机械设计(第八版_濮良贵主编)_总复习_考试知识点
濮良贵《机械设计》(第8版)笔记和课后习题(含考研真题)详解(键、花键、无键连接和销连接)【圣才出品
6.1 复习笔记一、键连接1.键连接概述(1)功能:键是一种标准零件,通常用来实现轴与轮毂之间的周向固定以传递转矩;有的还能实现轴上零件的轴向固定或轴向滑动的导向。
(2)主要类型:平键连接、半圆键连接、楔键连接、切向键连接。
①平键连接键的两侧面是工作面,工作时靠键与键槽侧面的挤压来传递扭矩。
平键具有结构简单、装拆方便、对中性好的优点,但是平键连接不能承受轴向力,不能用于轴向固定。
其按用途可分为普通平键、薄型平键、导向平键和滑键。
a.普通平键按构造分为圆头(A型)、平头(B型)和单圆头(C型);b.薄型平键与普通平薄的主要区别是键的高度约为普通平键的60~70%。
但薄型平键传递转矩的能力较低,常用于薄壁结构、空心轴及一些径向尺寸受限制的场合;c.导向平键长度较长,需用螺钉固定,为便于装拆,制有起键螺孔;d.滑移距离较大时,所需导向平键过长,制造困难,此时可采用滑键。
②半圆键连接半圆键工作时,靠其侧面来传递转矩。
优点:工艺性较好,装配方便,尤其适用于锥形轴端与轮毂的连接;缺点:轴上键槽较深,对轴的强度削弱较大,故一般只用于轻载静连接中。
楔键的上下两面是工作面,键的上表面和与它相配合的轮毂键槽地面均有1:100的斜度。
工作时,靠键的楔紧作用来传递转矩,同时还可以承受单向的轴向载荷。
由于楔键楔紧后,轴与轮毂的配合易产生偏心和偏斜,因此主要用于毂类零件的定心精度要求不高和低转速的场合。
④切向键连接切向键是由一对斜度为1:100的楔键组成,其工作面是由一对楔键沿斜面拼合后相互平行的两个窄面。
当需要传递双向转矩时,必须用两个切向键,两者之间的夹角为120°~130°。
2.键的选择和键连接强度计算(1)键的选择键的类型应根据键连接的结构特点、使用要求和工作条件来选择;键的横截面尺寸b×h按轴的直径d由标准中选定。
键的长度L一般可由轮毂的长度而定,即键长等于或略短于轮毂长。
(2)平键连接强度计算平键连接(静连接)的主要失效形式工作面被压溃,通常只按工作面上的挤压应力进行条件性强度计算导向平键连接和滑键连接(动连接)的主要失效形式是工作面的过度磨损,通常按工作面上的压力进行条件性强度计算式中,l 为键的工作长度,圆头平键l=L -b ,平头平键l =L ;为键、轴、轮毂三者p σ⎡⎤⎣⎦中最弱材料的许用挤压应力;[p ]为键、轴、轮毂三者中最弱材料的许用压力。
濮良贵机械设计(第八版)完整版
稳定
简单 复合
对称 脉动 非对称
不稳定循环变应力
周期
时间t
a)稳定循环变应力
a)随时间按一定规律周期性变化,而且变化幅度保持常数的变应力称为稳定循环变应力。 如图2-1a所示。
周期 t
b)不稳定循环变应力 b)若变化幅度也是按一定规律周期性变化如图2-1b所示,则称为不稳定循环变应力。
尖峰 应力
C)随机变应力 图2-1变应力的分类 c)如果变化不呈周期性,而带有偶然性,则称为随机变应力,如图2-1c所示。
习题
1、机器的基本组成要素是什么? 2、什么是通用零件?什么是专用零件?试各举三个实例? 3、一台完整的机器通常是由哪些基本部分组成?各部分的作用是什么? 4、机械零件有哪些主要的失效形式? 5、机械零件常用的有哪些计算准则?它们是针对什么失效形式而建立的? 6、机械零件设计的一般步骤有哪些?
第一章结束
第二章 机械零件的疲劳强度计算
一、变应力的分类 二、变应力参数 三、几种特殊的变应力 四、疲劳曲线(对称循环变应力的—N曲线) 五、(非对称循环变应力的)极限应力图 六、影响疲劳强度的因素 七、不稳定变应力的强度计算 八、复合应力状态下的强度计算(弯扭联合作用)
一、变应力的分类
变应力
循环变应力(周期) 随机变应力(非周期)
以上是从功能上分析机械的组成,下面从结构上看: 零件:是机械的制造单元,机器的基本组成要素就是机械零件。 部件:按共同的用途组合起来的独立制造或独立装配的组合体。 如减速 器、离合器等。 按大小来分:
机械(机器)
部件
零件
图3 机械(机器)的组成(按大小分)
二、机械设计步骤
计划阶段
提出要求 洗衣机
自动进水 洗涤
机械设计(第八版_濮良贵主编)_总复习_考试知识点解析
机械设计总复习一、填空题1、在V带传动中,带的型号是由计算功率和小带轮转速两个参数确定的。
2、在圆柱齿轮传动设计中,在中心距a及其他条件不变时,增大模数m,其齿面接触应力不变;齿根弯曲应力减小。
3、普通外圆柱螺纹联接的公称直径指的是螺纹的大径,计算螺纹的危险截面时使用的是螺纹的小径。
4、6312表示轴承内径为60mm,类型为深沟球轴承。
5、对一般参数的闭式齿轮传动,软齿面传动的主要失效形式为齿面疲劳点蚀,硬齿面传动的主要失效形式为轮齿折断。
6、在一般情况下,链传动的平均传动比为常数,瞬时传动比不为常数。
7、带传动主要失效形式为打滑和带的疲劳损坏,其设计准则是在保证传动不打滑的前提下使带具有足够的疲劳强度。
8、链传动水平布置时,最好紧边在上,松边在下。
9、蜗杆传动的主要缺点是齿面间的相对滑动速度很大,因此导致传动的效率较低、温升较高。
10、转速与基本额定动载荷一定的球轴承,若将轴承的当量动载荷增加一倍,则轴承寿命将变为原来的1/8。
11、在疲劳曲线上,以循环基数N0为界分为两个区:当N≥N0时,为无限寿命区;;当N<N0时,为有限寿命区。
12、由于弹性滑动现象,使带传动的传动比不准确。
带传动的主要失效形式为打滑和带的疲劳损坏。
