】本题考查了公因式的确定,熟练掌握找公因式有三大要点是求解的关键.7.B【详解】试题分析:根据等腰三角形的性质及等边三角形的判定方法依次分析各项即可判断.A、C、D、均正确,不符合题意;B、等腰直角三角形就是直角三角形,故错误,本选项符合题意.考点:等腰三角形的性质,等边三角形的判定点评:等腰三角形的性质的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.D【分析】利用能用平方差公式因式分解的的式子特点求解即可:两项是平方项,符号相反【详解】A:两项符号相同,故不能;B:两项不是平方项,故不能;C:两项符号相同,故不能;D:两项是平方项,符号相反,故可以所以答案为D选项【点睛】本题主要考查了能用平方差公式因式分解的特点,熟练掌握该特点是解题关键9.B【分析】根据线段垂直平分线的性质即可得出答案.【详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,可知超市应建在AC、BC两边垂直平分线的交点处,故选:B.【点睛】本题考查线段垂直平分线性质:线段垂直平分线上的点到线段两个端点的距离相等,熟练掌握其性质是解题的关键.10.C【分析】由AB=AC得∠ABC=∠ACB,由两个平分条件,则可得∠ABE=∠ACD,即①成立;且∠OBC=∠OCB ,从而可得OC=OB ,即③正确;易证△ABE ≌△ACD ,BE=CD ,故可得②正确;由AB=AC 得∠ABC=∠ACB ,由两个平分条件,则可得∠OBC=∠OCB ,从而可得OC=OB ,即③正确;若④成立,则可得△ABC 是等边三角形,显然与已知矛盾.【详解】∵AB=AC∴∠ABC=∠ACBBE 和CD 分别是∠ABC 和∠ACB 的平分线∴∠ABE=∠OBC=12ABC ∠,∠ACD=∠OCB=12ACB∴∠ABE=∠ACD=∠OBC=∠OCB即①成立∵∠OBC=∠OCB∴OC=OB即③正确在△ABE 和△ACD 中A AAB AC ABE ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACD(ASA)∴BE=CD即②正确若④成立,则∠ABC+∠OCB=90゜∵∠ABE =∠OBC=∠OCB∴∠ABE=∠OBC=∠OCB=30゜∴∠ABC=2∠ABE=60゜∵AB=AC∴△ABC 是等边三角形显然与已知△ABC 是等腰三角形矛盾故④错误所以正确的结论为①②③故选:C .【点睛】本题考查了等腰三角形的性质,三角形全等的判定与性质,等边三角形的判定等知识,熟练运用三角形全等的判定与性质是本题的关键.11.(x+2)(x ﹣2)【详解】该题考查因式分解的定义由平方差公式ɑ2-b 2=(ɑ+b)(ɑ-b)可得x 2﹣4=(x+2)(x ﹣2)12.32x >【分析】根据题意列出不等式,故可求解.【详解】∵y 1=3x +2,y 2=-x +8,∴当y 1>y 2时,即3x +2>-x +8解得32x >故答案为:32x >.【点睛】此题主要考查一次函数与不等式,解题的关键是根据题意列出不等式进行求解.13.12【分析】根据等腰对等角以及三角形的外角性质可求得30BAC ∠=︒,根据含30度角的直角三角形的性质即可求得12BC AD =.【详解】AD AB =,ABD ∴ 是等腰三角形,D ABD ∴∠=∠,15D ∠=︒ ,15ABD ∴∠=︒,BAC ABD D ∠=∠+∠ ,151530BAC ∴∠=︒+︒=︒,90C ∠=︒ ,ABC ∴ 是直角三角形,1122BC AB AD ∴==.故答案为:12.【点睛】本题考查了等腰对等角,三角形的外角性质,含30度角的直角三角形的性质,掌握以上性质是解题的关键.14.-3<x <2【分析】直接根据一元一次不等式组的求解即可.【详解】解:∵32x x >-⎧⎨<⎩,解得:32x -<<;故答案为:32x -<<.【点睛】本题主要考查一元一次不等式组的解集,熟练掌握求解一元一次不等式组是解题的关键.15.±24【分析】根据完全平方公式进行计算即可.【详解】解:∵22916x mxy y ++是一个完全平方式,∴22916x mxy y ++=(3x±4y )2,∴m =±24,故答案为:±24.【点睛】本题考查了完全平方公式.解题的关键是掌握完全平方公式的结构特征:两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.16.(-3,2)【分析】根据向下平移纵坐标减,进行计算即可.【详解】解:将点P (−3,4)向下平移2个单位,所得点的坐标是(−3,2).故答案为:(−3,2).【点睛】本题考查了点的坐标的平移,熟记左减右加,下减上加是解题的关键,是基础题,难度不大.17.105°【分析】根据垂直平分线的性质,可知,BD=CD ,进而,求得∠BCD 的度数,由CD AC =,50A ∠=︒,可知,∠ACD=80°,即可得到结果.【详解】根据尺规作图,可知,MN 是线段BC 的中垂线,∴BD=CD ,∴∠B=∠BCD ,又∵CD AC =,∴∠A=∠ADC=50°,∵∠B+∠BCD=∠ADC=50°,∴∠BCD=°1502⨯=25°,∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,∴ACB ∠=∠BCD+∠ACD=25°+80°=105°.【点睛】本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.18.(1)(a+b)(a-b);(2)(x+y)2【分析】(1)根据平方差公式即可因式分解;(2)根据完全平方公式即可因式分解.【详解】解:(1)a2-b2=(a+b)(a-b)(2)x2+2xy+y2=(x+y)2.【点睛】此题主要考查因式分解,解题的关键是熟知乘法公式的特点.19.3≤x<4,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】解:15 26xx+<⎧⎨≥⎩①②由①解得4x<,由②解得3x≥,所以不等式组的解集为34x≤<解集在数轴上表示如下图:【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,能求出不等式组的解集是解此题的关键.20.图形见解析.【分析】分别画出ABC 中A ,B ,C 向右平移6格后的对应点'A ,'B ,'C ,然后连接各点即可.【详解】解:如图所示:'''A B C 为所求.【点睛】本题主要考查了平移作图,正确得出对应点的位置是解题关键.21.()232x y +,9.【分析】先根据完全平方公式分解因式,再代入求出即可.【详解】解:229124x xy y ++()()2232322x x y y =++ ()232x y =+,当43x =,12y =-时,原式2413232⎡⎤⎛⎫=⨯+⨯- ⎪⎢⎥⎝⎭⎣⎦()241=-=(4-1)29=【点睛】本题考查了分解因式和代数式的化简求值,能根据公式正确分解因式是解此题的关键.22.共有7个小朋友人,37本书.【分析】设共有小朋友x人,则这批书共有(4x+9)本,根据“每人6本,则最后一个小朋友得到的书且不足3本,”可列出关于x的不等式组,即可求解.【详解】解:设共有小朋友x人,则这批书共有(4x+9)本,依题意,得:496(1) 496(1)3 x xx x+>-⎧⎨+<-+⎩,解得:6<x<15 2,又∵x为正整数,∴x=7,∴4x+9=4×7+9=37(本),答:共有7个小朋友人,37本书.【点睛】本题主要考查了一元一次不等式组的实际应用,明确题意,准确找到数量关系是解题的关键.23.(1)见解析;(2)60°【分析】(1)根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,(2)根据全等三角形的性质得到∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【详解】(1)证明:∵△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.又∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE.(2)解:由(1)得△ABD≌△CAE∴∠ACE=∠BAD.∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°.【点睛】本题利用了等边三角形的性质和三角形外角定理,解题的关键是熟知全等三角形的判定定理及三角形的外角等于与它不相邻的两个内角的和.24.(1)B,90°;(2)等腰直角;(3)6【分析】(1)根据旋转的定义解答;(2)根据旋转的性质可得BP=BP′,又旋转角为90°,然后根据等腰直角三角形的定义判定;(3)①根据勾股定理列式求出PP′,先根据旋转的性质求出∠BP′C=135°,再求出∠PP′C=90°,然后根据勾股定理列式进行计算即可得解.【详解】解:(1)∵P是正方形ABCD内一点,△ABP绕点B顺时针旋转到△CBP′的位置,∴旋转中心是点B,点P旋转的度数是90度,故答案为:B,90°;(2)根据旋转的性质BP=BP′,旋转角为90°,∴△BPP′是等腰直角三角形;故答案为:等腰直角;(3)在等腰Rt△BPP'中,∵PB=BP'=4,∴PP′=∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,∵P'C=PA=2在Rt△PP′C中,PC6=【点睛】本题考查旋转的性质,勾股定理,正方形的性质,等腰直角三角形的判定和性质,解题的关键是熟练掌握旋转的性质和正方形的性质.25.(1)(x -1)(x 4+x 3+x 2+x +1);(2)(x n -1+x n -2+……+x 2+x +1);(3)(x -1)(x 2007+x 2006+……+x 2+x +1)【分析】(1)根据已知的等式即可因式分解x 5-1;(2)根据已知的等式即可因式分解x n -1;(3)把n=2008代入(2)即可求解.【详解】(1)∵21(1)(1)x x x -=-+321(1)(1)x x x x -=-++4321(1)(1)x x x x x -=-+++∴x 5-1=(x -1)(x 4+x 3+x 2+x +1);故答案为:(x -1)(x 4+x 3+x 2+x +1);(2)∵21(1)(1)x x x -=-+321(1)(1)x x x x -=-++4321(1)(1)x x x x x -=-+++x 5-1=(x -1)(x 4+x 3+x 2+x +1);∴x n -1=(x-1)(x n -1+x n -2+……+x 2+x +1)故答案为:(x n -1+x n -2+……+x 2+x +1);(3)x n -1=(x-1)(x n -1+x n -2+……+x 2+x +1)∴20081x -=(x -1)(x 2007+x 2006+……+x 2+x +1).【点睛】此题主要考查因式分解,解题的关键是根据已知的等式发现规律进行求解.。

北师大版八年级下学期期中数学试卷(含解析)

北师大版八年级下学期期中数学试卷(含解析)

北师大版八年级第二学期期中数学试卷一、选择题1.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数个2.(3分)等腰三角形的一个内角是70°,则它顶角的度数是()A.70°B.70°或40°C.70°或50°D.40°3.(3分)下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.44.(3分)下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)25.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD 的长为()A.B.C.D.6.(3分)如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定7.(3分)如图,一次函数y=kx+b的图象交y轴于点A(0,2),则不等式kx+b<2的解集为()A.x<0B.x>0C.x<﹣1D.x>﹣18.(3分)如图,是一个不等式组的解集在数轴上的表示,则该不等式组的解集是()A.1<x≤0B.0<x≤1C.0≤x<1D.0<x<19.(3分)如图,∠ABC=90°,∠C=15°,线段AC的垂直平分线DE交AC于D,交BC于E,D为垂足,CE=10 cm,则AB=()A.4 cm B.5 cm C.6 cm D.不能确定10.(3分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°二、填空题(每小题4分,共28分)11.(4分)在△ABC中,∠A:∠B:∠C=1:2:3,最小边长为4cm,则最长边为cm.12.(4分)不等式(a﹣b)x>a﹣b的解集是x<1,则a与b的大小关系是.13.(4分)已知,在△ABC中,∠ACB=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF ⊥AB,点D、E、F是垂足,且AB=17,BC=15,则OF、OE、OD的长度分别是.14.(4分)若x2+3x=2,则代数式2x2+6x﹣4的值为.15.(4分)如图将直角三角形ABC沿AB方向平移AD距离得到△DEF,已知∠ABC=90°,BE=5,EF=8,CG=3,则图中阴影部分的面积为.16.(4分)不等式3x﹣k≤0的正数解是1,2,3,那么k的取值范围是.17.(4分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,下列结论中:①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2;正确的有(填序号)13题图15题图17题图三、解答题(一)(每小题6分,共18分)18.(6分)小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买多少本笔记本?19.(6分)如图,在△ABC中,∠C=90°.(1)用尺规作图,在AC边上找一点D,使DB+DC=AC(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下若AC=6,AB=8,求DC的长.20.(6分)已知点A(1,0)和点B(1,3),将线段AB平移至A'B',点A'于点A对应,若点A'的坐标为(1,﹣3).(1)AB是怎样平移的?(2)求点B'的坐标.四、解答题(二)(每小题8分,共24分)21.(8分)如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE与DF在数量上有何关系?并给出证明.22.(8分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围.(2)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.23.(8分)已知:如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连结BC′,求BC′的长.五、解答题(三)(每小题10分,共20分)24.(10分)某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,该商店至少盈利多少元?25.(10分)如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.参考答案一.填空题(每小题3分,共30分)1.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数个解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1.故选:A.2.(3分)等腰三角形的一个内角是70°,则它顶角的度数是()A.70°B.70°或40°C.70°或50°D.40°解:本题可分两种情况:①当70°角为底角时,顶角为180°﹣2×70°=40°;②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故选:B.3.(3分)下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.4解:第一个图形是中心对称图形,第二个图形、第三个图形既是中心对称图形,又是轴对称图形,第四个图形是轴对称图形,共2个,故选:B.4.(3分)下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)2解:A和B都不是积的形式,应排除;C中,结果中的因式都应是整式,应排除.D、x2+4x+4=(x+2)2,正确.故选:D.5.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD 的长为()A.B.C.D.解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.6.(3分)如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定解:∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选:C.7.(3分)如图,一次函数y=kx+b的图象交y轴于点A(0,2),则不等式kx+b<2的解集为()A.x<0B.x>0C.x<﹣1D.x>﹣1解:根据图象得,当x<0时,kx+b<2,所以不等式kx+b<2的解集为x<0.故选:A.8.(3分)如图,是一个不等式组的解集在数轴上的表示,则该不等式组的解集是()A.1<x≤0B.0<x≤1C.0≤x<1D.0<x<1解:不等式的解集表示0与1以及1之间的数.因而解集是0<x≤1.故选:B.9.(3分)如图,∠ABC=90°,∠C=15°,线段AC的垂直平分线DE交AC于D,交BC于E,D为垂足,CE=10 cm,则AB=()A.4 cm B.5 cm C.6 cm D.不能确定解:∵DE是线段AC的垂直平分线,∴EA=EC=10,∴∠EAC=∠C=15°,∴∠AEB=30°,∴AB=AE=5(cm),故选:B.10.(3分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.二、填空题(每小题4分,共28分)11.(4分)在△ABC中,∠A:∠B:∠C=1:2:3,最小边长为4cm,则最长边为8cm.解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,解得x=30°,即∠A=30°,∠C=3×30°=90°,此三角形为直角三角形.故AB=2BC=2×4=8cm.故答案为:8.12.(4分)不等式(a﹣b)x>a﹣b的解集是x<1,则a与b的大小关系是a<b.解:∵不等式(a﹣b)x>a﹣b的解集是x<1,∴a﹣b<0,∴a<b,则a与b的大小关系是a<b.故答案为:a<b.13.(4分)已知,在△ABC中,∠ACB=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF ⊥AB,点D、E、F是垂足,且AB=17,BC=15,则OF、OE、OD的长度分别是3.解:如图,连接OB,∵在Rt△ABC中,∠ACB=90°,AB=17,BC=15,∴AC===8,∵点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,∴OE=OF=OD,又∵OB是公共边,∴Rt△BOF≌Rt△BOD(HL),∴BD=BF,同理AE=AF,CE=CD,∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,∴四边形OECD是正方形,设OE=OF=OD=x,则CE=CD=x,BD=BF=15﹣x,AF=AE=8﹣x,∴15﹣x+8﹣x=17,解得x=3.∴OE=OF=OD=3.故答案为:3.14.(4分)若x2+3x=2,则代数式2x2+6x﹣4的值为0.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为015.(4分)如图将直角三角形ABC沿AB方向平移AD距离得到△DEF,已知∠ABC=90°,BE=5,EF=8,CG=3,则图中阴影部分的面积为.解:∵直角三角形ABC沿AB方向平移AD距离得到△DEF,∴S△ABC=S△DEF,BC=EF=8,∴GB=BC﹣CG=8﹣3=5,∵S阴影部分+S△DBG=S△BDG+S梯形BEFG,∴S阴影部分=S梯形BEFG=×(5+8)×5=.故答案为.16.(4分)不等式3x﹣k≤0的正数解是1,2,3,那么k的取值范围是9≤k<12.解:3x﹣k≤0,3x≤k,x≤,∵不等式3x﹣k≤0的正数解是1,2,3,∴3≤<4,∴9≤k<12,故答案为:9≤k<12.17.(4分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,下列结论中:①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2;正确的有①③④(填序号)解:∵在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,①由旋转,可知:∠CAF=∠BAE,∵∠BAD=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠CAF+∠BAE=∠DAF=45°,故①正确;②由旋转,可知:△ABE≌△ACF,不能推出△ABE≌△ACD,故②错误;③∵∠EAD=∠DAF=45°,∴AD平分∠EAF,故③正确;④由旋转可知:AE=AF,∠ACF=∠B=45°,∵∠ACB=45°,∴∠DCF=90°,由勾股定理得:CF2+CD2=DF2,即BE2+DC2=DF2,在△AED和△AFD中,,∴△AED≌△AFD(SAS),∴DE=DF,∴BE2+DC2=DE2,故答案为:①③④.三、解答题(一)(每小题6分,共18分)18.(6分)小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买多少本笔记本?解:4角=0.4元.设小明购买了x个笔记本,则购买了(30﹣x)个练习本,依题意,得:4x+0.4(30﹣x)≤30,解得:x≤5.答:小明最多能买5本笔记本.19.(6分)如图,在△ABC中,∠C=90°.(1)用尺规作图,在AC边上找一点D,使DB+DC=AC(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下若AC=6,AB=8,求DC的长.解:(1)如图,点D为所作;(2)∵AC=6,AB=8,∴BC==2,设CD=x,则BD=AD=AC﹣CD=6﹣x,在Rt△BCD中,∵BD2=BC2+CD2,∴(6﹣x)2=(2)2+x2,解得x=,即CD的长为.20.(6分)已知点A(1,0)和点B(1,3),将线段AB平移至A'B',点A'于点A对应,若点A'的坐标为(1,﹣3).(1)AB是怎样平移的?(2)求点B'的坐标.解:(1)∵A(﹣1,0)平移后对应点A′的坐标为(1,﹣3),∴A点的平移方法是:向下平移3个单位,∴线段AB向下平移3个单位得到A′B′.(2)∵B点的平移方法与A点的平移方法是相同的,∴B(1,3)平移后B′的坐标是:(1,0).四、解答题(二)(每小题8分,共24分)21.(8分)如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE与DF在数量上有何关系?并给出证明.解:(1)AD⊥BC,∠BAD=∠CAD,AB=AC等.理由如下:∵AB=5,AD=4,BD=3,∴42+32=52.∴△ABD为直角三角形,且∠ADB=90°.∵CD=3,∴,∴AB=AC,又∵BD=CD,∴AD⊥BC,∠BAD=∠CAD;(2)DE=DF,理由如下:∵∠BAD=∠CAD,DE⊥AB于E,DF⊥AC于点F,∴DE=DF.22.(8分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围.(2)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.解:(1)解方程组,得:,根据题意,得:,解得﹣2<m≤3;(2)由(2m+1)x<2m+1的解为x>1知2m+1<0,解得m<﹣,则在﹣2<m<﹣中整数﹣1符合题意.23.(8分)已知:如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连结BC′,求BC′的长.解:如图,连结BB′,∵△ABC绕点A顺时针旋转60°得到△AB′C′.∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′=AB′,延长BC′交AB′于点D,又∵AC′=B′C′,∴BD垂直平分AB′,∴AD=B′D,∵∠C=90°,AC=BC=∴AB==2,∴AB′=2∴AD=B′D=1,∴BD==,C′D==1,∴BC′=BD﹣C′D=.五、解答题(三)(每小题10分,共20分)24.(10分)某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,该商店至少盈利多少元?解:(1)设每件甲商品与每件乙商品的售价分别是x、y元.依题意得:,解得;(2)设进货甲商品a件,则乙商品(80﹣a)件.依题意得:70a+35(80﹣a)≤4200解得a≤40;(3)设进货乙商品b件,利润为M元.由(2)得a≤40,则b≥40M=(90﹣70)(80﹣b)+(60﹣35)b=5b+1600∵5>0∴M随b的增大而增大∴当b=40时,M取得最小值,即5×40+1600=1800(元)25.(10分)如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.解:(1)①在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);②∵CD=3DE∴DE=2,CE=4,设BG=x,则CG=6﹣x,GE=x+2∵GE2=CG2+CE2∴(x+2)2=(6﹣x)2+42,解得x=3,∴CG=6﹣3=3;(2)如图,过C作CM⊥GF于M,∵BG=GF=3,∴CG=3,EC=6﹣2=4,∴GE==5,CM•GE=GC•EC,∴CM×5=3×4,∴CM=2.4,∴S△FGC=GF×CM=×3×2.4=3.6.。

北师大版数学八年级下册《期中测试卷》及答案

北师大版数学八年级下册《期中测试卷》及答案
(1)画出平移后的三角形DEF并标出D,E,F点的坐标;
(2)求线段OA在平移过程中扫过的面积.
23.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(2)在(1)中,过点D作 ,交AB于点E,若CD=4,则BC的长为.
四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)
21.若关于 的方程组 的解满足 ,求 的取值范围.
22.如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).三角形AOB中任意一点 经平移后的对应点为 ,并且点A,O,B的对应点分别为点D,E,F.
综合上述可得
故选A.
[点睛]本题主要考查不等式的非整数解,关键在于非整数解的确定.
9.如图,函数y=kx+b(k+b<2x的解集为()
A. B. C. D.
[答案]A
[解析]
[分析]
先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=2x都在直线y=kx+b的上方,当x<2时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<2x的解集.
A.2.5B.3C.3.5D.4
二、填空题(每题4分,满分28分,将答案填在答题纸上)
11.等腰三角形的一个外角是60°,则它的顶角的度数是__.
12.若 ,则 _______ .
13.不等式组 ,的解集是_______.
14.如图,将 沿 方向平移 得到 ,如果 周长为 ,那么四边形 的周长为______ .

