20101130概率论与数理统计第三章习题PPT3

合集下载

概率论与数理统计课件第三章ppt

概率论与数理统计课件第三章ppt

Y X
y1
y2
...
yj
… pi·
x1 p11 p12 … p1 … p1·
x... 2 p... 21 x... i p... i1
p· p·1
p... 22 p... i2
p·2
…j
… p2
… j...
… …
p...pi·jj
… … … …

p... 2· p... i ·
1
j
例1.设袋中有五个同类产品,其中有两个 是次品,每次从袋中任意抽取一个,
设(X,Y)为连续型随机变量,其联合分布函 数和联合概率密度分别为F(x,y)和 f(x,y),则
f X
(x)
d dx
FX
(x)
f (x, y)dy
fY
( y)
d dy
FY
(
y)
f
(x,
y)dx
分别称为(X,Y)关于X和Y的边缘概率密度
函数,简称边缘概率密度。
例2. 设(X,Y)的分布密度是
e(xy) , x 0, y 0
3.1
例1.甲乙掷色子,观察点数。
w1i={甲掷i点} w2j={乙掷j点}
X,Y (i, j)
i,j=(1,2,…,6)
二维随机变量的定义
对于随机试验E,Ω是其样本空间。X(w) 和 Y(w)是定义在样本空间Ω上的两个随机变量, 由它们构成的向量(X,Y)称为二维随机变量 或二维随机向量。
y
w.
Y X
y1
y2
...
yj

x1 p11 p12 x... 2 p... 21 p... 22
x... i p... i1 p... i2

概率论与数理统计教程第三章课后习题答案概率(03章)

概率论与数理统计教程第三章课后习题答案概率(03章)

P(X=0,Y=3)=1/8 P(X=2,Y=1)=3/8
X Y 0 1 2 3
P(X=1,Y=1)=3/8 P(X=3,Y=3)=1/8
3 1/8 0 0 1/8 1 0 3/8 3/8 0

一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任 取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球 上标有的数字, 求( X , Y ) 的联合分布列.
Probability
华南农业大学理学院应用数学系

第一章 随机事件及其概率 第二章 随机变量及其概率分布 第三章 二维随机变量及其分布
第四章 随机变量的数字特征
第三章
二维随机变量及其分布
二维随机变量及其联合分布 边缘分布与独立性 两个随机变量的函数的分布
§3.1 二维随机变量及其联合分布
RY
0
X(e)
x
二维随机变量(X, Y)的取值可看作平面上的点
(x,y) A
随机事件
y


(a,b)
X X
a, Y b a, Y b
Y)D
( X , ( X ,
Y ) ( a, b )
X
x
a, Y b


二维随机变量的联合分布函数
定义 若(X,Y)是随机变量,对于任意的实数x,y.
表格形式
X
Y
x1
x2
p11 p12 p21 p22
。。。...
... 。。。
y1
y2
。。。
。。。...
yj p1 j
... 。。。

概率论与数理统计第三章PPT

概率论与数理统计第三章PPT

乘法公式应用举例 (波里亚罐子模型)
b个白球, r个红球
一个罐子中包含b个白球和r个红球. 随机地抽取一个球,观看颜色后放回罐中, 并且再加进c个与所抽出的球具有相同颜 色的球. 这种手续进行四次,试求第一、 二次取到白球且第三、四次取到红球的概 率.
随机取一个球,观看颜色后放 回罐中,并且再加进c个与所抽出 的球具有相同颜色的球. b个白球, r个红球
解: 设Wi={第i次取出是白球}, i=1,2,3,4 Rj={第j次取出是红球}, j=1,2,3,4 于是W1W2R3R4表示事件“连续取四个球,第 一、第二个是白球,第三、四个是红球. ”
用乘法公式容易求出 P(W1W2R3R4) =P(W1)P(W2|W1)P(R3|W1W2)P(R4|W1W2R3)
用它们可计算两 个事件同时发生 的概率
(3)
注意P(AB)与P(A | B)的区别!
请看下面的例子
例 甲、乙两厂共同生产1000个零件,其中300件 是乙厂生产的. 而在这300个零件中,有189个是 标准件,现从这1000个零件中任取一个,问这个 零件是乙厂生产的标准件的概率是多少?
设B={零件是乙厂生产}
P A 4 10 0.4
4 3 12 10 9 90 6 4 24 P AB P A P B | A 10 10 90 P AB P A P B | A
P16例4




