细胞的内膜系统--溶酶体
细胞生物学——名词解释
1)细胞内膜系统:是指细胞内在结构、功能及发生上相关的,由膜围绕的细胞器或细胞结构,主要包括,内质网、高尔基体、溶酶体等。
2)生物膜系统:只要是指单位膜构成的细胞质膜和由单位膜围成的各种细胞器,如线粒体、叶绿体、高尔基体、溶酶体等。
3)细胞识别:细胞通过表面受体与胞外信号分子(配体)选择性相互作用导致胞内一系列生理变化,最终表现为细胞整体的生物学效应的过程,是细胞通讯的重要环节。
4)细胞生物学:是研究细胞基本生命活动规律的科学,它在不同层次(显微、亚显微与分子水平)上研究细胞的结构、发育与调控,以及细胞间关系和在整个生命体中的作用。
5)受体:是一种能够识别和选择性结合某种配体(信号分子)的大分子,当与配体结合后,通过信号转到作用将胞外信号转换为胞内化学或物理的信号,以启动一系列过程,最最终表现为生物学效应。
6)分子开关:是使细胞内一系列信号传递的级联反应,能在正、负反馈两个方面得到精确控制的分子机制的蛋白质分子。
7)细胞凋亡:又叫程序性细胞死亡,是细胞主动发生的自然死亡过程,是一个主动的由基因决定的结束生命的过程,可以发生在生物体的生长发育直至死亡的整个生命过程及某些病理过程中。
8)细胞骨架:指真核细胞中的蛋白纤维网架体系,细胞骨架概念有狭义和广义之分,狭义的细胞骨架概念是指细胞质骨架,包括微丝、微管和中间纤维;广义的细胞骨架包括细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。
9)细胞骨架系统:是由一系列特异的结构蛋白质装配而成的胞内网架系统,广泛分布于细胞结构的各个部分,在维持细胞形态与内部结构的合理排布中起支架作用。
10)蛋白质分选:新生肽由其合成部位正确地运转到其行使功能部位的过程,包括细胞质基质中合成多肽的分选途径和粗面内质网上合成多肽的分选途径。
(合成的蛋白质只有转运至细胞的正确部位,并装配成结构与功能的复合体才能参与细胞的生命活动,这一过程称为蛋白质分选)11)核小体:染色体的基本结构单元,是由组蛋白和200个碱基对的DNA双螺旋组成的球形小体。
细胞生物学第五章(内膜系统)
修饰部位 ER
Golgi complex
1.脂类的合成
SER最主要的功能是合成和运输脂类。
可合成生物膜的磷脂、胆固醇和糖脂。
翻 转 酶
转运方式:
出芽:到高尔基体、 溶酶体和细胞膜。 膜泡转运
磷脂转换蛋白:线
第五章 内膜系统
Endomembrane system
内膜系统
1
内质网
2学时
2 3
4 5
高尔基复合体
溶酶体 过氧化物酶体
2学时
内膜系统与细胞整体性 2学时
教学目的
1.掌握新合成肽链在信号肽指导下穿越 内质网进行转移的过程; 2.区别掌握粗面内质网与滑面内质网的 基本功能; 3.掌握粗面内质网合成蛋白的类型和对 蛋白质的修饰作用; 4.熟悉内质网的形态结构与类型; 5.了解内质网的化学组成。
信号肽在蛋白质分选中的作用
信号肽在蛋白质 向内质网的转运过程中 是必须的.
信号肽 Signal peptide
由信号密码翻译出的,
由15-30个连续的疏水氨基酸序列。
决定蛋白质在细胞内的去向。
The signal sequence of growth hormone. Most signal sequences contain a stretch of hydrophobic amino acids, preceded by basic residues (e.g., arginine).