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。

最新北师大版八年级数学下册期中考试试卷(含答案)

最新北师大版八年级数学下册期中考试试卷(含答案)

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m22.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.3.以下列线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=40,c=41B. a=b=5,c=5√2C. a:b:c=3:4:5D. a=11,b=12,c=154.如图,在△ABC中,AB=AC,AD是△ABC的角平分线.若AB=13,AD=12,则BC的长为()A. 5B. 10C. 20D. 245.如图,DA⊥AC,DE⊥BC.若AD=5cm,DE=5cm,∠ACD=30°,则∠DCE=()A. 30°B. 40°C. 50°D. 60°6.不等式组{x−1>0,5−x≥1的整数解共有()A. 1个B. 2个C. 3个D. 4个7.下列说法不一定成立的是()A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b8.下列图形既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 圆9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°10.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组11.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −312.如图所示的仪器中,OD=OE,CD=CE.小州把这个仪器往直线l上一放,使点D,E落在直线l上,作直线OC,则OC⊥l,他这样判断的理由是()A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等13.如图,在平面直角坐标系中,△OAB为等边三角形,AB⊥x轴,AB=4√3,点C的坐标为(2,0).P为OB边上的一个动点,则PA+PC的最小值为()A. √13B. 2√13C. 4√13D. 1214.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米②乙队先到达终点③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快④乙与甲相遇时乙的速度是375米/分钟⑤在1.8分钟时,乙队追上了甲队A. ①③④B. ①②⑤C. ①②④D. ①②③④⑤15. 如图,在正方形ABCD 中,AB =3,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A. 3B. 2√3C. √13D. √15 卷Ⅱ 二、填空题(本大题共5小题,共25.0分)16. 根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.17. 已知x −y =3,若y <1,则x 的取值范围是 .18. 如图,这是某超市自动扶梯的示意图,大厅两层之间的距离ℎ=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v =0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒.19. 当k 时,代数式23(k −1)的值不小于代数式1−5k−16的值.20. 如图,线段AB 和CD 关于点O 中心对称.若∠B =40°,则∠D 的度数为 .三、解答题(本大题共7小题,共80.0分)21. (8分)(1)解不等式0.2x 0.3−6−7x 3≤1(2) 解不等式组{12x >13x x+43>3x−72−122. (8分)如图,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.23.(10分)如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.24.(12分)如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.25.(12分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?26.(14分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.27.(16分)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)求证:∠OMP=∠OPN;(2)当OP=2时,点M关于点H的对称点为Q,连接QP.①用量角器和直尺以图1中OP的长为2,画出一个尽可能准确的图形。

北师大版八年级数学(下)期中试卷(含解析)

北师大版八年级数学(下)期中试卷(含解析)

北师大版八年级数学(下)期中试卷一、选择题:(每小题3分,共计30分)1.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1B.3a>3b C.﹣a<﹣b D.ac<bc2.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,AB=DE D.∠B=∠E,∠C=∠F,AC=DF4.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高的交点5.不等式组的解在数轴上表示为()A.B.C.D.6.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)7.如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD等于()A.4B.3C.2D.18.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS9.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1B.x<1C.x>2D.x<210.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4…则△2013的直角顶点的坐标为()A.(8052,0)B.(8040,0)C.(8049,0)D.(8048,0)二、填空题:(每题3分,共18分)11.已知等腰三角形的两条边长分别是7和3,则此三角形的周长为.12.已知△ABC的三边长分别是5cm,12cm,13cm,则△ABC的面积是.13.如图所示,△A′B′C′是△ABC向右平移4cm得到的,已知,∠ACB=30°,B′C=3cm,则∠C′=,B′C′=cm.军演,做文明中学生”知识竞赛,假设共20道题,每答对了一道题得10分,答错了或者不答扣5分,那么至少要答对道题,其得分才会不少于95分.15.若三条长度分别为3cm,8cm,xcm(x为正整数)的线段可以围成一个三角形,则x的值可能为.16.如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A逆时针旋转后,得到△MAB,则点P与点M之间的距离为,∠APB=°.三.作图题(共4分)17.如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.四.解答题(共68分)18.解下列不等式(组),并把(3)(4)题的解集在数轴上表示出来;(1)+x≥x;(2)2(﹣3+x)>3(x+2);(3);(4).19.为了迎接母亲节的到来,青岛利客来集团特开展“感恩母亲”打折促销活动,现有某种商品进价为200元,标价320元出售,商场规定打折销售后其利润率不能少于20%,请你帮助售货员计算一下,这种商品最多可以按几折20.如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.(1)请根据题意用实线补全图形;(2)求证:△AFB≌△AGE.21.如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.22.某校长暑假将带领该校前级“三好学生”去北京大学游学,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠”.若全票价为260元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才会比较合算?23.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交C边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状并证明.24.先阅读理解下面的例题,再按要求解答下列问题:同学们,我们把学习新的数学知识的时候,经常利用“化归“的数学思想方法解决问题,比如,我们在学习二元一次方程组的解法时,是通过“消元”的方法将二元方程化归成我们所熟悉的一元方程,从而正确求解.下面我们就利用“化归”的数学方法解决新的问题.首先,我们把像这样,只含有一个未知数,并且未知教的最高次数是2的不等式,称为一元二次不等式.通过以前的学习,我们已经认识了一无一次不等式、一元一次不等式组并掌握了它们的解法.同学们,你们能类比一元一次不等式(组)的解法求出一元二次不等式的解集吗?例题:解一元二次不等式x2﹣9>0分析:为了解决这个问题,我们需要将一元二次不等式“化归”到一元一次不等式(组),通过平方差公式的逆用,我们可以把x2﹣9>0写成(x+3)(x﹣3)的形式,从面将x2﹣9>0转化为(x+3)(x﹣3)>0,然后再利用两数相乘的符号性质将一元二次不等式转化成一元一次不等式(组),从而解决问题.解:∵x2﹣9=(x+3)(x﹣3)∴x2﹣9>0可化为(x+3)(x﹣3)>0,由有理数的乘法法则“两数相乘,同号得正”,得①②,解不等式组①,x>3,解不等式组②,x<﹣3,即一元二次不等式x2﹣9>0的解集为x>3或x<﹣3拓展应用:(1)求一元二次不等式x2﹣16>0的解集.(2)求分式不等式<0的解集.(3)求一元二次不等式2x2﹣3x<0的解集.25.如图,在Rt△ABC中,已知∠C=90°,AC=6cm,BC=8cm,动点P,Q同时从A,B两点出发,分别沿AB、BC方向匀速移动,动点P的速度是2cm/s,动点Q的速度是1cm/s,当点P到达点B时,P、Q两点停止运动,连接PQ,设点P的运动时间为(G),试解答下面的问题:(1)当t=4时,求△PBQ的面积?(2)当t为何值时,点B在线段PO的垂直平分线上?(3)是否存在某一时刻t,使点Q在∠A的角平分线上,若存在,请求出t的值;若不存在,请说明理由?(4)请用含有t的代数式表示四边形PQCA的面积.参考答案与试题解析一、选择题:(每小题3分,共计30分)1.【解答】解:A、∵a<b,∴a﹣1<b﹣1,故本选项符合题意;B、∵a<b,∴3a<3b,故本选项不符合题意;C、∵a<b,∴﹣a>﹣b,故本选项不符合题意;D、当c≤0时,由a<b不能推出ac<bc,而是ac≥bc,故本选项不符合题意;故选:A.2.【解答】解:图(1),(2)是轴对称图形,也是中心对称图形.(3)是轴对称图形,图(4)不是中心对称图形,也不是轴对称图形.故选:B.3.【解答】解:A、条件AB=DE,BC=EF,∠A=∠D不符合SAS,故A错误;B、条件∠A=∠D,∠C=∠F,∠B=∠E不符合AAS或ASA,故B错误;C、条件AC=DF,AB=DE不符合SAS或SSS,故C错误;D、条件∠B=∠E,∠C=∠F,AC=DF符合AAS的判定方法,故D正确.故选:D.4.【解答】解:∵三角形的三条垂直平分线的交点到三角形各顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:C.5.【解答】解:,解得,不等式组的解集是﹣1<x≤1,故选:D.因此点A也先向左平移3个单位,再向上平移2个单位,由图可知,A′坐标为(0,1).故选:B.7.【解答】解:过P作PE⊥OA于点E,则PD=PE,∵PC∥OB∴∠OPC=∠POD,又∵OP平分∠AOB,∠AOB=30°,∴∠OPC=∠COP=15°,∠ECP=∠COP+∠OPC=30°,在直角△ECP中,PE=PC=3,则PD=PE=3.故选:B.8.【解答】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;∴在△OCP和△ODP中,∴△OCP≌△ODP(SSS).故选:D.9.【解答】解:由图象可知:P的坐标是(2,1),当x<2时,一次函数y=kx+b的图象在y=ax的上方,即kx+b>ax,10.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).故选:A.二、填空题:(每题3分,共18分)11.【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.12.【解答】解:∵△ABC的三边长分别是5cm,12cm,13cm,∴52+122=132,∴△ABC是直角三角形,直角边为5cm和12cm,∴△ABC的面积为cm×12cm=30cm2,故答案为:30cm2.13.【解答】解:∵△A′B′C′是△ABC向右平移4cm得到的,∴BB′=CC′=4cm,∠C′=∠ACB=30°,∵B′C=3cm,∴B′C′=4+3=7cm.故答案为:30°,7.14.【解答】解:设答对x道,则答错或不答的题目就有(20﹣x)个.即10x﹣5(20﹣x)≥95,去括号:10x﹣100+5x≥95,∴15x≥195,则至少要答对13道.故答案为:13.15.【解答】解:依题意得:8﹣3<x<8+3,即5<x<11,∵x为正整数,∴x的值可能为6,7,8,9,10,故答案为:6,7,8,9,10.16.【解答】解:连结MP,如图,∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△P AC绕点A逆时针旋转后,得到△MAB,∴AM=AP,∠MAP=∠BAC=60°,BM=CP=10,∴△AMP为等边三角形,∴MP=AP=6,∠APM=60°,在△PBM中,PM=6,BM=10,PB=8,∵62+82=102,∴PM2+PB2=BM2,∴∠BPM=90°,∴∠APB=∠APM+BPM=60°+90°=150°.故答案为6,150.三.作图题(共4分)17.【解答】解:如图所示.△ABC就是所求的三角形.四.解答题(共68分)18.【解答】解:(1)去分母得,x﹣1+2x≥2x,移项得,x+2x﹣2x≥1,合并同类项得,x≥1;(2)去括号得,﹣6+2x>3x+6,移项得,2x﹣3x>6+6,合并同类项得,﹣x>12,系数化为1得,x<12;(3),由①得,x<1,由②得,x>﹣3,故此不等式组的解集为:﹣3<x<1在数轴上表示为:;(4),由②得,x<4,故此不等式组的解集为:x≤1在数轴上表示为:19.【解答】解:设这种商品可以按x折销售,则售价为320×0.1x,那么利润为320×0.1x﹣200,所以相应的关系式为320×0.1x﹣200≥200×20%,解得:x≥7.5.∴这种商品最多可以按7.5折销售.答:这种商品最多可以按7.5折销售.20.【解答】解:(1)画图,如图;(2)证明:由题意得:△ABC≌△AED.∴AB=AE,∠ABC=∠E.在△AFB和△AGE中,∴△AFB≌△AGE(ASA).21.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF=DE=2.22.【解答】解:设三好学生为x人,选择甲旅行社费用为y1元,乙旅行社费用为y2元,由题意,得y1=260×0.5x+260,y1=130x+260.y2=0.6×260(x+1),y2=156x+156.当y1>y2时,130x+260>156x+156,解得:x<4;当y1=y2时,130x+260=156x+156,解得:x=4;当y1<y2时,130x+260<156x+156,解得:x>4.综上所述,当三好学生人数少于4人时,选择乙旅行社合算;等于4人时,甲、乙两家一样合算;多于4人时,选择甲旅行社合算23.【解答】解:(1)∵AB的垂直平分线交C边于点E,AC的垂直平分线交BC边于点N,∴BE=AE,CN=AN,∵BC=12,∴△AEN的周长为AE+AN+EN=BE+CN+EN=BC=12;(2)∵在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣∠A)=30°,∵BE=AE,CN=AN,∴∠BAE=∠B=30°,∠CAN=∠C=30°,∵∠BAC=120°,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN=120°﹣30°﹣30°=60°;(3)△AEN的形状是等边三角形,证明:∵∠BAE=∠B=30°,∠CAN=∠C=30°,∴∠AEN=∠BAE+∠B=60°,∠ANE=∠CAN+∠C=60°,∵∠EAN=60°,∴∠AEN=∠ANE=∠EAN=60°,∴△AEN是等边三角形.24.【解答】解:(1)(x+4)(x﹣4)>0,原不等式可转化为①或②,解不等式组①,x>4,解不等式组②,x<﹣4,即一元二次不等式x2﹣16>0的解集为x>4或x<﹣4;(2)原不等式可转化为①或②,解不等式组①,1<x<3,解不等式组②无解即分式不等式<0的解集为1<x<3;(3)x(2x﹣3)<0,原不等式可转化为①或②,解不等式组①,0<x<,解不等式组②无解,即一元二次不等式2x2﹣3x<0的解集为0<x<.25.【解答】解:(1)如图1中,过点P作PD⊥BC于D.在Rt△ACB中,∵AC=6,BC=8,∴AB===10,∵t=4,∴P A=8,BQ=4,∵sin B==,∴=,∴PD=,∴S△PQB=•QB•PD=×4×=.(2)当PB=BQ时,点B在线段PQ的垂直平分线上,∴10﹣4t=2t,∴t=,答:当t为时,点B在线段PO的垂直平分线上.(3)如图2中,连接AQ,过点Q作QD⊥AB于D.∵∠C=∠ADQ=90°,∠AQC=∠QAD,AQ=AQ,∴△AQC≌△AQD(AAS),∴AC=AD=6,CQ=QD,∵AB=10,∴BD=10﹣6=4,设CQ=DQ=x,在Rt△DQB中,则有x2+42=(8﹣x)2,∴x=3,∴BQ=BC﹣CQ=8﹣5=5,∴t=5时,的Q在∠CAB的角平分线上.(4)S四边形PQCA=S△ABC﹣S△PQB=×6×8﹣×t×(10﹣4t)=t2﹣3t+24.。

北师大版八年级下册数学《期中测试卷》(含答案解析)

北师大版八年级下册数学《期中测试卷》(含答案解析)