13、按键齿齿廓曲线的不同,花键分为矩形花键和渐开线花键。
14、径向滑动轴承的条件性计算主要是限制平均压强、平均压强与轴颈圆周速度的乘积pv 和轴颈圆周速度v不超过许用值。
15、按受载情况不同,轴可分为心轴;转轴;传动轴。
16、螺纹的公称直径是大径,对外螺纹它是指螺纹牙顶所在圆柱的直径。
17、对一般参数的闭式齿轮传动,软齿面传动的主要失效形式为齿面疲劳点蚀,硬齿面传动的主要失效形式为轮齿折断。
18、由一组协同工作的零件所组成的独立制造或独立装配的组合体称为:部件19、零件表面的疲劳是受到接触应力长期作用的表面产生裂纹或微粒剥落的现象。
20、键连接的主要类型有:平键、半圆件、楔键、切向件21、普通 V 型带共有七种型号,按传递功率大小依次排为: E 、D、C、B、A、Z 、Y ;22、轮齿的主要失效形式有:轮齿折断、齿面磨损、齿面点蚀、齿面胶合、塑性变形五种。
《机械设计》讲义(第八版)濮良贵(第3章)
1第三章 机械零件的强度一.静应力及其极限应力:1.静应力: 在使用期内恒定或变化次数很少(<103次)的应力。
2.极限应力σlim: 静应力作用下的σlim取决于材料性质。
1)塑性材料: σlim =σs (屈服极限)2)脆性材料: σlim=σB (强度极限)3.静强度准则: σ≤σlim/S (S —静强度安全系数)-10max§3-1 材料的疲劳特性:1.材料的疲劳特性:可用最大应力σmax、应力循环次数N和应力比r表示。
2.材料疲劳特性的确定:用实验测定,实验方法是:1)在材料标准试件上加上一定应力比的等幅变应力,应力比通常为:r=-1或r=02)记录不同最大应力σmax下试件破坏前经历的循环次数N,并绘出疲劳曲线。
3.材料的疲劳特性曲线:有二种1)σ—N疲劳曲线:即一定应力比r下最大应力σmax与应力循环次数N的关系曲线2)等寿命曲线:即一定应力循环次数N下应力幅σa 与平均应力σm的关系曲线2)C点对应的N约为:NC≈1043)这一阶段的疲劳称为应变疲劳或低周疲劳4、CD段:有限寿命疲劳阶段。
试件经历一定的循环次数N后会疲劳破坏实验表明,有限疲劳寿命σrN与相应的循环次数N之间有如下关系:23σm rN ·N = C ( N ≤N D ) (3-1)5、D 点以后: 无限寿命疲劳阶段。
1)无论经历多少次应力循环都不会疲劳破坏。
2)D 点对应的循环次数N 约为:N D =106~25×107 3)D 点对应的应力记为:σr ∞—— 叫持久疲劳极限。
σrN =σr∞( N >N D ) (3-2)4)循环基数N O 和疲劳极限σrN D 很大,疲劳试验很费时,为方便起见,常用人为规定一个循环次数N O (称 为循环基数)和与之对应的疲劳极限σrNo(简记为σr )近似代替N D 和σr ∞6、有限寿命疲劳极限σrN : 按式(3-1)应有: σm rN·N = σm r ·N O = C (3-1a )于是:K N ──寿命系数m, N O ──1)钢材(材料): m = 6~20 , N O =(1~10)×106 2)中等尺寸零件: m = 9 , N O = 5×106 3)大尺寸零件: m = 9 , N O = 107 注: 高周疲劳——曲线CD 及D 点以后的疲劳称作高周疲劳二、等寿命疲劳曲线 图3-2等寿命疲劳曲线——一定循环次数下的疲劳极限的特性。
濮良贵《机械设计》(第8版)笔记和课后习题(含考研真题)详解(铆接、焊接、胶接和过盈连接)【圣才出品
第7章 铆接、焊接、胶接和过盈连接7.1 复习笔记一、铆接铆钉连接(简称铆接)是将铆钉穿过被连接件的预制孔经铆合后形成的不可拆卸连接。
1.铆缝的分类、特性和应用(1)分类按铆钉的排数可分为:单排、双排和多排;按铆缝的性能可分为:强固铆缝、强密铆缝和紧密铆缝;按接头情况可分为:有搭接逢、单盖板对接缝和双盖板对接缝。
(2)特性和应用铆接工艺设备简单、抗振、耐冲击、传力均匀、牢固可靠,但结构一般较为笨重,被铆件的强度削弱较大,铆接时噪音大,劳动条件差。
因此,目前除在桥梁、建筑、飞机制造等部门中采用外,应用已渐减少,并为焊接、胶接所代替。
2.铆缝的受力及破坏形式、强度计算(1)受力及破坏形式铆接主要靠铆钉的剪切和与孔壁间的挤压传递作用力,其失效形式主要有铆钉被剪断、板边被剪坏或被撕裂、钉孔接触面被压坏、板沿钉孔被拉断。
(2)强度计算对于单排搭接铆缝的强度,主要进行静强度分析,包括以下几个方面:①被铆件的拉伸强度条件[]1()F t zd δσ=-②被铆件上孔壁的挤压强度条件2p []F dz δσ=③铆钉的剪切强度条件23[]4d z F πτ=式中,为被铆接件厚度;b 为板宽;d 为铆钉直径;z 为铆钉数目;、、δ[]σp σ⎡⎤⎣⎦分别为被铆接件的许用拉应力、许用挤压应力和铆钉的许用切应力。
[]τ3.铆缝的强度系数被铆件遭到钉孔削弱后的强度与完整时的强度之比,称为铆缝的强度系数,用表示。
ϕ二、焊接焊接是利用局部加热(或加压)的方法使被连接件接头处的材料熔融连接成一体。
1.类型、特性和应用(1)焊接的类型如图7-1(a )所示,其中,电弧焊中焊缝的基本类型如图7-1(b )所示。
图7-1(2)特性和应用与铆接相比,焊接具有强度高、工艺简单、附加质量小、劳动条件较好等优点。
另外,以焊代铸可节约金属,降低成本。
因此应用日益广泛。
2.焊接件常用材料及焊条(1)焊接的金属结构件常用的材料:Q215、Q235、Q255等;(2)焊接的零件常用的材料:Q275、15~50号碳钢,以及50Mn、50Mn2、50SiMn2等合金钢。