1972年,stein发现: 骨髓瘤细胞中提取的免疫球蛋白
分子的N端要比分泌到细胞外的
免疫球蛋白分子N端多一段氨基 酸序列。
细胞生物学-第五章-内膜系统
Günter Blobel
2021/4/9
Blobel with members of his laboratory 23
“信号假说”(signal hypothesis)
信号肽(signal peptide):新合成的蛋白质分子N端含 有一段由15~30个疏水性氨基酸残基组成的特殊序列, 该序列就是蛋白质分选信号,又称信号肽。
15
(二)滑面内质网 SER在细胞中通常多呈分支管状或小泡状。 SER只占内质网的很少的部分,只有在一些
特化的细胞中才具有丰富的SER,同时也承担特 殊的功能。例如,骨骼肌细胞中分布大量的肌 质网,这是特化的SER。
2021/4/9
16
SER
2021/4/9
17
2021/4/9
18
四、内质网的功能(掌握)
第五章 内膜系统
第一节 内质网 第二节 高尔基体 第三节 溶酶体 第四节 过氧化物酶体
2021/4/9
1
✓概念:内膜系统(internal membrane system) 是指位于细胞内那些在结构、功能乃至发生上 具有一定联系的膜性结构,其中包括细胞组分 中的核膜、内质网、高尔基体、溶酶体、过氧 化物酶体及液泡。
2021/4/9
32
2.蛋白质的运输
① 分泌型蛋白或溶酶体蛋白:出芽方式 ② 膜镶嵌蛋白质的运输方式
在合成多肽链的同时,便直接与内质网组合,形成了 膜镶嵌蛋白;
将合成的多肽链注入内质网腔中,然后组合到膜中。
③ 可溶性蛋白质直接转入细胞质中
2021/4/9
33
2021/4/9
34
3.蛋白质的修饰
✓特点:内膜系统是真核细胞特有的结构。它 们在结构和功能上是统一的整体,是细胞内蛋 白质、酶类、脂类和糖类合成的场所,也具有 包装和运输合成物与分泌产物的功能。
细胞的内膜系统
细胞的内膜系统◆内膜系统是指细胞质内结构、功能、发生上相关的膜性细胞器,包括内质网、高尔基体、溶酶体、过氧化物酶体、各种有膜的转运小泡及核膜等。
内膜系统的各细胞器形成相互分隔的封闭性区室,执行专一功能,使各细胞器之间既相互依存,又高度协调,大大提高了细胞的代谢效率。
内膜系统中内质网和高尔基体参与蛋白质脂质的合成,加工分选和运输,一方面用于装配细胞自身结构,一方面分泌活性物质到细胞外完成功能活动。
溶酶体主要负责细胞内外物质消化。
◆内质网内质网是由封闭的膜系统围成的腔相互沟通形成的网状结构。
内质网膜与核膜外层相连,与向内折叠的细胞质膜相连,在细胞内形成一个相互沟通的片层网状结构,将细胞基质分隔成许多区域,使不同的代谢反应在特定环境中进行。
内质网不仅在蛋白质和脂质合成上起重要作用,也是其他膜性细胞器如高尔基复合体和溶酶体的来源。
高尔基体高尔基体在哺乳动物细胞核附近,紧靠中心粒。
高尔基复合体是蛋白质修饰、分选和水解、加工场所,又是分泌物质的转运站,同时还参与膜的转化过程溶酶体溶酶体是单层膜包裹多种酸性水解酶的囊泡状细胞器主要功能是进行细胞内的消化作用。
溶酶体的异噬作用参与机体营养、防御等功能活动,自噬作用是细胞代谢的重要方式。
初级溶酶体是在高尔基体的反侧以出牙的形式出现,组成溶酶体的各类水解酶都是先由粗面内质网附着核糖体合成,并在内质网腔中经过N-连接糖基化修饰,然后转到高尔基复合体等的一系列过程中形成的。
过氧化物酶体过氧化物酶体是由一层单位膜包裹的含有多种氧化酶、过氧化物酶及过氧化氢酶,一般认为其主要功能是氧化和解毒作用。
过氧化物酶体来自粗面内质网、原有过氧化物酶体或游离核糖体。
◆内膜系统各系胞器之间不是相互孤立的,而是结构、功能、发生上紧密相关,表现出整体性和相关性。
在化学组成上,内质网膜、高尔基体膜、细胞质膜逐渐加厚。
三者包含一些共同蛋白质,但内质网含的蛋白质种类多而复杂,细胞膜蛋白种类最少,高尔基复合体的蛋白质种类介于前两者之间。