北师大版八年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每小题3分,共计30分)1.式子110,,,92a a a x a b yπ+++中,分式有( ) A. 1个 B. 2个 C. 3个 D. 4个2.下列因式分解正确的是( )A. ()222442a ab b a b -+=-B. ()()2224x x x +-=-C. ()321ab ab ab b -=-D. ()24545a a a a +-=+- 3.若多项式21x ax --可分解为()()2x x m -+,则a m +的值为( )A. 2B. 1C. 2-D. 1- 4.若关于x 的分式方程1011a x x x +-=--有增根,则a 的值为( ) A. 1a =- B. 1a = C. 2a =- D. 2a =5.如图所示,在平行四边形ABCD 中,DE 平分ADC ∠交BC 于,E AF DE ⊥,已知50DAF ︒∠=,则C ∠的度数是( )A. 100︒B. 80︒C. 120︒D. 110︒6.已知关于x 的方程x 2﹣x +m =0的一个根是3,则另一个根是( )A. ﹣6B. 6C. ﹣2D. 27.某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价( )A. 10%B. 15%C. 20%D. 25%8.如图,在矩形ABCD 中,9,3,AD cm AB cm ==将其折叠,使点D 与点B 重合, 则重叠部分()BEF ∆的面积为( )2cmA. 15B. 152C. 6D. 59.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x 个月,则根据题意可列方程中错误的是( ) A. 3212x x +=- B. 32212x x x ++=- C. 3+2212x x +=- D. 3112()12x x x ++=- 10.关于x 的方程412a x x -=-的解为正整数,且关于x 的不等式组0128263a x x x -≤⎧⎪-⎨+>⎪⎩有解且最多有7个整数解,则满足条件的所有整数a 的值为_______.二、填空题(本大题共6个小题,每小题4分,共24分)11.使分式211x x -+的值为0,这时x=_____. 12.已知3,5xy x y =+=,则32232x y x y xy ++的值为___________.13.已知a ,b 是一个等腰三角形的两边长,且满足a 2+b 2-6a -8b+25=0,则这个等腰三角形的周长为______________.14.已知12,x x 是关于的一元二次方程250x x a -+=的两个实数根,且221213x x +=,则a 的值为__________.15.已知112x y+=,则5756x xy y x xy y -+=-+ _________.16.如图,在Rt ABC ∆中,90,30,6B BAC AC ︒︒∠=∠== ,将ABC ∆沿BC 向右平移得到DEF ∆,若四边形ACFD 的面积等于63,则平移的距离等于___________.三、解答题: (共46分)17.因式分解()1224x y()()()()()222215x y x y x y x y -+-+-+18.解方程()212310x x --=(用配方法解方程)()()2255x x x -=- ()123131x x x --=+- ()22434111x x x -=--+ 19.重庆市有, , , , A B C D E 五个景区很受游客喜爱,一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图.()1该小区居民在这次随机调查中被调查到的人数是_______人, m = 想去C 景区的人有_________人, 并补全条形统计图.()2被调查到的居民想去 景区旅游的人数最多,若该小区有居民2000人,估计去该景区旅游的居民约有多少人?()3小强同学赞假期间计划与父母从,...A B C D E 五个景区中,任选两个去旅游,求选至,B D 两个景区的概率,(要求列表求概率)20.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索,画函数2y x =的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示:经历同样的过程画函数22y x =-和22y x =+的图象如下图所示,观察发现:三个函数的图象都是由两条射线组成的轴对称图形:三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.()1请直接写出2y x =与22y x =+的交点坐标和函数22y x =+的对称轴;()2在所给的平面直角坐标系内画出函数231y x =-+的图象(不列表),并写出函数231y x =-+的一条性质;()3结合函数图像,直接写出不等式231x x -+≤时x 的取值范围.21.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( ) A. 13 B. 12 C. 23 D. 5622.一条笔直的公路上顺次有、、A B C 三地,小军早晨5:00从A 地出发沿这条公路骑自行车前往C 地,同时小林从B 地出发沿这条公路骑摩托车前往A 地,小林到地后休息了 1个小时, 然后掉头原路原速返回追赶小军,经过一段时间后两人同时到达C 地,设两人行驶的时间为x (小时),两人之间的距离为y (千米),y 与x 之间的函数图像如图所示,下列说法:①小林与小军的速度之比为2:1;②10:00时,小林到达A 地;③21:00时,小林与小军同时到达C 地;④BC 两地相距420千米,其中正确的有_________(只填序号)23.关于x 一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.24.如图,在Rt ABC ∆中, 90,60, 2.ACB B BC ︒︒∠=∠==将ABC ∆绕点C 逆时针旋得到'''A B C ∆,且'B 恰好落在AB 上,连接'AA ,取'AA 中点D .连接'B D ,则'B D 的长为 __________25.某”欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元26.如图,在ABD ∆中,点,E F 分别在.AB AD 上,()1如图1.若460BFD FBA ︒∠=∠=,且 8DF BD ==,求AF()2如图2,若1,, ,902AB BD BF EF BE DF DBF ADB ︒⊥⊥=∠+∠=. 求证: 2BF EF =27.阅读下列材料材料一:对于任意的非零实数x 和正实数k ,如果满足3kx 为整数,则称k 是x 的一个整商系数, 例如:当2,3x k ==时,23kx =,则称3是2的一个整商系数; 当32,2x k ==时,13kx =,则称32是2的一个整商系数; 当1,62x k =-=时,13kx =-,则称6是12-的一个整商系数; 给论:一个非零实数x 有无数个整商系数k ,其中最小的一个整商系数记为()k x ;例如: ()312,622k k ⎛⎫=-= ⎪⎝⎭, 材料二:对于一元二次方程20(a 0)++=≠ax bx c 的两根12,x x ,有如下关系:1212,b c x x x x a a +=-= 请根据材料解决下列问题()712k ⎛⎫= ⎪⎝⎭ ()3k -= ()2若关于x 的方程:220x bx ++=的两根分别为12,x x ,且满足()()1212k x k x +=,求b 的值.答案与解析一、选择题:(每小题3分,共计30分)1.式子110,,,92a a a x a b yπ+++中,分式有( ) A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【详解】解:1a π+的分母中的π不是字母,是数字,故不是分式;10,9a x a b y++分母中含有字母,是分式; 因此分式有2个,故选:B .【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.下列因式分解正确的是( )A. ()222442a ab b a b -+=-B. ()()2224x x x +-=-C. ()321ab ab ab b -=-D. ()24545a a a a +-=+- 【答案】A【解析】【分析】分别利用因式分解的定义以及整式的乘法运算法则分别判断得出即可.【详解】解:A 、()222442a ab b a b -+=-,是因式分解,符合题意;B 、()()2224x x x +-=-,是整式的乘法运算,故此选项错误;C 、32(1)(1)(1)ab ab ab b ab b b -=-=+-,原选项分解不彻底,故此选项错误;D 、()24545a a a a +-=+-,不是因式分解,故此选项错误;故选:A .【点睛】此题主要考查了因式分解的定义以及整式的乘法运算,正确掌握相关概念是解题关键. 3.若多项式21x ax --可分解为()()2x x m -+,则a m +的值为( )A. 2B. 1C. 2-D. 1-【答案】A【解析】【分析】多项式分解因式结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m 和a 的值即可.【详解】解:根据题意得:21x ax --=()()2x x m -+=2(2)2x m x m +--, 可得:21,2m m a -=--=-,解得:13,22m a == ∴31222a m +=+= 故选:A .【点睛】此题考查了因式分解与整式乘法运算的关系,熟练掌握整式乘法运算法则是解本题的关键. 4.若关于x 的分式方程1011a x x x +-=--有增根,则a 的值为( ) A. 1a =-B. 1a =C. 2a =-D. 2a =【答案】C【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x ﹣1=0,求出x 的值,代入整式方程计算即可求出a 的值.【详解】解:方程两边都乘以x ﹣1,得:a +1+x =0,∵方程有增根,∴x =1,将x =1代入整式方程,得:a +1+1=0,解得:a =﹣2,故选:C .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.5.如图所示,在平行四边形ABCD 中,DE 平分ADC ∠交BC 于,E AF DE ⊥,已知50DAF ︒∠=,则C ∠的度数是( )A. 100︒B. 80︒C. 120︒D. 110︒【答案】A【解析】【分析】 根据直角三角形两锐角互余可得∠ADF =40°,根据角平分线的定义可得∠ADC =2∠ADF =80°,再根据平行四边形的性质得AD ∥BC ,进而得∠C +∠ADC =180°即可解决问题.【详解】解:∵AF ⊥DE ,∴∠AFD =90°,∵∠DAF =50°,∴∠ADF =90°﹣50°=40°,∵DE 平分∠ADC ,∴∠ADC =2∠ADF =80°,∵四边形ABCD 平行四边形,∴AD ∥BC ,∴∠C +∠ADC =180°,∴∠C =100°,故选:A .【点睛】本题考查平行四边形的性质、直角三角形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.已知关于x 的方程x 2﹣x +m =0的一个根是3,则另一个根是( )A. ﹣6B. 6C. ﹣2D. 2【答案】C【解析】【分析】由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.【详解】解:设a 是方程x 2﹣5x +k =0的另一个根,则a +3=1,即a =﹣2.故选:C .【点睛】此题主要考查一元二次方程的根,解题的关键是熟知一元二次方程根与系数的关系.7.某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价( )A. 10%B. 15%C. 20%D. 25%【答案】C【解析】【分析】根据原来售价是4000元,经过两次降价且降价百分率相同后销售单价为2560元,设两次降价的百分率为x ,一次降价为()40001x -,两次降价为()240001x -得出 ()240001x -=2560,算出x . 【详解】解:设两次降价的百分率为x ,由题意得:4000(1﹣x )2=2560∴(1﹣x )2=256400∴1﹣x =±0.8 ∴x 1=1.8(舍),x 2=0.2=20%故选:C .【点睛】熟悉一元二次方程的增长率和下降率的相关题型,注意分析是一次增长(下降),还是二次增长(下降)问题.8.如图,在矩形ABCD 中,9,3,AD cm AB cm ==将其折叠,使点D 与点B 重合, 则重叠部分()BEF ∆的面积为( )2cmA. 15B. 152C. 6D. 5【答案】B【解析】【分析】设DE=xcm,由翻折的性质可知DE=EB=x,则AE=(9﹣x)cm,在Rt△ABE中,由勾股定理求得ED 的长;由翻折的性质可知∠DEF=∠BEF,由矩形的性质可知BC∥AD,从而得到∠BFE=∠DEF,故此可知∠BFE=∠FEB,得出FB=BE,最后根据三角形的面积公式求解即可.【详解】解:设DE=xcm.由翻折的性质可知DE=EB=x,∠DEF=∠BEF,则AE=(9﹣x)cm.在Rt△ABE中,由勾股定理得;BE2=EA2+AB2,即x2=(9﹣x)2+32.解得:x=5.∴DE=5cm.∵四边形ABCD为矩形,∴BC∥AD.∴∠BFE=∠DEF.∴∠BFE=∠FEB.∴FB=BE=5cm.∴△BEF的面积=12BF•AB=12×3×5=152(cm2);故选:B.【点睛】本题主要考查的是翻折的性质、勾股定理的应用,等腰三角形的判定、三角形的面积公式,证得△BEF为等腰三角形,从而得到FB的长是解题的关键.9.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A. 3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B、32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C、3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.10.关于x的方程412ax x-=-的解为正整数,且关于x的不等式组128263a xxx-≤⎧⎪-⎨+>⎪⎩有解且最多有7个整数解,则满足条件的所有整数a的值为_______.【答案】﹣2,﹣1【解析】【分析】表示出分式方程解,由分式方程的解为正整数确定出a的值,表示出不等式组的解集,由不等式组最多有7个整数解,即可得到a的取值范围,从而得出满足条件的所有整数a的值.【详解】解:分式方程去分母得:8﹣4x=ax﹣x,解得:x=83a+,由分式方程解为正整数,得到a+3=1,2,4,8,解得:a=﹣2,﹣1,1,5,又∵x ≠2,∴a ≠1,∴a =﹣2,﹣1,5,不等式组整理得:5x x a <⎧⎨≥⎩, 解得:a ≤x <5,由不等式组有解且最多有7个整数解,得到整数解为4,3,2,1,0,﹣1,﹣2,∴﹣3<a <5,∴整数解为4,3,2,1,0,﹣1,﹣2,则满足题意a 的值为﹣2,﹣1,故答案为:﹣2,﹣1.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握各自的解法是解本题的关键. 二、填空题(本大题共6个小题,每小题4分,共24分)11.使分式211x x -+的值为0,这时x=_____. 【答案】1【解析】试题分析:根据题意可知这是分式方程,211x x -+=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法12.已知3,5xy x y =+=,则32232x y x y xy ++的值为___________. 【答案】75【解析】【分析】将所求的代数式利用提公因式法和公式法进行因式分解,然后代入求值即可.【详解】解:∵xy =3,x +y =5,∴3223222(2)x y x y xy xy x xy y ++=++2()xy x y =+235=⨯75=.故答案为:75.【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解决本题的关键.13.已知a ,b 是一个等腰三角形的两边长,且满足a 2+b 2-6a -8b+25=0,则这个等腰三角形的周长为______________.【答案】10或11【解析】【分析】先运用分组分解法进行因式分解,求出a ,b 的值,然后根据等腰三角形的性质即可得出结论.【详解】∵a 2+b 2-6a -8b +25=0,∴(a 2﹣6a +9)+(b 2﹣8b +16)=0,∴(a ﹣3)2+(b ﹣4)2=0,∴a =3,b =4.分两种情况讨论:①当腰为3时,等腰三角形的周长为3+3+4=10,当腰为4时,等腰三角形的周长为4+4+3=11.综上所述:该等腰三角形的周长为10或11.故答案为:10或11.【点睛】本题考查了因式分解及等腰三角形的性质,解题的关键是运用分组分解法进行因式分解.14.已知12,x x 是关于的一元二次方程250x x a -+=的两个实数根,且221213x x +=,则a 的值为__________.【答案】6【解析】【分析】根据根与系数的关系,可得x 1+x 2=5,x 1•x 2=a ,又由于221213x x +=,即可得方程52﹣2a =13,解此方程即可求得答案.【详解】解:∵x 1,x 2是关于的一元二次方程250x x a -+=的两个实数根,∴x 1+x 2=5,x 1•x 2=a ,∵221213x x +=,∴(x 1+x 2)2﹣2x 1•x 2=13,即52﹣2a =13,解得a =6,当a =6时,△=52﹣4×6=1>0(符合题意),∴a =6.故答案为:6.【点睛】此题考查了一元二次方程根与系数的关系以及完全平方式的应用.此题难度不大,解题的关键是掌握:若二次项系数为1,常用以下关系:x 1,x 2是方程x 2+px +q =0的两根时,x 1+x 2=﹣p ,x 1x 2=q 性质的应用.15.已知112x y+=,则5756x xy y x xy y -+=-+ _________. 【答案】34-【解析】【分析】 首先把112x y+=去分母可得y +x =2xy ,然后把5756x xy y x xy y -+-+变形后代入y +x =2xy ,约分化简即可. 【详解】解:∵112x y+=, ∴11()2xy xy x y+=, ∴y +x =2xy , ∴5755()766x xy y x y xy x xy y x y xy-++-=-++- 52726xy xy xy xy ⨯-=- 34xy xy=-34=-, 故答案为:34-. 【点睛】此题主要考查了分式的计算,关键是正确利用等式的性质把式子变形.16.如图,在Rt ABC ∆中,90,30,6B BAC AC ︒︒∠=∠== ,将ABC ∆沿BC 向右平移得到DEF ∆,若四边形ACFD 的面积等于63,则平移的距离等于___________.【答案】2【解析】【分析】根据30°的直角三角形的性质求出BC ,再根据勾股定理求得AB 长,最后根据平行四边形的面积公式计算即可.【详解】解:∵∠B =90°,∠BAC =30°,AC =6,∴BC =12AC =3, ∴在Rt △ABC 中,2233AB AC BC =-=由平移的性质可知,四边形ABED 的平行四边形,则CF 3363解得:CF =2,故答案为:2.【点睛】本题考查的是平移的性质、含30°的直角三角形的性质、勾股定理,掌握含30°的直角三角形中30°角所对的直角边等于斜边的一半是解题的关键.三、解答题: (共46分)17.因式分解()1224x y()()()()()222215x y x y x y x y -+-+-+【答案】(1)(2)(2)xy x y ;(2)()()4322x y x y -++ 【解析】【分析】(1)原式利用公式法分解即可;(2)原式先利用十字相乘法分解,再把系数中的公约数提出来即可.【详解】解:(1)原式=(2)(2)x y x y ;(2)原式=()()()()53x y x y x y x y -++--+⎡⎤⎡⎤⎣⎦⎣⎦()()6424x y x y =+--()()4322x y x y =-++.【点睛】此题考查了因式分解的三种方法:公式法、十字相乘法以及提公因式法,熟练掌握十字相乘的方法是解本题的关键,注意因式分解要分解到不能分解为止.18.解方程()212310x x --=(用配方法解方程)()()2255x x x -=-()123131x x x --=+- ()22434111x x x -=--+【答案】(1)12334444x x =+=-;(2)121,52x x ==;(3)13x =-;(4)无解 【解析】【分析】(1)二次项的系数化为1,移项、配方、开方即可求解;(2)先移项,再提取公因式(x ﹣5),进而得出答案;(3)观察可得最简公分母是(x +3)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可;(4)观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.【详解】解:(1)231022x x --=, 23122x x -= 2223313()()2424x x -+=+ 2317()416x -=344x -=±∴123344x x ==; (2)()()2550x x x ---=()()2150x x --=210x -=或50x -= ∴121,52x x ==; (3)两边同时乘以(x +3)(x ﹣1)得2(1)2(3)(3)(1)x x x x --+=+-22212623x x x x x -+--=+-解得:13x =-检验:当13x =-时,(x +3)(x ﹣1)≠0, ∴13x =-是原方程的解;(4)两边同时乘以(x +1)(x ﹣1)得 2(1)43(1)x x +-=-22433x x +-=-解得:1x =检验:当x=1时,(x+1)(x﹣1)=0,∴1x=是原方程的增根,原方程无解.【点睛】本题考查了一元二次方程和分式方程的解法,解一元二次方程和分式方程的基本思想是”转化思想”,把一元二次方程转化为一元一次方程,把分式方程转化为整式方程求解,解分式方程一定注意要验根.19.重庆市有,,,,A B C D E五个景区很受游客喜爱,一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图.()1该小区居民在这次随机调查中被调查到的人数是_______人,m=想去C景区的人有_________人,并补全条形统计图.()2被调查到的居民想去景区旅游的人数最多,若该小区有居民2000人,估计去该景区旅游的居民约有多少人?()3小强同学赞假期间计划与父母从,...A B C D E五个景区中,任选两个去旅游,求选至,B D两个景区的概率,(要求列表求概率)【答案】(1)200,35%,40,补全条形统计图见解析;(2)B,700;(3)1 10【解析】【分析】(1)用想去D景区的人数除以它所占的百分比得到调查的总人数,再计算想去B景区的百分比得到m的值,然后计算出想去C景区的人数后补全条形统计图;(2)利用条形条形图可判断想去B景区旅游的人数最多,用2000乘以m%可估计该景区旅游的居民大约人数;(3)画树状图展示所有12种等可能的结果数,找出选到B,D两个景区的结果数,然后根据概率公式计算.【详解】解:(1)20÷10%=200,所以该小区居民在这次随机调查中被调查到的人数是200人,m %=70200×100%=35%,即m =35; 想去C 景区的人数为:200﹣20﹣70﹣20﹣50=40(人),故答案为200,35%,40.补全条形统计图为:(2)被调查到的居民想去B 景区旅游的人数最多,故答案为:B .2000×35%=700,所以估计去该景区旅游的居民约有700人;(3)列表如下:共有20种等可能的结果数,其中选到B ,D 两个景区的结果数为2,所以选到B ,D 两个景区的概率=212010=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了条形统计图和用样本估计总体.20.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索,画函数2y x =的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示: x …… -3 -2 -1 0 1 2 3 ……y …… 6 4 2 0 2 4 6 ……经历同样的过程画函数22y x =-和22y x =+的图象如下图所示,观察发现:三个函数的图象都是由两条射线组成的轴对称图形:三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.()1请直接写出2y x =与22y x =+的交点坐标和函数22y x =+的对称轴;()2在所给的平面直角坐标系内画出函数231y x =-+的图象(不列表),并写出函数231y x =-+的一条性质;()3结合函数图像,直接写出不等式231x x -+≤时x 的取值范围.【答案】(1)交点坐标为(﹣1,2),对称轴为直线x =﹣2;(2)图像见解析,性质:函数231y x =-+的图象的对称轴为直线x =3(答案不唯一);(3)753x ≤≤ 【解析】【分析】(1)根据所给图像即可得到答案;(2)画出函数231y x =-+的图象,结合所画图像即可得到相应的图像性质;(3)先画出y x =的函数图像,再通过与231y x =-+联立方程求出交点坐标,结合函数图像即可得到答案.【详解】解:(1)由图像可知:2y x =与22y x =+的交点坐标为(﹣1,2),函数22y x =+的对称轴为直线x =﹣2;(2)函数231y x =-+的图象如图所示:性质:函数231y x =-+的图象的对称轴为直线x =3(答案不唯一); (3)函数y x =的图像如图所示:令231x x -+=,当30x -≥时,2(3)1x x -+=,解得5x =,则5y x ==,∴231y x =-+与y x =的一个交点坐标为(5,5),当30x -<时,2(3)1x x -+=,解得73x =, 则73y x ==,∴231y x =-+与y x =的另一个交点坐标为(73,73), ∴由图像可知:不等式231x x -+≤的解集为753x ≤≤, 故答案为:753x ≤≤. 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,利用数形结合思想是解决本题的关键.21.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( )A. 13B. 12C. 23D. 56【答案】C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能使四边形ABCD 成为平行四边形的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,能使四边形ABCD 成为平行四边形的有8种情况,分别为:①②,①④,②③,②④,②①,④①,③②,④②,∴从中任选两个条件,能使四边形ABCD 成为平行四边形的概率是:82123=. 故选:C .【点睛】此题考查了平行四边形的判定及列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,熟练掌握平行四边形的判定方法是解决本题的关键.22.一条笔直的公路上顺次有、、A B C 三地,小军早晨5:00从A 地出发沿这条公路骑自行车前往C 地,同时小林从B 地出发沿这条公路骑摩托车前往A 地,小林到地后休息了 1个小时, 然后掉头原路原速返回追赶小军,经过一段时间后两人同时到达C 地,设两人行驶的时间为x (小时),两人之间的距离为y (千米), y 与x 之间的函数图像如图所示,下列说法:①小林与小军的速度之比为2:1;②10:00时,小林到达A 地;③21:00时,小林与小军同时到达C地;④BC两地相距420千米,其中正确的有_________(只填序号)【答案】②④【解析】【分析】根据第一段图像可求得两人的速度和,结合第二段图像可求得小林的速度,进而可得小军的速度,由此可判断①;根据”时间=路程÷速度”可判断②;根据”时间=路程差÷速度差”可判断③、④.【详解】解:由题意可得v林+v军=300÷3=100(千米/小时)200÷100=2(小时)则v林=300÷(2+3)=60(千米/小时)v军=100-60=40(千米/小时)∴v林:v军=60:40=3:2,∴①错误;∵300÷60=5(小时)5+5=10,∴②正确;∵40×(3+2+1)=240(千米)240÷(60-40)=12(小时)5+3+2+1+12=23∴小林和小军在23:00到达C地,∴③错误;∵12×60-300=420,∴④正确.故答案为:②④.【点睛】本题考查了一次函数的应用,理解函数图象上点的实际意义是解决本题的关键.23.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____.【答案】-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b 2-4ac≥0,建立关于a 的不等式,求出a 的取值范围.还要注意二次项系数不为0.【详解】∵关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1, 则a 的最大整数值是-2.故答案为-2.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: ①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.24.如图,在Rt ABC ∆中, 90,60, 2.ACB B BC ︒︒∠=∠==将ABC ∆绕点C 逆时针旋得到'''A B C ∆,且'B 恰好落在AB 上,连接'AA ,取'AA 的中点D .连接'B D ,则'B D 的长为 __________7【解析】分析】先根据30°的直角三角形的性质求得BC 长,进而求得AC 长,再根据旋转的性质可证△B'BC 和△A'AC 为等边三角形,进而可证'90A AB ︒∠=,最后再利用勾股定理计算即可.【详解】解:∵90,60ACB B ︒︒∠=∠=,∴9030BAC B ︒︒∠=-∠=,∵2BC =,∴24AB BC ==,∴在Rt △ABC 中,2223ACAB BC , ∵旋转,∴'2B C BC ==,'A C AC ==''A CA B CB ∠=∠,又∵60B ︒∠=,∴△B'BC 为等边三角形,∴'60B CB B ︒∠=∠=,'2B B BC ==,∴''60A CA B CB ︒∠=∠=,∴△A'AC 为等边三角形,∴'A A AC =='60A AC ︒∠=,∵点D 为'A A 的中点,∴1'2AD A A == ∵4AB =,'2B B =,∴''422AB AB B B =-=-=,∵30BAC ︒∠=,'60A AC ︒∠=,∴''90A AB A AC BAC ︒∠=∠+∠=,∴在Rt △AB'D 中,'B D ===故答案为.【点睛】本题考查了含30°的直角三角形的性质、勾股定理、图形旋转的性质、等边三角形的判定及性质,熟练掌握相关图形的性质及判定是解决本题的关键.25.某”欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元【答案】192.5【解析】【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据”苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.26.如图,在ABD ∆中,点,E F 分别在.AB AD 上,()1如图1.若460BFD FBA ︒∠=∠=,且 8DF BD ==,求AF()2如图2,若1,, ,902AB BD BF EF BE DF DBF ADB ︒⊥⊥=∠+∠=. 求证: 2BF EF =【答案】(1)见解析;(2)见解析【解析】【分析】(1)过点B 作BH ⊥AD ,先证△BDF 为等边三角形,根据三线合一及勾股定理可求得HF 和BH 的长,根据460FBA ︒∠=得15FBA ︒∠=进而可求得45A ︒∠=,结合90BHA ︒∠=可证得43AH BH ==,进而得解;(2)过点D 作DG ⊥BF ,先证△DGB ≌△DGF 得2BF BG =,再证△DGB ≌△BFE 得BG EF =,等量代换即可.【详解】(1)解:如图,过点B 作BH ⊥AD ,垂足为点H ,∵60BFD ︒∠=, 8DF BD ==∴△BDF 为等边三角形,∴ 8BF BD ==,又∵BH ⊥AD ,∴1 42HF HD DF ===, ∴在Rt △BFH 中,22228443BH BF HF =-=-=∵460FBA ︒∠=,∴15FBA ︒∠=,∴45A BFD FBA ︒∠=∠-∠=,∵BH ⊥AD ,∴90BHA ︒∠=,∴45ABH A ︒∠=∠=, ∴43AH BH ==,∴434AF AH HF =-=-;(2)如图,过点D 作DG ⊥BF ,垂足为点G ,∵AB BD ⊥,DG ⊥BF ,BF EF ⊥, ∴90DBA DGB DGF BFE ︒∠=∠=∠=∠=,∴90DBF FBA ︒∠+∠=,90DBF GDB ︒∠+∠=,∵1902DBF ADB ︒∠+∠=, ∴12FBA GDB ADB ∠=∠=∠, ∴GDB GDF ∠=∠,在△DGB 与△DGF 中,GDB GDF DG DGDGB DGF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DGB ≌△DGF (ASA ),∴DB DF =,BG GF =,∴2BF BG =,。

八年级第二学期期中数学试卷含答案(共3套,北师大版)

八年级第二学期期中数学试卷含答案(共3套,北师大版)