濮良贵《机械设计》(第8版)笔记和课后习题(含考研真题)详解(绪 论)【圣才出品】
第1章 绪 论
1.1 复习笔记
一、本课程讨论的具体内容
1.总论部分
机器及零件设计的基本原则,设计计算理论,材料选择,结构要求,以及摩擦、磨损、润滑等方面的基本知识;
2.连接部分
螺纹连接,键、花键及无键连接,销连接,铆接,焊接,胶接与过盈连接等;
3.传动部分
螺旋传动,带传动,链传动,齿轮传动,蜗杆传动以及摩擦传动等;
4.轴系部分
滚动轴承,滑动轴承,联轴器与离合器以及轴等。
5.其他部分
弹簧、机座和箱体,减速器和变速器等。
二、本课程的性质
本课程的性质是以一般通用零件的设计为核心的设计性课程,而且是论述它们的基本设计理论与方法的技术基础课程。
三、本课程的主要任务
培养学生以下素质和能力:
1.有正确的设计思想并勇于创新探索;
2.掌握通用零件的设计原理、方法和机械设计的一般规律,进而具有综合运用所学的知识,研究改进或开发新的基础件及设计简单的机械的能力;
3.具有运用标准、规范、手册、图册和查阅有关技术资料的能力;
4.掌握典型机械零件的试验方法,获得实验技能的基本训练;
5.了解国家当前的有关技术的经济政策,并对机械设计的新发展有所了解。
1.2 名校考研真题详解
本章内容只是对整个课程的一个总体介绍,基本上没有学校的考研试题涉及到本章内容,读者简单了解即可,不必作为复习重点,所以本部分也就没有选用考研真题。
《机械设计》讲义(第八版)濮良贵(第13章)
第十三章滚动轴承§13—1概述:1.优点:〔与滑动轴承相比〕摩擦小,功耗低,起动、正反转容易。
2.滚动轴承的结构: P.307.图13-11〕内圈:装在轴颈上,一般随轴颈转动。
2〕外圈:装在轴承座中,一般固定。
3〕滚动体:处于内外圈之间,将内外圈的相对转动变成滚动体在滚道上的滚动。
4〕保持架:均匀地隔开滚动体,有二种:4.轴承设计:§13—21.类型12321〕α:2〕β:轴承实际承受的径向载荷R与轴向载荷A的合力与半径方向的夹角。
5.性能与特点:滚动轴承类型很多,常用轴承性能及特点,见: 09. 表13-1.二.滚动轴承的代号:滚动轴承类型很多,每种类型又有多种不同的结构,尺寸及公差等级,为统一表征各类轴承的特点,GB/T 272-1993 规定轴承代号由以下三局部组成:1.根本代号:1①代号内径②可见2代号系列3① O表示正常宽度系列:a. 一般轴承,表示正常宽度的O可不标b. 对调心及圆锥滚子轴承,代号O应标出②直径系列中也含轴承宽度,但该宽度是随直径的相应变化注:直径系列代号和宽度系列代号统称为尺寸系列代号4〕类型代号:表示轴承的类型〔数字或字母〕。
以下几种应记住1 ──调心球轴承 3 ──圆锥滚子轴承6 ──深沟球轴承7 ──角接触球轴承N ──圆柱滚子轴承1012.后置代号:用数字或字母表示轴承的结构,公差及材料的特殊要求,很多04.表13-2)以下仅介绍几个常用代号1〕内部结构代号:〔字母〕表示同类轴承的不同内部结构。
如:角接触球轴承代号 C AC B接触角 15° 25° 40°2〕公差等级代号:表示公差等级,共6级代号 /P2 /P4 /P5 /P6 /P6x /P0公差等级 2级 4级 5级 6级 6x级 0级〔精度渐低〕〔0级为普通级,在轴承代号中不标〕3〕游隙代号:表示轴承的径向游隙,共6个组别代号 /C1 /C2 /C0 /C3 /C4 /C5游隙组别 1组 2组 0组 3组 4组 5组〔径向游隙渐大〕〔0组是常用游隙组别,在轴承代号中不标〕3.前置代号:用字母表示轴承的分部件〔套圈、滚动体与保持架组件等〕。
《机械设计》讲义(第八版)濮良贵(第10章)要点
第十章齿轮传动§10—1概述:本章主要介绍最常用的渐开线齿轮传动。
1.特点:优:1)效率高(可达99%以上,这在大功率传动时意义很大)2)结构紧凑3)工作可靠,寿命长(可达几十年,如:机械表)。
4)传动比稳定缺:制造、安装精度要求高,价高,不宜远距离传动。
2.传动型式:开式:齿轮完全暴露在外的齿轮传动。
半开式:有简单防护罩的齿轮传动。
闭式:由箱体密封的齿轮传动。
§10—2齿轮传动的失效形式及设计准则:硬齿面齿轮:齿面硬度大于350HBS或38HRC的齿轮。
软齿面齿轮:齿面硬度不大于350HBS或38HRC的齿轮。
一.失效形式:齿轮传动的失效主要是轮齿失效,齿圈、轮辐、轮毂等其它部分很少失效,所以,以下仅介绍常见的轮齿失效形式:1.轮齿折断:1)折断形式:①疲劳折断:齿根受弯曲变应力作用→疲劳→折断。
②过载折断:2)折断位置:常发生在轮齿根部。
∵根部弯曲应力最大,且截面变化大,加式刀痕深,应力集中严重3)抗折断措施:①②增大轴及支承刚性→偏载↓。
54③增加齿芯韧性,强化齿根表层(喷丸,滚压等)2.齿面磨损:传动时,啮合齿面间的相对滑动→磨损(是开式传动的主要失效形式)3.齿面点蚀:1)点蚀:在接触变应力的反复作用下,齿面材料因疲劳而小片脱落的现象。
2)位置:点蚀常先发生于节线附近的齿根一侧。
3)原因:①在节线附近啮合时,相对滑动速度低,润滑差,摩擦大。
②啮合齿对少,受力大,接触应力大。
注:点蚀是闭式传动的主要失效形式。
4)抗点蚀措施:①提高齿面硬度。
②改善润滑条件:a、低速传动,采用粘度较大的润滑油。
b、高速传动,采用喷油润滑。
4.齿面胶合:1)胶合:两因瞬时温升过高而粘连的啮合齿面,在相对运动时被撕破,形成沿滑动方向沟痕的现象。
2)机理:高速重载→啮合区瞬时温升↑→两啮合面粘连→相对运动时被撕破→形成沿滑动方向的沟痕。
