九年级第一学期期中数学测试卷
九年级第一学期期中考试数学试卷(含参考答案)
九年级第一学期期中考试数学试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共10小题,每小题3分,共30分.1.在下列方程中是一元二次方程的是()A.x2-2x y+y2=0B. x2-2x=3C. x(x +3)= x2-1D. x + =02.将二次函数y= x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x- 2)2+1B.y= (x +2)2+1C. (x- 2)2-1D.y= (x +2)2- 13.一元二次方程x2-2x +5=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断4.对于二次函数y= - (x- 2)2-3,下列说法正确的是()B A.当x >0时,y随x的增大而增大 B.当x =2时,y有最大值- 3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点5.用配方法解方程x2- 6x- 3=0时,原方程应变形为()A. (x +3)2=3B. (x +3)2=12C. (x- 3)2=3D. (x- 3)2=126.已知函数y=(x- 1)2+2,当函数值y随x的增大而减小时,x的取值范围是()A x <1 B. x >1 C. x >-2 D. - 2< x <47.若x1,x2是一元二次方程2x2- 9x +4=0的两根,则x1+ x2的值是()A. - 2B.2C.D. - 28.二次函数y=ax2+b x+c(a≠0)的图像如图所示,则函数值y>0时,x的取值范围是()A. x <-1B. x >3C. -1< x <3D. x <-1 或x >3第8题图第10题图9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175 亿元,二月、三月平均增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50 (1+x) +50(1+x)2= 175D.50+50(1+x)2=17510.已知二次函数y=ax2+b x+c(a≠0)的图像如图所示,对称轴为直线x=2.则下列结论中正确的是()A a bc>0 B.4a-b=0 C.9a+3b+c<0 D.5a+c>0二、填空题:本大题共5小题,每小题3分,共15分.11.方程x2= x的解是____________12.当k______时,y=( k +3)x2- k x+2是关于x的二次函数.13.抛物线y=2(x +1)2-3,的顶点坐标为________,对称轴为直线______14.已知x=1是方程x2+ax-b=0的一个根,则a-b+2023=_____15如图,一段抛物线:y=-x(x -2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C6,若P(11,m)在第6段抛物线C6上,则m的值为=____三、解答题(一):本大题共3小题,第16 题10分,第17、18题7分,共24分.16.计算:用适当方法解方程:(1)(x +1)2=5x+5 (2)x2- 4x- 5=017.某次聚会上,同学们互相送照片,每人给每个同学一张照片,一共送出90张照片,问一共有多少位同学参加了聚会?18.已知抛物线y= x2- 2x- 3.(1)求抛物线与两坐标轴的交点坐标(2)求它的顶点坐标。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、单选题1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程2410x x --=的左边变成平方的形式是()A .2(2)1x -=B .2(4)1x -=C .2(2)5x -=D .2(1)4x -=3.二次函数y=ax 2+bx+c 的图象如图所示,则该二次函数的顶点坐标为()A .(1,3)B .(0,1)C .(0,—3)D .(2,1)4.关于方程2450x x -+=的根的情况,下列说法正确的是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法判断5.在平面直角坐标系中,将点M (0,3-)绕原点顺时针旋转90°后得到的点的坐标为()A .(0,3-)B .(3,0)C .(3-,0)D .(0,3)6.如图,ABCDE 是正五边形,该图形绕它的中心至少旋转()可以跟自身重合。
A .60︒B .120︒C .75︒D .72︒7.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是()A .y =(x +2)2+1B .y =(x -2)2+1C .y =(x +2)2-1D .y =(x -2)2-18.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则()A .p >0且q >0B .p >0且q <0C .p <0且q >0D .p <0且q <09.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图象可能是A .B .C .D .10.如图,已知△ABC 的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x 2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .b≤-2B .b<-2C .b≥-2D .b>-2二、填空题11.已知点(2,1)在抛物线y=ax 2上,则此函数的开口方向___________12.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____.13.在平面直角坐标系中,点P (—10,a )与点Q (b ,b+1)关于原点对称,则a+b=____14.二次函数y=ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y )对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________15.如图,在等腰直角三角形△ABC中,∠C=90°,AC=,将△ABC绕点B顺时针旋转60°得到△DBE,连接DC,则线段DC=_____________cm.三、解答题16.抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是___________17.解方程(1)x2+2x—8=0(2)2x2+3x+1=018.在正方形网格中建立平面直角坐标系xOy,△ABC的三个顶点均在格点上,(1)画出△ABC关于点O的中心对称图形△A1B1C1(2)线段AC与线段A1C1的位置关系是______________19.王师傅开了一家商店,七月份盈利2500元,九月份盈利3600元,且每个月盈利的平均增长率都相等,求每月盈利的平均增长率.20.已知关于x的方程x2+5x﹣p2=0.(1)求证:无论p取何值,方程总有两个不相等的实数根;(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.21.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.(1)求此抛物线的解析式;(2)求△BCD的面积.22.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P AB(1)点P与点P’之间的距离;(2)∠APB的度数.23.已知某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售的单价每降低1元,每天就多卖5件,但要求销售单价不得低于成本.(1)设降价x元,求出每天的销售利润y(元)与x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元时,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)24.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.25.已知:抛物线l1:y=—x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为直线x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5—2)(1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案1.C【详解】解:A 、是中心对称图形,不是轴对称图形,故选项错误;B 、是轴对称图形,不是中心对称图形,故选项错误;C 、既是轴对称图形,又是中心对称图形,故选项正确;D 、是中心对称图形,不是轴对称图形,故选项错误.故选C.2.C【详解】2410x x --=2445x x +=-()225x -=故答案为:C .【点睛】本题考查了一元二次方程的转换问题,掌握配方法是解题的关键.3.D【解析】【分析】根据抛物线与x 轴的两个交点坐标确定对称轴后即可确定顶点坐标.【详解】解:观察图象发现图象与x 轴交于点(1,0)和(3,0),∴对称轴为2x =,∴顶点坐标为(2,1),故选:D .【点睛】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大.4.B【解析】【分析】根据一元二次方程根的判别式直接判断即可.【详解】解:关于方程2450x x -+=,∵1,4,5a b c ==-=,∴224(4)41540b ac -=--⨯⨯=-<,∴方程2450x x -+=没有实数根,故选:B .【点睛】本题主要考查一元二次方程根的判别式,熟知240b ac ->,有两个不相等的实数根;240b ac -=,有两个相等的实数根;24<0b ac -,没有实数根;是解题的关键.5.C【解析】【分析】根据旋转的性质即可确定点坐标.【详解】解:点(0,3)M -绕原点O 顺时针旋转90︒,得到的点的坐标为(3,0)-,故选:C .【点睛】本题考查了坐标与图形变化-旋转,解题的关键是掌握图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45︒,60︒,90︒,180︒.6.D【解析】【分析】根据正五边形的每个中心角相等且其和为360°即可得到结论.【详解】根据正五边形的性质,每个中心角的相等,则每个中心角的度数为360°÷5=72°,故该图形绕它的中心至少旋转72度可以跟自身重合.故选:D .【点睛】本题考查了图形的旋转及正多边形的性质,关键是抓住正多边形的中心角相等这一性质,问题即解决.7.B【解析】【分析】根据抛物线的平移规律“上加下减,左加右减”解答即可.【详解】将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是y =(x -2)2+1.故选B.本题考查了抛物线的平移规律,熟记抛物线的平移规律“上加下减,左加右减”是解决问题的关键.8.A【解析】【详解】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0.故选A.9.C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点睛】=+在不同情况下所在本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y kx b的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.C【解析】根据y=x 2+bx+1与y 轴交于点(0,1),且与点C 关于x=1对称,则对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,据此可求出b 的取值范围.