北师大版八年级下学期数学期中试卷时间:100分钟 总分:120分一.选择题(每题4分,共40分)1.在二次根式中,x 的取值范围是( )。

A 、x <1B 、x >1C 、x ≥1D 、x ≠12.下列运算中,错误的是( )=3=C.= 16925=+= 3.x 26-是经过化简的二次根式,且与2是同类二次根式,则x 为( ) (A )、-2 (B )、2 (C )、4 (D )、-44.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x += C .2(2)2x -=- D .2(2)6x -= 5. 某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为 ( ) A 、200(1+x)2=1000 B 、200+200×2x=1000 C 、200+200×3x=1000 D 、200[1+(1+x)+(1+x)2]=1000 6. 正多边形的每个内角与外角之比为3:1,则其边数为( ) A 、6 B 、7 C 、8 D 、97.a 、b 、c 分别是三角形的三边,则方程()022=++++b a cx x b a 的根的情况是( ) A .没有实数根 B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.如图,AD 是△ABC 边BC 上的高,有下列条件中的某一个能推出△ABC 是等腰三角形的共有( )个w W w.x K b 1. c om①∠BAD =∠ACD ②∠BAD =∠CAD , ③AB+BD =AC+CD ④AB-BD =AC-CDA 、 1个B 、 2个C 、 3个D 、4个9.已知三角形的两边长分别是4和7,第三边是方程x 2-16x +55=0的根,则第三边长是 ( )A 、5B 、11C 、5或11D 、610.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或172 二.填空题(每题4分,共20分)11.已知52x =4x -的结果是 __________12.若一元二次方程式x 2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b= __________ 13. 已知x,y 为实数且|6-3x|+(y-5)²=3x-6-23)y (x -,则x-y=__________14.有一个三角形的两边是6和10,要使这个三角形为直角三角形,则第三边的长为_____________________15.定义:如果一元二次方程:ax 2+bx +c =0(a ≠0)满足 a + b + c = 0,那么我们称这个方程为“凤凰”方程,已知ax 2+bx +c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是__________①.a = c ②a = b ③ b =-c ④b=-2a 三.解答题(60分) 16.(8分)计算: (1) ()()13132+- (2))21(--1-12+(π-2013)0-|3-2|17.解方程(10分)(1)22)12()3(+=-x x (2) 12211xx x +=-+18、已知关于x 的方程03522=-++p x x 的一个根是4-,求方程的另一个根和p 的值.(10分)19、阅读下面的例题: 解方程X 2-∣X ∣-2=0解:(1)当x ≥0时,原方程化为X 2-X-2=0,解得X 1=2,X 2=-1(不合题意,舍去).(2)当X ﹤0时,原方程化为X 2+X-2=0,解得X 1=1(不合题意,舍去),X 2=-2. ∴原方程的根是X 1=2,X 2=-2.请参照例题解方程X 2-∣X-1∣-1=0.20,(10分)清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(5分)(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.(5分)21(12分).如图:已知等腰三角形AC的底边AB=100cm,O为AB的中点,OC=100cm,一动点P 由A以2cm/s的速度向B点同时,另一动点Q由点O以3cm/s的速度沿OC方向出发。

北师大版数学八年级下册《期中考试题》含答案

北师大版数学八年级下册《期中考试题》含答案

北 师 大 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P(2,3)绕原点O 顺时针旋转90°后得到点P′,则点P′的坐标是( )A .(-2,3)B .(3-,2)C .(2,-3)D .(3,-2)2.(本题3分)(2019·山东德州市·)如果a >b ,c <0,那么下列不等式成立的是( ). A . a +c >b +c ; B . c -a >c -b ; C . ac >bc ; D .a b c c>. 3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A .∠ABC=2∠CB .∠ABC=52∠C C .14∠ABC=∠CD .∠ABC=3∠C6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P 绕顶点M 旋转1800后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫作对称中心,此时,点M 是线段PQ 的中点,如图,在平面直角坐标系中,ABO 的顶点A ,B ,O 的坐标分别为(1,0),(0,1),(0,0),点1P ,2P ,3P ,…中相邻两点都关于ABO 的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .810.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC ∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为___________s14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =-+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.(1)AC =______cm ;(2)当点P 在边AC 上且恰好又在ABC ∠的角平分线上时,求此时t 的值;(3)在运动过程中,当t 为多少秒时,ACP △为等腰三角形(直接写出结果).22.(本题9分)(2020·靖江市靖城中学八年级期中)如图1,△ABC 中,CD ⊥AB 于点D ,且BD :AD :CD =2:3:4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =90cm 2,如图2,动点P 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点Q 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点P 运动的时间为t (秒),①若△DPQ 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点P 运动的过程中,△PDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.23.(本题10分)(2020·温岭市实验学校八年级期中)如图1,在Rt ABC 中,∠C=90°,AD 平分∠BAC ,BE 平分∠ABC ,AD 、BC 相交于点F .(1)求∠AFE 的度数;(2)如图2,过点F 作FP ⊥BE 交AB 于点P ,求证:EF =FP ;(3)如图3,在(2)的条件下,连接DE ,过点F 作FN ⊥AB 于点N ,并延长NF 交DE 于点M ,试判断DM 与EM 的数量关系,并说明理由.答案与解析一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是( )A.(-2,3) B.(3-,2) C.(2,-3) D.(3,-2)[答案]D[分析]如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,由旋转90°可知,△OPA≌△OP′B,则P′B=PA=3,BO=OA=2,由此确定点P′的坐标.[详解]如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠PAO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=PA=3,BO=OA=2,∴P′(3,-2).故选D.[点睛]本题考查了点的坐标与旋转变换的关系.关键是根据旋转的条件,确定全等三角形.2.(本题3分)(2019·山东德州市·)如果a>b,c<0,那么下列不等式成立的是( ).A.a+c>b+c;B.c-a>c-b;C.ac>bc;D.a bc c >.[答案]A[解析]根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A,∵a >b,∴a+c >b+c,故此选项正确;B,∵a >b,∴-a <-b,∴-a+c <-b+c,故此选项错误;C,∵a >b,c <0,∴ac <bc,故此选项错误;D,∵a >b,c <0, ∴a b c c<, 故此选项错误;故选A .3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤ [答案]A[分析]首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.[详解]解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .[点睛]本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④ [答案]A[分析] 适当做辅助线,构建三角形.延长CF 并交BA 延长线于H①证明△ABE≌△ACH ,得到BE=CH,又可证CH=2CF,故可得BE =2CF②若要得到AD =DF ,则需要证明△ADF 为等腰直角三角形,需要证明∠DAF 为45°即可 ③过E 作EM AF ⊥交AF 于点M,证明△EMF 为等腰直角三角形,EM MF =12AD DE AM EM AM MF AF CF BE +=+=+=== ④过E 作EN BC ⊥于点N,证明2AE AE EN AE EC AC =+<+=,得到22AB BC AE BC AE +>+>,即可证明④错误.[详解]①延长BA 、CF ,交于点H ,∵,BF CH CBF HBF ⊥∠=∠∴BCH H ∠=∠∴BC BH =∴2CH CF =∵90ABE AEB ∠+∠=︒ 90FCE FEC ∠+∠=︒ AEB FEC ∠=∠∴ABF ACF ∠=∠∵90BAF CAH ∠=∠=︒ AB AC =∴BAE CAH ≌∴,2BE CH BE CF ==②由①知,F 为CH 中点,又CAH 为直角三角形 故12AF CH CF HF === ∴H FAH ∠=∠∵,45BC BH HBC =∠=︒∴67.5H FAH ∠=∠=︒∵90HAC ∠=︒∴22.5FAC ∠=︒又BF 为HBC ∠的平分线∴22.5HBF ∠=︒∴67.5BAD ∠=︒∴9067.522.5CAD ∠=︒-︒=︒45FAD FAC DAC ∠=∠+∠=︒在RT ADF 中,45DAF DFA ∠=∠=︒∴AD DF =③过E 作EM AF ⊥交AF 于点M,由②知,CA 为∠DAF 的平分线∴,DE EM AD AM ==△EMF 为等腰直角三角形∴EM MF = ∴12AD DE AM EM AM MF AF CF BE +=+=+===④过E 作EN BC ⊥于点N,可知AE EN =在RT ENC 中,EN EC <∴2AE AE EN AE EC AC =+<+=即2AE AC <,而AC AB =∴2AE AB <故22AB BC AE BC AE +>+>∴2AB BC AE +≠,故④错误,本题答案选A.[点睛]本题主要考查三角形辅助线的作法,要考虑题目的含义适当的作辅助线构建全等三角形.本题属于拔高题,熟练作辅助线证全等是本题解题的关键所在.5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A.∠ABC=2∠C B.∠ABC=52∠C C.14∠ABC=∠C D.∠ABC=3∠C[答案]D[分析]延长BM到E,证明△ABF≌△AEM,利用线段长度推出△BCE是等腰三角形,再根据角度转换求出即可. [详解]证明:延长BM,交AC于E,∵AD平分∠BAC,BM⊥AD,∴∠BAM=∠EAM,∠AMB=∠AME又∵AM=AM,∴△ABM≌△AEM,∴BM=ME,AE=AB,∠AEB=∠ABE,∴BE=BM+ME=4,AE=AB=5,∴CE=AC-AE=9-5=4,∴CE=BE,∴△BCE是等腰三角形,∴∠EBC=∠C,又∵∠ABE=∠AEB=∠C+∠EBC.∴∠ABE=2∠C,∴∠ABC=∠ABE+∠EBC=3∠C.故选D.[点睛]本题考查三角形综合题型,关键在于作出合理的辅助线.6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个[答案]D[分析] ①由等腰直角三角形的性质得∠BAD =∠CAD =∠C =45°,再根据三角形外角性质可得到∠AEF =∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF =∠DAN ,∠BDF =∠ADN ,证△DFB ≌△DAN ,即可判断②③;连接EN ,只要证明△ABE ≌△NBE ,即可推出∠ENB =∠EAB =90°,由此可知判断④.[详解]解:∵等腰Rt △AB C 中,∠BAC =90°,AD ⊥BC ,∴∠BAD =∠CAD =∠C =45°,BD=AD, ∵BE 平分∠ABC ,∴∠ABE =∠CBE =12∠ABC =22.5°, ∴∠AEF =∠CBE +∠C =22.5°+45°=67.5°,∠AFE =∠FBA +∠BAF =22.5°+45°=67.5°,∴∠AEF =∠AFE ,∴AF =AE ,即△AEF 为等腰三角形,所以①正确;∵M 为EF 的中点,∴AM ⊥BE ,∴∠AMF =∠AME =90°,∴∠DAN =90°−67.5°=22.5°=∠MBN , 在△FBD 和△NAD 中FBD NAD BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FBD ≌△NAD (ASA ),∴DF=DN ,AN=BF ,所以②③正确;∵AM ⊥EF ,∴∠BMA =∠BMN =90°,∵BM =BM ,∠MBA =∠MBN ,∴△MBA ≌△MBN ,∴AM =MN ,∴BE 垂直平分线段AN ,∴AB =BN ,EA =EN ,∵BE=BE ,∴△ABE ≌△NBE ,∴∠ENB =∠EAB =90°,∴EN ⊥NC ,故④正确,故选:D .[点睛]本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°[答案]C[分析]先构造△CFH全等于△AEC,得到△BCH是等腰直角三角形且FH=CE,当FH+BF最小时,即是BF+CE最小时,此时求出∠AFB的度数即可.[详解]解:如图,作CH⊥BC,且CH=BC,连接HB,交AC于F,此时△BCH是等腰直角三角形且FH+BF最小,∵AC=BC,∴CH=AC,∵∠HCB=90°,AD⊥BC,∴AD//CH,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH≌△AEC,∴FH=CE,∴FH+BF=CE+BF最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C.[点睛]本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P绕顶点M旋转1800后与点Q重合,那么称点P与点Q关于点M对称,定点M叫作对称中心,此时,点M是线段PQ的中点,如图,在平面直角坐标系中,ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点1P,2P,3P,…中相邻两点都关于ABO的一个顶点对称,点1P与点2P关于点A对称,点2P与点3P关于点B对称,点3P与点4P关于点O对称,点4P与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)[答案]B[分析] 先利用对称中心的定义分别确定P 1、P 2、P 3、P 4、P 5、P 6、P 7的坐标,发现点P 7的坐标和点P 1的坐标相同,即这些点的坐标以6个为一组进行循环,由此可确定点P 100的坐标和点P 4的坐标相同.[详解]解:如图:∵点P 1的坐标是(1,1),A (1,0),而点P 1与点P 2关于点A 对称,∴点P 2的坐标为(1,-1),同理得到点P 3的坐标为(-1,3),点P 4的坐标为(1,-3),点P 5的坐标为(1,3),点P 6的坐标为(-1,-1),点P 7的坐标为(1,1),如图,∴点P 7的坐标和点P 1的坐标相同,∵100=16×6+4, ∴点P 100的坐标和点P 4的坐标相同,即为(1,-3).故选:B .[点睛]本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.注意从特殊情形中找规律. 9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .8[答案]B[分析] 分类讨论:作AB 的垂直平分线和坐标轴的交点,以A 为圆心AB 为半径作圆和坐标轴的交点,以B 为圆心AB 为半径作圆和坐标轴的交点,根据两边相等的三角形是等腰三角形,可得答案.[详解]作AB 的垂直平分线和坐标轴的交点,得到P5,此时AP=BP ;以A 为圆心AB 为半径作圆和坐标轴的交点,得到P2和P6,此时AB=AP ;以B 为圆心AB 为半径作圆和坐标轴的交点,得到P1、P3和P4,此时BP=BA ;综上所述:符合条件的点P 共有6个.故选B .[点睛]本题考查了等腰三角形的判定和性质,把所有可能的情况都找出来,不遗漏掉任何一种情况是本题的关键. 10.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-[答案]B[分析]过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,先计算出EAM ∠,则AE 平分MAD ∠,根据角平分线的性质得EM EN =,再由CE 平分ACB ∠得到EM EH =,则EN EH =,于是根据角平分线定理的逆定理可判断DE 平分ADB ∠,再根据三角形外角性质解答即可. [详解]解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,DAC α∠=,αDAB 902∠=︒-,αEAM 902∠∴=︒-, AE ∴平分MAD ∠,EM EN ∴=,CE 平分ACB ∠,EM EH ∴=,EN EH ∴=,DE ∴平分ADB ∠, 11ADB 2∠∠∴=, 由三角形外角可得:1DEC 2∠∠∠=+,12ACB 2∠∠=,11DEC ACB 2∠∠∠∴=+, 而ADB DAC ACB ∠∠∠=+, 11DEC DAC α22∠∠∴==, 故选:B .[点睛]本题考查了角平分线的性质和判定定理,三角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE 平分ADB ∠.二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.[答案]m≥-3[分析]先求出每个不等式的解集,再根据已知得出关于a 的不等式,求出不等式的解集即可.[详解]解:2145x x x m ->+⎧⎨>⎩①②, ∵不等式①的解集是x <−3,不等式②的解集是x >m ,又∵不等式组2145x x x m ->+⎧⎨>⎩无解, ∴m≥−3,故答案为:m≥−3.[点睛]本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m 的不等式组.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.[答案]42[分析]延长BE 交AC 于F ,根据ASA 证明AEB AEF ∆≅∆,根据全等三角形的性质得到BE=EF ,进而得到BF=8,根据三角形的外角性质和等边对等角得到ABE FBC C ∠=∠+∠,进而得到FBC C ∠=∠,根据等角对等边得到FB=FC=8,然后根据ABD S ∆和ADC S ∆的面积比得到AB=10,进一步得到18AC AB FC =+=,然后根据三角形周长公式求解即可.[详解]延长BE 交AC 于,FAD 平分,BAC ∠,BAD CAD ∴∠=∠,BE AD ⊥,AEB AEF ∴∠=∠在AEB ∆和AEF ∆中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,AEB AEF ∆≅∆∴,,BE EF AB AF ABE AFE ∴==∠=∠,4,BE =.4,8,EF BF BE EF ==+=,AFE FBC C ∠=∠+∠,ABE FBC C ∴∠=∠+∠23,ABC ABE FBC FBC C C ∠=∠+∠=∠+∠=∠,FBC C ∴∠=∠8,FB FC ∴== AD 是BAC ∠的角平分线,59ABD ADC S BD AB S CD AC ∆∆∴=== 59AB AB FC ∴=+ 10,AB ∴=18,AC AB FC ∴=+=ABC C AB AC BC ∆∴=++101859=+++42=.故答案为42.[点睛]本题考查了三角形全等判定和性质,三角形外角的性质,等腰三角形的性质,综合考查了三角形的相关知识,熟练掌握各部分知识点是本题的关键.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s[答案]3秒或12秒或15秒[详解]①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120° ∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15.故答案为3秒或12秒或15秒[点睛]本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.[答案]3[分析]设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M ,根据题意可知△ABC 是等腰三角形,根据等腰三角形的角平分线的性质可得MN MR =,等量代换可得BM MN BR +=,在Rt △BER 中,BR 是斜边,BE 是直角边,所以BR 的最小值是与BE 重合,即△ABC 的BC 边上的高,求出BE 的长即可.[详解]解:如图,设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M .∵AD BC ⊥于点D 且CD BD =,∴△ABC 是等腰三角形,∴MN MR BM MN BM MR BR =∴+=+=,,∴当BR ⊥AC 时有最小值,即BE∵∠ACB=∠ABC=75°,∴∠CAB=30°,又∵∠AEB=90°,∴∠EBA=60°,∵:2:1AB BE =,∵6AC AB ==,∴3BE =.故答案为3.[点睛]本题主要考查了轴对称—最短线路问题,解题的关键是正确作出对称点和利用垂直平分线的性质证明BM MN +的最小值为三角形某一边上的高.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .[答案]①②③④[分析]根据等角的余角相等证明结论①,根据角平分线的性质证明结论②,证明∠DBE=∠BAC-∠C-∠DBE ,再结合①的结论可得结论③,证明∠AEB=∠ABE+∠C ,再由BD ⊥FC ,FH ⊥BE ,可以证明结论④.[详解]①∵BD ⊥FD ,∴∠FGD+∠F=90°,∵FH ⊥BE ,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH ,∴∠DBE=∠F ,故①正确;②∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∠BEF=∠CBE+∠C ,∴2∠BEF=∠ABC+2∠C ,∠BAF=∠ABC+∠C ,∴2∠BEF=∠BAF+∠C ,故②正确;③∠ABD=90°-∠BAC ,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC , ∵∠CBD=90°-∠C , ∴∠DBE=∠BAC-∠C-∠DBE ,由①得,∠DBE=∠F ,∴∠F=∠BAC-∠C-∠DBE ,∴∠F=12(∠BAC ﹣∠C ),故③正确; ④∵∠AEB=∠EBC+∠C , ∵∠ABE=∠CBE ,∴∠AEB=∠ABE+∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD=∠FEB ,∴∠BGH=∠ABE+∠C ,故④正确.故答案是:①②③④.[点睛]本题考查角度的证明,解题的关键是掌握角度之间关系的证明方法.16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =-+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.[答案](3或(1,3--[分析]计算出OM=33,ON=4,即可确定∠NMO=60°,然后利用AB 与直线MN 垂直画出图形,直线AB 交y 轴于点C ,作AD ⊥x 轴于H ,则∠OCB=60°,再解直角三角形求AD 、OD ,从而确定A 点坐标.[详解]当0x =时,344y x =-+=,则()0,4N ,当0y =时,430x +=,解得433x =,则43 ,03M ⎛⎫ ⎪ ⎪⎝⎭. 在Rt OMN △中,224383433MN ⎛⎫=+= ⎪ ⎪⎝⎭, ∵12OM ON =,∴30∠=︒ONM ,∴60NMO ∠=︒, 在Rt ABO △中,∵30A ∠=︒,2AO =,∴60OBA ∠=︒,∴233OB =, ∵AB 与直线MN 垂直,∴直线AB 与x 轴的夹角为60︒,如图1,直线AB 交y 轴于点C ,交MN 于G ,作AD x ⊥轴于D ,⊥GH x 轴于H ,图1∴30MGH ∠=︒,∴60BGH ∠=︒,∴60OCB ∠=︒,∵60OBA ∠=︒,∴OBC 是等边三角形,∴60BOC ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中,112OD OA ==,332AD ==∴A 点坐标为(3,如图2,直线AB 交y 轴于点C ,作AD x ⊥轴于D .图2同理:60OCB ∠=︒,∵ABO 60∠=,∴60COB ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中, 112OD OA ==,332AD OA ==, ∴A 点坐标为()1,3--, 综上所述,A 点坐标为()1,3或()1,3--. 故答案为:()1,3或()1,3--.[点睛] 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.解决本题的关键是正确画出旋转后的图形.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.[答案]5044[分析]翻转两次后点B 落在数轴上,根据翻转4次为一个周期循环,依据翻转总次数得出翻转几个周期循环,确定点B 落在数轴上推算出移动的距离得出结果.[详解]如图,翻转两次后点B 落在数轴上,以后翻转4次为一个周期,且长方形的周长=2(2+3)=10,∴一个周期后右边的点移动10个单位长度,∵20164504÷=,∴翻转2018次后,点B 落在数轴上,点B 所对应的数是50410515044⨯+-=,故答案为:5044.[点睛]此题考查旋转的性质,长方形的性质,图形规律类运算探究,根据图形得到变化的规律是解题的关键. 18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.[答案](6,3 ()113232n n --⨯. [分析] 根据等边三角形的性质和∠B 1OA 2=30°,可求得∠B 1OA 2=∠A 1B 1O=30°,可求得OA 2=2OA 1=4,同理可求得OA n =2n ,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,进一步可求得点B n 的坐标.[详解]解:∵112A B A △为等边三角形,∴11260∠=︒B A A ,∵1230B OA ∠=︒,∴121130B OA A B O ∠=∠=︒,可求得2124OA OA ==,同理可求得2n n OA =,∵130n n B OA +∠=︒,160n n n B A A +∠=︒,∴2n n n n B A OA ==,即1n n n A B A +△的边长为2n ,则可求得其高为132322n n -⨯=⨯, ∴点n B 的横坐标为:132223222n n n n ⨯+=⨯=⨯, ∴点n B 的坐标为()1132,32n n --⨯⨯,点2B 的坐标为()6,23.故答案为:()6,23;()1132,32n n --⨯⨯. [点睛] 本题属于规律型问题,考查点的坐标,掌握等边三角形的性质为解题关键.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .[答案](1)画图见解析;(2)(2,-1).[解析]试题分析:(1)、根据网格结构找出点A 、B 关于点C 成中心对称的点A 1、B 1的位置,再与点A 顺次连接即可;根据网格结构找出点A 、B 、C 平移后的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.试题解析:(1)、△A 1B 1C 如图所示, △A 2B 2C 2如图所示; (2)、如图,对称中心为(2,﹣1).考点:(1)、作图-旋转变换;(2)、作图-平移变换.20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?[答案](1)43元;(2)45元;(3)丙一月份用车8小时,二月份用车23小时[分析](1)分段计算,10小时内一部分车费,11至20小时内一部分车费,超过20小时的一部分车费,三者之和即为所求;(2)设总里程为x ,且x>20,根据题意得到:10小时内车费+11至20小时内车费+,超过20小时车费=1.5⨯总里程,列出方程求解即可;(3)设丙一月份用车x 小时,则二月份用车()31x -小时,根据题意得到015.5x ≤<,分为三种情况讨论:①一月份不超过10小时,②一月份超过10小时,不超过15.5小时且二月不超过20小时,③一月份超过10小时,不超过15.5小时且二月超过20小时,列出方程求解即可.[详解](1)甲该月车费:()10210 1.52820143⨯+⨯+-⨯=(元).(2)设乙二月份用车x 小时,由题意可知:20x >,∴()10210 1.5201 1.5x x ⨯+⨯+-⨯=,解得:30x =,∴乙二月份车费是:30 1.545⨯=(元).(3)设丙一月份用车x 小时,则二月份用车()31x -小时.由题意可知:015.5x ≤<,①若010x ≤≤,则213131x ≤-≤,∴()2210 1.5101312054x x +⨯+⨯+⨯--=,解得:8x =(满足题意),则3123x -=,∴丙一月份用车8小时,二月份用车23小时.②若1015.5x <<,则15.53121x <-<.1°.若15.53120x <-≤,则:()()210 1.510210 1.5311054x x ⨯+-+⨯+--=,此时,上述方程无解,舍去.2°.若203121x <-<,则:()()210 1.510210 1.510312054x x ⨯+-+⨯+⨯+--=,解得:6x =,312521x -=>(舍)∴综上可知,丙一月份用车8小时,二月份用车23小时.[点睛]本题考查了一元一次方程的应用,一元一次不等式的应用,重点是根据题意列出不等式,分情况讨论是本题的关键.21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.。