注:低速重载时,也会因接触应力过大而粘连──冷胶合。
3)抗胶合措施:采用抗胶合的润滑油。
濮良贵《机械设计》要点讲解及考研真题解析(摩擦、磨损及润滑概述)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台
动进行中的摩擦。 (2)按运动形式的不同,动摩擦又分为 ①滑动摩擦 根据摩擦面间存在润滑剂的情况,滑动摩擦又分为干摩擦、边界摩擦(边界润滑)、流 体摩擦(流体润滑)及混合摩擦(混合润滑),如图 4-1 所示。
7 / 15
圣才电子书 十万种考研考证电子书、题库视频学习平台
主要有空气、氮气、二氧化碳等。 (2)润滑油的主要性质 ①粘度 润滑油的粘度是表示油液内部相对运动时产生内摩擦阻力大小的性能指标,它是润滑油 最重要的性能之一。 a.动力粘度 摩擦定律(粘性定律) 在流体中任意点处的切应力均与该处流体的速度梯度成正比。用数学形式表示这一定律, 即为 τ=-η∂u/∂y。 式中:τ——流体单位面积上的剪切阻力,即切应力;u——流体的流动速度;∂u/∂y—— 流体沿垂直于运动方向(即流体膜厚度方向)的速度梯度,式中的“-”号表示 u 随 y(流 体膜厚度方向的坐标)的增大而减小;η——比例常数,即流体的动力粘度。 b.运动粘度 运动粘度 v(单位为 m2/s)是指工程中将流体的动力粘度 η 与同温度下该流体密度 ρ (单位为 kg/m3)的比值,即 v=η/ρ。 在 C.G.S.制中,运动粘度的单位是 St(斯),1St=1cm2/s。百分之一 St 称为 cSt(厘 斯),它们之间有下列关系 1St=1cm2/s=100cSt=10-4m2/s 1cSt=10-6m2/s=1mm2/s c.粘度的影响因素 第一,温度对粘度的影响十分明显,润滑油粘度受温度影响的程度可用粘度指数表示。 第二,粘度指数值越大,表明粘度随温度的变化越小,即粘一温性能越好。
5 / 15
圣才电子书 十万种考研考证电子书、题库视频学习平台
机械设计(第八版)濮良贵 全书习题
第一、二章绪论、机械设计总论一、填空题1、机器的基本组成部分包括、、。
2、机械零件的设计方法包括、、。
二、名词解释1、通用零件、专用零件、方案设计、技术设计、纸上装配、2、失效、刚度、强度、可靠度、浴盆曲线、设计安全系数、计算安全系数三、简答题1、对机器的要求主要包括哪些方面?2、机器的设计过程包括哪几个阶段?3、机械零件的失效形式主要有哪些?4、设计机械零件时应满足哪些基本要求?5、什么是机械设计中的“三化”?三、问答题1、解释零件失效率λ(t)与时间t之间的关系曲线浴盆曲线。
2、机械零件的常用材料有哪些类型,它们各有哪些特点?3、机械现代设计方法有哪些?第三章 机械零件的强度 四、 名词解释1、循环特性r 、对称循环、脉动循环2、静强度、疲劳强度、高周疲劳、低周疲劳、N -σ曲线、等寿命曲线(极限应力线图)3、寿命系数K N 、循环基数、单向稳定变应力、单向不稳定变应力、双向稳定变应力、设计安全系数、计算安全系数二、选择题1、若传动轴作正、反向转动,则轴上某点的扭转应力(剪应力)可按 处理。
A 、脉动循环 B 、对称循环 C 、静止不变 D 、以上都不是2、以下四种叙述中, 是正确的。
A 、变应力只能由变载荷产生B 、静载荷不能产生变应力C 、变应力是由静载荷产生的D 、变应力由变载荷产生,也可能由静载荷产生 3、变应力特性可用max σ、min σ、a σ、m σ、r 中五个参数的任意 个来描述。
A 、一个 B 、两个 C 、三个 D 、四个4、零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之_____。
A 、 增高 B 、 不变 C 、 降低 D 、不确定5、零件的材料、形状,尺寸,结构相同时,磨削加工的零件与精车加工相比,其疲劳强度______。
A 、 较高B 、 较低C 、 相同6、零件的表面经淬火,渗氮,喷丸,滚子碾压等处理后,其疲劳强度_______。
A 、 增高 B 、 降低 C 、 不变 D 、 增高或降低视处理方法而定三、问答题1、在N -σ曲线上指出静强度、低周疲劳和高周疲劳区及有限寿命疲劳阶段和无限寿命疲劳阶段。
《机械设计》讲义(第八版)濮良贵(第8节)
第八章§8—1 概述: 一、带传动的组成和类型1.组成: 主动带轮1,从动带轮2 2.工作原理: 合来传递运动和动力。
3.特点: 1)结构简单,成本低 2)传动平稳 3)能缓冲减振 4.类型:1)平带传动: 优点: 结构最简单 适用: 2)V 带传动: 优点:(1)(2)(3)V 适用: 应用最广泛 3)多楔带传动: 优点: 适用: 4)同步带传动: 优点:二、V 带的类型和结构:1、类型: 普通V 带、窄V 带、宽V V 带、联组V 带等多种。
注: 普通V 通V 带。
2、普通V 带的结构等:平带V带图8-5 普通V带的结构结构: 呈无接头环形,横截形为等腰梯形两腰夹角φ=40° 种类: 按抗拉体的不同,分二种:1)帘布芯V 带: 抗拉体为帘布,制造较方便。
2)绳芯V 带: 抗拉体为线绳,柔韧性好,弯曲强度高。
型号: 分Y 、Z 、A 、B 、C 、D 、E 七种 截面尺寸,承载能力↑节面: 带垂直于底面弯曲时,带中既不伸长也不缩短的中性层面。
节宽b P : 带节面的宽度轮槽节宽b p :V 带轮轮槽与配用V 带节宽相等处的槽宽 节圆直径d p :V 带轮在轮槽节宽处的直径 基准宽度b d :国标规定的V 带轮轮槽宽度1)等于配用V 带的节宽,即:b d = b p 2)b d 是一个无公差规定值基准直径d d :V 带轮在轮槽基准宽度b d 处的直径。