【详解】当二次函数y=x 2+bx+1的图象经过点B (1,0)时,1+b+1=0.解得b=-2,故排除B 、D ;因为y=x 2+bx+1与y 轴交于点(0,1),所以(0,1)与点C 关于直线x=1对称,当对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,所以-2b ≤1,解得b≥-2,故选C.【点睛】本题考查二次函数图象,解题的关键是利用特殊值法进行求解.11.向上【解析】【分析】根据二次函数图象上点的坐标特征,将点(2,1)代入抛物线方程,然后解关于a 的方程,求得a 的值,从而可以确定抛物线方程的二次项系数,即可以判断这条抛物线的开口方向.【详解】解:∵点(2,1)在抛物线y=ax 2上,∴点(2,1)满足抛物线方程y=ax 2,∴1=4a ,解得a =14;∴抛物线方程y =14x 2的二次项系数a =14>0,∴这条抛物线的开口方向向上.故答案是:向上.【点睛】本题考查了二次函数图象上点的坐标特征.经过图象上的某点时,该点一定满足该函数的关系式.12.-2【解析】【分析】根据一元二次方程的解的定义把x=0代入方法解得m=±2,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-2)x 2+(2m-1)x+m 2-4=0得m 2-4=0,解得m=2或m=-2,而m-2≠0,所以m=-2.故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.1-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得10b =,11a =-,进而可得a b +的值.【详解】解: 点(10,)P a -与点(,1)Q b b +关于原点对称,10b ∴=,111a b =--=-,11101a b ∴+=-+=-,故答案为:1-.【点睛】本题主要考查了两个点关于原点对称,解题的关键是掌握点的坐标的变化规律:点关于原点对称时,它们的坐标符号相反.14.2x =-【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x 取-3和-1时,y 值相等,该函数图象的对称轴为直线3(1)22-+-==-x ,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.15.2##2-+【解析】【分析】连接CE,延长DC交AB于H,先证明CH⊥AB,由直角三角形的性质可求解.【详解】如图,连接CE,延长DC交AB于H,∵将△ABC绕点B顺时针旋转60°得到△DBE,∴∠ABD=∠CBE=60°,BC=BE=AC=DE,∠ACB=∠DEB=90°,∴△BCE是等边三角形,∠EDB=45°,∴CE=BC,∠CEB=60°,∴CE=DE,∠DEC=30°,∴∠EDC=∠ECD=75°,∴∠BDH=∠EDC−∠EDB=30°,∵∠BDH+∠DBA=90°,∴CH⊥AB,又∵∠ACB=90°,BC=AC=2cm,∴AB AC=4(cm),CH=AH=BH=2(cm),∵CH⊥AB,BH=2cm,∠BDH=30°,∴BD=2BH=4cm,=(cm),)(cm),∴DC=DH−CH=(【点睛】本题考查了旋转的性质,等边三角形的性质,等腰直角三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.16.−3≤x≤1【解析】【分析】函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),即可求解.【详解】解:函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),故:y≥0时,−3≤x≤1,故答案为:−3≤x≤1.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,及这些点代表的意义及函数特征.17.(1)x1=2,x2=-4(2)x1=-1,x2=-1.2【解析】【分析】(1)利用因式分解法即可求解;(2)利用因式分解法即可求解.【详解】(1)x2+2x—8=0(x-2)(x+4)=0∴x-2=0或x+4=0∴x1=2,x2=-4(2)2x2+3x+1=0(2x+1)(x+1)=0∴2x+1=0或x+1=0∴x1=-12,x2=-1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)见解析;(2)平行【解析】【分析】(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)根据中心对称的性质,即可得出平行且相等的关系.【详解】A B C即为所求.解:(1)如图所示,△111(2)由中心对称的性质可知:线段AC与线段A1C1平行且相等,线段AC与线段A1C1的位置关系是平行,故答案是:平行.【点睛】本题考查了利用旋转变换作图、中心对称图形,解题的关键是熟练掌握网格结构准确找出对应点的位置.19.20%【解析】【分析】设从七月到九月,每月盈利的平均增长率为x,根据该商店七月份及九月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设从七月到九月,每月盈利的平均增长率为x ,依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:从从七月到九月,每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.20.(1)证明见解析;(2)p =【解析】【分析】(1)求出根的判别式△=25+p 2,根据判别式的意义即可得出无论p 取何值,方程总有两个不相等的实数根;(2)根据根与系数的关系求出两根和与两根积,再代入x 1+x 2=x 1x 2,得到一个关于p 的一元二次方程,解方程即可.【详解】(1)证明:△=52﹣4(﹣p 2)=25+4p 2,∵无论p 取何值时,总有p 2≥0,∴25+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)解:由题意可得,x 1+x 2=﹣5,x 1x 2=﹣p 2,∵x 1+x 2=x 1x 2,∴﹣5=﹣p 2,∴p =【点睛】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax 2+bx+c =0(a≠0)的两实数根分别为x 1,x 2,则有x 1+x 2=﹣a b ,x 1•x 2=c a.21.(1)2(1)4y x =--+;(2)6【解析】【分析】(1)设抛物线顶点式解析式2(1)4y a x =-+,然后把点B 的坐标代入求出a 的值,即可得解;(2)令0y =,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论.【详解】解:(1) 抛物线的顶点为(1,4)A ,∴设抛物线的解析式2(1)4y a x =-+,把点(0,3)B 代入得,43a +=,解得1a =-,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+;令0y =,则20(1)4x =--+,1x ∴=-或3x =,(1,0)C ∴-,(3,0)D ;4CD ∴=,11||43622BCD B S CD y ∆∴=⨯=⨯⨯=.【点睛】本题二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.22.(1)6;(2)150︒【解析】【分析】(1)由已知PAC ∆绕点A 逆时针旋转后,得到△P AB ',可得PAC ∆≅△P AB ',PA P A =',旋转角60P AP BAC ∠'=∠=︒,所以APP ∆'为等边三角形,即可求得PP ';(2)由APP ∆'为等边三角形,得60APP ∠'=︒,在△PP B '中,已知三边,用勾股定理逆定理证出直角三角形,得出90P PB ∠'=︒,可求APB ∠的度数.【详解】解:(1)连接PP ',由题意可知10BP PC '==,AP AP '=,PAC P AB ∠=∠',而60PAC BAP ∠+∠=︒,所以60PAP ∠'=度.故APP ∆'为等边三角形,所以6PP AP AP '=='=;(2)利用勾股定理的逆定理可知:222PP BP BP '+=',所以∆'BPP 为直角三角形,且90BPP ∠'=︒可求9060150APB ∠=︒+︒=︒.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,解题的关键是你掌握旋转的图形的大小、形状都不改变.23.(1)252002500,(050)y x x x =-++≤≤;(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)销售单价应该控制在82元至90元之间【解析】【分析】(1)根据“利润=(售价-成本)⨯销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)每天的销售利润不低于4000元,根据二次函数与不等式的关系求出x 的取值范围,再根据每天的总成本不超过7000元,以及50100100x ≤-≤,列不等式组即可.【详解】解:(1)由题意得:(10050)(505)y x x =--+,(50)(505)x x =-+,252002500,(050)x x x =-++≤≤,所以252002500,(050)y x x x =-++≤≤;(2)22520025005(20)4500y x x x =-++=--+ ,50a =-< ,∴抛物线开口向下.050x ≤≤Q ,对称轴是直线20x =,∴当20x =时,即销售单价是80元,每天的销售利润最大,最大利润是4500y =最大值;即销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)当4000y =时,2400052002500x x =-++,解得:110x =,230x =,∴当1030x ≤≤时,即销售单价在7010090x ≤-≤,每天的销售利润不低于4000元,由每天的总成本不超过7000元,得50(550)7000x + ,解得:18x ≤,82100x ∴≤-,50100100x ≤-≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题主要考查二次函数的实际应用,解题的关键是弄清题意,列出相应等式,借助二次函数解决实际问题.24.(1)见解析;(2)BE+CF =2,是为定值;(3)S x ﹣1)2,当x =1时,S最小值为4.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA =90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE =CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可证到△EMD ≌△FND ,则有EM =FN ,就可得到BE+CF =BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2;(3)过点F作FG⊥AB,由题意可得S△DEF=S△ABC﹣S△AEF﹣S△BDE﹣S△BCF,则可求S与x 之间的函数解析式,根据二次函数最值的求法,可求S的最小值.