P ABC P A P B | A P C | AB
二、 乘法法则 P ( AB) 由条件概率的定义: P ( A | B)
P ( B)
若已知P(B), P(A|B)时, 可以反求P(AB). 即 若P(B)>0,则P(AB)=P(B)P(A|B) (2) 将A、B的位置对调,有 (2)和(3)式都称为 乘法公式, 利 若 P(A)>0, 则P(BA)=P(A)P(B|A) 而 P(AB)=P(BA) 故 若P(A)>0,则P(AB)=P(A)P(B|A)

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计(浙大版)第三章PPT参考课件

概率论与数理统计(浙大版)第三章PPT参考课件

X,Y的边缘分布律为:

记为
P(Y y j ) P( X ,Y y j ) pij == pgj j 1, 2,L
i 1

记为
P( X xi ) P( X xi,Y ) pij == pig i 1, 2,L
j 1
注意:
X Y y1
(1) 0 pij 1
(2) pij 1
ij
2020/2/15
(2)表格法
X Y y1 y2 y3
x1 p11 p12 p13 x2 p21 p22 p23
(X,Y)的概率分布表:描述(X,Y)的取值规律
P((X ,Y ) G)
pij
( xi , yj )G

1 2
4 x(1
2x)dx

1

1

1
0
23 6
2020/2/15
21
§2 边缘分布
二维随机变量(X,Y)作为整体,有分布函数
其中X和Y都是随机变量,它们的分布函数
记为:
称为边缘分布函数。
FX (x),FY ( y),
F(x, y),
FX (x) F(x, )
事实上,
FY ( y) F(, y)
i 1,2, , m, ; j 1,2, , n,
中心问题:(X,Y)取这些可能值的概率分别为多少?
2020/2/15
二维(X,Y)的联合分布律:
(1)公式法
p( xi , yj ) P( X xi ,Y yj ) pij
pij的 性 质 :
(i, j 1,2, )

p2 p2 j

茆诗松概率论与数理统计教程课件第三章 (3)

茆诗松概率论与数理统计教程课件第三章 (3)
i 0
k

i 0
i 1
i!
e 1
2
i k 2
(k i )!
k
e 2

e
1
e k!
k! i k i 1 2 i 0 i! ( k i )!
e ( 1 2 ) k (1 2 ) k!
(1 2 )k ( 1 2 ) e k!
p( x, y )dxdy

| x y| z
dxdy
阴影部分面积
1 1 2 (1 z ) 2 2
2z z 2
所以Z=|X-Y|的密度函数为
pZ ( z ) FZ ' ( z ) 2(1 z ),
0 z 1
对某些常用的简单的函数g, 可利用“分布函数法” 导出pZ(z)和p(x,y)的关系式供我们直接使用.
解: 由题知
1 pX ( x ) e 2
x2 2
1 , pY ( y ) e 2
y2 2
,
x, y
所以由卷积公式有
1 pZ ( z ) pX ( x ) pY ( z x )dx e 2

x2 2
e
( z x )2 2
类似地, 我们可以求得n个独立变量的最大值和最小值的分 布函数.
例五. 设系统L由两个相互独立的子系统L1,L2连接而成,
连接的方式分别为:(1)串联, (2)并联, (3)备用(当系统 L1损坏时, 系统L2开始工作), 如图所示. 设L1和L2的寿 命分别为X,Y, 其概率密度分别为
e x , x 0 pX ( x ) 0, 其 它
2

概率论与数理统计(完整版)(课堂PPT)

概率论与数理统计(完整版)(课堂PPT)
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);

概率论与数理统计(经管类)第三章课后习题答案

概率论与数理统计(经管类)第三章课后习题答案
P Z 40 P X 20, Y 20 20 6
P Z 30 P X 10, Y 20 20 3
P Z 20 P X 20, Y 0 20
P Z 10 P X 10, Y 0 P X 20, Y
P Z 0 P X 10, Y 则 Z=X‐Y 的分布律为
2 10 20
Z=X‐Y ‐40 ‐30 ‐20 ‐10 0
4. 设随机变量 X,Y 相互独立,且服从[0,1]上的均匀分布,求 X+Y 的概率密度. 解: 因 X,Y 都服从[0,1]上的均匀分布,且相互独立 故fX x fY y 1, f x, y fX x fY y
设 Z=X+Y
当0 z 1时
Z ZX
FZ
f x, y dydx
Z ZX
1dydx
Z
z xdx
;
P X 1, Y 0 P X 1 P Y 0
;
P X 1, Y 1 P X 1 P Y 1
;
(X,Y)的分布律与边缘分布律为
Y
X
0
1