计算中,可取:b d = b p基准长度L d :在规定张紧力下,V公称长度: 以基准长度L d 注: 1)V 2)V§8—2 带传动工作情况的分析:一.几何计算:1 ∵ a = O 1O2 >> O 2E = (d d2 ∴ β很小,于是有:α1 =π-2β=π-(d d2-d d1= 180°- 57.3°×(d d2-d d1α2 =π+2β=π+(d d2-d d1 = 180°+ 57.3°×(d d2-d d1a2/)d d (a /E O sin 1d 2d 2-==β≈β2.基准长度L d : ∵ cos β=1-β2/2! β=(d d2-d d1)/2a ∴3.中心距a:二.带传动的受力分析:1.预紧力F O : 安装时,带紧套在两轮上而受到的拉力。
濮良贵《机械设计》(第8版)笔记和课后习题(含考研真题)详解(摩擦、磨损及润滑概述)【圣才出品】
第4章 摩擦、磨损及润滑概述4.1 复习笔记把研究有关摩擦、磨损与润滑的科学与技术统称为摩擦学。
摩擦是相对运动的物体表面间的相互阻碍作用现象,磨损是伴随摩擦而产生的必然结果,是由于摩擦而造成的物体表面材料的损失或转移;润滑是降低摩擦,减轻磨损所应采取的措施。
一、摩擦在正压力作用下相互接触的两物体受切向外力的影响而发生相对滑动,或者有相对滑动的趋势时,在接触表面上就会产生抵抗滑动的阻力,这一自然现象称为摩擦。
1.摩擦的分类(1)发生在物质内部,阻碍分子相对运动的内摩擦。
(2)当相互接触的两个物体发生相对滑动或有相对滑动的趋势时,在接触表面上产生阻碍相对滑动的外摩擦。
其中,仅有相对滑动趋势的摩擦叫做静摩擦;相对滑动进行中的摩擦叫做动摩擦。
2.动摩擦根据位移形式的不同可分为滑动摩擦和滚动摩擦;3.滑动摩擦根据摩擦面间存在润滑剂的情况可分为干摩擦、边界摩擦、流体摩擦及混合摩擦。
边界摩擦、混合摩擦及流体摩擦都必须具备一定的润滑条件,所以相应的润滑状态常分别称为边界润滑、混合润滑及流体润滑。
可用膜厚比来大致估计两滑动表面所处的摩擦(润滑)状态,即λ=式中,为两滑动粗糙表面间的最小公称油膜厚度;、分别为两接触表面min h 1q R2q R 形貌轮廓的均方根偏差。
一般认为边界摩擦(润滑)状态;混合摩擦(润滑)状态;流体摩1λ≤13λ≤≤3λ>擦(润滑)状态。
①干摩擦:表面间无任何润滑剂或保护膜的纯金属接触时的摩擦。
修正后的黏附理论认为,做相对运动的两个金属表面间的摩擦系数为=f B nsy F f F τσ==界面剪切强度极限两种金属集体中较软的压缩屈服极限当两金属界面被表面膜分隔开时,为表面膜的剪切强度极限;当剪断发生在较软Bj τ金属基体内时,为较软金属基体的剪切强度极限;若表面膜局部破裂并出现金属粘Bj τB τ附结点时,将介于较软金属的剪切强度极限和表面膜的剪切强度极限之间。
Bj τ②边界摩擦:当运动副的摩擦表面被吸附在表面的边界膜隔开、摩擦性质取决于边界膜和表面的吸附性能时的摩擦。
濮良贵.《机械设计》考试满分题库
四
螺纹连接和螺旋传动
1、简要分析普通螺纹、矩形螺纹、梯形螺纹和锯齿形螺纹的特点,并说明哪些螺纹适合用于连接,哪些 螺纹适合用于传动?哪些螺纹已经标准化? 【答】普通螺纹:牙型为等边三角形,牙型角 60 度,内外螺纹旋合后留有径向间隙,外螺纹牙根允许 有较大的圆角,以减小应力集中。同一公称直径按螺距大小,分为粗牙和细牙,细牙螺纹升角小,自锁性 好,抗剪切强度高,但因牙细不耐磨,容易滑扣。应用:一般连接多用粗牙螺纹。细牙螺纹常用于细小零 件,薄壁管件或受冲击振动和变载荷的连接中,也可作为微调机构的调整螺纹用。 矩形螺纹:牙型为正方形,牙型角 0 ,传动效率较其它螺纹高,但牙根强度弱,螺旋副磨损后, 间隙难以修复和补偿,传动精度降低。 梯形螺纹:牙型为等腰梯形,牙型角为 30 度,内外螺纹以锥面贴紧不易松动,工艺较好,牙根强度 高,对中性好。主要用于传动螺纹。 锯齿型螺纹:牙型为不等腰梯形,工作面的牙侧角 3 度,非工作面牙侧角 30 度。外螺纹牙根有较大 的圆角,以减小应力集中,内外螺纹旋合后,大径无间隙便于对中,兼有矩形螺纹传动效率高和梯形螺纹 牙型螺纹牙根强度高的特点。用于单向受力的传动螺纹。 普通螺纹适合用于连接,矩形螺纹、梯形螺纹和锯齿形螺纹适合用于传动。 普通螺纹、 、梯形螺纹和锯齿形螺纹已经标准化。 2、将承受轴向变载荷连接螺栓的光杆部分做的细些有什么好处? 【答】可以减小螺栓的刚度,从而提高螺栓连接的强度。 3、螺纹连接为何要防松?常见的防松方法有哪些? 【答】连接用螺纹紧固件一般都能满足自锁条件,并且拧紧后,螺母、螺栓头部等承压面处的摩擦也 都有防松作用,因此在承受静载荷和工作温度变化不大时,螺纹连接一般都不会自动松脱。但在冲击、振 动、变载荷及温度变化较大的情况下,连接有可能松动,甚至松开,造成连接失效,引起机器损坏,甚至 导致严重的人身事故等。所以在设计螺纹连接时,必须考虑防松问题。 螺纹连接防松的根本问题在于防止螺旋副相对转动。具体的防松装置或方法很多,按工作原理可分为摩擦 防松、机械防松和其它方法,如端面冲点法防松、粘合法防松,防松效果良好,但仅适用于很少拆开或不 拆的连接。 4、简要说明螺纹连接的主要类型和特点。
《机械设计》讲义(第八版)濮良贵(第5章)
(5-8)
为避免相对滑动,必须使预紧后接合面间的最大摩擦力≥FΣ,即:
fFo z i K S F
或
Fo
K S F f z i
P.76. 表 5-5.