【详解】(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,∴∠B=∠C=60°,BD=CD,∵DF⊥AC,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,∴△BDE≌△CDF(AAS)(2)过点D作DM⊥AB于M,作DN⊥AC于N,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,BMD CNDB CBD DC∠=∠⎧⎪∠∠⎨⎪⎩==∴△MBD≌△NCD(AAS)BM=CN,DM=DN.在△EMD 和△FND 中,EMD FND DM DN MDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMD ≌△FND (ASA )∴EM =FN ,∴BE+CF =BM+EM+CF =BM+FN+CF =BM+CN=2BM =2BD×cos60°=BD =12BC =2(3)过点F 作FG ⊥AB ,垂足为G,∵BE =x∴AE =4﹣x ,CF =2﹣x ,∴AF =2+x ,∵S △DEF =S △ABC ﹣S △AEF ﹣S △BDE ﹣S △BCF ,∴S =12BC×AB×sin60°﹣12AE×AF×sin60°﹣12BE×BD×sin60°﹣12CF×CD×sin60°=12×(4﹣x )×(2+x )1212×(2﹣x )∴Sx ﹣1)2(∴当x =1时,S【点睛】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM =CN ,DM =DN ,EM =FN 是解决本题的关键.25.(1)215222y x x =--;(2)(1,1);(3)12【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1) 抛物线21:3l y x bx =-++的对称轴为1x =,12b∴-=-,解得2b =,∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-,又 抛物线2l 交y 轴于点(20,5)D -,552a ∴-=-,解得12a =,2115(1)(5)2222y x x x x ∴=+-=--,∴抛物线2l 的函数表达式为215222y x x =--;(2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA = ,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --,//MN y 轴,2(,23)N x x x ∴-++,令221523222x x x x -++=--,可解得1x =-或113x =,①当1113x -< 时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+,显然411133-< ,∴当43x =时,MN 有最大值496;②当1153x < 时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--,显然当43x >时,MN 随x 的增大而增大,∴当5x =时,MN 有最大值,23449(512236⨯--=;综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.。
2024-2025学年第一学期九年级数学期中测评卷(21-23章) 答案
2024-2025学年第一学期期中测评卷九年级数学(卷面分值:100分 考试时间:100分钟)一、选择题(每题3分,共27分,请将选择题的答案写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 答案1.下列是一元二次方程的是( )0.2=++c bx ax A 0.23=−x x B 052.=−y x C 01.2=−x D2.函数32+=x y 的图像经过点(-2,m ),则m 的值为( )1.A 7.B 5.C 4.D3.下列图形中,是中心对称图形但不是轴对称图形的是( )4.若抛物线142−+=x ax y 与x 轴有两个交点,则a 的取值范围是( )4.>a A 4.−>a B 04.≠−a a C 且> 4.−<a D5.如果将方程0262=+−x x 配方成b a x =+2)(的形式,则a-b 的值为( )10.−A 10.B 5.C 9.D6.关于函数342++=x x y 的图像和性质,下列说法错误的是( )A.函数图像开口向上B.当x >-2时,y 随x 的增大而增大C.函数图像的顶点坐标是(-2,-1)D.函数图像与x 轴没有交点7.三角形的两边长分别是3和6,第三边长是方程0862=+−x x 的根,则该三角形的周长等于( )11.A 13.B 1311.或C 12.D8.已知方程0252=+−x x 的两根分别是21x x ,,则2221x x +的值为( )18.A 19.B 20.C 21.D9.如图所示为长20米、宽 15米的矩形空地,现计划要在中间修建三条等宽的小道,其余面积种植绿植,种植面积为 400平方米,若设小道的宽为 xx 米,则根据题意,列方程为( )40021520.2=−×+x x A 40021520.=−×x B400)15)(220.(=−−x x C 400)215)(20.(=−−x x D二.填空题(每空3分,共18分)10.将方程1322+=−x x x 化为一般式,其结果是____________. 11.若m 是方程0752=−−x x 的根,则152+−m m 的值等于________.12.已知关于x 的方程0142=−+x kx 没有实数根,则k 的取值范围是________. 13.将二次函数2)1(3+−=x y 的图像先向右平移2个单位长度,再向下平移4个单位长度,所得到的函数解析式为____________.14.已知抛物线c ax y +=2与22x y =的形状相同,开口方向相反,且经过点(-1,5),则其解析式为_____________.15.超市搞促销活动,将某商品经过两次降价,售价由86元降至52元,若两次降价的百分率相同均为x,可列方程为_____________.三.解答题(共6小题,共55分) 16.(10分)解方程091012=+−x x )( 6)6()2(+=+x x x17.(8分)已知关于x 的一元二次方程024)12(2=−++−m x m x . 求证:无论 m 取何值,这个方程总有实数根.18.(10分)已知抛物线的顶点坐标为(-1,3),且经过点(2,12). (1)求函数解析式.(2)当21≤≤−x 时,求函数的最大值.19.(8分)冬季易引发流感,刚开始有2人患流感,经过两轮传染共有288人患病,求每轮传染中平均一个人传染几个人?20.(9分)某商品售价为每件60元,每周可卖出300件,为提高利润,商家决定涨价销售,经过一段时间发现,每涨价5元,每周少卖50件,已知商品的进价为每件40元,当售价定为多少时利润最大?求最大利润.21.(10分)如图为抛物线c=2,图像经过点(-1,8).直线3−y+x=axy与抛物+线交于B,C两点.点A,B在x轴上.(1)求抛物线与直线的函数解析式.(2)求△ABC的面积.。
九年级(上)期中数学试卷附答案解析
九年级(上)期中数学试卷一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=02.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):25.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=5127.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=cm.15.如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.参考答案与试题解析一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误.C、方程二次项系数可能为0,故错误;D、方程含有两个未知数,故错误;故选A.2.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形【考点】命题与定理.【分析】利用菱形的判定、矩形的判定及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且平分的四边形是菱形,故错误,是假命题;B、对角线相等的平行四边形是矩形,正确,是真命题;C、对角线互相平分且相等、垂直的四边形是正方形,故错误,是假命题;D、对角线相等的平行四边形是矩形,故错误,是假命题,故选B.3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%【考点】频数与频率.【分析】根据频率=频数÷数据总数,分别求出出现正面,反面的频率.【解答】解:∵某人抛硬币抛10次,其中正面朝上4次,反面朝上6次,∴出现正面的频率为=40%;出现反面的频率为60%.故选:D.4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):2【考点】黄金分割.【分析】根据黄金比是进行解答即可.【解答】解:∵点C是线段AB的黄金分割点,(AC>BC),∴AC=AB,∴AC:AB=(﹣1):2.故选:C.5.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形【考点】中点四边形.【分析】菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH 为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【解答】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=512【考点】由实际问题抽象出一元二次方程.【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先用800(1﹣x%)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】解:当商品第一次降价x%时,其售价为800﹣800x%=800(1﹣x%);当商品第二次降价x%后,其售价为800(1﹣x%)﹣800(1﹣x%)x%=800(1﹣x%)2.∴800(1﹣x%)2=512.故选C.7.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到∴=,则EC=2AE=8,然后计算AE+EC即可.【解答】解:∵DE∥BC,∴=,∴EC=2AE=8,∴AC=AE+EC=4+8=12(cm).故选D.8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE ∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC ∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE ∽△ABC,故本选项不符合题意;故选:B.10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【考点】根的判别式.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是16.【考点】相似多边形的性质.【分析】根据相似多边形的对应边的比相等可得.