北师大版八年级下学期期中考试数学试卷及答案

北师大版八年级下学期期中考试数学试卷及答案

八年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分一、选择题(本大题共15小题,共45.0分)1.如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A. 6B. 5C. 4D. 3√32.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE的度数为()A. 105°B. 120°C. 135°D. 150°3.不等式x−2≥−3x−18的负整数解共有()A. 1 个B. 2个C. 3个D. 4个4.如图,一次函数y=kx+3(k≠0)的图象与正比例函数y=mx(m≠0)的图象相交于点P,已知点P的横坐标为1,则关于x的不等式(k−m)x>−3的解集为()A. x<1B. 1<x<2C. 2<x<3D. x>35.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个6.将点A(1,−1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (−2,1)B. (−2,−1)C. (2,1)D. (2,−1)7.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A. 140°或44°或80°B. 20°或80°C. 44°或80°D. 140°8.如图,在Rt△ABC中,∠ACB=90°,分别以点B和BC的长为半径作弧,两弧相交点C为圆心,大于12于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为()A. 52B. 3C. 2D. 729.不等式6−4x≥3x−8的非负整数解为()A. 2个B. 3个C. 4个D. 5个10.现规定一种新运算,a※b=ab+a−b,其中a、b为常数,若(2※3)+(m※1)=6,<−m的解集是()则不等式3x−22B. x<0C. x>1D. x<2A. x<−4311.如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A. 42°B. 48°C. 52°D. 58°12.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则∠C′的度数为()A. 18°B. 20°C. 24°D. 28°13.如图,在平面直角坐标系xoy中,A(0,2),B(0,6),动点C在y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A. 2B. 3C. 4D. 514.若关于x的不等式mx+1>0的解集是x<15,则关于x的不等式(m−1)x>−1−m的解集是()A. x<−23B. x>−23C. x<23D. x>2315.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A. √3−1B. √32C. √3D. 2二、填空题(本大题共5小题,共25.0分)16.如图,长方形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,则CE的长为________.17.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为___________.18.已经点P(a+2,a−1)在平面直角坐标系的第四象限,则a的取值范围是______19.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为______秒.20.如图,把等边△ABC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.三、解答题(本大题共7小题,共80.0分)21.(8分)解下列关于x的不等式组{x−52+1>x−3,x−(3x−1)≤x+8.,并把解集表示在数轴上。

北师大版数学八年级下册《期中考试试题》含答案

北师大版数学八年级下册《期中考试试题》含答案

北 师 大 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10个小题,每小题3分,共30分) 1.如果0a b,那么在下列结论中正确的是( )A .1a bB .1abC .1a bD .1a b2.下列图形中是中心对称图形的是( )A .B .C .D .3.等腰三角形一腰上的高与另一腰的夹角为40,则其顶角为( ) A .50B .130C .50或130D .55或1304.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处 C .AC ,BC 两边垂直平分线的交点处D .A ,B 两内角平分线的交点处5.将不等式组13x x 的解集在数轴上表示出来,应是( ) A . B . C .D .6.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了△A B C ,其中(1,3)A ,则C 点的坐标为( ) A .(3,6)B .(2,1)C .(3,4)D .(2,5)7若点(1,1)P k 在第四象限,则k 的取值范围为( )A .1kB .12kC .12kD .112k8如图,在ABC 中,ABC 和ACB 的平分线交于点O ,过O 点作//EF BC ,交AB 于E ,交AC 于F ,若3BE ,2CF,则线段EF 的长为( )A .5B .6C .7D .89如图1,ABC 和ADE 都是等腰直角三角形,C 和ADE 都是直角,点C 在AE 上,ABC 绕着A 点经过逆时针旋转后能够与ADE 重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为( )A .45,90B .90,45C .60,30D .30,6010.不等式组1235a x ax 的解集是32xa ,则a 的取值范围是( )A .1aB .3aC .1a 或3aD .13a二、填空题(本题共7个小题,每小题4分,共28分) 11.已知0a b c,a b c ,则ca的取值范围是 . 12.如图,把ABC 绕着点A 顺时针方向旋转角度(090),得到△AB C ,若B ,C ,C 三点在同一条直线上,46B CB,则的度数是 .13.一次函数223yx 的图象如图所示,当33x时,y 的取值范围是 .14.如图,在ABC 中,90B ,60A ,5BC ,将ABC 沿直角边BC 所在的直线向右平移2个单位长度,到达DEF ,AC 与DE 交于点G ,则EG 的长为 .15.如图,已知30AOB ,点P 在边OA 上,14OP ,点E ,F 在边OB 上,PE PF ,6EF .若点D 是边OB上一动点,则45PDE时,DF 的长为 .16.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,问他至少答对 道题,总分才不会低于70分. 17.已知不等式2123x a xb的解集为11x ,求(1)(1)a b 的值为 .三.解答题(一)(本题共3个小题,每小题6分,共18分) 18.解下列不等式(组),并把它们的解集在数轴上表示出来: (1)34122x x ; (2)475(1)2132x x xx19.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A ,(2,2)B ,(1,4)C ,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ; (2)画出与ABC 关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.20.如图,在ABC 中,AB AC ,AB 的垂直平分线分别交AB ,AC 于点D ,E .(1)若40A ,求EBC 的度数;(2)若5AD,EBC 的周长为16,求ABC 的周长.四.解答题(二)(本题共3个小题,每小题8分,共24分)21.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x 套(x 为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y 元. (1)求y 与x 的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?a,且最多购进240套甲款运动服, (3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中2040)若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.22.如图,点D是ABC中BAC的平分线和边BC的垂直平分线DE的交点,DG AB于点G,DH AC交AC的延长线于点H,(1)D点到B、C两点的距离相等吗?为什么?(2)D点到BAC两边的距离相等吗?为什么?(3)探求BG和CH之间的大小关系,并证明你的结论.23.如图,在ABC=,延长BC至E使BE BA∆中,AC BC⊥,AC BC⊥于点D,BD与AC交=,过点B作BD AE于点F,连接EF.(1)求证:ACE BCF∆≅∆.(2)求证:2=.BF AD(3)若CE求AC的长.五.解答题(三)(本题共2个小题,每小题10分,共20分)24.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:BHE DGF;(2)若6BC cm,求线段FG的长.AB cm,825.如图,在等边ABC中,BAC的平分线交y轴于点D,C点的坐标为(0,6)(1)如图1,求点D坐标.(2)如图2,E为x轴上任意一点,以CE为边,在第一象限内作等边CEF,FB的延长线交y轴于点G,求OG的长.(3)如图3,在(1)条件下,当一个含60角的三角板绕B点旋转时,下列两个结论中:①DN DM;②DN DM其中有且只有一个是定值,请你判断哪一个结论成立并证明成立的结论.答案与解析一、选择题(本题共10个小题,每小题3分,共30分) 1.如果0a b ,那么在下列结论中正确的是( )A .1a bB .1abC .1a bD .1a b[解析]A 、取12a ,13b ,516a b ,故本选项错误,B 、取2a,1b ,21ab ,故本选项错误,C 、取2a ,1b ,21a b ,故本选项错误,D 、取2a,1b,21a b,故本选项正确.故选:D .2.下列图形中是中心对称图形的是( )A .B .C .D .[解析]A 、不是中心对称图形,是轴对称图形,故本选项错误; B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、是中心对称图形,还是轴对称图形,故本选项正确;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选:C .3.等腰三角形一腰上的高与另一腰的夹角为40,则其顶角为( ) A .50B .130C .50或130D .55或130[解析]①如图1,等腰三角形为锐角三角形, BDAC ,40ABD,50A ,即顶角的度数为50.②如图2,等腰三角形为钝角三角形, BDAC ,40DBA,50BAD , 130BAC,即顶角的度数为130. 故选:C .4.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处 C .AC ,BC 两边垂直平分线的交点处D .A ,B 两内角平分线的交点处[解析]A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在AC ,BC 两边垂直平分线的交点处. 故选:C . 5.将不等式组13x x 的解集在数轴上表示出来,应是( ) A . B . C .D .[解析]不等式组13x x 的解集为:13x , 故选:A .6.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了△A B C ,其中(1,3)A ,则C 点的坐标为( ) A .(3,6) B .(2,1)C .(3,4)D .(2,5)[解析]ABC 三个顶点的坐标分别为(2,1)A ,将ABC 平移到了△A B C ,其中(1,3)A ,横坐标减3,纵坐标加2,(0,2)C ,对应点坐标为:(3,4).故选:C .7.若点(1,1)P k 在第四象限,则k 的取值范围为( ) A .1kB .12kC .12kD .112k[解析]根据题意,得:10k ,解得:1k,故选:A .8.如图,在ABC 中,ABC 和ACB 的平分线交于点O ,过O 点作//EF BC ,交AB 于E ,交AC 于F ,若3BE ,2CF,则线段EF 的长为( )A .5B .6C .7D .8[解析]BO 、CO 是ABC 、ACB 的角平分线,OBEOBC ,OCF BCO ,又//EF BC , OBC BOE ,BCO COF , OBEBOE ,COFOCF ,BE OE ,CF OF , 325EFOE OFBE CF,故选:A .9.如图1,ABC 和ADE 都是等腰直角三角形,C 和ADE 都是直角,点C 在AE 上,ABC 绕着A 点经过逆时针旋转后能够与ADE 重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为( )A .45,90B .90,45C .60,30D .30,60 [解析]根据图1可知, ABC 和ADE 是等腰直角三角形,45CAB ,即ABC 绕点A 逆时针旋转45可到ADE ;如右图, ABC 和ADE 是等腰直角三角形,45DAE CAB ,90FAB DAE CAB ,即图1可以逆时针连续旋转90得到图2.故选:A .10.不等式组1235a x a x 的解集是32x a ,则a 的取值范围是() A .1a B .3a C .1a 或3aD .13a[解析]根据题意可知13a 且25a所以3a又因为32x a即23a所以1a所以13a故选:D .二.填空题(本题共7个小题,每小题4分,共28分)11.已知0a b c,a b c ,则c a 的取值范围是 122c a . [解析]0a b c , 0a ,0c①ba c ,且0a ,0c ab c a c a ,即2a c ②解得2c a , 将b a c 代入b c ,得a c c ,即2a c ③ 解得12c a , 122c a . 故答案为:122ca . 12.如图,把ABC 绕着点A 顺时针方向旋转角度(090),得到△AB C ,若B ,C ,C 三点在同一条直线上,46B CB ,则的度数是 46 .[解析]由题意可得:AC AC ,C ACB , ACC C , 把ABC 绕着点A 顺时针方向旋转,得到△AB C ,点C 刚好落在边B C 上, B CBACB C CAC ,46B CB CAC . 故答案为:46.13.一次函数223y x 的图象如图所示,当33x 时,y 的取值范围是 04y .[解析]当3x时,2243y x ; 当3x 时,2203yx . 当33x 时,y 的取值范围是04y . 故答案为:04y . 14.如图,在ABC 中,90B ,60A ,5BC ,将ABC 沿直角边BC 所在的直线向右平移2个单位长度,到达DEF ,AC 与DE 交于点G ,则EG[解析]由平移得:2BE,90DEF B , 5BC , 523CE ,60A ,30ACB ,2CG EG ,设EG x ,则2CG x , 由勾股定理得:2223(2)x x , 3x或3(舍),3EG ,15.如图,已知30AOB,点P 在边OA 上,14OP ,点E ,F 在边OB 上,PE PF ,6EF .若点D 是边OB上一动点,则45PDE 时,DF 的长为 4或10 .[解析]如图,过点P作PH OB于点H,PE PF,13EH FH EF,2OP,AOB,14301PH OP,72当点D运动到点F右侧时,PDE,45DPH,45PH DH,7DF DH FH;734当点D运动到点F左侧时,D F D H FH.7310所以DF的长为4或10.故答案为4或10.16.在一次智力测验中有20道选择题,评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,问他至少答对16道题,总分才不会低于70分.[解析]设张强答对x道题,x x根据题意可得52(201)70解得:3 157 x因为x是整数,所以x所取最小值为16,故答案是:16.17.已知不等式2123x ax b的解集为11x,求(1)(1)a b的值为6.[解析]由2123x ax b得1232axxb.11x,112a,321b,解得1a,2b,(1)(1)(11)(21)6a b,故答案为6.三.解答题(一)(本题共3个小题,每小题6分,共18分) 18.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)34122xx;(2)475(1)2132x xx x[解析](1)去分母:2341x x ,移项,合并:22x,1x,在数轴上表示为(2)47512132x xx x①②解①得:2x;解②得:2x;不等式组的解集为22x,数轴上表示为.19.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A ,(2,2)B ,(1,4)C ,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ;(2)画出与ABC 关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.[解析](1)如图所示,△111A B C 即为所求.(2)如图所示,△222A B C 即为所求,点2A 的坐标为(5,1).20.如图,在ABC 中,AB AC ,AB 的垂直平分线分别交AB ,AC 于点D ,E . (1)若40A,求EBC 的度数; (2)若5AD ,EBC 的周长为16,求ABC 的周长.[解析](1)AB AC,40A,70ABC C,DE是AB的垂直平分线,EA EB,EBA A,40EBC;30(2)DE是AB的垂直平分线,DA BD,EB AE,5EB BC EC EA BC EC AC BC,EBC的周长16AB BC AC.则ABC的周长26四、解答题(二)(本题共3个小题,每小题8分,共24分)21.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x套(x 为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y元.(1)求y与x的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?a,且最多购进240套甲款运动服, (3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中2040)若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.y x x x;[解析](1)根据题意得(10060)(15080)(300)3021000y x.即3021000(2)由题意得,6080(300)20000x x ,解得200x ,至少要购进甲款运动服200套.又3021000y x ,300, y 随x 的增大而减小,当200x时,y 有最大值, 302002100015000y 最大,若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是15000元.(3)由题意得,(10060)(15080)(300)ya x x ,其中200240x , 化简得,(30)21000ya x , 2040a ,则:①当2030a 时,300a ,y 随x 的增大而减小, 当200x 时,y 有最大值,则服装店应购进甲款运动服200套、乙款运动服100套,获利最大. ②当30a 时,300a ,21000y ,则服装店应购进甲款运动服的数量应满足100120x ,且x 为整数时, 服装店获利最大.③当3040a 时,300a ,y 随x 的增大而增大,200240x ,当240x 时,y 有最大利润,则服装店应购进甲款运动服240套、乙款运动服60套,获利最大. 22.如图,点D 是ABC 中BAC 的平分线和边BC 的垂直平分线DE 的交点,DG AB 于点G ,DH AC 交AC 的延长线于点H , (1)D 点到B 、C 两点的距离相等吗?为什么?(2)D 点到BAC 两边的距离相等吗?为什么?(3)探求BG 和CH 之间的大小关系,并证明你的结论.[解析](1)相等.D是线段BC垂直平分线上的一点,D点到B、C两点的距离相等;(2)相等.点D在BAC的角平分线上,D点到BAC两边的距离相等;(3)BG CH.连接BD、CD,D是线段BC垂直平分线上的点,BD DC,D是BAC平分线上的点,DG AB,DH ACDG DH,Rt BDG Rt CDH,BG CH.23.如图,在ABC=,延长BC至E使BE BA∆中,AC BC⊥,AC BC⊥于点D,BD与AC交=,过点B作BD AE于点F,连接EF.(1)求证:ACE BCF∆≅∆.(2)求证:2=.BF AD(3)若CE求AC的长.[解析]证明:(1)AC BC⊥,BD AE⊥∴∠=∠=︒90FCB BDA∠+∠=︒DAF AFD90∠+∠=︒,90CBF CFB∠=∠CFB AFDACE BCF∠=∠=︒=,90∴∠=∠,且AC BCCBF CAE∴∆≅∆ACE BCF ASA()(2)ACE BCF∆≅∆∴=AE BF=,BD AE⊥BE BA∴=,AD ED即2=AE AD2∴=.BF AD(3)ACE BCF∆≅∆∴=CF CE∴在Rt CEF∆中,2EF=,=,⊥,AD EDBD AE∴==,2AF FE∴=+=AC AF CF2五、解答题(三)(本题共2个小题,每小题10分,共20分)24.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:BHE DGF ; (2)若6AB cm ,8BC cm ,求线段FG 的长.[解析](1)证明:四边形ABCD 是矩形, AB CD ,90A C ,ABD BDC , BEH 是BAH 翻折而成,ABH EBH ,90A HEB ,AB BE , DGF 是DGC 翻折而成,FDG CDG ,90C DFG ,CD DF , 12DBH ABD ,12BDG BDC , DBH BDG , BEH 与DFG 中,HEB DFG ,BE DF ,DBH BDG , BEHDFG ,(2)解:四边形ABCD 是矩形,6AB cm ,8BC cm , 6ABCD cm ,8AD BC cm , 22228610BD BC CD , 由(1)知,FDCD ,CG FG , 1064BF cm ,设FG x ,则8BGx , 在Rt BGF 中,222BG BF FG ,即222(8)4x x ,解得3x ,即3FG cm .25.如图,在等边ABC 中,BAC 的平分线交y 轴于点D ,C 点的坐标为(0,6)(1)如图1,求点D坐标.(2)如图2,E为x轴上任意一点,以CE为边,在第一象限内作等边CEF,FB的延长线交y轴于点G,求OG的长.(3)如图3,在(1)条件下,当一个含60角的三角板绕B点旋转时,下列两个结论中:①DN DM;②DN DM其中有且只有一个是定值,请你判断哪一个结论成立并证明成立的结论.[解析](1)如图1,ABC为等边三角形,而OC AB,OA OB,30ACO,60BAC,在Rt ACO中,3362333AO OC,AD为OAC的平分线,30OAD,3323233OD OD,D点坐标为(0,2);(2)如图2,作FG BC于G,FH x轴于H,EFC为等边三角形,FC FE,60FCE CFE,OBC,60120CBE,FCB BEF,180FEH BEF,而180FCG FEH,在FCG和FEH中,FGC FHEFCG FEH,FC FEFCG FEH AAS,()FG FH,BF平分CBE,1FBE CBE,602OBG,60OB OA,2333236OG OB;(3)①正确.理由如下:在DN上截取DP DM,连接MP、DB,如图3,DO垂直平分AB,DA DB OD,24DAO,3060ADO,MDP,60而DM DP,DMP为等边三角形,DM MP,60DPM,120MPN,MDN,60MBN,60点M、D、B、N四点共圆,MND MBD,在MNP和MBD中,MNP MBDMPN MDB,MP MDMNP MBD AAS,()PN BD,4DN DP,4DN DM4。

北师大版数学八年级下册期中考试试题及答案

北师大版数学八年级下册期中考试试题及答案

北师大版数学八年级下册期中考试试卷A 卷一、选择题(每小题3分,共30分)1.已知,<b a 下列不等式中不正确的是A.22b a < B.11--b a < C.b a --< D.33++b a <2.下列图形中,既是轴对称图形又是中心对称图形的是3.下列各式由左边到右边的变形中,是因式分解的是A.()y x xy xy y x +=+22B.()44442+-=+-x x x x C.⎪⎪⎭⎫ ⎝⎛+=+y y y 111 D.()()23212+-=--x x x x 4.如图,一次函数m x y +-=21与62+=ax y 的图象相交于点P(-2,3),则关于x 的不等式62+-ax x m <的解集为A.2->x B.2-<x C.3<x D.3>x 5.在△ABC 中,已知AB=AC ,且一内角为100°,则这个等腰三角形底角的度数为A.100°B.50°C.40°D.30°6.如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A=50°,则∠BDC=A.50°B.100°C.120°D.130°7.下列整式中能直接运用完全平方公式分解因式的为A.12-xB.122++x xC.232++x xD.22y x +8.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是A.55°B.60°C.65°D.70°9.在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是A.(3,-5)B.(-3,-5)C.(3,5)D.(-3,5)10.已知不等式组⎩⎨⎧-3<<x m x 的解集是,<3-x 则m 的取值范围是A.3->m B.3-≥m C.3-<m D.3-≤m 二、填空题(每小题4分,共16分)11.不等式213-+-<x 的解集为____________.12.分解因式:=++222ay axy ax ______________.13.如图,点A 、B 的坐标分别为(1,2)、(4,0),将△AOB 沿x 轴向右平移,得到△CDE ,已知DB=1,则点C 的坐标为___________.14.如图,等边△ABC 中,AD=BD ,过点D 作DF ⊥AC 于点F ,过点F 作FE ⊥BC 于点E ,若AF=6,则线段BE 的长为_______.三、解答题(15题每小题6分,16题6分,17、18题每题8分,19、20题每题10分,共54分)15.(1)分解因式:()()y x n y x m 22422+-+(2)解不等式组:(),>⎪⎩⎪⎨⎧-+≥--1312423x x x x 并把它的解集在数轴上表示出来.16.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的,△111C B A 并写出点1A 的坐标;(2)画出△ABC 绕原点O 旋转180°后得到的,△222C B A 并写出点2A 的坐标.17.在关y x 、的方程组⎩⎨⎧=+-=+2212y x m y x 中,若未知数y x 、满足0>y x +,求m 的取值范围,并在数轴上表示出来。