16
4
20
0
25 25 25
4
1
1
1
25 25
5

20 25
1 5
(2) 不放回抽样的情况:
P X 0, Y 0 P X 0 P Y 0
;
P X 0, Y 1 P X 0 P Y 1
0, 其他.
0, 其他.
关于 Y 的边缘密度为
fY y
1
√2 24xydx , 0 y
0, 其他.
1 , 6x, 0 √3 =
y
1,
√3
0, 其他.
注意积分限为 Y 的值域,后面却 要写 X 的值域哦~

概率论第三章

概率论第三章

概率论:
概率论,是研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。

随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,掷一硬币,可能出现正面或反面。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。

典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。

事件的概率是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

概率论与数理统计第三版:
《概率论与数理统计第三版》是2001年高等教育出版社出版的图书,作者是盛骤。

内容简介:
《概率论与数理统计第三版》分三部分,概率论部分,为读者提供了必要的理论基础;数理统计部分,主要讲述了参数估计和假设检验,并介绍了方差分析和回归分析;随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。

编辑推荐:
本书是由1989年8月出版的《概率论与数理统计》第二版修订而成的,内容包括概率论、数理统计、随机过程三部分,每章附有习题.可以作为高等院校工科、理科(非数学专业)各专业的教材使用,也可供工程技术人员参考.。

概率论与数理统计教程(答案及课件)chapter3

概率论与数理统计教程(答案及课件)chapter3


,
则有
1 PZ x 2
e
x
du x

于是
Z
X

~ N 0 , 1 .
X ~ N , 2
X x FX x P X x P x
根据定理1,只要将标准正态分布的分布函数制 成表,就可以解决一般正态分布的概率计算问题.
2
设 X~ N ( , 2 ) ,
X 的分布函数是
2σ 2
F x
x 1 e 2πσ
( t μ )2
dt , x
正态分布由它的两个参数μ和σ唯一确定, 当μ和
σ不同时,是不同的正态分布。 下面我们介绍一种最重要的正态分布
标准正态分布
3
标准正态分布
7 (3)求P 1 X 2

kx , x f ( x ) 2 , 2 0,

0 x3 3 x4 其它
(1) 由
0
1 f ( x )dx 1得k 6
3
4
x
F x
x

f t dt , x
x2 x1
f ( x )dx
利用概率密度可确 定随机点落在某个 范围内的概率
4
若 f (x) 在点 x 处连续 , 则有
F ( x ) f ( x ).
5. 对连续型 r.v X , 有
P (a X b) P (a X b) P (a X b) P (a X b)
F(x) = P(X x) x<0 时,{ X x } = , 故 F(x) =0 0 x < 1 时, 1 F(x) = P{X x} = P(X=0) = 3

概率论与数理统计第四版第三章PPT课件

概率论与数理统计第四版第三章PPT课件

例2 设二维连续型随机变量( X , Y )具有概率密
度为:
ke(2x3y) x0,y0
f(x,y) 0
其它
1. 求常数 k ;
2. 求 F( x , y ) ;
3. 求 P{ X < Y }
休息 结束
解: 1. 求常数 k ;
y

ke(2x3y) x0,y0
f(x,y)
0
其它
x
Q f(u ,v)du dvF ( , )1
3) P{(X,Y)G} f (u,v)dudv G y
(X,Y)
G
x
休息 结束
4) 若 f ( x , y ) 在 ( x , y ) 处连续,则有:
2F( x, y) f( x, y)
xy
以上关于二维随机变量的讨论,可以 容易地推广到 n ( n > 2 )维随机变量的情 况。
休息 结束
第三章 多维随机变量及其分布
休息 结束
§3.1 二维随机变量
到现在为止,我们只讨论了一维随机变量 及其分布。 但有些随机现象用一个随机变量 来描述还不够,而需要用几个随机变量来描述。
休息 结束
在射箭时,命中点的位
置是由一对坐标( X, Y )来
确定的。
飞机的重心在空中的位置是
由三个随机变量( X,Y,Z )来
休息 结束
F(x2,y2)F(x1,y2)(F (x2,y1)F (x1,y1))
P{(X,Y)D} 0
y
( x1 , y2 ) ( x2 , y2 )
D
( x1 , y1 )
( x2 , y1 )
x
休息 结束
二维离散型随机变量的联合分布列 设二维离散型随机变量( X , Y )所有可