【解答】解:两个相似的六边形,一个最短边长是3,另一个最短边长为6,则相似比是3:6=1:2,根据相似六边形的对应边的比相等,设后一个六边形的最大边长为x,则8:x=1:2,解得:x=16.即后一个六边形的最大边长为16.故答案为16.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为4cm.【考点】比例线段.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【解答】解:已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3cm,b=2cm,c=6cm,解得:d=4,则d=4cm.故答案为:4cm.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=6cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD.【解答】解:∵BD是斜边AC上的中线,∴AC=2BD=2×3=6cm.故答案为:6.15.如图,要使△ABC∽△ACD,需补充的条件是∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.(只要写出一种)【考点】相似三角形的判定.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【解答】解:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是①④(填序号)【考点】相似三角形的判定与性质;含30度角的直角三角形;翻折变换(折叠问题).【分析】由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.【解答】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)先分解因式,即得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即得出两个一元一次方程,求出方程的解即可;(3)先分解因式,即得出两个一元一次方程,求出方程的解即可;(4)移项后分解因式,即得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2;(2)2(x+1)2﹣8=0,2(x+1+2)(x+1﹣2)=0,x+1+2=0,x+1﹣2=0,x1=﹣3,x2=1;(3)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(4)(2x+1)2=3(2x+1),(2x+1)2﹣3(2x+1)=0,(2x+1)(2x+1﹣3)=0,2x+1=0,2x+1﹣3=0,x1=﹣,x2=1.18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【考点】游戏公平性;概率公式;列表法与树状图法.【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案;(2)根据题意列出图表,再根据概率公式求出和为7和和为10的概率,即可得出游戏的公平性.【解答】解:(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,∴从中任意抽取一张卡片,该卡片上数字是5的概率为:;故答案为:;(2)根据题意列表如下:2 5 52 (2,2)(4)(2,5)(7)(2,5)(7)5 (5,2)(7)(5,5)(10)(5,5)(10)5 (5,2)(7)(5,5)(10)(5,5)(10)∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种,∴P(数字和为7)=,P(数字和为10)=,∴P(数字和为7)=P(数字和为10),∴游戏对双方公平.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)先判定四边形ABDE为平行四边形,再判定四边形ADCE为平行四边形,即可得出AD=EC;(2)根据四边形ADCE为平行四边形,且AD=CD,即可得出平行四边形ADCE为菱形;(3)先判定OD为△ABC的中位线,得出,再根据AB=AO,得出即可.【解答】解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵在Rt△ABC中,AD是斜边BC上的中线,∴AD=CD=BD,∴AE=CD,又∵AE∥CD,∴四边形ADCE为平行四边形,∴AD=EC;(2)由(1)可知,四边形ADCE为平行四边形,且AD=CD,∴平行四边形ADCE为菱形;(3)∵四边形ADCE为平行四边形,∴AC与ED互相平分,∴点O为AC的中点,∵AD是边BC上的中线,∴点D为BC边中点,∴OD为△ABC的中位线,∴,∵AB=AO,∴,即的值为.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,由此即可列出方程(40﹣x)(20+2x)=1200,解方程就可以求出应降价多少元.【解答】解:设每件童装应降价x元,则(40﹣x)(20+2x)=1200,解得x1=10,x2=20,因为扩大销售量,增加盈利,减少库存,所以x只取20.答:每件童装应降价20元.22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【考点】正方形的性质;翻折变换(折叠问题).【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.【考点】四边形综合题.【分析】(1)由AD:AB=1:1可以得出四边形ABCD是正方形,由其性质就可以得出△ABF≌△ADE,从而得出AF=AE,得出△AEF的形状;(2)根据条件可以得出△ABF∽△ADE,由相似三角形的性质就可以得出结论;(3)如图3,当△AEG是等边三角形时,由勾股定理就可以表示出AG、AE、FG,BG的值建立方程求出k值,就可以求出DE的长度.【解答】解:(1)△AEF为等腰直角三角形理由:如图1,∵AD:AB=1:1,∴AD=AB.∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°.∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴∠FAE﹣∠BAE=∠BAD﹣∠BAE,即∠BAF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△ADE,∴AF=AE,∴△AEF为等腰直角三角形;(2)如图2,∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴△ABF∽△ADE,∴.∵,∴,即AF=2AE;(3)∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°.∵△AEG是等边三角形,∴AE=AG,∠GAE=∠AEG=60°.∴∠FAG=∠DAE=∠AFE=30°,∴AG=FG.∵AB=3,AD:AB=k,∴AD=3k.在Rt△ADE中由勾股定理,得DE=k,AE=2k,∴AG=FG=2k,∴BG=k.∵AB=3,∴GB=3﹣2k,∴k=3﹣2k,解得:k=,∴DE=1.答:k=,DE=1.。
人教版九年级上册数学期中考试试卷附答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形是中心对称图形的是()A.B.C.D.2.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切B.相交C.相离D.不能确定3.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 4.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2="1500"5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O与BC交于点D,点E在 ⊙O上,且∠DEA=30°,则CD的长为()A 3B .3C .3D .28.二次函数=B 2+B 的图象如图,若一元二次方程B 2+B +=0有实数根,则m 的最大值为()A .-3B .3C .5D .99.如图,已知矩形ABCD 中,AB =4cm ,BC =8cm .动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C →D →A 运动,速度为2cm /s .当一个点到达终点时,另一个点随之停止运动。
设点P 运动的时间为t (s ),△BPQ 的面积为S (cm 2),则描述S (cm 2)与时间t (s )的函数关系的图象大致是()A .B .C .D .10.已知二次函数2y ax c =+,当1x =时,42y -≤≤-,当2x =时,12y -≤≤,则当3x=时,y的取值范围为()A.2123y≤≤B.2103y≤≤C.293y≤≤D.19y≤≤二、填空题11.如果点P(4,﹣5)和点Q关于原点对称,则点Q的坐标为_____.12.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.15.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.三、解答题16.解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.已知二次函数y=﹣12x2+3x﹣52(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.如图,在△ABC中,AB=AC,以AB为直径的 ⊙O分别交AC于点D,交BC于点E,连接ED.(1)求证:ED=EC;(2)填空:①设CD的中点为P,连接EP,则EP与⊙O的位置关系是;②连接OD,当∠B的度数为时,四边OBED是菱形.20.如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.21.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?22.在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表达线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.23.已知:如图,在⊙O中,弦AB与半径OE、OF交于点C、D,AC=BD,求证:(1)OC=OD:(2)A EB F.24.问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现P A 是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N 是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C 长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.参考答案1.B【分析】由中心对称图形的定义判断即可.【详解】A、C、D中图形都不是中心对称图形,是轴对称图形,B中图形是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念,能找到对称中心是解答的关键.2.B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.3.B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.4.C【解析】解:依题意得:第一次降价的售价为:1500(1-x),则第二次降价后的售价为:1500(1-x)(1-x)=1500(1-x)2,∴1500(1-x)2=980.