北师大版八年级数学下册期中考试卷及参考答案有详细解析

北师大版八年级数学下册期中考试卷及参考答案有详细解析

北师大版八年级数学下册期中考试卷一、选择题1、在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( ) A .(﹣1,1) B .(﹣1,﹣2) C .(﹣1,2) D .(1,2)2、 如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4.则下列结论错误的是( ) A .AE ∥BC B .∠ADE=∠BDC C .△BDE 是等边三角形 D .△ADE 的周长是9(第2题图)(第3题图)(第4题图)3、如图,在△ABC 中,AB=AC ,∠BAC=120°,D 是BC 的中点,DE ⊥AB 于点E ,若EA=2,则BE=( )A .3B .4C .6D .84、如图,在△ABC 中,AB=AC ,∠A=30°,以B 为圆心,BC 的长为半径圆弧,交AC 于点D ,连接BD ,则∠ABD=( )A .30°B .45°C .60°D .90°5、剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )………○6、老师在黑板上写了下列式子:①x-1≥1;②-2<0;③x≠3;④x+2;⑤x-y=0;⑥x+2y≤0,其中不等式有( )A.2个B.3个C.4个D.5个7、已知a<3,则下列四个不等式中,不正确的是( )A.a-2<3-2 B.a+2<3+2C.2a<2×3 D.-2a<-68、从下列不等式中选择一个与x+1≥2组成不等式组,使该不等式组的解集为x≥1,那么这个不等式可以是( )A.x>-1 B.x>2 C.x<-1 D.x<29、如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是( )A.x>2 B.x<2 C.x>-1 D.x<-110、如图,AB的中垂线为CP交AB于点P,且AC=2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB,其作法如下:甲作∠ACP、∠BCP的角平分线,分别交AB于D、E两点,则D、E即为所求;乙作AC、BC的中垂线,分别交AB于D、E两点,则D、E即为所求.对于甲、乙两人的作法,下列正确的是()A. 两人都正确B. 两人都错误C. 甲正确,乙错误D. 甲错误,乙正确二、填空题11、如图,将等边△OAB绕O点按逆时针方向旋转150°,得到△OA′B′(点A′,B′分别是点A,B的对应点),则∠1= °。

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案一、选择题1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.283.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,104.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤15.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=46.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.107.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG 是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.12.(4分)命题“两直线平行,同位角相等.”的逆命题是.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为cm2.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)15.(4分)计算(2﹣2)2的结果是.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,把正确答案填写在下列表格内.1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)解:A、的根指数为3,不是二次根式;B、的被开方数﹣1<0,无意义;C、的根指数为2,且被开方数2>0,是二次根式;D、的被开方数x<0,无意义;故选:C.2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.28解:∵平行四边形的对边相等,∴平行四边形的周长=2(4+7)=22.故选:C.3.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,10解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、62+82=102,故是直角三角形,故此选项不符合题意;C、52+122=132,故是直角三角形,故此选项不符合题意;D、72+52≠102,故不是直角三角形,故此选项符合题意;故选:D.4.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤1解:由题意得:a﹣1≥0,解得:a≥1,故选:B.5.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=4解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、2和不是同类二次根式,不能合并,故本选项错误;D、+=2+2=4,计算正确,故本选项正确.故选:D.6.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.10解:∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式知,S△ABC=AB•AC=BC•AD,∴AD=.故选:C.7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选:D.9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)解:过P作PE⊥OM,过点N作NF⊥OM,∵顶点P的坐标是(2,3),∴OE=2,PE=3,∵四边形ABCD是平行四边形,∴OE=MF=2,∵4+2=6,∴点N的坐标为(6,3).故选:D.10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.解:==,故填.12.(4分)命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为24cm2.解:∵菱形ABCD的两条对角线AC=6cm,BD=8cm,∴菱形的面积为:AC•BD=6×8=24(cm2).故答案为:24.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)解:∵+|b﹣6|=0,∴a﹣7=0,b﹣6=0,解得a=7,b=6,∴该直角三角形的斜边长为=.故答案为:.15.(4分)计算(2﹣2)2的结果是24﹣8.解:(2﹣2)2=20﹣8+4=24﹣8,故答案为:24﹣8.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为7.解:∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∠ABF=∠DAE,∠AFB=∠AED,AB=AD∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=7.故答案为:7.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)解:连接BD,则点D即为点B关于AC的对称点,连接DE交AC于点P,由对称的性质可得,PB=PD,故PE+PB=DE,由两点之间线段最短可知,DE即为PE+PB的最小值,∵AB=AD=5,BE:AE=1:4∴BE=1,AE=4,在Rt△ADE中,DE===.故答案为:.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.解:原式===.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.解:过A点作AD⊥BC于D点;在直角三角形ABD中,∠B=45°,AB=,∴AD=AB•sin∠B=1,在直角三角形ADC中,∠C=30°,∴AC=2AD=2.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.解:原式=••=,当a=﹣2时,原式==.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5∴C菱形OCED=4OC=4×2.5=10,在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.∴S菱形OCED=.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?解:(1)过B点作BE∥AD,如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°,∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500m,由勾股定理可得:AC2=BC2+AB2,所以AC==1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m,∴∠CAB=30°,∵∠DAB=60°,∴∠DAC=30°.即点C在点A的北偏东30°的方向.25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:∵Rt△ABC中,∠C=30°.∵CD=2t,AE=t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即30﹣2t=t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=2t,∴DF=t=AE,∴AD=2t,∴2t+2t=30,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=90°﹣30°=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=30﹣2t,AE=DF=CD=t,∴30﹣2t=t,解得t=12.当∠DFE=90°时,点E和点F都和点B重合,不能构成三角形,所以,此种情况不存在;综上所述,当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF =90°).。

北师大版八年级下册数学期中考试试题带答案

北师大版八年级下册数学期中考试试题带答案

北师大版八年级下册数学期中考试试卷一、单选题1.观察下列4个平面图案,其中是中心对称图形的有()A .1个B .2个C .3个D .4个2.下列各式由左边到右边的变形中,是因式分解的为()A .()()2236a a a a +-=--B .()2a ab a ab -=-C .()22121x x x x --=--D .()2222a ab b a b -+=-3.不等式2x ﹣6>0的解集在数轴上表示正确的是()A .B .C .D .4.等腰三角形的一边长为3cm ,周长为19cm ,则该三角形的腰长为()A .3cmB .8cmC .3cm 或8cmD .以上答案均不对5.已知0a b -<,则下列不等式一定成立的是()A .11a b -<-B .a b-<-C .a b >D .330a b ->6.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'OB ',若∠AOB=15°,则∠AOB '的度数是()A .25°B .30°C .35°D .40°7.如图,在Rt ABC △中,90B ∠=︒,AC 的垂直平分线MN 与AB 交于D 点,10BCD ∠=︒,则A ∠的度数是()A .25︒B .30°C .35︒D .40︒8.已知:2x y +=,则2211122x xy y ++-的值是()A .3B .2C .1D .1-9.ABC 中,90C ∠=︒,8AB =,30B ∠=︒,点P 是BC 边上的动点,则AP 长不可能是()A .3B .4C .5D .610.一次函数y kx b =+的图象如图所示,当3y <时,x 的取值范围是()A .2x >B .0x <C .0x >D .2x <二、填空题11.因式分解226x x -=________.12.若三角形三边长之比为32,则这个三角形中的最大角的度数是________.13.如图,将ABC 沿直线BC 方向平移3个单位得到DEF ,若5BC =,则BF =____.14.如图,ABC 中,4AB AC ==,15B ∠=︒,则三角形ABC 的面积为________.15.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.16.如图,在平面直角坐标系中,点A ,B 的坐标分别是()20-,,()6,0,现在同时将点A ,B 分别向上平移2个单位长度,再向右平移2个单位长度,得到A ,B 的对应点C ,D .连接AC ,BD ,CD .在x 轴上有一点E ,满足DEC 的面积是DEB 面积的2倍,则点E 的坐标是________.三、解答题17.解不等式:153x x -≤-.18.解不等式组:()21511,325131.x x x x -+⎧-≤⎪⎨⎪-<+⎩再将解集在数轴上表示出来.19.ABC 在平面直角坐标系xoy 中的位置如图所示.(1)作ABC 关于点O 成中心对称的111A B C △;(2)将111A B C △向右平移5个单位,作出平移后的222A B C △;(3)直接写出222A B C △各顶点坐标.20.如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC ,交BC 于点D .求AD 的长.21.已知关于x ,y 的方程组23,22.x y m x y m +=-⎧⎨+=⎩的解满足0x y -<,求m 的取值范围.22.如图,在ABE △中,105A ∠=︒,AE 的垂直平分线MN 交BE 于点C ,且AB BC BE +=.求:B Ð的度数.23.某车工计划在15天内加工438个零件,前3天每天加工24个,此后,该车工平均每天至少加工多少个零件,才能在规定时间内完成任务?24.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.25.在等腰直角三角形ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C 且与AB 平行.点D 在直线l 上(不与点C 重合),作射线DA .将射线DA 绕点D 顺时针旋转90︒,与直线BC 交于点E .(1)如图1,若点E 在BC 的延长线上,请直接写出线段AD ,DE 之间的数量关系;(2)依题意补全图2,并证明此时(1)中的结论仍然成立;(3)若3AC =,CD =CE 的长.参考答案1.B【分析】根据中心对称图形的概念,即绕着对称中心旋转180度后与原图重合逐一判定即可.【详解】解:第一个绕着一点旋转180度后不与原图重合,故第一个不是中心对称图形,不符合题意;第二个绕着一点旋转180度后与原图重合,故第二个是中心对称图形,符合题意;第三个绕着一点旋转180度后与原图重合,故第三个是中心对称图形,符合题意;第四个绕着一点旋转180度后不与原图重合,故第四个不是中心对称图形,不符合题意;所以中心对称图形的有2个.故选:B .2.D【分析】根据因式分解的定义:把一个多项式分解为两个或多个整式积的形式,进行判断即可得到答案.【详解】解:A 、()()2236a a a a +-=--这是因式分解的逆过程,故此选项错误;B 、()2a a b a ab -=-这是因式分解的逆过程,故此选项错误;C 、()22121x x x x --=--这不是因式分解,故此选项错误;D 、()2222a ab b a b -+=-这是因式分解,故此选项正确.故选:D3.A【详解】2x-6>0,移项得:2x >6,把x 的系数化为1:x >3,故选A .4.B【解析】①当3cm 是底时,则腰长是(19-3)÷2=8(cm ),此时能够组成三角形;②当3cm 是腰时,则底是19-3×2=13(cm ),此时3+3<13,不能组成三角形,这种情况不存在.故选:B .5.A【解析】【分析】根据不等式的性质进行逐一判断即可得到答案.【详解】解:A 、0a b -<,则a b <即可得到11a b -<-,故此选项符合题意;B 、0a b -<,a b ->-,故此选项不符合题意;C 、0a b -<,则a b <,故此选项不符合题意;D 、0a b -<,则a b <,33a b <,故此选项不符合题意;故选A.【点睛】本题主要考查了不等式的性质,解题的关键在于能够熟练掌握不等式的性质.6.B【解析】【详解】解:∵将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故选B .7.D【解析】【分析】根据垂直平分线的性质结合直角三角形两锐角互余解题即可.【详解】解:∵AC 的垂直平分线MN 与AB 交于D 点,∴∠A=∠ACD ,∵∠BCD=10°,∠B=90°,∴∠A+∠ACD+∠BCD=90°,∴∠A=40°,故选:D .【点睛】此题考查垂直平分线的性质和直角三角形两个锐角的关系,理解题意解题即可.8.C【解析】【分析】利用完全平方公式化简,然后将2x y +=代入计算即可得出结果.【详解】解:2212x y 1xy+2+-1()2212x xy y =+2+-1()212x y =+-1当2x y +=时,原式212112=⨯-=故选:C【点睛】本题主要考查了完全平方公式的应用和化简求值,解题的关键是能熟练运用完全平方公式.9.A【解析】【分析】利用垂线段最短分析AP 最小不能小于AC ;利用直角三角形的性质得AP 最大不能大于AB .【详解】解:∵△ABC 中,∠C=90°,AB=8,∠B=30°,∴AC=12AB =4,∴AP 的长不能大于8,根据垂线段最短,可知AP 的长不可能小于4;故选A .【点睛】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AC=4.10.C【解析】【分析】观察函数图象得到函数值小于3所对应的自变量的范围为0x >.【详解】观察函数图象,0x >时,函数值小于3,当0x >时,3y <.故选C .【点睛】本题考查了一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键.11.()23x x -【解析】【分析】首先找出公因式2x ,进而分解因式得出即可.【详解】解:2262(3)x x x x -=-.故答案为:()23x x -.【点睛】本题主要考查了提取公因式法分解因式,解题的关键是正确提取公因式.12.90︒##90度【解析】【分析】直接利用勾股定理的逆定理得出三角形的形状进而得出答案.【详解】解:∵三角形三边长之比为2,,2x可设三边长分别为x∵x2∴此三角形是直角三角形,∴这个三角形中最大角的度数是90°.故答案为:90°.【点睛】此题主要考查了勾股定理的逆定理,正确把握直角三角的判定方法是解题关键.13.8【解析】【分析】根据△ABC沿直线BC方向平移3个单位得到△DEF,即可得到BD=3,BC=DF=5,从而即可求得BF的长.【详解】解:∵△ABC沿直线BC方向平移3个单位得到△DEF∴BD=3,BC=DF=5∴BF=BD+DF=8故答案为:8.【点睛】本题主要考查了平移的性质,解题的关键在于能够熟练掌握平移的性质.14.4【解析】【分析】过C作CD⊥AB交BA的延长线于D,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【详解】解:过C作CD⊥AB交BA的延长线于D,∵AB=AC=4,∠B=15°,∴∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,又∵AC=4,CD⊥AB,∴CD=12AC=12×4=2,∴S△ABC =12AB·CD=12×4×2=4,故答案为:4.【点睛】本题考查了等腰三角形的性质,30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.15.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP 、CP 是∠ABC 和∠ACB 的平分线,∴PE =PF =PG ,∴12×BC×PE +12×AB×PF +12×AC×PG =12×AB×AC ,解得,PE =1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.()2,0或()10,0##()10,0或()2,0【解析】【分析】设点E 的坐标为(x ,0),根据△DEC 的面积是△DEB 面积的2倍和三角形面积公式得到118226222x ⨯⨯=⨯⨯-⨯,解得x=2或x=10,然后写出点E 的坐标.【详解】解:设点E 的坐标为(x ,0),∵△DEC 的面积是△DEB 面积的2倍,∴118226222x ⨯⨯=⨯⨯-⨯,解得x=2或x=10,∴点E 的坐标为(2,0)和(10,0).【点睛】本题考查了坐标与图形性质:利用点的坐标得到线段的长和线段与坐标轴的关系.也考查了平行线的性质和分类讨论的思想.17.4x ≤【解析】【分析】根据不等式的性质即可进行求解.【详解】解:去分母,得()135x x -≤-,去括号,得1153x x -≤-,移项,合并同类项,416x ≤,系数化为1,得4x ≤.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.18.12x -≤<,画图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:()21511,325131.x x x x -+⎧-≤⎪⎨⎪-<+⎩①②解不等式①,得1x ≥-.解不等式②,得2x <.所以不等式组的解集是12x -≤<.在数轴上可表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(1)见解析;(2)见解析;(3)()27,3A -,()26,1B -,()25,2C -【解析】【分析】(1)根据旋转的性质即可作出△ABC 关于点O 成中心对称的图形△A 1B 1C 1;(2)根据平移的性质即可将△A 1B 1C 1向右平移5个单位,可得平移后的△A 2B 2C 2;(3)根据所作图形即可写出各顶点的坐标.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)由图可知,222A B C △各顶点坐标分别为()27,3A -,()26,1B -,()25,2C -.【点睛】本题考查了作图﹣旋转变换,平移变换,解决本题的关键是掌握旋转和平移的性质.20.AD 的长为4.【解析】【分析】根据含30°的直角三角形三边的关系求得AC 的长,因为AD 平分∠BAC 得到∠DAC=30°,再根据含30°的直角三角形三边的关系以及勾股定理即可求解.【详解】解:在Rt △ABC 中,∠B=30°,3∴AC=123BAC=60°,又∵AD 平分∠BAC ,∴∠DAC=12∠BAC=30°,在Rt △ACD 中,∠DAC=30°,3DC=12AD ,∵222CD AC AD +=,即(2221232AD AD ⎛⎫+= ⎪⎝⎭,解得:AD=4(负值舍去).答:AD 的长为4.【点睛】本题考查了角平分线性质,勾股定理,含30度角的直角三角形性质等知识点,正确的识别图形是解题的关键.21.3m >-【解析】【分析】根据题目中的方程组可以求得x-y 的值,从而可以求得m 的取值范围.【详解】解:2322x y m x y m +=-⎧⎨+=⎩①②①-②得:3x y m -=--0x y -< 30m ∴--<解得:3m >-【点睛】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确题意,求出m 的取值范围.22.50︒【解析】【分析】首先连接AC ,由AE 的垂直平分线MN 交BE 于点C ,可得AC =EC ,又由AB +BC =BE ,易证得AB =AC ,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE =∠BAC +∠CAE =180°-4∠E +∠E =105°,继而求得答案.【详解】解:连接AC ,MN 是AE 的垂直平分线,AC EC ∴=,CAE E ∴∠=∠,AB BC BE += ,BC EC BE +=,AB EC AC ∴==,B ACB ∴∠=∠,2ACB CAE E E ∠=∠+∠=∠ ,2B E ∴∠=∠,1801804BAC B ACB E ∴∠=︒-∠-∠=︒-∠,BAE BAC CAE∠=∠+∠ 1804105E E ∴︒-∠+∠=︒,解得:25E ∠=︒,250B E ∴∠=∠=︒.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,解题关键是注意掌握辅助线的作法和数形结合思想的应用.23.31个【解析】【分析】根据题意列不等式求解即可.【详解】解:设平均每天加工x 个零件,才能在规定的时间内完成任务,依题意得32412438x ⨯+≥解之得,30.5x ≥因x 为正整数,所以31x =答:平均每天至少加工31个零件,才能在规定的时间内完成任务.【点睛】此题考查不等式的实际应用,理解题意找准等量关系列式即可,难度一般.24.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)见解析【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩,答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a -()只,费用为w 元,5720021400w a a a +--+=()=,3200a a ≤- (),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=,答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.25.(1)DA DE =;(2)见解析;(3)1或7【解析】【分析】(1)过点D 作DM ⊥直线l 交CA 的延长线于点M ,根据平行线的性质结合等腰直角三角形的性质可得出∠AMD =45°=∠ECD ,CD =MD .再通过角的计算得出∠EDC =∠ADM ,由此即可证出△ADM ≌△EDC ,从而得出DA =DE ;(2)过点D 直线l 的垂线,交AC 于点F ,通过角的计算以及等腰直角三角形的性质即可证得△CDE ≌△FDA ,由此即可得出结论DA =DE ;(3)分两种情况考虑:①点D 在点C 的右侧时,如同(1)过点A 作AN ⊥DM 于点N ,通过解直角三角形即可求出AM 的长度,根据全等三角形的性质即可得出结论;②当点D 在C 点的右侧时,过点A 作AN ⊥DM 于点N ,结合(1)(2)的结论以及等腰直角三角形的性质即可求出线段CN 和NE 的长度,二者相加即可得出结论.【详解】解:(1)过点D 作DM ⊥直线l 交CA 的延长线于点M ,如图1所示.∵△ABC 为等腰直角三角形,∠ACB =90°,AC =BC∴∠ABC =∠BAC =45°∵直线l //AB∴∠ECD =∠ABC =45°,∠ACD =∠BAC =45°∵DM ⊥直线l∴∠CDM =90°∴∠AMD =45°=∠ECD ,CD =MD∵∠EDC +∠CDA =90°,∠CDA +∠ADM =90°∴∠EDC =∠ADM在△ADM 和△EDC 中,有EDC ADMCD MD ECD AMD∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADM ≌△EDC (ASA )∴DA =DE .(2)证明:过点D 作直线l 的垂线,交AC 于点F ,如图2所示.ABC 中,90BCA ∠=︒,AC BC =45CAB B ∴∠=∠=︒直线//l AB45DCF CAB ∴∠=∠=︒FD ⊥ 直线l45DCF DFC ∴∠=∠=︒CD FD∴=180135DFA DFC ∠=︒-∠=︒ ,135DCE DCA BCA ∠=∠+∠=︒DCE DFA∴∠=∠90CDE EDF ∠+∠=︒ ,90EDF FDA ∠+∠=︒CDE FDA∴∠=∠在CDE △和FDA △中,有DCE DFACD FD CDE FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDE FDA ASA ∴≌△△DE DA ∴=.(3)2CD =分两种情况:①当点D 在C 点的右侧时,延长BA 交DM 于,N 则AN ⊥DM ,如图3所示.∵△ADM ≌△EDC∴DM =DC =22CE =AM ∴△CDM 是等腰直角三角形,∠M=45°∵AC =3,过C 点作CH ⊥AB 直线//l AB∴CH ⊥CD∵△ABC 是等腰直角三角形∴∠CAB=45°∴△ACH 是等腰直角三角形∵AN ⊥DM ,CH ⊥AB ,CH ⊥CD ∴四边形CHND 是矩形∴DN =CH=2AC =2∴NM =DM−DN =2∵∠M=45°∴△ANM 是等腰直角三角形∴AM =CE NM =1;②当点D 在C 点的左侧时,过点A 作AA '⊥直线l 于点A ',过点D 作DN ⊥直线l 交CB 的延长线与点N ,过点E 作EM ⊥DM 于点M ,如图4所示.∵90A DA ADM '∠+∠=︒,∠ADM +∠MDE =90°∴A DA MDE'∠=∠在A DA ' 和△MDE 中,有21A D MD A DA MDE AD ED '=⎧⎪∠'=∠⎨⎪=⎩∴()A DA MDE SAS '≅ ∴AA EM'=∵45CAA '∠=︒,AC =3∴△ACA’是等腰直角三角形∴∠DCE=180°-∠BCA-ACA '∠=45°∴AA '=22AC =∵∠DCN =45°,CD =∴CN =4∵∠NEM =45°,EM =AA '∵∠NEM=∠DCE=45°∴△EMN 是等腰直角三角形∴EM =MN∴NE=3∴CE =CN +NE =4+3=7综上可知:CE 的长为1或7.【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定及性质以及解直角三角形,解题的关键是:(1)证出△ADM ≌△EDC ;(2)证出△CDE ≌△FDA ;(3)分点D 在点C 的左、右两侧考虑.本题属于难题,(1)(2)难度不大,解决第三小问时,用到前两问的结论,分点D 在点C 的左、右两侧考虑,在解决该问时,巧妙地利用等腰直角三角形的性质是解题的关键.。