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。

概率论与数理统计 第三章课件

概率论与数理统计 第三章课件

Y X
x1 x2 … xi …
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
概率论与数理统计 第三章
联合分布列的基本性质 (1) pij 0, i, j = 1, 2,… (非负性)
(2) pij = 1. (正则性)
xy
F(x,y)= p(u,v)dvdu --
则称 (X, Y) 为二维连续型随机变量。 称p(x, y) 为联合密度函数。
概率论与数理统计 第三章
联合密度函数的基本性质
(1) p(x, y) 0. (非负性)
(2)
p(x,y)dxdy1
(正则性)
- -
注意: P(X,Y) D p(x,y)dxdy
若X, Y是两个定义在同一个样本空间上的 随机变量,则称(X, Y) 是两维随机变量.
➢ 同理可定义 n 维随机变量 (随机向量).
概率论与数理统计 第三章
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
概率论与数理统计 第三章
3.1.4 联合密度函数
设二维随机变量(X, Y) 的分布函数为 F(x, y),若存在 非负可积函数 p(x, y),使得
F(, y) = F(x, ) =0, F(+, +) = 1. (3) F(x, y) 关于 x 和 y 分别右连续. (右连续性) (4) 当a<b, c<d 时,有 (非负性)

概率论与数理统计第三章

概率论与数理统计第三章
F(x, y) P(X x,Y y)
称为二维随机变量(X,Y)的联合分布函数, 简称为(X,Y)的分布函数。
几何意义:F(x,y)表示随机点 落入以(x,y)为顶点而位于 该点左下方的无穷矩形区 域D内的概率。(如图阴 影部分)
随机点(X,Y) 落在矩形区域:x1 x x2, y1 y y2 内的概率为
设二维随机变量 (X,Y) 的分布函数为 F(x,y),分别记关 于 X 和 Y 的边缘分布函数为 Fx(x)和 Fy(y),由于 Fx(x)=P(X≤x,Y<+∞ )=F(x,+∞ ), 同理,有 Fy(y)=F(+∞ ,y). 由此看出,边缘分布函数Fx(x),Fy(y)完全由联合分布 函数 F(x,y) 来确定。
y)
1/ 0
A ,
,
(x, y)G 其他
则称( X, Y )服从区域G上的均匀分布
与第2章中服从区间[a, b]上的均匀分布类似,服从区域 G 上的均 匀分布 (X, Y) 落在 G 中任一区域 D的概率只与的 D 面积成正比,
而与 D 的位置和形状无关。 P(X ,Y ) D m(D)
m(G)
第三章 多维随机变量及其分布
我们开始学习——多维随机变量 它是第二章内容的推广. 一维随机变量及其分布
多维随机变量及其分布 由于从二维推广到多维一般无实质性的 困难,我们重点讨论二维随机变量 .
到现在为止,我们只讨论了一维r.v及其分布. 但 有些随机现象用一个随机变量来描述还不够,而需 要用几个随机变量来描述.
y
.
(1)求(X, Y)的分布函数 F(x, y); (2)求 P(0<X≤3,0<Y≤4)。
解 (1)F (x, y)