故选C.5.D【解析】【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.A【分析】连接AD,根据圆周角定理和含30°的直角三角形的性质解答即可.【详解】连接AD,∵∠DEA=30°,∴∠B=30°,∵AB是直径,∴∠ADB=90°,∵AB=2,∴BD ,∵AC =BA ,∠ADB =90°,∴CD =DB 故选:A .【点睛】考核知识点:圆周角定理.作好辅助线,利用圆周角定理和直角三角形性质解决问题是关键.8.B【解析】∵抛物线的开口向上,顶点纵坐标为-3,∴a >0,−24=-3,即b 2=12a ,∵一元二次方程ax 2+bx+m=0有实数根,∴△=b 2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m 的最大值为3.故选B.9.A【分析】先求出点P 在BC 边运动的时间,再求出Q 点在CD 边和AD 边运动的时间,然后分Q 点在CD 边运动和在AD 边运动两种情况分别计算出△BPQ 的面积即可得出图象.【详解】点P 在BC 边运动的时间为818()s ÷=Q 点在CD 边运动的时间为422()s ÷=,在AD 边运动的时间824()s ÷=当Q 点在CD 边运动时,即02t <≤时,211222BPQ S BP CQ t t t === 当Q 点在AD 边运动时,即26t <≤时,114222BPQ S BP CD t t === 则根据S (cm 2)与时间t (s )的函数关系式可知图象为A故选A【点睛】本题主要考查矩形中的动点问题,能够找到面积与时间之间的函数关系式是解题的关键.10.A【分析】由当x =1时,-4≤y ≤-2,当x =2时,-1≤y ≤2,将y =ax 2+c 代入得到关于a 、c 的两个不等式组,再设x =3时y =9a +c =m (a +c )+n (4a +c ),求出m 、n 的值,代入计算即可.【详解】解:由x =1时,-4≤y ≤-2得,-4≤a +c ≤-2…①,由x =2时,-1≤y ≤2得,-1≤4a +c ≤2…②,当x =3时,y =9a +c =m (a +c )+n (4a +c ),得491m n m n +=⎧⎨+=⎩,解得5383m n ⎧=-⎪⎪⎨⎪=⎪⎩,故10520()333a c ≤-+≤,8816(4)333a c -≤+≤,∴2123y ≤≤,故选:A .【点睛】本题考查了二元一次方程组的应用,以及二次函数性质的运用,熟练解不等式组是解答本题的关键.11.(﹣4,5)【分析】根据关于原点对称的点的坐标的性质即可作答.即:坐标符号都变.【详解】∵点P (4,﹣5)和点Q 关于原点对称,∴点Q 的坐标为(﹣4,5).故答案为:(﹣4,5).【点睛】考核知识点:关于原点对称的点的坐标.理解关于原点对称的点的坐标的特点是关键.12.25(1)1y x =-+-【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.13.2【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键.14.-4【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±,所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.故答案是:42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.4【分析】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C ,由旋转性质知∠B ′=∠B ′CD ′=90°、AB =CD =5、BC =B ′C =4,从而得出四边形OEB ′H 和四边形EB ′CG 都是矩形且OE =OD =OC =2.5,继而求得CG =B ′E =OH 22222.5 1.5OC CH -=-=2,根据垂径定理可得CF的长.【详解】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C 于点H ,A ′B ′与⊙O 相切,则∠OEB ′=∠OHB ′=90°,∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′C ′D ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5、BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C ﹣B ′H =1.5,∴CG =B ′E =OH ===2,∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4,故答案为:4.【点睛】考核知识点:旋转、切线性质、垂径定理.作好辅助线,利用垂径定理和勾股定理解决问题是关键.16.(1)x 1=﹣1+3,x 2=﹣1﹣3;(2)x 1=﹣6,x 2=4【分析】(1)用一元二次方程的求根公式求出方程的根.(2)用十字相乘法因式分解求出方程的根.【详解】(1)3x 2+6x ﹣5=0∵a =3,b =6,c =﹣5.△=36+60=96∴x =6966-∴x 1=﹣1+3,x 2=﹣1﹣3.(2)(x +6)(x ﹣4)=0∴x +6=0或x ﹣4=0∴x 1=﹣6,x 2=4.【点睛】考核知识点:解一元二次方程.掌握公式法和提公因式法是关键.17.(1)图形见解析,C (3,﹣3);(2)图形见解析,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)图形见解析,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3)【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画△A 1B 1C 1,可确定写出A 1,B 1,C 1的坐标;(3)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°的对应点A 2,B 2,C 2的位置,画△A 2B 2C 2,可确定写出A 2,B 2,C 2的坐标.【详解】解:(1)坐标系如图所示,C (3,﹣3);(2)△A 1B 1C 1如图所示,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)△A 2B 2C 2如图所示,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3).【点睛】考核知识点:画中心对称图形.理解中心对称图形的定义,利用中心对称性质进行画图是关键.18.(1)函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)见解析;(3)x<1或x >5【分析】(1)根据配方法可以将题目中的函数解析式化为顶点式,从而可以写出顶点坐标和对称轴方程;(2)根据题目中函数解析式可以画出相应的函数图象;(3)根据(2)中的函数图象可以写出y的值小于0时,x的取值范围.【详解】(1)∵二次函数y=﹣12x2+3x﹣52=21(3)22x--+,∴该函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)当y=0时,得x1=1,x2=5,当x=0和x=6时,y=5 2 -,函数图象如图所示;(3)由图象可知,y的值小于0时,x的取值范围是x<1或x>5.【点睛】考核知识点:求二次函数的顶点坐标.理解二次函数的性质,画出二次函数图象是关键. 19.(1)见解析;(2)①相切;②60°【分析】(1)根据等腰三角形的性质和圆内接四边形的性质解答即可;(2)①如图,连接AE,OE,根据圆周角定理得到AE⊥BC,根据三角形的中位线定理得到OE∥AC,根据平行线的性质得到OE⊥PE,于是得到结论;②根据已知条件得到△OBE是等边三角形,求得OB=BE,同理OD=DE,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠CDE=∠B,∴∠CDE=∠C,∴CE=DE;(2)①相切;理由:如图,连接AE,OE,∵AB是⊙O的直径,∴AE⊥BC,∵AB=AC,∴BE=CE,∵BO=OA,∴OE∥AC,∵DE=CE,PD=CP,∴PE⊥AC,∴OE⊥PE,∴EP与⊙O的位置关系是相切;②当∠B的度数为60°时,四边OBED是菱形,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE,同理OD=DE,∴OD=DE=BE=OB,∴四边OBED是菱形.故答案为:相切;60°.【点睛】考核知识点:切线的判定和性质.作好辅助线,充分利用圆的性质和菱形性质解决问题是关键.20.(1)点A ,90°;(2)等腰直角;(3)132【分析】(1)根据图形和已知即可得出答案.(2)根据旋转得出全等,根据全等三角形的性质得出∠BAE=∠DAF ,AE=AF ,求出∠EAF=∠BAD ,即可得出答案.(3)求出AE ,求出AF ,根据勾股定理求出EF 即可.【详解】解:(1)从图形和已知可知:旋转中心是点A ,旋转角的度数等于∠BAD 的度数,是90°,故答案为:点A ,90;(2)等腰直角三角形,理由是:∵四边形ABCD 是正方形,∴∠BAD=90°,∵△ABE 逆时针旋转后能够与△ADF 重合,∴△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF ,∴∠FAE=∠FAD+∠DAE=∠BAE+∠DAE=∠BAD=90°,∴△AEF 是等腰直角三角形,故答案为:等腰直角.(3)由旋转可知∠EAF=90°,△ABE ≌△ADF ,∴AE=AF ,△EAF 是等腰直角三角形在Rt △ABE 中,∵AB=12,BE=5∴222212513AE AB BE =+=+∴222213132EF AE AF =+=+【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.21.(1)y==﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)王经理想获得利润20000元,需将这批柿饼存放50天后出售;(3)存放75天后出售这批柿饼可获得最大利润22500元【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣8×存放天数)”列出函数关系式;(2)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求出即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【详解】(1)由题意y与x之间的函数关系式为:y=(10+0.5x)(2000﹣8x)=﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)根据题意可得:20000=﹣4x2+920x+20000﹣10×2000﹣320x,解得:x1=100(不合题意舍去),x2=50,答:王经理想获得利润20000元,需将这批柿饼存放50天后出售.(3)设利润为w,由题意得w=﹣4x2+920x+20000﹣10×2000﹣320x=﹣4(x﹣75)2+22500,∵a=﹣4<0,∴抛物线开口方向向下,∵柿饼在冷库中最多保存75天,=22500元.∴x=75时,w最大答:存放75天后出售这批柿饼可获得最大利润22500元.