最新北师大版八年级数学下册期中考试试卷及答案

最新北师大版八年级数学下册期中考试试卷及答案

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)2.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF3.下列四个判断:其中正确的有()①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;<1;③若a>b,则ba④若a>0,则b−a<b,A. 1个B. 2个C. 3个D. 3个4.下列式子中,是不等式的有()①2x=7;②3x+4y;③−3<2;④2a−3≥0;⑤x>1;⑥a−b>1.A. 5个B. 4个C. 3个D. 1个5.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是()A. ①②③B. ①②④C. ①③④D. ①②③④6.在△ABC中,已知a,b,c分别是∠A,∠B,∠C的对边,则下列条件中,不能判定△ABC是等腰三角形的是()A. a=3,b=3,c=4B. a∶b∶c=2∶3∶4C. ∠B=50°,∠C=80°D. ∠A∶∠B∶∠C=1∶1∶27.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)8.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个9.若关于x的不等式组{2−x2>2x−43,−3x>−2x−a的解集是x<2,则a的取值范围是()A. a≥2B. a<−2C. a>2D. a≤210.不等式4x+1>x+7的解集在数轴上表示正确的是()A. B.C. D.11.如图,点P是∠AOB的平分线上一点,PC⊥OA于点C,PD⊥OB于点D,连接CD交OP于点E,下列结论不一定正确的是()A. PC=PDB. OC=ODC. OP垂直平分CDD. OE=CD12.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A. ④B. ②③C. ①②③D. ①②③④13.如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:①AP的最小值是1,最大值是4;②当AP=2时,△APO是等腰三角形;③当AP=1时,△APO是等腰三角形;④当AP=√3时,△APO是直角三角形;⑤当AP=√5时,△APO是直角三角形.其中正确的是()A. ①④⑤B. ②③⑤C. ②④⑤D. ③④⑤14.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为()A. 11B. 12C. 13D. 1415.如图,已知P(3,2),B(−2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q 移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A. (0,12)B. (0,23)C. (0,43)D. (0,45)卷Ⅱ二、填空题(本大题共5小题,共25.0分) 16. 如图,将△ABC 绕点C 顺时针旋转至△DEC ,使点D 落在BC 的延长线上,已知∠A =27°,∠B =40°,则∠ACE =________°.17. 由不等式a >b 得到am <bm ,则m 应满足的条件是 . 18. 在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是 .19. 若关于x 的不等式(a +1)x >a +1的解集为x >1,则a 的取值范围是 .20. 图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是 .三、解答题(本大题共7小题,共80.0分) 21. (8分)(1)计算:(−3)2−√4+(12)0;(2)解不等式组:{x −2<32x +1>7.22. (8分)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点距离相等. (1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =40°,求∠CAD 的度数.23.(12分)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?24.(10分)如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.25.(12分)王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65700第二次37710第三次78693(1)王老师是第_____________次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?26.(14分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE//OA交OB于点E.判断△CED的形状,并说明理由.27.(16分)如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2√2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.答案1.C2.D3.B4.B5.D6.B7.D8.B9.A10.A11.D12.D13.C14.D15.A16.4617.m<018.50°19.a>−120.方块521.(1)解:原式=9−2+1=8.(2)解:{x−2<3 ①2x+1>7 ②,由①得,x<5;由②得,x>3.∴不等式组的解为3<x<5.22.解:(1)如图,点D为所作;(2)△ABC中,∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD=BD,∴∠B=∠BAD=40°,∴∠CAD=∠BAC−∠BAD=10°.23.解:(1)S通道=b(2a+3b)+b(4a+3b)−b2 =2ab+3b2+4ab+3b2−b2=(6ab+5b2)(平方米).答:通道的面积共有(6ab+5b2)平方米;=(4a+3b)(2a+3b)−(6ab+5b2)(2)S草坪=8a2+6ab+12ab+9b2−(2ab+3b2+4ab+3b2−b2)=8a2+18ab+9b2−6ab−5b2=(8a2+12ab+4b2)(平方米).答:剩余草坪的面积是(8a2+12ab+4b2)平方米;=(4a+3b)(2a+3b)−[2b(2a+3b)+b(4a+3b)−2b2] (3)S草坪=8a2+18ab+9b2−(4ab+6b2+4ab+3b2−2b2)=8a2+18ab+9b2−8ab−7b2=8a2+10ab+2b2, ∵a=2b,∴32b2+20b2+2b2=54b2=216,∴b2=4,∴b=2(米).答:通道的宽度是2米.24.解:(1)作AD⊥BC于D,在Rt△ADC中,AC=2,∠ACB=30∘,AC=1,∴AD=12∴DC=√AC2−AD2=√22−12=√3,∵AB=AC,∠ADC=90∘,∴BC=2DC=2√3.(2)∵A′B=BC=2√3,∠ACB=30∘,∴∠2=∠ACB=30∘,∴∠1+∠3=180∘−30∘−30∘=120∘,∵AB=AC,∠ACB=30∘,∴∠1=∠ACB=30∘,∴∠3=90∘.在Rt△ABA′中,∠2=30∘,AB=2,∴AA′=4.即平移的距离是4.25.解:(1)三(2)足球的标价为50元,篮球的标价为80元.(3)最多可以购买38个篮球.26.解:△CED是等边三角形,理由如下:∵OC平分∠AOB,∠AOB=60°,∴∠AOC=∠COE=30°.∵CE//OA,∴∠AOB=∠CED=60°.∵CD⊥OC,∴∠OCD=90°.∴∠EDC=60°.∴△CED是等边三角形.27.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴DE=√(2√2)2+(2√2)2=4,∴AD=√42−12=√15.∴AB=AD+BD=√15+1;(3)如图,过C作CG⊥AB于G,则AG=12AB,∵∠ACB=90°,AC=BC,∴CG=12AB,即CGAB=12,∵点F为AD的中点,∴FA=12AD,∴FG=AG−AF=12AB−12AD=12(AB−AD)=12BD,由(1)可得:BD=AE,∴FG=12AE,即FGAE=12,∴CGAB =FGAE,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

完整word版北师大版八年级数学下册期中测试卷含答案,文档

完整word版北师大版八年级数学下册期中测试卷含答案,文档

2021-2021学年八年级〔下〕期中数学试卷一、选择题:每题3分,共45分。

在每题的四个选项中,只有一项为哪一项符合题目要求的,把正确答案的代号涂在答题卡上。

1.如果a>b,那么以下各式中正确的选项是〔〕A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b 2.以下图形中,既是轴对称图形,又是中心对称图形的有〔〕A.1个B.2个C.3个D.4个3.如果关于x的不等式〔a+1〕x>a+1的解集为x<1,那么a的取值范围是〔〕A.a>0B.a<0C.a>﹣1D.a<﹣14.一个等腰三角形的两边长分别是2和4,那么该等腰三角形的周长为〔〕A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,那么PD+PE的长是〔〕A.B.或C.D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,那么MN的长为〔〕A.4cm B.3cmC.2cmD.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,那么AE等于〔〕A.3cm B.4cm C.6cm D.9cm8.:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点 F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是〔〕A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,那么这个集贸市场应建在〔〕A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,那么∠A的度数为〔〕A.30°B.36°C.45°D.70°11.不等式组的解集为﹣1<x<1,那么〔a+1〕〔b﹣1〕值为〔〕A.6B.﹣6C.3D.﹣312.如图,△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,那么线段 BH的长度为〔〕A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为〔0,3〕,△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,那么点B与其对应点B′间的距离为〔〕A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,那么以下说法中正确的个数是〔〕①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,点A 〔﹣3,0〕、B 〔0,4〕,对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4、,△16的直角顶点的坐标为〔〕A .〔60,0〕B .〔72,0〕C .〔67 , 〕D .〔79二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,假设点 P 〔2x+6,5x 〕在第四象限,那么 x的取值范围是17.如下图,把一个直角三角尺 ACB 绕着30°角的顶点B 顺时针旋转,使得点线上的点 E 处,那么∠BDC 的度数为度.,〕A 落在.CB 的延长18.等腰△OPQ 的顶点P 的坐标为〔4,3〕,O 为坐标原点,腰长 OP =5,点Q 位于y 轴正半轴上,那么点 Q 的坐标为 .19.初三的几位同学拍了一张合影作为留念, 拍一张底片需要 5元,洗一张相片需要元.拍 一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱缺乏 元,那么参加合影的同学人数为.20.如图,在△ABC 中,DE 是AC 的垂直平分线, AE =3cm ,△ABD 的周长为10cm ,那么△ABC的周长为 cm .21.如图,边长为 轴上,以点 O标为.1的等边△ABO为旋转中心,将△在平面直角坐标系的位置如下图,点ABO 按逆时针方向旋转 60°,得到△O 为坐标原点,点 OA ′B ′,那么点A 在xA ′的坐三、解答题:共7小题,总分值57分,解容许写出文字说明过程或演算步骤。

2021北师大版八年级下册数学《期中考试卷》及答案解析

2021北师大版八年级下册数学《期中考试卷》及答案解析

2020-2021学年度第二学期期中测试北师大版八年级数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列式子中,属于最简二次根式的是( ) A. 5 B. 12 C. 4 D. 0.012.如果三条线段的长a ,b ,c 满足a 2=c 2-b 2,则这三条线段组成的三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定 3.在平行四边形ABCD 中,已知5AB =,3BC =,则它的周长为( )A. 8B. 10C. 14D. 164.下列各比值中,是直角三角形的三边之比的是( )A. 1:2:3B. 2:3:4C. 3:4:6D. 3:4:55.下列性质中,矩形、菱形、正方形都具有的是( )A. 对角线相等B. 对角线互相垂直C. 对角线平分一组对角D. 对角线互相平分6.下列二次根式中,x 的取值范围是x ≥3的是( )A. 3x -B. 62x +C. 3x -D. 3x + 7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x =( )A. 2B. 3C. 5D. 78.小王参加某企业招聘测试,他的笔试、面试、技能操作分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的平均成绩是( )A. 85分B. 84分C. 84.5分D. 86分9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行.在此滑动过程中,点P 到点O 的距离( )A . 变小B. 不变C. 变大D. 无法判断 10.如图为菱形ABCD 与△ABE 的重叠情形,其中D 在BE 上.若AB =17,BD =16,AE =25,则DE 的长度为( )A. 8B. 9C. 11D. 12二、填空题(本大题共7个小题,每小题4分,共28分.)11.计算: 6727-=_______.12.如果a b =,那么22a b =的逆命题是_______.13.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为2 0.51S =甲,20.41S =乙,2 0.62S =丙,20.45S =丁,则四人中成绩最稳定的是________. 14.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,那么菱形ABCD 的面积是____.15.如图,在四边形ABCD 中,90B ∠=︒,4AB BC ==,6CD =,2DA =,则DAB ∠=________°.16.如图,长为8 cm 橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.17.如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.三、解答题(一)(本题共3道题,每题6分,共18分)18.计算:(1253)3+⨯. 19.在ABCD 中,240A C ∠+∠=︒,求A ∠,C ∠,B ,D ∠的度数.20.先化简,再求值:22211()a ab b a b b a++÷++,其中a 21,21b =+=-. 四、解答题(二)(本题共3道题,每题8分,共24分)21.为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表:月用水量/吨10 13 14 17 18 户 数2 23 2 1(1)计算这10户的平均月用水量;(2)如果该小区有500户,根据上面的计算结果,估计该小区居民每月用水多少吨?22.甲、乙两船同时从港口A 出发,甲船以30海里/时的速度沿北偏东35︒方向航行,乙船沿南偏东55︒向航行,2小时后,甲船到达C 岛,乙船到达B 岛,若C ,B 两岛相距100海里,问乙船的速度是每小时多少海里?23. 甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9乙:5,9,7,10,9 (1)填写下表:平均数众数中位数方差甲8 8 0.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).五、解答题(三)(本题共2道题,每题10分,共20分)24.如图,直角坐标系中的网格由单位正方形构成,ABC∆中,A点坐标为(2,3),B点坐标为(2,0)-,C 点坐标为(0,1)-.(1)AC的长为_______;(2)求证:AC BC⊥;(3)若以A、B、C及点D为顶点的四边形为平行四边形,写出D点在第一象限时的坐标______.25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.答案与解析一、选择题(本大题共10个小题,每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A. B. C. D.【答案】A【解析】【分析】根据判定一个二次根式是否最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是,分别验证选项即可得到答案.【详解】A.B. ==不是最简二次根式,故不是答案;C. =2D. =0.1不是最简二次根式,故不是答案;故选A.【点睛】本题考查最简二次根式的定义,满足最简二次根式必须要的两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.如果三条线段的长a,b,c满足a2=c2-b2,则这三条线段组成的三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定【答案】B【解析】【分析】根据“勾股定理的逆定理”结合已知条件分析判断即可.【详解】解:∵三条线段的长a,b,c满足a2=c2-b2,∴a2+b2=c2,∴这三条线段组成的三角形是直角三角形故选B.【点睛】本题考查熟知“若三角形的三边长分别为a、b、c,且满足a2+b2=c2,则该三角形是以c为斜边的直角三角形”是解答本题的关键.3.在平行四边形ABCD 中,已知5AB =,3BC =,则它的周长为( )A. 8B. 10C. 14D. 16【答案】D【解析】【分析】根据“平行四边形的对边相等”结合已知条件进行分析解答即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB=CD=5,AD=BC=3,∴平行四边形ABCD 的周长=AB+BC+CD+AD=5+3+5+3=16故选D .【点睛】本题考查 “平行四边形的对边相等”是解答本题的关键.4.下列各比值中,是直角三角形的三边之比的是( )A. 1:2:3B. 2:3:4C. 3:4:6D. 3:4:5 【答案】D【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、设三边分别是x ,2x ,3x ,∵x+2x=3x ,∴三条线段不能组成三角形,不能组成直角三角形,故A 选项错误;B 、设三边分别是2x ,3x ,4x ,∵(2x)2+(3x)2≠(4x)2,∴三条线段不能组成直角三角形,故B 选项错误;C 、设三边分别是3x ,4x ,6x ,∵(3x)2+(4x)2≠(6x)2,∴三条线段不能组成直角三角形,故C 选项错误;D 、设三边分别是3x ,4x ,5x ,∵(3x)2+(4x)2=(5x)2,∴三条线段能组成直角三角形,故D 选项正确; 故选:D .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.5.下列性质中,矩形、菱形、正方形都具有的是( )A. 对角线相等B. 对角线互相垂直C. 对角线平分一组对角D. 对角线互相平分 【答案】D【解析】【分析】根据矩形、菱形、正方形的性质一一判断即可.【详解】解:A、菱形不具有的对角线相等这个性质,故错误;B、矩形不具有的对角线互相垂直这个性质,故错误;C、矩形不具有对角线平分一组对角这个性质,故错误;D、矩形、菱形、正方形的对角线相互平分,正确.故选:D.【点睛】本题考查矩形、菱形、正方形的性质,记住矩形、菱形、正方形的性质是解题的关键,属于中考常考题型.6.下列二次根式中,x的取值范围是x≥3的是()【答案】C【解析】【分析】根据二次根式有意义的条件逐项进行求解即可得.【详解】由题意可知A、3-x≥0,解得x≤3,不符合题意;B、6+2x≥0,解得x≥-3,不符合题意;C、x-3≥0,解得x≥3,符合题意;D、x+3≥0,解得x≥-3,不符合题意,故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.7.一组数据:3,2,5,3,7,5,x,它们的众数为5,则x=()A. 2B. 3C. 5D. 7【答案】C【解析】【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x,它们的众数为5,∴5出现的次数最多,故5x=,故选C.【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.8.小王参加某企业招聘测试,他的笔试、面试、技能操作分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的平均成绩是()A. 85分B. 84分C. 84.5分D. 86分【答案】D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】根据题意得:85×2235+++80×3235+++90×5235++=17+24+45=86(分),故选:D.【点睛】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.9.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A. 变小B. 不变C. 变大D. 无法判断【答案】B【解析】【分析】连接OP,易知OP就是斜边AB上的中线,由于直角三角形斜边上的中线等于斜边的一半,那么OP=12AB,由于AB不变,那么OP也就不变.【详解】不变.连接OP,在Rt△AOB中,OP是斜边AB上的中线,那么OP=12 AB,由于木棍的长度不变,所以不管木棍如何滑动,OP都是一个定值.故选B.【点睛】本题考查了直角三角形斜边上的中线,解题的关键是知道木棍AB的长度不变,也就是斜边不变.10.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A. 8B. 9C. 11D. 12【答案】D【解析】【分析】首先连接AC,设AC交BD于O点,由四边形ABCD为菱形,利用菱形对角线互相垂直且平分的性质及勾股定理,即可求得DE的长度.【详解】连接AC,设AC交BD于O点,∵四边形ABCD为菱形,∴AC⊥BD,且BO=DO=162=8,在△AOD中,∵∠AOD=90°,∴222217815AD OD-=-=,在△AOE中,∵∠AOE=90°,∴OE=2222251520AE AO -=-=,∴DE=OE-OD=20-8=12.故选D【点睛】此题考查了勾股定理与菱形的性质.解题的关键是注意数形结合思想的应用.二、填空题(本大题共7个小题,每小题4分,共28分.)11.计算: 6727=_______. 【答案】7 【解析】 【分析】根据二次根式的加减运算法则直接合并即可. 【详解】解:7 77 故答案为7【点睛】本题考查二次根式的加减运算,难度不大,掌握运算法则是关键. 12.如果a b =,那么22a b =的逆命题是_______. 【答案】如果22a b =,那么a b = 【解析】 【分析】根据逆定理的定义即可求解.【详解】依题意可得逆命题:如果22a b =,那么a b =; 故答案为:如果22a b =,那么a b =.【点睛】此题主要考查逆定理,解题的关键是熟知逆定理的定义写表示方法.13.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为2 0.51S =甲,20.41S =乙,20.62S =丙,20.45S =丁,则四人中成绩最稳定的是________.【答案】乙【解析】 【分析】根据方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好即可得到答案. 【详解】解:∵0.41<0.45<0.51<0.62,∴乙成绩最稳定(方差越大,则平均值的离散程度越大,稳定性也越小), 故答案为:乙.【点睛】本题主要考查了方差,关键是掌握方差方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,那么菱形ABCD 的面积是____.【答案】24 【解析】 【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8, ∴菱形ABCD 的面积为12AC×BD=12×6×8=24, 故答案为:24.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.15.如图,在四边形ABCD 中,90B ∠=︒,4AB BC ==,6CD =,2DA =,则DAB ∠=________°.【答案】135 【解析】 【分析】先根据90B ∠=︒,4AB BC ==以及勾股定理,计算出AC 的边长,再根据勾股定理的逆定理得到90DAC ∠=︒,即可得到答案;【详解】解:如图,连接AC ,∵90B ∠=︒,4AB BC ==, ∴45BAC BCA ∠=∠=︒ ∴224442AC =+=(勾股定理), 又∵6CD =,2DA =, ∴22236CD DA AC ==+, ∴ DAC ∆是直角三角形(勾股定理的逆定理),∴ 90DAC ∠=︒, ∴DAB ∠=9045135DAC BAC ∠+∠=︒+︒=︒,故答案为:135. 【点睛】本题主要考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.16.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.【答案】2.【解析】 【分析】根据勾股定理,可求出AD 、BD 的长,则AD +BD ﹣AB 即为橡皮筋拉长的距离.【详解】Rt △ACD 中,AC =12AB =4cm ,CD =3cm ;根据勾股定理,得:AD=22AC CD +=5cm ;∴AD +BD ﹣AB =2AD ﹣AB =10﹣8=2cm ; 故橡皮筋被拉长了2cm . 故答案为2.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用.17.如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.【答案】 3 【解析】 【分析】根据ABCD 是菱形,找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE 交AC 于点P ,连接DB ,∵四边形ABCD 是菱形, ∴点B 、D 关于AC 对称(菱形的对角线相互垂直平分),∴DP=BP ,∴PB+PE 的最小值即是DP+PE 的最小值(等量替换),又∵ 两点之间线段最短,∴DP+PE 的最小值的最小值是DE , 又∵60DAB ︒∠=,CD=CB, ∴△CDB 是等边三角形,又∵点E 为BC 边的中点,∴DE ⊥BC (等腰三角形三线合一性质), 菱形ABCD 的边长为2, ∴CD=2,CE=1,由勾股定理得22(1) DE=213-=, 故答案为3.【点睛】本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P 点的位置是解题的关键.三、解答题(一)(本题共3道题,每题6分,共18分)18.计算:(1253)3+⨯. 【答案】21 【解析】 【分析】根据二次根式的运算法则即可求解. 【详解】(1253)3+⨯ =3615+ =6+15 =21.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则. 19.在ABCD 中,240A C ∠+∠=︒,求A ∠,C ∠,B ,D ∠的度数.【答案】120A C ∠=∠=︒,60B D ∠=∠=︒ 【解析】 【分析】根据平行四边形的性质得到A C ∠=∠,B D ∠=∠,根据240A C ∠+∠=︒,可以求出A ∠,C ∠的度数,进而可以求出B ,D ∠.【详解】解:∵四边形ABCD 是平行四边形,∴A C ∠=∠,B D ∠=∠(平行四边形对角相等), 又∵240A C ∠+∠=︒ ∴120A C ∠=∠=︒ 在ABCD 中,//AB CD∴180A D +=︒∠∠(两直线平行,同旁内角互补), ∴18012060B D ∠=∠=︒-︒=︒.【点睛】本题主要考车了平行四边形的性质(平行四边形对角相等,对边平行且相等),掌握平行四边形对边平行、对角相等是解题的关键.20.先化简,再求值:22211()a ab b a b b a++÷++,其中a 1,1b ==.【答案】ab ;1 【解析】 【分析】先根据分式的运算法则进行化简,再代入a,b 的值即可求解.【详解】22211()a ab b a b b a++÷++=()2a b a b a b ab++÷+ =()2a b ab a ba b+⋅++ =ab把a 1,1b ==代入原式=)11=2-1=1.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式及二次根式的运算法则.四、解答题(二)(本题共3道题,每题8分,共24分)21.为了解某小区居民用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表:(1)计算这10户的平均月用水量;(2)如果该小区有500户,根据上面的计算结果,估计该小区居民每月用水多少吨?【答案】(1)14吨(2)7000吨【解析】【分析】(1)根据加权平均数的计算公式即可得出答案;(2)用每月每户的用电乘以总的户数即可得出答案.【详解】(1)这家庭的平均月用水量是(10×2+13×2+14×3+17×2+18)÷10=14(吨);(2)根据题意得:14×500=7000(吨),答:该小区居民每月共用水7000吨.【点睛】此题考查了用样本估计总体,用到的知识点是加权平均数的计算公式和用样本估计总体.22.甲、乙两船同时从港口A出发,甲船以30海里/时的速度沿北偏东35︒方向航行,乙船沿南偏东55︒向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,问乙船的速度是每小时多少海里?【答案】40【解析】【分析】根据已知判定∠CAB为直角,根据路程公式求得AC的长.再根据勾股定理求得AB的长,从而根据公式求得其速度.【详解】解:如图,∵甲的速度是30海里/时,时间是2小时,∴AC=60海里.∵∠EAC=35°,∠F AB=55°,∴∠CAB=90°.∵BC=100海里,∴80AB==海里.∵乙船也用2小时,∴乙船的速度为80÷2=40海里/时.【点睛】此题考查了直角三角形的判定,勾股定理及方向角的掌握情况,根据已知判断出△ABC是直角三角形是解此题的关键.23. 甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).【答案】(1)填表见解析;(2)理由见解析;(3)变小.【解析】【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.【详解】试题分析:试题解析:解:(1)甲的众数为8,乙的平均数=15(5+9+7+10+9)=8,乙的中位数为9. 故填表如下:平均数众数中位数 方差 甲 88 80.4 乙 8993.2(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛; (3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小. 考点:1.方差;2.算术平均数;3.中位数;4.众数.五、解答题(三)(本题共2道题,每题10分,共20分)24.如图,直角坐标系中的网格由单位正方形构成,ABC ∆中,A 点坐标为(2,3),B 点坐标为(2,0)-,C 点坐标为(0,1)-.(1)AC 的长为_______; (2)求证:AC BC ⊥;(3)若以A 、B 、C 及点D 为顶点的四边形为平行四边形,写出D 点在第一象限时的坐标______. 【答案】(1)252)见解析(3)(4,2) 【解析】 【分析】(1)利用勾股定理计算出AC即可;(2)首先计算出BC2,AB2,AC2,再利用勾股定理逆定理可判定△ABC是直角三角形,进而可得AC⊥BC;(3)利用平面直角坐标系结合网格画出平行四边形可得D点坐标.【详解】(1)AC=22+=,4225故答案为:25;(2)∵BC2=12+22=5,AB2=32+42=25,AC2=20,∵BC2+AC2=AB2,∴△ABC是直角三角形,且AB是斜边,∴AC⊥BC;(3)如图所示:D点的坐标(0,4),(4,2),(−4,−4),∴D点在第一象限时的坐标为(4,2)故答案为:(4,2).【点睛】此题主要考查了平行四边形的判定,勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形精品试卷。