内膜系统:溶酶体
一个由10个左右的氨基酸残基组成
的C-端胞质尾区
二、溶酶体的类型 (一)按功能状态不同分为三种类型
1.初级溶酶体(primary lysosome)
是指通过形成途径刚刚产生的溶 酶体。
初级溶酶体囊腔中的酶通常处于 非活性状态。
箭头示初级溶酶体
2.次级溶酶体 (secondary lysosome) 当初级溶酶体经过成熟,接受来自 细胞内、外的物质,并与之发生相互作 用时,即成为次级溶酶体。是溶酶体的 一种功能作用状态。 次级溶酶体体积较大,外型多不规 则,囊腔中含有正在被消化分解的物质 颗粒或残损的膜碎片。
身膜结构的消化分解;
※ 溶酶体膜上嵌有质子泵,可将H+泵入
溶酶体中,维持溶酶体酸性内环境。
核酸酶
蛋白酶 酸 性 水 解 酶 糖苷酶 酯酶 磷酸酯酶 硫酸酯酶 磷酸酶
细胞质PH~7.2
PH~5
ATP
H+
ADP+Pi
溶酶体酶图解
(三)溶酶体膜糖蛋白家族有高度同源性
溶酶体膜糖蛋白家族的肽链组成结构包括: 一个较短的N-端信号肽序列 一个高度糖基化的腔内区 一个单次跨膜区
(二)按形成过程不同分为两大类型
1.内体性溶酶体——是由高尔基复合体 芽生的运输小泡和经由细胞胞吞(饮)
作用形成的晚期内体合并而成。
2.吞噬性溶酶体——是由内体性溶酶体 与来自胞内外的作用底物相互融合而 成。
三、溶酶体的形成和成熟过程
溶酶体水解酶前体 加入磷酸基团 M-6-P
ATP
ADP+Pi
特点:酶活性逐渐降低以致最终消失,进 入溶酶体生理功能作用的终末状态。
去处: 以胞吐的方式被清除、释放到细胞外; 沉积于细胞内而不被外排。 存在方式: 脂褐质——衰老的神经细胞、心肌细 胞 髓样结构——肿瘤细胞、病毒感染细 胞 含铁小体——单核吞噬细胞
细胞生物学 第五章 细胞的内膜系统
Bip是ER的驻留蛋白,能和折叠不正常的肽链结合, 并予以滞留,待折叠成正确的蛋白质后才被转运。
• 蛋白二硫键异构酶(PDI):
蛋白二硫键异构酶,催化 – Cys – SH 生成 –S-S- , 完成合成蛋白的修饰
• 内质蛋白
即葡萄糖调节蛋白94
• 钙网蛋白 有钙离子结合位点,协助蛋白质折叠和加工
体、溶酶体、过氧化物酶体、核膜等
细胞的内膜系统(internal membrane system)
• 内膜系统:
细胞内结构、功能及发生上密切相关的膜性 结构细胞器通称为内膜系统,主要包括内质网、 高尔基复合体、溶酶体、过氧化物酶体和核膜等 膜性结构。
• 内膜系统形成的意义:
区室化Compartmentaliztion 分隔式区域,互不干扰地执行特定的功能, 提高细胞的代谢效率
胃底腺壁细胞sER与盐酸分泌、渗透压 肝细胞与胆汁的生成
1.脂类合成的主要部位:合成磷脂与胆固醇
• 原料:来自细胞质基质 • 脂类合成酶:位于脂质双层,活性部位都
朝向细胞质基质面,新合成的磷脂也位于 此 • 磷脂转位蛋白 (转位酶) :位于ER膜的细胞 质基质面,协助磷脂分子翻转, 使脂双层的 磷脂分子达到平衡
溶酶体蛋白等 • 信号假说 1975年 Blobel & Doberstein
提出
信号假说中的几个名词概念
• 信号密码(signal codon) mRNA5 ’端编码特殊氨基酸序列的密码子
• 信号肽(signal peptide):
由信号密码翻译的一段多肽链,约由18-30个 疏水氨基酸组成,能引导“游离”的核糖体与ER 膜结合
• 译后转运(post-translational translocation) 多肽链翻译完成后被转运进入内质网腔
医学细胞生物学细胞的内膜系统
05
线粒体
线粒体的定义与功能
总结词
线粒体是细胞内重要的细胞器,主要负责细 胞能量代谢,是细胞进行有氧呼吸的主要场 所。
详细描述
线粒体是细胞内由双层膜包裹的细胞器,主 要负责合成和储存能量。它们通过氧化磷酸 化过程将有机物氧化,释放能量供细胞使用 。线粒体还参与其他代谢过程,如脂肪酸氧