【点睛】考核知识点:二次函数的应用.理解利润关系,列出二次函数,求函数最值是关键. 22.(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t-1),即可求解;(3)分∠ANM=90°、∠AMN=90°两种情况,分别求解即可.【详解】解:(1)将点A、B的坐标代入抛物线表达式得:421111a ba b--=⎧⎨--=-⎩,解得:11ab=⎧⎨=⎩,故抛物线C1的表达式为:y=x2+x﹣1;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t﹣1),则MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;(3)①当∠ANM=90°时,AN=MN,AN=t﹣(﹣2)=t+2,MN=t2+2,t=t2+2,解得:t=0或1(舍去0),故t=1;②当∠AMN=90°时,AM=MN,AM=t+2=MN=t2+2,解得:t=0或1(舍去1),故t=1;综上,t=0或1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.23.(1)见解析;(2)见解析【分析】(1)证明:连接OA,OB,证明△OAC≌△OBD(SAS)即可得到结论;(2)根据△OAC≌△OBD,得到∠AOC=∠BOD,即可得到结论.【详解】(1)证明:连接OA,OB,∵OA=OB,∴∠OAC=∠OBD.在△OAC与△OBD中,∵OA OBOAC OBD AC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△OBD(SAS).∴OC=OD.(2)∵△OAC≌△OBD,∴∠AOC=∠BOD,∴A EB F..【点睛】此题考查同圆的半径相等的性质,全等三角形的判定及性质,等腰三角形等边对等角的性质,相等的圆心角所对的弧相等的性质,正确引出辅助线证明△OAC≌△OBD是解题的关键.24.(11;(2)﹣4;(3﹣3【分析】(1)先确定出AP最小时点P的位置,如图1中的P'的位置,即可得出结论;(2)先判断出A'M=AM=MD,再构造出直角三角形,利用锐角三角函数求出DH,MH,进而用用勾股定理求出CM,即可得出结论;(3)利用对称性确定出点B关于x轴的对称点B',即可求出结论.【详解】(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE P'E=1,∴AP'1;1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=在Rt△CHM中,CM,∴A'C=CM﹣A'M=﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'=∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN﹣3.﹣3.【点睛】考核知识点:圆,三角函数.根据题意画出图形,构造直角三角形,运用三角函数定义解决问题是关键.。
2024-2025学年人教版九年级上册数学期中测试卷
2024-2025学年人教版九年级上册数学期中测试卷一、单选题1.抛物线28y x =-的顶点坐标是( )A .()8,0-B .()0,8-C .()0,8D .()8,0 2.一元二次方程2 120x x --=的解是( )A .1234x x ==,B .1234x x =-=,C .1234x x ==-,D .1234x x =-=-,3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.当函数()21y a x bx c =+++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 5.关于x 的一元二次方程2220kx x -+= 有两个相等的实数根,则k 的值是( ) A .4k = B .12k = C .2k =- D .14k =6.已知a 是一元二次方程2240x x --=的一个根,则代数式222024a a -+的值为( )A .2024+B .2024-C .2024D .2028 7.函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .8.已知二次函数()()222211y k x k x =-+++与x 轴有交点,则k 的取值范围在数轴上表示正确的是( )A .B .C .D .9.已知二次函数()245y x a x a =+-+-(a 为常数)的图象经过()m n -,和()m n ,两点,则二次函数与y 轴的交点坐标为( )A .()0,1B .()0,1-C .()0,5-D .()0,410.如图,一块含30︒角的直角三角板ABC 绕点B 顺时针旋转到A BC ''△的位置,使得A 、B 、C '三点在同一条直线上,则三角板ABC 旋转的角度是( )A .30︒B .60︒C .90︒D .120︒11.2024年春节刚过,国内新能源汽车车企纷纷开展降价促销活动.某款新能源汽车今年3月份的售价为25万元,5月份的售价为18万元,设该款汽车这两月售价的月均下降率是x ,则下列方程正确的是( )A .()225118x -=B .()218125x -= C .()218125x -= D .()2251218x -= 12.如图1是太原晋阳湖公园一座抛物线型拱桥,按如图2所示建立坐标系,在正常水位时水面宽30AB =米,当水位上升5米时,则水面宽20CD =米,则函数表达式为( )A .2115y x =-B .2125y x =-C .2115y x =D .2125y x =二、填空题13.在平面直角坐标系中,点(45)P -,关于原点对称点P '的坐标是. 14.若a ,b 为方程2320x x -+=的两个实数根,则232a a ab -+的值为.15.抛物线231010y x x =--与x 轴的其中一个交点坐标是(,0)m ,则2264m m -+的值为. 16.如图,抛物线21462y x x =-+与y 轴交于点A ,与x 轴交于点B ,线段CD 在抛物线的对称轴上移动(点C 在点D 下方),且3CD =.当AD BC +的值最小时,点C 的坐标为.三、解答题17.解方程:(1)230x x -=.(2)()23x x +=.18.已知二次函数2246y x x =-++,设其图象与x 轴的交点分别是A 、B (点A 在点B 的左边),与y 轴的交点是C ,求:(1)A 、B 、C 三点的坐标;(2)设抛物线的顶点为D ,求BCD △的面积.19.如图,平面直角坐标系中,ABC V 的位置如图所示:(1)请在图中作出ABC V 绕原点 O 逆时针旋转90︒得到的111A B C △;(2)作出111A B C △关于原点对称的222A B C △,并写出2B 的坐标.20.如图,二次函数21y x bx c =-++的图象交x 轴于点()3,0A -和点()1,0B ,交y 轴于点C ,且点C 、D 是二次函数图象上关于对称轴对称的一对点,一次函数2y mx n =+的图象经过点B 、D .(1)求二次函数的解析式;(2)根据图象直接写出不等式2x bx c mx n -++<+的解集为________.21.将下列方程化成一元二次方程的一般形式,并写出二次项系数、一次项系数和常数项.(1)2312x x -=;(2)()2243x x x x -=-;(3)关于x 的方程()220mx nx mx nx q p m n -++=-+≠.22.如图,抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点,且(1,0)A -.(1)求抛物线的解析式;(2)判断ABC V 的形状,并证明你的结论;(3)点P 是x 轴上的一个动点,当PC PD +的值最小时,求点P 的坐标.23.如图,已知抛物线21y x bx c =++与直线22y x =+的一个交点A 在y 轴上、另一交点为点B ,直线2y x =+与x 轴交于点C ,抛物线的对称轴为直线1x =,交x 轴于点D .(1)求抛物线的解析式;(2)直接写出12y y >时x 的取值范围;(3)点P 是抛物线上A B 、之间的一点,连接CP DP 、,当C D P △面积最小时,求点P 的坐标. 24.一款服装每件进价为80元,销售价为120元时,每天可售出20件,为了扩大销售量,增加利润,经市场调查发现,如果每件服装降价1元,那么平均每天可多售出2件.(1)设每件服装降价x 元,则每天销售量增加______件,每件商品盈利______元(用含x 的代数式表示);(2)在让利于顾客的情况下,每件服装降价多少元时,商家平均每天能盈利1200元?(3)商家能达到平均每天盈利1800元吗?请说明你的理由.25.某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额1y (万元)与销售量x (吨)的函数解析式为15y x =;成本2y (万元)与销售量x (吨)的函数图象是如图所示的抛物线的一部分,其中17,24⎛⎫⎪⎝⎭是其顶点.(1)求出成本2y关于销售量x的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额-成本)。
人教版九年级上册数学期中考试试卷含答案解析
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.已知方程2430x x -+=,它的二次项系数、一次项系数、常数项分别是()A .0、4、3B .1、4、3C .1、4-、3D .0、4-、32.已知一元二次方程2230x x b +-=的一个根是1,则b =()A .3B .0C .1D .53.一元二次方程2310x x -+=的两根之和为()A .13B .2C .3-D .34.对于抛物线221y x x =--,下列说法中错误的是()A .顶点坐标为()12,-B .对称轴是直线1x =C .当1x >时,y 随x 的增大减小D .抛物线开口向上5.抛物线2(1)2y x =-+可以由抛物线2x y =平移而得到,下列平移正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.右图所示,已知二次函数2y ax bx c =++的图象如图所示,则a 、b 、c 满足()A .0a <,0b >,0c >B .0a >,0b <,0c >C .0a <,0b <,0c <D .0a <,0b <,0c >7.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于()A .116°B .32°C .58°D .64°8.如图,AB 是O 的弦,半径OC AB ⊥于点D ,且8cm AB =,5cm OC =,则DC 的长是()A .3cmB .2.5cmC .2cmD .1cm9.如图,四边形ABCD 内接于O ,F 是 CD上一点,且 DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=︒,25BAC ∠=︒,则E ∠的度数为()A .60︒B .45︒C .50︒D .30°10.如图,在平面直角坐标系中,已知抛物线2y ax bx =+的对称轴为34x =,且经过点A (2,1),点P 是抛物线上的动点,P 的横坐标为()02m m <<,过点P 作PB x ⊥轴,垂足为B ,PB 交OA 于点C ,点O 关于直线PB 的对称点为D ,连接CD ,AD ,过点A 作AE ⊥x 轴,垂足为E ,则当m =()时,ACD ∆的周长最小.A .1B .1.5C .2D .2.5二、填空题11.一元二次方程x 2﹣4=0的解是_________.12.二次函数()2214y x =+-,当x =________时,y 的最小值是_______.13.若二次函数228y x x c =++的图像上有()11,A y -,()24,B y ,()31,C y 三点,则1y ,2y ,3y 的大小关系是______.14.如图,二次函数y =ax 2+bx +3的图象经过点A (﹣1,0),B (3,0),那么一元二次方程ax 2+bx+3=0的根是_____.15.如图A ,B ,C 是圆O 上的3点,且四边形OABC 是菱形,若点D 是圆上异于A ,B ,C 的另一点,则ADC ∠的度数是_______.16.如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ ,当点P 在BC 上移动时,则PQ 长的最大值为__________.17.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________;(2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.三、解答题18.解方程:(1)24x x=(2)23100x x --=19.如图,已知抛物线2122y x =-+与直线222y x =+交于A ,B 两点,(1)求A ,B 两点的坐标。