北师大版八年级下学期期中数学试卷(解析版)

北师大版八年级下学期期中数学试卷(解析版)

北师大版八年级期中考试数学试卷及答案一、选择题1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列各式,从左到右的变形是因式分解的是()A.a(x+y)=ax+ay B.2x2﹣x=x(2x﹣1)C.x2+4x+4=x(x+4)+4D.x2﹣9=(x+9)(x﹣9)3.不等式组的解集是x>2,则m的取值范围是()A.m≤2B.m≥2C.m≤1D.m>14.在△ABC内一点P到三边的距离相等,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点5.如图,在△ABC中,DE垂直平分AC,若BC=22cm,AB=14cm,则△ABD的周长为()A.24cm B.25cm C.30cm D.36cm6.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.不等式﹣2x>1的解集是()A.x<﹣B.x<﹣2C.x>﹣D.x>﹣28.如图,等腰三角形ABC中,AB=AC,∠A=46°,CD⊥AB于D,则∠DCB等于()A.30°B.26°C.23°D.20°9.下列说法正确的是()A.两角及一边分别相等的两三角形全等B.全等的两个图形一定成轴对称C.三角形三内角平分线的交点到三个顶点的距离相等D.有一个角是60°的等腰三角形是等边三角形10.下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣611.如图,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′(点B的对应点是点B',点C的对应点是点C'),连接BB′,若AC′∥BB′,则∠C'AB′的度数为()A.15°B.30°C.45°D.60°12.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P n﹣P n﹣1的值为()A.B.C.D.二、填空题(每题3分,共12分)13.已知a+b=3,ab=2,则a2b+ab2=.14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是.16.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.三、解答题(共52分)17.分解因式:(1)xy2﹣9x(2)2x2﹣4x+2.18.解不等式组:,并把它的解集在数轴上表示出来.19.已知不等式x﹣2>x与ax﹣3>2x的解集相同,求a的值.20.如图,图形中每一小格正方形的边长为1,已知△ABC(1)AC的长等于.(结果保留根号)(2)将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)画出将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1,并写出A点对应点A1的坐标?21.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.(1)求∠E的度数.(2)求证:M是BE的中点.22.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.23.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4)这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC的形状,并说明理由.参考答案一、选择题(每题3分,共36分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.2.下列各式,从左到右的变形是因式分解的是()A.a(x+y)=ax+ay B.2x2﹣x=x(2x﹣1)C.x2+4x+4=x(x+4)+4D.x2﹣9=(x+9)(x﹣9)【分析】根据因式分解的意义解答即可.解:A、是整式的乘法,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、没有正确因式分解,故D不符合题意;故选:B.3.不等式组的解集是x>2,则m的取值范围是()A.m≤2B.m≥2C.m≤1D.m>1【分析】根据解不等式,可得每个不等式的解集,再根据每个不等式的解集,可得不等式组的解集,根据不等式的解集,可得答案.解:∵不等式组的解集是x>2,解不等式①得x>2,解不等式②得x>m+1,不等式组的解集是x>2,∴不等式,①解集是不等式组的解集,∴m+1≤2,m≤1,故选:C.4.在△ABC内一点P到三边的距离相等,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【分析】根据角平分线上的点到角的两边距离相等解答即可.解:∵点P到△ABC的三边的距离相等,∴点P应是△ABC三条角平分线的交点.故选:A.5.如图,在△ABC中,DE垂直平分AC,若BC=22cm,AB=14cm,则△ABD的周长为()A.24cm B.25cm C.30cm D.36cm【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.解:∵DE垂直平分AC,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=36(cm).故选:D.6.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格【分析】根据图形A与下方图形中空白部分的位置解答即可.解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.7.不等式﹣2x>1的解集是()A.x<﹣B.x<﹣2C.x>﹣D.x>﹣2【分析】根据解一元一次不等式基本步骤系数化为1可得.解:两边都除以﹣2,得:x<﹣,故选:A.8.如图,等腰三角形ABC中,AB=AC,∠A=46°,CD⊥AB于D,则∠DCB等于()A.30°B.26°C.23°D.20°【分析】先根据等腰三角形的性质和三角形内角和定理求出∠B的度数,进而在Rt△DCB中,求得∠DCB的度数.解:∵∠A=46°,AB=AC,∴∠B=∠C=67°.∵∠BDC=90°,∴∠DCB=23°,故选:C.9.下列说法正确的是()A.两角及一边分别相等的两三角形全等B.全等的两个图形一定成轴对称C.三角形三内角平分线的交点到三个顶点的距离相等D.有一个角是60°的等腰三角形是等边三角形【分析】根据全等三角形的判定定理、角平分线的性质定理、等边三角形的判定定理判断即可.解:A、两角及其夹边分别对应相等的两个三角形全等或两角及其中一个角的对边对应相等的两个三角形全等,本说法错误;B、全等的两个图形不一定成轴对称,本说法错误;C、三角形三内角平分线的交点到三边的距离相等,本说法错误;D、有一个角是60°的等腰三角形是等边三角形,本说法正确;故选:D.10.下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣6【分析】依据多项式乘以多项式法则,将(a﹣2)(b+3)展开,与四个选项对比即得结果.解:(a﹣2)(b+3)=﹣6﹣2b+3a+ab.故选:B.11.如图,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′(点B的对应点是点B',点C的对应点是点C'),连接BB′,若AC′∥BB′,则∠C'AB′的度数为()A.15°B.30°C.45°D.60°【分析】根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,故选:B.12.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P n﹣P n﹣1的值为()A.B.C.D.【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.解:P1=1+1+1=3,P2=1+1+=,P3=1+++×3=,P4=1+++×2+×3=,…∴p3﹣p2=﹣==,P4﹣P3=﹣==,则Pn﹣Pn﹣1==.故选:C.二、填空题(每题3分,共12分)13.已知a+b=3,ab=2,则a2b+ab2=6.【分析】首先将原式提取公因式ab,进而分解因式求出即可.解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=6.故答案为:6.14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是x>1.【分析】利用函数图象,写出一次函数y1=x+b的图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.解:根据图象得,当x>1时,x+b>kx+4,即关于x的不等式x+b>kx+4的解集为x>1.故答案为:x>1.15.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故答案是:30°.16.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是±3.【分析】先根据题意列出不等式,根据x的取值范围及x为整数求出x的值,再把x的值代入求出y的值即可.解:由题意得,1<1×4﹣xy<3,即1<4﹣xy<3,∴,∵x、y均为整数,∴xy为整数,∴xy=2,∴x=±1时,y=±2;x=±2时,y=±1;∴x+y=2+1=3或x+y=﹣2﹣1=﹣3.故答案为:±3三、解答题(共52分)17.分解因式:(1)xy2﹣9x(2)2x2﹣4x+2.【分析】(1)先提取公因式x后,再把剩下的式子写成x2﹣32,符合平方差公式的特点,可以继续分解.(2)先提取公因式2后,剩下的式子符合完全平方公式的特点,可以继续分解.解:(1)xy2﹣9x,=x(y2﹣9),=x(y+3)(y﹣3);(2)2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.18.解不等式组:,并把它的解集在数轴上表示出来.【分析】求不等式组中每个不等式的解集,利用数轴求公共部分.解:解不等式①得:x≤﹣2,解不等式②得:,不等式①、②的解集在数轴上表示如下:∴不等式组的解集是:x≤﹣2.19.已知不等式x﹣2>x与ax﹣3>2x的解集相同,求a的值.【分析】先把a当作已知条件表示出x的取值范围,再根据两不等式的解集相同求出a的值即可.解:解不等式x﹣2>x得,x<﹣;由不等式ax﹣3>2x得,(a﹣2)x>3,∵两不等式的解集相同,∴a﹣2<0,∴x<,∴=﹣,解得a=.20.如图,图形中每一小格正方形的边长为1,已知△ABC(1)AC的长等于.(结果保留根号)(2)将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);(3)画出将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1,并写出A点对应点A1的坐标?【分析】(1)利用勾股定理求解即可,(2)利用平移的坐标变化特点求解,(3)利用旋转的定义作图.解:(1)AC==,故答案为:.(2)A点的对应点A′的坐标是(1,2),故答案为:(1,2).(3)如图,A点对应点A1的坐标为:A1(3,0).21.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.(1)求∠E的度数.(2)求证:M是BE的中点.【分析】(1)由等边△ABC的性质可得:∠ACB=∠ABC=60°,然后根据等边对等角可得:∠E=∠CDE,最后根据外角的性质可求∠E的度数;(2)连接BD,由等边三角形的三线合一的性质可得:∠DBC=∠ABC=×60°=30°,结合(1)的结论可得:∠DBC=∠E,然后根据等角对等边,可得:DB=DE,最后根据等腰三角形的三线合一的性质可得:M 是BE的中点.【解答】(1)解:∵三角形ABC是等边△ABC,∴∠ACB=∠ABC=60°,又∵CE=CD,∴∠E=∠CDE,又∵∠ACB=∠E+∠CDE,∴∠E=∠ACB=30°;(2)证明:连接BD,∵等边△ABC中,D是AC的中点,∴∠DBC=∠ABC=×60°=30°由(1)知∠E=30°∴∠DBC=∠E=30°∴DB=DE又∵DM⊥BC∴M是BE的中点.22.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【分析】(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,根据总租金=600×租用A型号客车的辆数+450×租用B型号客车的辆数结合租车的总费用不超过5600元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论;(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,根据座位数=45×租用A型号客车的辆数+30×租用B型号客车的辆数结合师生共有380人,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合(1)的结论及x为整数,即可得出各租车方案.解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x)≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.23.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4)这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC的形状,并说明理由.【分析】(1)、认真阅读题例的思想方法,观察所给多项式的结构特点,合理分组运用完全平方公式后再整体运用平方差公式进行分解.(2)、等式左边的多项式拆开分组,构造成两个完全平方式的和等于0的形式,利用两式各自等于0的时候求出a、b、c的关系即可.【解答】(1)解:9a2+4b2﹣25m2﹣n2+12ab+10mn=(9a2+12ab+4b2)﹣(25m2﹣10mn+n2)=(3a+2b)2﹣(5m﹣n)2=(3a+2b+5m﹣n)(3a+2b﹣5m+n)(2)解:由2a2+b2+c2﹣2a(b+c)=0可分解得:2a2+b2+c2﹣2ab﹣2ac=0利用拆项得:(a2﹣2ab+b2)+(a2﹣2ac+c2)=0(a﹣b)2+(a﹣c)2=0根据两个非负数互为相反数,只能都同时等于0才成立,于是a﹣b=0,a﹣c=0所以可以得到a=b=c即:△ABC的形状是等边三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档精品文档20011~2012学年北师大版第二学期八年级期中数学试题及答案 姓名 班级 考号 得分:(考试时间:100分钟 满分:100分)一. 填空题(每空2分,共30分)1. 用科学记数法表示0.000043为 。

2.计算:计算()=⎪⎭⎫⎝⎛+--1311 ; 232()3y x=__________; a b b b a a -+-= ; yx xx y xy x 22+⋅+= 。

3.当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。

4.反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是 ;在每一象限内y 随x 的增大而 。

5. 如果反比例函数x my =过A (2,-3),则m= 。

6. 设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 7.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不包括树根)长度是 m.8. 三角形的两边长分别为3和5,要使这个三角形是直角三角 AD形,则第三条边长是 . 9. 如图若正方形ABCD 的边长是4,BE=1,在AC 上找一点使PE+PB 的值最小,则最小值为 B C 10.精品文档精品文档12-3-210-13A 如图,公路PQ 和公路MN 交于点P,且∠NPQ=30°, 公路PQ 上有一所学校A,AP=160米,若有一拖拉机沿MN 方向以18米∕秒的速度行驶并对学校产生影响, 则造成影响的时间为 秒。

二.单项选择题(每小题3分,共18分)11.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 12.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c === 14.在同一直角坐标系中,函数y=kx+k 与(0)ky k x=≠的图像大致是( )15.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A 5.555 16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .6 N P 。

Q M A精品文档三、解答题:17.(8分)计算:(1)x y y x y x ---22 (2)22111a a aa a ++---18.(6分)先化简代数式1121112-÷⎪⎭⎫ ⎝⎛+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值.19.(8分)解方程: (1)1233x x x=+-- (2)482222-=-+-+x x x x x精品文档/ 2mm20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。

求:四边形ABCD 的面积。

21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度)(m y 是面条的粗细(横截面积))(2mm x 的反比例函数,其图像如图所示.(1)写出y 与x 的函数关系式;(2)当面条的总长度为50m 时,面条的粗细为多少?(3)若当面条的粗细应不小于26.1mm ,面条的总长度最长是多少?D22. (8分)列方程解应用题:(本小题8分)某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。

精品文档精品文档23.(10分)已知反比例函数xky =图象过第二象限内的点A (-2,m )AB ⊥x 轴于B ,Rt △AOB 面积为3, 若直线y=ax+b 经过点A ,并且经过反比例函数xky =的图象上另一点C(n ,—23),(1) 反比例函数的解析式为 ,m= ,n= ; (2) 求直线y=ax+b 的解析式;(3) 在y 轴上是否存在一点P ,使△PAO 为等腰三角形,若存在,请直接写出P 点坐标,若不存在,说明理由。

精品文档参考答案一.1.4.3×10-52.4; 36278x y ; 1; 21y 3.≠5 ; =1 4.m>1;减小 5.-66. m<37.168. 4或349.5 10. 320二.11.B 12.D 13.A 14.C 15.C 16.C三.17. (1)解:原式=x y y x --22 …1分 (2) 解:原式=)1)(1()1(11-++--+a a a a a a …..1分=x y y x y x -+-))((……2分 =111---+a a a a ……………….2分 =)())((y x y x y x --+-…....3分 =11--+a aa ……………………3分=-x-y …………………4分 =11-a ………………………4分 18.(6分)解:原式=a a a a a 1.)1(1112-⎪⎪⎭⎫⎝⎛-+-+…………………1分 =a a a a a a 1.)1(1)1()1)(1(22-⎪⎪⎭⎫ ⎝⎛-+--+…2分 =a a a a 1.)1(1122--+-…3分=1-a a …4分 选一个数代入计算…………………….………6分19.(8分)解方程: (1)解:3231--=-x xx …1分(2)解:)2)(2(8222-+=-+-+x x x x x x …1分 两边同时乘以(x-3)得 两边同时乘以(x+2)(x-2)得 1=2(x-3)-x ………..2分 x(x-2)-2)2(+x =8……..2分 解得x=7 ………...…..3分 解得x=-2.....3分经检验x=7是原方程的解…..4分 经检验 x=-2不是原方程的解,所以原方程无解…..4分精品文档20.解:连接AC ,∵AB ⊥BC ,∴∠B=90°………………1分 ∴AC=22BC AB +=2268+=10………………….…2分∵222222266762410CD AD AC ===+=+………3分 ∴⊿ACD 为直角三角形……………………………..………4分 ∴四边形ABCD 的面积=ACD ABC S S +=1024218621⨯⨯+⨯⨯=144………6分 21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度)(m y 是面条的粗细(横截面积))(2mm x 的反比例函数,其图像如图所示.(1)xy 128=….…2分 (2)当y=50时,x12850= x=2.56∴面条的粗细为2.562mm ………….…4分(3)当x=1.6时, 806.1128==y ∴当面条的粗细不小于26.1mm ,面条的总长度最长是80m …6分22.解:在不耽误工期的情况下,我觉得方案(3)最省钱。

…………1分理由:设规定日期为x 天,则甲工程队单独完成这项工程需x 天,乙工程队单独完成这项工程需(x+5)天,依题意列方程得:154=++x x x …………4分 解得x=20…………5分经检验x=20是原方程的解…………6分 x+5=20+5=25方案(1)所需工程款为:1.5×20=30万元 方案(2)所需工程款为:1.1×25=27.5万元方案(3)所需工程款为:1.5×4+1.1×20=28万元∴在不耽误工期的情况下,我觉得方案(3)最省钱…………8分 23.(1)x y 6-=;m=3; n=4….……3分(2)2343+-=x y …………6分 (3)答:存在点P 使△PAO 为等腰三角形;点P 坐标分别为:P 1; P 2(0,6); P 3(0,; P 4(0,613) ……10分精品文档。

相关文档
最新文档