(5 - 9)
f ── 接合面间的摩擦系数。 i ── 接合面数(上图 i = 2) 。 KS── 防滑系数。 2.受转矩的螺栓组: 1)普通螺栓联接: 各螺栓的 Fo 产生的摩擦力 fFo 对形心 O 的矩之和应大 于 T, 即: 或: ΣfFori = fFo·Σri ≥KST Fo≥KST/f·Σri
a.倾覆力矩 M 作用于通过 x-x 轴且垂直接合面的平面中,图 a) b. 已受 Fo,但未受倾覆力矩 M 作用,图 b) 螺栓: 均匀受拉,拉力为 Fo 地基: 均匀受压,压强 σP 底板: 其上 Fo 的合力与 σP 的合力相等,底板所受的总作用力为零。 c. 已受 M 作用,底板绕 O-O 轴向右倾侧,图 c) 在 O-O 轴左侧:螺栓:拉力由 Fo 增大到 F2 地基:挤压应力由 σP 下降为 σP1,右侧压紧 σP↗σP2 底板:螺栓的合力>地基的合力,总合力为 F,方向向下 在 O-O 轴右侧:螺栓:拉力由 Fo 减小到 F2m
14
以图 5-1 的外螺纹为例.
螺纹的最大直径(外螺纹牙顶所在的圆柱面直径) 。
《机械设计》 (第八版) 濮良贵主编
第五章 螺纹联接和螺旋传动
4.线数 n:
螺纹的螺旋线数目。 单线螺纹: 沿一根螺旋线形成的螺纹。 多线螺纹: 沿多根螺旋线形成的螺纹。
5.螺距 P: 6.导程 S:
相邻两螺牙对应点间的轴向距离。 沿同一条螺旋线转一周移动的轴向距离。 ψ= arctg(S/πd2) S = nP
《机械设计》讲义(第八版)濮良贵改编(第1、2章)
第一章绪论§1-1机器在经济建设中的作用机械是现代各行业的基础,是物质生产的基本工具,其应用水平是一个国家技术水平和现代化程度的重要标志,也是信息化产业的基础。
设计则是产品生产的第一道工序,其成败很大程度上是在本阶段决定的。
1.能做有用功:1)代替人力或完成人力所不能完成的工作。
2)改善劳动条件,提高生产率。
3)较人工生产提高产品质量。
2.有利于产品的标准化、系列化和通用化。
3.有利于产品生产的机械化、电气化和自动化。
所以大量设计制造和广泛使用各种先进的机器是促进经济发展,加速现代化建设的一个重要内容。
§1-2本课程的内容、性质与任务:一.内容介绍整台机器机械部分设计的基本知识,重点讨论:1.一般尺寸和常用工作参数下的通用零件的设计,包括其基本设计理论和方法。
注:一般尺寸和参数:不包括巨/微型,高温/压/速等。
2.介绍有关技术资料、标准的应用。
例如:有关国标,机械零件设计手册等。
学习的具体内容:(1)总论部分:机器及零件设计的基本原则,设计计算理论,材料选择,结构要求,以及摩擦、磨损、润滑等方面的基本知识;(2)连接部分:螺纹连接和螺旋传动,键、花键及无键连接和销连接等;(3)传动部分:带传动,齿轮传动,蜗杆传动等;(4)轴系部分:滚动轴承,轴的设计,联轴器、离合器和制动器等;(5)其它部分:弹簧、机座、箱体等。
二.性质是以一般通用零件的设计为核心的设计性课程,主要讨论它们的基本设计理论与方法的技术基础课程。
本课程不仅要求学生掌握机械零件的常用设计方法,主要是通过这些内容的学习,全面提高学生具备通用零件、部件,以及专用零件的设计能力。
三.任务本课程的主要任务是培养学生:(1)有正确的设计思想和创新探索能力;(2)掌握一般设计方法,能设计简单机械的能力;(3)具有运用标准、手册和查阅资料的能力;(4)掌握典型的实验方法,具备基本的实验能力;(5)了解国家政策,了解机械的发展动向。
濮良贵《机械设计》(第8版)笔记和课后习题(含考研真题)详解(齿轮传动)【圣才出品】
使用系数 KA 是考虑齿轮啮合时外部因素引起的附加动载荷影响的系数。这种动载荷取
决于原动机和工作机的特性、质量比、联轴器类型以及运行的工况等。
2.动载系数 KV
4 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平
台
为了在计算中考虑动载荷的影响,引入动载荷系数 KV。提高制造精度,减少齿轮直径
提高抗胶合能力的措施:减小模数、降低齿高、采用角度变位齿轮以减小滑动系数,
提高齿面硬度,采用抗胶合能力强的润滑油,在润滑油中添加极压添加剂等。
(5)塑性变形:一般发生在硬度较低的齿轮上。
提高抗塑性变形能力的措施:提高齿面硬度、采用高粘度润滑油或添加极压添加剂等。
2.设计准则 闭式软齿面齿轮传动主要失效形式是齿面点蚀,因此按齿面接触疲劳强度进行设计,按 齿根弯曲疲劳强度校核; 闭式硬齿面传动主要失效形式是齿根弯曲疲劳折断,因此按齿根弯曲疲劳强度进行设 计,按齿面接触疲劳强度校核; 开式齿轮传动主要失效形式是齿面磨损,只按齿根弯曲疲劳强度进行设计,并通过增 大模数和降低许用应力来考虑磨损的影响。
四、齿轮传动的计算载荷
齿轮传动的计算载荷是考虑载荷波动、载荷沿齿宽方向的不均匀性和轮齿齿廓曲线误
差等对强度的影响时,单位接触线长度的最大载荷,有
pca
Kp
KFn L
p Fn
式中, p 为沿齿面接触线单位长度上的平均载荷, L ;Fn 为为轮齿所受的公称法
向载荷;K 为载荷系数,其值为
。
1.使用系数 KA
(4)齿面胶合:首先发生在较软齿面上。
齿面胶合的形式及产生原因:
2 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械设计总复习一、填空题1、在V带传动中,带的型号是由计算功率和小带轮转速两个参数确定的。
2、在圆柱齿轮传动设计中,在中心距a及其他条件不变时,增大模数m,其齿面接触应力不变;齿根弯曲应力减小。
3、普通外圆柱螺纹联接的公称直径指的是螺纹的大径,计算螺纹的危险截面时使用的是螺纹的小径。
4、6312表示轴承内径为60mm,类型为深沟球轴承。
5、对一般参数的闭式齿轮传动,软齿面传动的主要失效形式为齿面疲劳点蚀,硬齿面传动的主要失效形式为轮齿折断。
6、在一般情况下,链传动的平均传动比为常数,瞬时传动比不为常数。
7、带传动主要失效形式为打滑和带的疲劳损坏,其设计准则是在保证传动不打滑的前提下使带具有足够的疲劳强度。
8、链传动水平布置时,最好紧边在上,松边在下。
9、蜗杆传动的主要缺点是齿面间的相对滑动速度很大,因此导致传动的效率较低、温升较高。
10、转速与基本额定动载荷一定的球轴承,若将轴承的当量动载荷增加一倍,则轴承寿命将变为原来的1/8。
11、在疲劳曲线上,以循环基数N0为界分为两个区:当N≥N0时,为无限寿命区;;当N<N0时,为有限寿命区。
12、由于弹性滑动现象,使带传动的传动比不准确。
带传动的主要失效形式为打滑和带的疲劳损坏。
13、按键齿齿廓曲线的不同,花键分为矩形花键和渐开线花键。
14、径向滑动轴承的条件性计算主要是限制平均压强、平均压强与轴颈圆周速度的乘积pv 和轴颈圆周速度v不超过许用值。
15、按受载情况不同,轴可分为心轴;转轴;传动轴。
16、螺纹的公称直径是大径,对外螺纹它是指螺纹牙顶所在圆柱的直径。
17、对一般参数的闭式齿轮传动,软齿面传动的主要失效形式为齿面疲劳点蚀,硬齿面传动的主要失效形式为轮齿折断。
18、由一组协同工作的零件所组成的独立制造或独立装配的组合体称为:部件19、零件表面的疲劳是受到接触应力长期作用的表面产生裂纹或微粒剥落的现象。
20、键连接的主要类型有:平键、半圆件、楔键、切向件21、普通 V 型带共有七种型号,按传递功率大小依次排为: E 、D、C、B、A、Z 、Y ;22、轮齿的主要失效形式有:轮齿折断、齿面磨损、齿面点蚀、齿面胶合、塑性变形五种。
23、机器的可靠度 R 是指:在规定的使用时间(寿命)内和预定的环境条件下机器能够正常工作的概率;24、螺纹防松的根本问题在于:防止螺旋副在受载时发生相对转动;25、焊接件焊后应经去应力退火处理,以消除残余应力。
26、链传动的瞬时传动比不断变化的原因是由于围绕在链轮上的链条形成了正多边型称之为多边形效应。
27、轴承中的润滑剂不仅可以降低摩擦阻力,还可以起着散热、减小接触应力、吸收振动、防止锈蚀等作用。
二、选择题1、某钢制零件材料的对称循环弯曲疲劳极限σ-1= 300 MPa,若疲劳曲线指数m = 9,应力循环基数N0 =107,当该零件工作的实际应力循环次数N =105时,则按有限寿命计算,对应于N的疲劳极限为 C MPa 。
A.428B.430.5C.500.4D.3002、带张紧的目的是D。
A.减轻带的弹性滑动B.提高带的寿命C.改变带的运动方向D.使带具有一定的初拉力3、滚子链通常设计成链节数为偶数,这是因为 C 。
A.防止脱链B.磨损均匀C.不需要采用受附加弯矩的过渡链节D.便于度量4、滚动轴承内圈与轴颈的配合以及外圈与座孔的配合 C。
A.全部采用基轴制B.全部采用基孔制C.前者采用基孔制,后者采用基轴制D.前者采用基轴制,后者采用基孔制5、下列磨损中,不属于磨损基本类型的是 B 。
A. 粘着磨损B. 磨合磨损C. 表面疲劳磨损D. 磨粒磨损6、蜗杆传动的总效率,主要取决于 B 时的效率。
A.轴承摩擦损耗B.啮合摩擦损耗C.加装风扇损耗D.搅油损耗7、只承受弯矩而不承受扭矩的轴称为 A。
A. 心轴B.传动轴C. 曲轴D.转轴8、两个具有相同材料、齿宽及齿数的齿轮A和B,A的模数为2mm,B的模数为4mm,则以下叙述正确的是 C。
A.齿轮A和B的抗弯承载能力相同B.齿轮A的抗弯承载能力比B大C.齿轮B的抗弯承载能力比A大D.抗弯承载能力与模数无关9、下列最适于承受横向载荷的螺纹联接是 B。
A.普通螺栓联接B.铰制孔用螺栓联接C.螺钉联接D.双头螺柱联接10、一对标准渐开线圆柱齿轮要正确啮合时,它们的 B必须相等。
A、直径B、模数C、齿宽D、齿数1、带传动主要是依靠C来传递运动和功率的。
A. 带的初拉力B. 带的紧边拉力C. 带和两轮接触面之间的摩擦力2、为保证轴上零件轴向定位的可靠性,零件毂孔的倒角高度C或圆角半径R应 A 。
轴肩处的圆角半径r。
A. 大于B. 小于C. 等于3、普通平键是靠键的B 来传递扭矩。
A. 上表面B. 两侧面C. 下表面4、以下传动中,能起到缓冲减振及过载安全保护作用的是B。
A. 链传动B. 带传动C. 齿轮传动5、链传动中,小带轮包角一般不宜小于C。
A. 90°B. 100°C. 120°6、以下各传动中,需要进行热平衡计算的是B 。
A. 直齿圆柱齿轮传动B. 蜗杆传动C. 链传动7、下列轴承中,必须成对使用的是C。
A. 深沟球轴承B. 推力球轴承C. 圆锥滚子轴承8、齿轮齿面塑性流动在主动轮节线附近形成 A ;在从动轮上节线形成C。