化和氨基酸代谢。
04
溶酶体
溶酶体的定义与功能
总结词
溶酶体是细胞内具有单层膜包裹的细胞器,主要功能是分解衰老的细胞器和外 来病原体。
详细描述
溶酶体是由单层膜包裹的囊状结构,内部含有多种水解酶,能够分解衰老的细 胞器和进入细胞内的外来病原体。溶酶体的功能对于维持细胞内环境的稳定和 细胞的正常代谢至关重要。
溶酶体的结构与组成
高尔基体的结构与组成
总结词
高尔基体由扁平的囊状结构组成,具有复杂的分化和组装过程。
详细描述
高尔基体的基本结构是由一系列扁平的囊状结构组成的,这些囊状结构被称为高尔基体囊泡。高尔基体囊泡在分 化和组装过程中经历了多个阶段的形态变化,最终形成了成熟的高尔基体。高尔基体的组成还包括一些酶和其他 蛋白质,它们参与蛋白质的合成、加工和转运过程。
细胞内膜系统的组成
内质网
高尔基体
内质网是细胞内膜系统中最重要的组成部 分之一,主要负责蛋白质的合成和加工, 以及脂质的合成和转运。
高尔基体主要负责蛋白质的分类、包装和 分泌,参与形成细胞膜和细胞器膜。
溶酶体
线粒体
溶酶体是细胞内的消化器官,主要负责分 解衰老的细胞器和外来物质。
线粒体是细胞内的能量工厂,主要负责氧 化磷酸化,为细胞提供能量。
医学细胞生物学-细胞的内膜系统
目录 Contents
细胞内膜系统及其功能
细胞内膜系统及其功能内膜:细胞质内的膜相结构,区分于质膜(细胞质膜)。
内膜系统:细胞内结构、功能、发生上相互联系,由膜包被的细胞器或者细胞结构。
内膜系统(endomembrane system):包括内质网、高尔基体、溶酶体、胞内体和分泌泡。
它们的膜是相互流动的,处于动态平衡之中;功能上也相互协同。
内膜系统的共同结构特点:都是单位膜结构;仅存在于真核细胞中;处于动态平衡中,膜之间有转化现象。
内膜系统和质膜的结构区别:单位膜的层次不如质膜明显;厚度稍薄,6~7nm;膜上的抗原不同。
一、内质网ER概述(P175)K. R. Porter(1945)发现于培养的小鼠成纤维细胞,是位于细胞质内质部分的网状结构,故名内质网。
ER是由封闭的膜系统及其围成的腔形成的互相沟通的网状结构。
存在于真核细胞中,占细胞膜系统总面积的一半左右。
(一)内质网的两种基本类型——糙面内质网和光面内质网1、糙面内质网(rER)(P176)排列整齐的扁囊状结构,表面分布大量的核糖体。
可视为内质网和核糖体的复合体。
rER的主要功能(P178)合成分泌性的蛋白和多种膜蛋白。
在分泌细胞和浆细胞中非常发达。
易位子结构(translocon)——位于rER膜上的蛋白复合物,是新合成的多肽进入内质网的通道。
2、光面内质网(sER)(P177)表面无核糖体,常为分支管状,形成复杂的立体结构;sER的主要功能:①脂类合成的主要场所;②作为出芽的位点,将内质网合成的蛋白质和脂类转移到高尔基体中。
3、rER和sER的结构关系rER包含20余种与sER不同的蛋白;两者都是内质网的不同区域,并不混合;4、ER与质膜、核膜的联系有时质膜向内折叠并与ER相连接,二者相通——ER从质膜起源;rER常与外层核膜相连,ER腔和核周隙沟通,外核膜上也常附有核糖体颗粒——ER膜与核膜的同源性。
5、两个概念:微粒体(microsome):(P176)实验过程中破碎的ER自我融合形成的近似球形的膜泡结构,包含内质网膜和核糖体组分。
细胞生物学07细胞内膜系统
Rab蛋白家族
Rab蛋白是膜泡运输的关键调控因子 ,通过结合GTP/GDP循环来调控膜 泡的形成、运输和融合。
SNARE蛋白复合物
SNARE蛋白在膜泡融合过程中发挥 重要作用,通过形成复合物拉近两个 膜的距离并促进融合。
信号转导通路
细胞通过信号转导通路感知内外环境 变化,进而调控膜泡运输过程以满足 细胞需求。
02
细胞内膜系统的结构与功 能
内质网的结构与功能
结构
内质网由单层膜构成的管状、泡状或扁平囊状结构连接而成,分为粗面内质网 和光面内质网两种。
功能