概率论第三章部分习题解答PPT课件

概率论第三章部分习题解答PPT课件
D 2 E Y 2 2 Y E 2 Y 2 1 .0 0 ( 0 .2 8 ) 2 4 0 .9504
(3 )E 3 Y E 3 2 X X 2 2 2 3 E 1 2 X E 2 X 2 3 1 .2 1 2 2 .1 0 6 .72 E 3 2 Y 1 4 E [X 2 (3 X )2 ] 1 4 ( 4 0 .4 3 4 0 .2) 8 0 .7 82
11的相关系数定义定理3定理5如果x不相关12十切比雪夫不等式与大数定律1切比雪夫不等式4伯努利大数定律3辛钦大数定律若方差一致有上界独立同分布在独立试验序列中事件a的频率按概率收敛于事件a一批零件有9个合格品与3个废品安装机器时从中任取一个
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x 1 x 2 x i
P p(x1) p(x2 ) p(xi )
则随机变量X 的数学期望为: EXxipxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为 EX xfxdx
.
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
0
.
17
5 设随机变量X 的概率密度为:
f x Ax2eax22 x0 (a0),求系数A及EX与D X.
0 x0
x2
解 f(x)d xA2e xa2d x1
0

x2 a2
t,即 xa
t,dx at1 2dt 2
x2
Ax2e a2
dx
0
A a2te tat 1 2d tA a3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机变量 X 和 Y 的联合分布函数
(2) 性质
1
0
F ( x , y ) 是变量
x 和 y 的不减函数
, 即对于任
意固定的
y , 当 x 2 x 1 时 F ( x 2 , y ) F ( x 1 , y );
x , 当 y 2 y 1时 F ( x , y 2 ) F ( x , y 1 ).
p ij p i p j .
( X , Y ) 的联合概率密度为 f X ( x ), f Y ( y ), 则有
f ( x , y ), 边缘概率密度分别为
X 和 Y 相互独立 ( 3 ) X 和 Y 相互独立
f ( x , y ) f X ( x ) fY ( y ).
2
( x , y )
其中 μ 1 , μ 2 , σ 1 , σ 2 , ρ 为常数 , σ 1 0 , σ 2 0 , 1 ρ 1 ,
则称 ( X , Y ) 服从参数为
μ 1 , μ 2 , σ 1 , σ 2 , ρ 的二维正态分
2 2
设二维离散型随机变量 值为 ( x i , y j ), i , j 1 , 2 , , 记 P { X x i , Y y j } p ij , 称此为二维离散型随机 随机变量 i , j 1 ,2 , , ,或 ( X , Y ) 所有可能取的
变量 ( X , Y ) 的分布律 .
F ( x , y ), x, y 有

则称 ( X , Y ) 是连续型的二维随机变 称为二维随机变量 ( X , Y ) 的概率密度 .
量 , 函数 f ( x , y ) , 或称为随机
变量 X 和 Y 的联合概率密度
(2) 性质
1
0
f ( x , y ) 0.
2
0

P { X x } P { X x ,Y } F ( x , ) 为随机变量
记为
( X , Y ) 关于 X 的边缘分布函数
x ,
.
F X ( x ) F ( x , ). 同理令
F Y ( y ) F ( , y ) P { X , Y y } P {Y y }
第三章
多维随机变量及其分布 习 题 课
一、重点与难点 二、主要内容
三、典型例题
一、重点与难点
1.重点
二维随机变量的分布 有关概率的计算和随机变量的独立性
2.难点
条件概率分布 随机变量函数的分布
二、主要内容

维 随 机 变 量 定 义 性 质 联 合 分 布 函 数 推 广 定 义
随 机 变 量 的 相 互 独 立 性 联 合 分 布 律
FX ( x ) F ( x , )
x i x j 1

p

ij
,
FY ( y ) F ( , y )
y j y i 1
p
ij
.
连续型随机变量的边缘分布
对于连续型随机变量 度为 f ( x , y ), 由于 FX ( x) F ( x, ) 记 fX (x) ( X , Y ), 设它的概率密


f ( x , y ) d x d y F ( , ) 1.
3
0
若 f ( x , y ) 在 ( x , y ) 连续 , 则有
F ( x, y)
2
xy
f ( x , y ).
4 设 G 是 xoy 平面上的一个区域 的概率是
0
, 点 ( X , Y ) 落在 G 内
布 .记为 ( X ,Y ) ~ N ( μ1 , μ2 , σ1 , σ 2 , ρ).
二维正态分布的两个边缘分布都是一维正态分布.
边缘分布函数
设 F ( x , y )为随机变量 ( X , Y )的分布函数 ,则 F ( x , y ) P { X x , Y y }, 令 y , 称
i 1 , 2 , , 为在 Y y j 条件下随机变量 X 的条件分布律 .
同理可定义
对于固定的 i , P { X x i } 0 , 则称 P { X x i ,Y y j } P { X xi } p ij pi ,
P {Y y j X x i }
0
即 F ( x , y ) 关于 x 右连续 , 关于 y 也右连续
4 对于任意
0
.
( x 1 , y 1 ), ( x 2 , y 2 ), x 1 x 2 , y 1 y 2 ,
有 F ( x 2 , y 2 ) F ( x 2 , y1 ) F ( x1 , y1 ) F ( x1 , y 2 ) 0 .
则称( X,Y )在D上服从均匀分布.
若二维随机变量 ( X,Y ) 具有概率密度
f (x, y) 1 2 πσ 1σ 2 1 ρ