浙教版九年级上册数学期中考试试卷含答案
浙教版九年级上册数学期中考试试题一、单选题1.下列关系式中,属于二次函数的是()A .y =21x8B .yC .y =21x D .y =x 3﹣2x2.下列说法正确的是()A .掷一枚质地均匀的骰子,掷得的点数为3的概率是13B .一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C .连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D .在同一年出生的400个同学中至少会有2个同学的生日相同3.如图所示,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB',若∠AOB =15°,那么∠AOB'的度数是()A .15°B .30°C .45°D .60°4.已知二次函数223y x x =-+-,用配方法化为()2y a x h k =-+的形式,结果是()A .()212y x =---B .()212y x =--+C .()214y x =--+D .()214y x =-+-5.如图,已知AB 是O 的直径,CD 是弦,若36,BCD ∠=o 则ABD ∠等于()A .54oB .56C .64D .666.如图,⊙O 是△ABC 的外接圆,∠B=60°,OP ⊥AC 于点P ,O 的半径为A .B .C .8D .127.如图,正方形三个顶点的坐标依次为()3,1,()1,1,()1,3.若抛物线2y ax =的图象与正方形的边有公共点,则实数a 的取值范围是()A .139a ≤≤B .119a ≤≤C .133a ≤≤D .113a ≤≤8.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:4,则S △BDE :S △ADC 的值为()A .1:16B .1:18C .1:20D .1:249.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,动点P 从点B 出发,沿着B→A→D 在菱形ABCD 的边AB ,AD 上运动,运动到点D 停止.点P′是点P 关于BD 的对称点,连接PP'交BD 于点M ,若BM =x (0<x <8),△DPP′的面积为y ,下列图象能正确反映y 与x 的函数关系的是()A .B .C .D .10.如图,已知在O 中,CD 为直径,A 为圆上一点,连结OA ,作OB 平分AOC ∠交圆于点B ,连结BD ,分别与AC ,AO 交于点N ,M .若AM AN =,则DMDN的值为()A 32B .23C .12D 22二、填空题11.把抛物线y =﹣3x 2向左平移2个单位,再将它向下平移3个单位,得到抛物线为_________.12.已知A (-3,y 1),B (-1,y 2)是抛物线上y =-(x -3)2+k 的两点,则y 1,y 2的大小关系为________.13.一个直角三角形的两条边长是方程27120x x -+=的两个根,则此直角三角形的外接圆的直径为________.14.如图,在3×3正方形网格中,A 、B 在格点上,在网格的其它格点上任取一点C ,能使△ABC 为等腰三角形的概率是_____.15.如图,在 ABC 中,点D 是边AC 上的任意一点,点M ,N 分别是 ABD 和 BCD 的重心,如果AC =6,那么线段MN 的长为___.16.如图,已知二次函数3(1)(4)4y x x =-+-的图象与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点,C P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PKAK的最大值为__________.三、解答题17.计算题:(1)计算:(212213-⎛⎫--- ⎪⎝⎭(2)解方程:()21250x +-=18.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,0),B (﹣4,1),C (﹣2,2).(1)直接写出点B 关于原点对称的点B′的坐标:;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.19.有4张看上去无差别的卡片,上面分别写着1、2、3、4.(1)随机摸取1张后,放回并混在一起,再随机抽取1张,请直接写出“第二次取出的数字小于第一次取出的数字”的概率:;(2)一次性随机抽取2张卡片,用列表法或画树状图的方法求出“两张卡片上的数都是偶数”的概率.20.如图,二次函数y2=ax2+bx+3的图象与x轴相交于点A(−3,0)、B(1,0),交y轴于点C,C、D 是二次函数图象上的一对对称点,一次函数y1=mx+n的图象经过B.D两点.(1)求a、b的值及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.DE AC,过点C作CE⊥CD,21.如图,已知CD是Rt△ABC斜边AB上的中线,过点D作//两线相交于点E.(1)求证:ABC DEC△△;∽(2)若AC=8,BC=6,求DE的长.22.如图,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于点E、D,连接ED、BE.(1)试判断DE与DC是否相等,并说明理由;(2)如果BD =,AE =2,求⊙O 的直径.23.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x (元/件)(x≥24),每天销售利润为y (元).(1)直接写出y 与x 的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.24.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数;(2)如图2,当5AB =,且10AF FD ⋅=时,求BC 的长;(3)如图3,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,求ABBC出的值.参考答案1.A 【解析】【分析】二次函数为形如2y ax bx c =++(0)a ≠的形式;对比四个选项,进而得到结果.【详解】解:A 符合二次函数的形式,故符合题意;B 中等式的右边不是整式,故不是二次函数,故不符合题意;C 中等式的右边分母中含有x ,但是分式,不是整式,故不是二次函数,故不符合题意;D 中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A .【点睛】本题考察了二次函数的概念.解题的关键与难点在于理清二次函数的概念.2.D 【解析】【分析】A 中掷一枚质地均匀的骰子,出现点数为123456、、、、、的结果相等,故可得出掷得的点数为3的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设400人中前365个人生日均不相同,而剩余的35个人的生日会有与365个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为3的概率是16,此选项错误,不符合题意;B一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是14,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是12,此选项错误,不符合题意;D在同一年出生的400个同学中至少会有2个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.3.B【解析】【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【详解】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA−∠A′OB′=45°−15°=30°,故选:B.【点睛】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.4.A【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y=-x 2+2x-3=-(x 2-2x+1)+1-3=-(x-1)2-2,故选:A .【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).5.A 【解析】【分析】先由圆周角定理得到∠DAB=∠BCD=36°,然后根据AB 是O 的直径确定∠ADB=90°,最后根据直角三角形两锐角互余即可解答.【详解】解:∵CD 是弦,若36,BCD ∠=o ∴∠DAB=∠BCD=36°∵AB 是O 的直径∴∠ADB=90°∴∠ABD=90°-∠DAB=54°.故选:A .【点睛】本题考查了圆周角定理和直角三角形的性质,灵活利用圆周角定理是解答本题的关键.6.A 【解析】【详解】∵圆心角∠AOC 与圆周角∠B 所对的弧都为 AC,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC ,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP ⊥AC ,∴∠AOP=90°(垂直定义).在Rt △AOP 中,,∠OAC=30°,∴30度角所对的边是斜边的一半).∴⊙O的半径故选A.7.A【解析】【分析】求出抛物线经过两个特殊点时的a的值,再根据∣a∣越大,抛物线的开口越小即可解决问题.【详解】解:当抛物线经过(1,3)时,由3=a×12得:a=3,当抛物线经过(3,1)时,由1=a×32得:a=1 9,观察图象可知:13 9a≤≤,故选:A.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C【解析】【分析】由S△BDE:S△CDE=1:4,得到BE:CE=1:4,于是得到BE:BC=1:5,根据DE∥AC,推出△BDE∽△BAC,根据相似三角形的性质即可得到结论.【详解】解:∵S△BDE:S△CDE=1:4,∴BE:CE=1:4,∴BE:BC=1:5,∵DE∥AC,∴△BDE∽△BAC,∴S△BDE :S△BAC=(15)2=125.∴S△BDE:S△ADC=1:(25-1-4)=1:20.