内质网是细胞内蛋白质合成、加工、运输和脂质合成的重要场所。粗面内质网 主要参与蛋白质的合成与加工,光面内质网则与脂质的合成和代谢有关。
高尔基体的结构与功能
03
细胞内膜系统与物质运输
膜泡运输的基本过程
膜泡的形成
在供体膜上,特定的蛋白质识别和结 合要运输的物质,然后膜向内凹陷形 成膜泡。
膜泡的运输ຫໍສະໝຸດ 膜泡的融合与目标卸载膜泡与目标膜融合,释放其内容物到 目标区域。
膜泡沿着细胞骨架(如微管、微丝) 移动,到达目标膜。
各类膜泡运输的实例
内吞作用
01
细胞通过膜内陷将物质摄入细胞内部,如受体介导的内吞作用
蛋白质磷酸化
信号通路中的关键蛋白质发生磷酸 化修饰,从而改变其活性和功能。
基因表达调控
信号通路最终作用于细胞核内的基 因表达调控机制,影响细胞的功能 和命运。
信号转导的终止与调节
信号分子的灭活
信号分子在完成信号传递后被灭活,从而终止信号转导。
受体的脱敏
受体在持续激活状态下会发生脱敏,降低对信号分子的响应。
负反馈调节
医学细胞生物学 2014年最新最完整的课件 第五章 内膜系统
核糖体受体
蛋白质转 运通道
信号肽与SRP引导核糖体附着于内质网膜上的过程29
六、内质网与医学
(一)脱粒和肿胀
(二)增生和肥大
(三)包含物
30
第二节
高尔基复合体
1898 高尔基(意大利)利用光镜在猫的神经细胞发现 并命名高尔基复合体。 一、高尔基复合体的形态结构 反面
光镜:网状结构
大囊泡
电
扁平囊
胰岛素形成
前胰岛素原(胰岛的B细胞的RER上合成)
胰岛素原(rER腔内切除信号肽,ABC
三个肽链的,无活性)
胰岛素一级结构
(在高尔基体水解去C链,AB链内靠二硫键结合折叠而形成)
42
43
(三)蛋白质的分选与运输
1. 溶酶体蛋白的分选、运输与溶酶体的形成
蛋白质合成
溶酶体寡聚糖磷酸化 (6-磷酸甘露糖)
16
2.蛋白质的运输
穿膜运输:发生在细胞质与细胞器之间蛋 白质直接穿膜转入细胞器中(穿 方式 膜的蛋白质是非折叠的) 转运小泡运输:发生在细胞器之间蛋白质 在细胞器中形成小泡以出 芽方式运输。 如分泌性蛋白、溶酶体蛋白
17
3.蛋白质的修饰
(1)蛋白质的折叠:分子伴侣的调节。
分子伴侣:
热激蛋白家族,在细胞内具有协助其他蛋白质 多肽链进行正确折叠、组装、转运及降解之功能。
51
三、溶酶体的类型 (一)初级溶酶体
初级溶酶体(primary lysosome):初级溶酶体是 刚从高尔基体出芽形成的内含多种水解酶,但无作用 底物无酶活性的小泡。
含有M-6-P的 溶酶体富集 溶酶体水 磷酸化 加M-6-P 酶蛋白与M-6解酶前体 P受体结合 膜衣 包装 初级 被特 出芽 笼蛋 脱衣被 含酶 白小 运输 溶酶 殊包 泡 泡 体 装 52
细胞生物学 第6章 内膜系统
26
3)大囊泡(vacuole) )大囊泡( )
多见于扁平囊的凹面和边缘, 多见于扁平囊的凹面和边缘,泡内含物依 其性质和成熟程度而有变化。 其性质和成熟程度而有变化。
27
2、高尔基复合体的功能 、
将内质网中合成的多种蛋白质和脂类 进行进一步的加工、分类和包装, 进行进一步的加工、分类和包装,然后分 门别类地运送到细胞特定的部位或分泌到 细胞外。 细胞外。
9
2)新合成蛋白质的粗加工 )
新生多肽链的折叠和组装: ① 新生多肽链的折叠和组装: a.蛋白二硫键易构酶 蛋白二硫键易构酶 b.结合蛋白(binding protein,Bip) 结合蛋白( 结合蛋白 , )
10
② 蛋白质的修饰和加工
粗面内质网中进行的糖基化主要是N-连接 粗面内质网中进行的糖基化主要是 连接 糖基化主要是 糖基化 ,N-连接的糖蛋白多为分泌性蛋 连接的糖蛋白多为分泌性蛋 白和溶酶体蛋白。 白和溶酶体蛋白。
氨基酸在粗面内质网的核糖体上合成蛋白质, 氨基酸在粗面内质网的核糖体上合成蛋白质,经 小泡运输到高尔基复合体进一步加工修饰后,浓 小泡运输到高尔基复合体进一步加工修饰后, 缩成酶原颗粒,最后通过出胞作用排出胞外。 缩成酶原颗粒,最后通过出胞作用排出胞外。