A. 凹沟B. 无变化C. 凸棱9、下列最适于承受横向载荷的螺纹联接是A。
A. 铰制孔用螺栓联接B. 普通螺栓联接C. 螺钉联接10、链传动设计中,限制最小和最大齿数的原因是:(c)a、链传动的传动比不能过大;b、避免产生振动和冲击;c、避免加速链条的磨损和产生跳齿;11、某轴系结构中,轴上所安装的齿轮为斜齿轮,频繁正反转启动,中速中载场合,选配轴承宜采用:(b)a、一对深沟球轴承;b、一对角接触球轴承;c、一对调心球轴承;d、一对推力球轴承;12、要求自锁性强的连接螺纹,牙型宜采用:(a)a、三角形粗牙螺纹;b、三角形细牙螺纹;c、管螺纹;d、米制锥螺纹;13、利用键实现轴毂连接的结构中,定位精度最高的是:(d)a、平键;b、半圆键;c、导向平键;d、矩型花键;14、提齿轮精度等级,改善齿轮材料和热处理方式可提高齿轮的:(b)a、弯曲疲劳强度;b、接触疲劳强度;c、使用寿命;d、生产成本;15、V带传动设计中,限制小带轮直径的原因是: (c)a、使结构紧凑;b、防止打滑;c、避免产生过大的弯曲应力。
16、下列滚动轴承中角接触球轴承是:(c);其内径尺寸为:(100);a、 6210 ;b、 N2218 ;c、 7020AC ;d、 32307/P517、某阶梯轴应用于中速中载场合,承受弯矩和扭矩,材料宜采用下列中的(a)。
a、40Cr ;b、HT300 ;c、QT600—3A ;;d、ZG45 ;e、KTB350—04 ;18、重要的连接采用测力矩扳手或定力矩扳手是为了:(d)a、便于操作;b、不至于过分拧紧导致滑牙;c、防松;d、控制预紧力;19、设计平键连接时,键的宽度值应根据轴的(c)查机械设计手册初选;a、长度;b、截面形状;c、直径;d、材料;三、简答题1、开式和闭式两种齿轮传动中,哪种传动一般不会出现点蚀现象?说明原因。
答:开式齿轮传动一般不会出现点蚀,这主要是因为开式齿轮磨损速度一般大于疲劳裂纹扩展速度。
也就是开式齿轮传动因为磨损严重,接触疲劳裂纹发生后,即被迅速磨去,因而不会发生点蚀。
2、简述流体形成稳定动压润滑油膜的条件。
答:①润滑油要具有一定的粘度;②两摩擦表面要具有一定的相对滑动速度;③相对滑动的表面间要形成收敛的楔形间隙;④有充足的供油量。
3、什么是滚动轴承的寿命?什么是基本额定寿命?答:滚动轴承的寿命是指轴承中任意元件发生失效前的总转数,或在一定转速下的工作小时数;滚动轴承的基本额定寿命是指同一型号、同一批次的轴承,在相同的条件下,其中10%的轴承发生失效时的总转数,或在一定转速下的工作小时数。
4、试分析张紧力F0的大小对带传动的影响。
答:张紧力F0越大,则带传动的承载能力就越大,但同时带中所受的拉应力也越大,带的磨损加剧,从而降低带的寿命;张紧力越小,虽可减小带中的拉应力,提高带的寿命,但带传动的承载能力会降低,工作时易跳动和打滑。
5、下图所示为某零件与机架通过螺栓联接的示意图,试分析该联接在载荷F 作用下可能发生的失效形式。
答:如图,该联接可能发生的失效形式有:①左端受力最大的螺栓被拉断;②在载荷F 产生的力矩作用下,接合面左端 可能分离,零件或机架的右接合面处可能被压坏; ③在载荷F 作用下,零件相对机架产生滑移。
6、以磨损量为纵坐标、时间为横坐标画图表示机械零件的正常磨损过程,在图中相应位置标示正常磨损过程经历的几个磨损阶段,简述各阶段磨损情况。
答:磨损图如右图所示。
磨合磨损阶段:是指在机器使用初期,为改善机 器零件的适应性、表面形态和摩擦相容性的磨损 过程;稳定磨损阶段:磨损率保持不变,属于正常工作 阶段;失效磨损阶段:磨损率急剧增加,使工作条件迅 速恶化,导致失效。
7、简述齿向载荷分布系数βK 和齿间载荷分配系数αK 分别考虑的是什么因素对齿轮所受载荷的影响?。
答:①齿向载荷分布系数βK 考虑的是由于轴的变形和齿轮制造误差等引起载荷沿齿宽方向分布不均匀性的影响;②齿间载荷分配系数αK 考虑的是同时啮合的各对轮齿间载荷分配不均匀的影响。
8、简述齿面点蚀的种类及其概念。
答:齿面点蚀分为初期点蚀和扩展性点蚀。
初期点蚀是指工作初期由于啮合的齿面接触不良造成局部应力过高而出现麻点,齿面经一段时间跑合后,接触应力趋于均匀,麻点不再扩展,甚至消失的现象。
扩展性点蚀是指随工作时间增加,齿面点蚀面积不断扩展,麻点尺寸、数量不断增多的现象,此时会产生强烈的振动和噪声,导致齿轮失效。
9、试分析张紧力F 0对带传动正反两方面的影响。
答:张紧力F 0越大,则带传动的承载能力就越大,但同时带中所受的拉应力也越大,带的磨损加剧,从而降低带的寿命;张紧力越小,虽可减小带中的拉应力,提高带的寿命,但带传动的承 载能力会降低,工作时易跳动和打滑。
10、简述螺纹连接过程中预紧和防松的重要性。
答:预紧可夹紧被连接件,使连接接合面产生压紧力(即预紧力),它能防止被连接件的分离、相对滑移或接合面开缝。
适当的预紧力,可提高连接的可靠性、紧密性。
静载下,连接螺纹副中由于预紧和自锁,螺母和螺栓头部的支承面摩擦力可有效地放止连接松脱,但在冲击、振动及变载荷作用下或当高温、温度变化较大时,连接中的预紧力和摩擦力会逐渐减小或瞬时消失,使螺母松脱,导致连接失效。
而螺纹连接一旦失效,轻者影响机器正常运转,重则机毁人亡,因此,螺纹连接过程中不仅要有适当的预紧,还必须采取有效、合理的防松措施。