2
[ ( x μ1 ) σ1
2 2
1 2 (1 ρ )
2
e
2 ρ ( x μ 1 )( y μ 2 ) ( y μ 2 ) ] 2 σ 1σ 2 σ2
X 和 Y 的联合分布律
二维随机变量 ( X,Y ) 的分布律也可表示为:
X Y
y1 y2 yj
x1 p 11
p 12
x2 p 21
p 22


xi pi1
pi 2





p1
j
p2
j

p ij




离散型随机变量 ( X,Y ) 的分布函数为
F ( x, y)
其中和式是对一切满足
联 合 概 率 密 度








两 个 随 机 变 量 的 函 数 的 分 布
二维随机变量
设 E 是一个随机试验 , 它的样本空间是 S { e }, , 设 X X ( e ) 和 Y Y ( e ) 是定义在 由它们构成的一个向量 或二维随机变量 .
X (e )
S 上的随机变量
( X , Y ), 叫作二维随机向量
e
S
Y (e )
二维随机变量的分布函数
(1) 定义
设 ( X , Y ) 是二维随机变量 y , 二元函数 : , 对于任意实数 x,
F ( x , y ) P {( X x ) ( Y y )} P { X x , Y y } 称为二维随机变量 ( X , Y ) 的分布函数 . , 或称为随
i 1 ,2 , ,
p j 分别称

i1

p ij P { Y y j },
j 1 ,2 , ,
p i ( i 1 ,2 , ) 和 p j ( j 1 ,2 , ) 为 ( X ,Y ) Y 的边缘分布律 .
关于 X 和关于
联合分布
边缘分布
随机变量关于X 和 Y 的边缘分布函数分别为
F ( , ) lim F ( x , y ) 0 ;
F ( , ) lim F ( x , y ) 1 .
x y
3 F ( x , y ) F ( x 0 , y ), F ( x , y ) F ( x , y 0 ),
P {( X , Y ) G }

G
f ( x, y) d x d y.
(3) 说明
几何上 , z f ( x , y ) 表示空间的一个曲面 .

部体积等于1.


f ( x, y)d x d y 1
表示介于 f (x, y)和 xoy 平面之间的空间区域的全
P {( X ,Y ) G }
对于任意
n 个实数 x 1 , x 2 , , x n , n 元函数
F ( x1 , x2 ,, xn ) P{ X 1 x1 , X 2 x2 ,, X n xn }
称为随机变量 ( X 1 , X 2 , , X n )的 联合分布函数 .
二维离散型随机变量的分布律
pij ,
xi x y j y
x i x , y j y 的 i , j 求和 .
二维连续型随机变量的概率密度
(1) 定义
对于二维随机变量 如果存在非负的函数 F (x, y)
y x
( X , Y ) 的分布函数 f ( x , y ) 使对于任意 f (u,v ) d u d v ,
X Y
f Y ( y ). 若对于固定
f (x, y) fY ( y )
为在 Y y 的条件下
, 记为 (x y) f (
X x 的条件下 f
Y X
Y 的条件概率密度为 .
( y x)
f (x, y) fX (x)
联合分布、边缘分布、条件分布的关系 边缘分布 联合分布 条件分布
联合分布
随机变量的相互独立性
设 F ( x , y ) 及 F X ( x ), F Y ( y ) 分别是二维随机变 函数 .若对于所有
量 ( X , Y )的分布函数及边缘分布 x , y有
P { X x , Y y } P { X x } P { Y y }, 即 F ( x , y ) F X ( x ) F Y ( y ), X 和 Y 是 相互独立 的.
对于任意固定的
2
0
0 F ( x , y ) 1,
且有
相关文档
最新文档