32
Palade的分泌蛋白运输模型 的分泌蛋白运输模型: 的分泌蛋白运输模型
5. 第一个糖残基
N—乙酰葡萄糖胺 乙酰葡萄糖胺
功能: 功能:
a. 为各种蛋白质打上不同的标志; 为各种蛋白质打上不同的标志; b.影响多肽的构象; 影响多肽的构象; c. 增强糖蛋白的稳定性; 增强糖蛋白的稳定性; d. 多羟基糖侧链还可能影响蛋白质的水溶性及蛋白质所 带电荷的性质
31
2019-2020年初中生物竞赛辅导 细胞 第五章 细胞的内膜系统
2019-2020年初中生物竞赛辅导细胞第五章细胞的内膜系统细胞的内膜系统是指在结构、功能或发生上相关的膜围绕的细胞器或细胞结构,其中包括细胞组分中的核被膜、内质网、高尔基体和小泡与液泡,以及其它细胞器,如线粒体、叶绿体和微体、溶酶体等。
内膜是对包围在细胞外面的质膜而言的。
与质膜相比,内膜系统的膜,其厚度比较薄,约为7nm。
细胞的内膜将细胞区隔成为具有不同功能的区室,各区室相互间的物理和化学性质上均有区别。
每一区室由封闭的选择性通透的膜构成边界,形成一个个亚细胞反应器,具限制性能的膜在这一容器中,保持并浓缩着一套独特的酶,由此而赋予每一区室的特异性的功能。
第一节内质网内质网(缩写ER)是真核细胞中的重要的细胞器。
由封闭的膜系统及其围成的腔形成互相沟通的网状结构。
通常占细胞的整个膜成分的一半以上,体积占细胞总体积的10%以上。
一、内质网的两种基本类型根据结构和功能,内质网可分为两种基本类型:粗面内质肉(rER)和光面内质网(sER)。
粗面内质网多呈扁囊状,排列较为整齐,因在其膜表面分布着大量的核糖体而命名。
它是内质网和核糖体共同形成的复合机能结构。
其主要功能是合成分泌性的蛋白和多种膜蛋白。
因此在分泌细胞(如胰腺腺泡细胞)和浆细胞(分泌抗体)中粗面内质网非常发达,而一些未分化的细胞与肿瘤细胞中则较为稀少。
光面内质网常常是由分支的管道形成较为复杂的立体结构,其上无核糖体,是脂类合成的重要场所。
细胞中几乎不含有纯的光面内质网,它们只是作为内质网这一连续结构的一部分。
光面内质网所占的区域通常较小,它往往作为出芽的位点,将内质网上合成的蛋白质或脂类转移到高尔基体内。
在某些细胞中,光面内质网非常发达并具有特殊的功能,如合成固醇类激素的细胞及肝细胞等。
超微结构研究表明,向内折叠的细胞质膜有时与内质网相连接,甚至有管道相通。
原核细胞的细胞质膜内侧有时附着大量核糖体,因而一些人认为在细胞进化过程中,内质网可能由细胞质膜进一步演化而来。
第五章 细胞的内膜系统
第一节
(5) 信号肽跨膜的能量来源
• 信号肽穿过ER膜并引导新生的多肽链进入ER腔中是需要耗能的。 • SRP和SRP受体可结合GTP并具有GTP酶的活性。
SA: signal-anchor sequence
II型:N端位于细胞质侧,C端位于ER腔侧 III型:N端位于ER腔侧,C端位于细胞质侧
第一节
第一节
IV型跨膜蛋白的翻译共转位的信号序列
第一节
2. 对蛋白质进行加工、修饰
• RER合成的可溶性蛋白质和跨膜蛋白质大部分都需 要进行糖基化修饰 。
第一节
2. 滑面内质网的特点
形态上多为分枝的小管组成的网状结构
膜表面无核糖体附着
在一些细胞中滑面内质网非常丰富。
分泌甾类激素的细胞、汗腺细胞、胃壁细胞、肌细胞 中的肌质网
第一节
2. 滑面内质网的特点
睾丸间质细胞的SER
肝脏细胞的RER和SER
第一节
二、内质网的化学组成
ER的化学组成成分鉴定的经典实验
The model derived from an electron microscopic reconstruction, shows a yeast ribosome with the protein translocator of the endoplasmic reticulum attached.
micrograph (TEM)
B: Scanning electron
细胞的内膜系统
N-连接的寡糖链:在rER腔内合成。
糖蛋白
O-连接的寡糖链:在高尔基复合体内合成。
3 3 3
H标记甘露糖 H标记半乳糖;唾液糖 H标记N-乙酰葡萄糖胺
高尔基复合体对糖蛋白的合成和修饰过程具 有严格的顺序性。
2.参与蛋白质的改造 加工改造
无活性的前体物质(某些肽类激素)
有生物活性的物质(激素)
(二)高尔基复合体对蛋白质的分拣运输
凹 面:成熟(反)面
凸面:形成(顺)面;
二.高尔基复合体的化学组成
特征酶:糖基转移酶 117分钟
三.高尔基复合体的功能
(一)分泌蛋白的加工与修饰
3
17分钟
H标记亮氨酸
高尔基复合体在细胞分泌活 动中起着重要的运输作用;在 3分钟 分泌颗粒的形成过程中起着浓 缩、修饰、加工等作用。
1.参与糖蛋白的合成和修饰
二.内质网的化学组成
微粒体:为用蔗糖密度梯度离 心方法,从细胞匀浆中分离出的 内质网 碎片。
标志酶:葡萄糖-6-磷酸酶
三.内质网的功能
粗面内质网:蛋白质的合成与转运。
滑面内质网:小分子物质的合成与代谢以及细胞的解毒作用。
粗面内质网的功能 1.粗面内质网与蛋白质的合成
此乃粗面内质网最重要的功能,即合成外输性蛋白质(分泌 蛋白)。由粗面内质网所合成的蛋白质包括:
二聚体 120S
多聚核糖体
(Endoplasmic reticulum,ER) 1945年,K.R.Poter----------电子显微镜--------小鼠成纤维细胞
一.内质网的形态结构与类型
内质网是由一层单位膜围成的 形状大小不同的小管,小泡, 扁囊状结构,相互连接形成一 小管 个连续的网状膜系统。 细胞膜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dr. Luo Daji<Cell Biology>
1. 初级溶酶体
是由高尔基复合体芽生的运输小泡和内体合并而成。水解 酶无活性,没有作用底物及消化产物。
2. 次级溶酶体
由初级溶酶体和将被水解的各种吞噬底物融合而成。水解 酶有活性,有作用底物及消化产物。
Dr. Luo Daji<Cell Biology>
2) 异噬作用
溶酶体对外源性异物的消化分解过程称为异噬作用。 异噬作用不仅为细胞生存提供了可直接利用的营养物质,而 且还能消除外来异物的毒害对机体起着防御保护作用。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
溶酶体的功能状态与一些疾病的发生相关:
1. 先天性溶酶体病(糖原沉积病、脂质沉积病和粘 多糖沉积病等) 2. 矽肺 3. 类风湿性关节炎 4. 肿瘤
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
溶酶体相关病例举例--矽肺
1. 什么是矽肺? 矽肺是尘肺中最为严重的一种类型。矽肺患者常有 咳嗽、气急、头昏、头痛、胸闷、胸痛、呼吸困难、消 瘦乏力等症状。严重时影响肺功能,丧失劳动能力。 2. 矽肺如何形成?什么情况下容易患矽肺? 长期从事暴露于粉尘类的职业,由于过多的吸入含有 游离二氧化硅(SiO2)的粉尘所引起一种慢性疾病。
电镜下,因溶酶体内含物的电子密度较高,着色深, 易与线粒体、过氧化物酶体等泡状细胞器相区别。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
标志酶:酸性磷酸酶
溶酶体含有丰富的酸性水解酶,目前发现约有60余 种,其最适pH为5.0。 脂质双分子层中以鞘磷脂居多;膜蛋白异乎寻常高度 糖基化。膜上具有质子泵,依赖ATP水解放出能量将H+泵 入溶酶体内以维持其内腔的酸性pH。
指在细胞内,在一定条件下,溶酶体膜破裂,水解酶溢 出致使细胞本身被消化分解,这一过程称为自溶作用。 青蛙变态发育阶段尾巴的逐渐消失是溶酶体自溶作用的 结果。 在人类,子宫内膜的周期性萎缩可部分归因于溶酶体自 溶作用。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
矽肺是一种职业病,其病因 与溶酶体的自溶作用有关。 矽尘吸入肺泡
SiO2
巨噬细胞
巨噬细胞
含有矽尘的吞噬小体与溶酶体合并成为 次级溶酶体,吞噬细胞溶酶体崩解 巨噬细胞吞噬外来异物SiO2 Medical Genetics Department, WHU Dr. Luo Daji<Cell Biology>
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
1. 细胞内的消化作用 1) 自噬作用
溶酶体对细胞自身结构组分的消化分解过程称为自噬作用 。通过自噬作用细胞结构得以更新,有利于高效率发挥生理 功能。
Medical Genetics Department, WHU
思考题 1. 溶酶体如何形成,具有哪些生物学功能? 2. 试从细胞生物学水平解释矽肺发病机理。 3. 试从细胞生物学水平理解PM2.5颗粒可能的危 害。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
根据底物来源不同,将次级溶酶体分为自噬性溶酶体和 异噬性溶酶体。
Medical Genetic<Cell Biology>
3. 残余小体(residual body)
4. 粒溶作用
溶酶体分解胞内剩余营养颗粒的作用称为粒溶作用。 例如:母体哺乳期内乳腺细胞含有丰富的乳汁颗粒,一旦 停止授乳,细胞内多余的乳汁颗粒即与溶酶体融合而被分解。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
四、溶酶体与疾病的关系
Dr. Luo Daji<Cell Biology>
2012年3月5日,备受社会关注的“PM2.5” 一词首度出现在政府工作报告中
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
细胞的内膜系统(Endomembrane System)
溶酶体 (Lysosome)
溶酶体形成模式图
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
一、形态特点和化学组成
溶酶体是由一层单位膜围界而成的球形或卵圆形结构,其 直径一般在0.2~0.8 µ m之间,膜厚约6nm。
线粒体 (Mitochondrion) 溶酶体 (Lysosome) 过氧化物酶体 (Peroxisome)
为什么游离二氧化硅(SiO2)的粉尘就能引起细胞的纤 维化?或者说最终导致矽肺的发生? 肺部细胞高度纤维化而丧失功能,严重肺功能,严重 时造成丧失劳动能力。 与细胞内细胞器--溶酶体的自溶作用有关
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
《细胞生物学》
第八章 细胞的内膜系统 第四节 溶酶体
主讲:罗大极 医学遗传学系
Medical Genetics Department, WHU
2009年6月22日,28岁的张海超被逼无 奈执著要求“开胸验肺”,以此证明自 己确实患上了“尘肺病”。
Medical Genetics Department, WHU
一般来说,溶酶体是从反面高尔基网以出芽方式形成。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
溶酶体形成的M6P途径
溶酶体的酶类在内质网上起始合成,由运输小泡运输 至高尔基复合体;在顺面高尔基体带上甘露糖-6-磷酸标记 后;在高尔基体反面网络形成溶酶体分泌泡; 最后,去磷 酸化成为溶酶体。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
临床诊断
患者由于长期吸入大量含有游离二氧化硅粉尘所引起, 以肺部广泛的结节性纤维化为主的疾病。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
次级溶酶体经过一段时间消化后,其中的小分子物质转 运到细胞质基质中,未被消化的物质残存在溶酶体中形成残 余小体,可通过外排作用将内容物排出细胞。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
三、溶酶体的生物功能
溶酶体的基本功能是酶解消化作用。它既可对吞噬入胞 的异源物质如细菌、病毒等进行消化分解,也可对细胞内自 噬的衰亡细胞器、营养颗粒等物质进行消化分解。同时机体 中细胞的生理性自溶及精/卵结合也与溶酶体有关。 1. 2. 3. 4. 细胞内的消化作用 对细胞外物质的消化 自溶作用 粒溶作用
2. 对细胞外物质的消化
参与受精过程和骨质更新。
在受精过程中的作用,精子的顶体相当于特化的溶 酶体,其中含多种水解酶类,能溶解卵细胞的外被及滤 泡细胞,产生孔道,使精子进入卵细胞。
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
3. 自溶作用
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
二、溶酶体的形成与分类
溶酶体的形成
溶酶体的形成是一个相当复杂的过程, 涉及的细胞器 有内质网、高尔基复合体等。比较清楚的是甘露糖-6-磷酸 途径(mannose 6-phosphate sorting pathway, M6P):
是指细胞质内在形态结构、功能和发生上具有相互联系 的膜相结构的总称,包括核膜、内质网、高尔基复合体、溶 酶体以及各种膜性小泡等。
溶酶体 (Lysosome)
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
第四节 溶酶体
溶酶体(Lysosome)是单层膜围绕、内含多种酸性水解酶 类的囊泡状细胞器,其主要功能是进行细胞内消化。典型的 动物细胞中约含有数百个溶酶体,但在不同的细胞内溶酶体 的数量和形态有很大差异。