故选:C .9.D 【解析】由菱形的性质得出AB=BC=CD=DA ,OA=12AC=3,OB=12BD=4,AC ⊥BD ,分两种情况:①当BM≤4时,先证明△P′BP ∽△CBA ,得出比例式,求出PP′,得出△DPP′的面积y 是关于x 的二次函数,即可得出图象的情形;②当BM≥4时,y 与x 之间的函数图象的形状与①中的相同;即可得出结论.【详解】解:∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,OA=12AC=3,OB=12BD=4,AC ⊥BD ,①当BM≤4时,∵点P′与点P 关于BD 对称,∴P′P ⊥BD ,∴P′P ∥AC ,∴△P′BP ∽△CBA ,∴PP BM AC OB'=,即64PP x '=,∴PP′=32x ,∵DM=8-x ,∴△DPP′的面积y=12PP′•DM=12×32x (8-x )=-34x 2+6x ;∴y 与x 之间的函数图象是抛物线,开口向下,过(0,0)和(4,12);②当BM≥4时,如图:同理△P′DP ∽△CDA ,∴PP DM AC OD '=,即864PP x'-=,∴PP′=3(8)2x -,∴△DPP′的面积y=12PP′•DM=12×32(8-x )2=34(8-x )2;∴y 与x 之间的函数图象是抛物线,开口向上,过(4,12)和(8,0);综上所述:y 与x 之间的函数图象大致为:故选:D .【点睛】本题考查了动点问题的函数图象、菱形的性质、相似三角形的判定与性质、三角形面积的计算以及二次函数的运用;熟练掌握菱形的性质,根据题意得出二次函数解析式是解决问题的关键.10.D 【解析】【分析】由垂径定理可得OB ⊥AC , AB BC =,则∠ADM=∠BDC ,易证△OMD ∽△AND ,则∠AOD=90°,且DM :DN=OD :AD=1【详解】解:∵OB 平分∠AOC ,∴∠AOB=∠COB ,∴ AB BC =,∴∠ADB=∠BDC ,∵AM=AN ,∴∠ANM=∠AMN ,又∵∠AMN=∠OMD ,∴∠ANM=∠OMD ,∴△OMD ∽△AND ,∴DM ODDN AD=,∠MOD=∠NAD ,∵CD 是直径,∴∠NAD=90°,∴∠MOD=90°,∵OA=OD ,∴∠OAD=45°,∴OD ,∴2DM OD DN AD =.故选:D .【点睛】本题主要考查圆周角定理,相似三角形的性质与判定,熟记圆内相关定理是解题基础.11.y =﹣3(x+2)2﹣3【解析】【分析】根据抛物线平移的规律“左加右减,上加下减”即可求得答案.【详解】解:把抛物线y =﹣3x 2向左平移2个单位,得到的抛物线为y =﹣3(x+2)2,再将抛物线为y =﹣3(x+2)2向下平移3个单位,得到抛物线为y =﹣3(x+2)2﹣3,故答案为:y =﹣3(x+2)2﹣3.【点睛】本题考查二次函数图象与几何变换、解题的关键是熟练掌握抛物线平移的规律“左加右减,上加下减”.12.12y y <【解析】【分析】根据抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,由A (-3,y 1),B (-1,y 2)在对称轴左侧,y 随x 的增大而增大,可得最终结果.【详解】抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,313-<-< ,12y y ∴<,故答案为:12y y <.【点睛】本题主要考查二次函数的性质,属于基础题,熟练掌握二次函数的增减性是解题关键.13.4或5##5或4【解析】【分析】解方程27120x x -+=得到x =3或4,本题应分两种情况进行讨论,当4是直角边时,根据勾股定理得到斜边是5,这个直角三角形外接圆的直径是5,当4是斜边时,直角三角形外接圆直径是4.【详解】解:27120x x -+=,解得x =3或4;①当4是直角边时,斜边长,所以直角三角形外接圆直径是5;②当4是斜边时,这个直角三角形外接圆的直径是4.故答案为:4或5.【点睛】此题主要考查直角三角形外切圆半径,涉及到一元二次方程的解法以及勾股定理的综合应用,难度不大.14.514【解析】【分析】分三种情况:①点A 为顶点;②点B 为顶点;③点C 为顶点;得到能使△ABC 为等腰三角形的点C 的个数,再根据概率公式计算即可求解.【详解】如图,∵AB =∴①若AB =AC ,符合要求的有3个点;②若AB =BC ,符合要求的有2个点;③若AC=BC,不存在这样格点.∴这样的C点有5个.∴能使△ABC为等腰三角形的概率是5 14.故答案为:5 14.【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.15.2【解析】【分析】连接BM并延长交AC于E,连接BN并延长交AC于F,根据三角形的重心是中线的交点可得ED=12AD,DF=12CD,然后求出EF的长,再根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得BM=2ME,BN=2NF,再根据相似三角形对应边成比例列出求解即可.【详解】解:连接BM并延长交AC于E,连接BN并延长交AC于F,∵点M、N分别是△ABD和△ACD的重心,∴ED=12AD,DF=12CD,BM=2ME,BN=2NF,∵BC=6,∴EF=DE+DF=12(AD+CD)=12BC=12×6=3,∵BMBE=BNBF=23,∠EBF=∠MBN,∴△BEF∽△BMN,∴MNEF=23,即3MN =23,∴MN =2.故答案为:2.【点睛】本题考查了三角形重心,解题关键是明确三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.16.45【解析】【分析】由抛物线的解析式易求出点A 、B 、C 的坐标,然后利用待定系数法求出直线BC 的解析式,过点P 作PQ ∥x 轴交直线BC 于点Q ,则△PQK ∽△ABK ,可得PK PQAK AB=,而AB 易求,这样将求PKAK的最大值转化为求PQ 的最大值,可设点P 的横坐标为m ,注意到P 、Q 的纵坐标相等,则可用含m 的代数式表示出点Q 的横坐标,于是PQ 可用含m 的代数式表示,然后利用二次函数的性质即可求解.【详解】解:对二次函数2339(1)(4)3444y x x x x =-+-=-++,令x=0,则y=3,令y=0,则3(1)(4)04x x -+-=,解得:121,4x x =-=,∴C(0,3),A(-1,0),B(4,0),设直线BC 的解析式为:y kx b =+,把B 、C 两点代入得:340b k b =⎧⎨+=⎩,解得:343k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为:334y x =-+,过点P 作PQ ∥x 轴交直线BC 于点Q ,如图,则△PQK ∽△ABK ,∴PK PQ AK AB=,设P (m ,239344m m -++),∵P 、Q 的纵坐标相等,∴当239344y m m =-++时,233933444x m m -+=-++,解得:23x m m =-,∴()2234PQ m m m m m =--=-+,又∵AB=5,∴()224142555PK m m m AK -+==--+.∴当m=2时,PK AK的最大值为45.故答案为:45.【点睛】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求PKAK的最大值转化为求PQ 的最大值、熟练掌握二次函数的性质.17.(1)12-;(2)14x =或26x =-.【解析】【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂的意义计算,第三项利用负整数指数幂法则计算,最后进行加减运算即可得到答案;(2)方程变形后,利用平方根定义开方即可求解.【详解】解:()(2112213-⎛⎫--- ⎪⎝⎭219=---12=-;()()221250x +-=()2125x +=15x +=或15x +=-14x =或26x =-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解答此题的关键.18.(1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O 逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B 关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.19.(1)38(2)16【解析】【分析】(1)列表展示所有16种等可能的结果数,再找出第二次取出的数字小于第一次取出的数字的结果数,然后根据概率公式求解;(2)列表展示所有12种等可能的结果数,再找出两张卡片上的数都是偶数的结果数,然后根据概率公式求解.【详解】解:(1)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由表知,共有16种等可能的结果数,其中第二次取出的数字小于第一次取出的数字的有6种结果,所以第二次取出的数字小于第一次取出的数字的概率为63=168;(2)列表如下:12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由表知,共有12种等可能的结果数,其中两张卡片上的数都是偶数的有2种结果,所以两张卡片上的数都是偶数的概率为21=126.【点睛】此题考查的是用列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验,用到的知识点为:概率=所求情况数与总情况数之比.20.(1)a=-1,b=-2,D (-2,3);(2)−2<x<0【解析】【分析】(1)由于已知抛物线与x 轴的交点坐标,则设交点式y=a (x+3)(x-1)=223ax ax a +-,则-3a=3,解得a=-1,所以b=-2,抛物线的对称轴为直线x=-1,再求出C 点坐标为(0,3),然后根据对称的性质确定D 点坐标为(-2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n 的上方,即y2>y1.【详解】(1)设抛物线解析式为y=a(x+3)(x−1)=223ax ax a +-,则−3a=3,解得a=−1,所以抛物线解析式为y=223x x ---;所以b=−2,抛物线的对称轴为直线x=−1,当x=0时,223y ax bx =++,则C 点坐标为(0,3),由于C.D 是二次函数图象上的一对对称点,∴D 点坐标为(−2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n 的上方,即y 2>y 1.当−2<x<0时,21y y >.【点睛】此题考查待定系数法求二次函数解析式、二次函数的图象,解题关键在于结合二次函数图象解决问题.21.(1)见解析;(2)254【解析】【分析】(1)先证出∠DCE =∠ACB ,∠CDE =∠ACD ,再利用CD 是Rt ABC 斜边AB 中线,可得CD=AD ,证得∠A=∠ACD ,从而∠CDE =∠CAD ,进而可以证明ABC DEC ∽△△;(2)先利用勾股定理求得AB =10,再利用直角三角形斜边上的中线等于斜边的一半,求得CD =5,再利用相似三角形的对应边成比例得AB ∶DE =AC ∶CD ,即可求得答案.【详解】解(1)由题意:∵CE ⊥CD ,∴90DCE ACB ∠∠︒==,又∵//DE AC ,∴∠CDE =∠ACD ,∵在Rt ABC 中,CD 是AB 边上的中线,∴CD =AD ,∴∠ACD =∠CAD ,∴∠CDE =∠CAD ,∴ABC DEC ∽△△.(2)∵AC =8,BC =6,∴利用勾股定理得:AB ∵在Rt ABC 中,CD 是AB 边上的中线,∴CD =5,∵ABC DEC∽△△∴AB ∶DE =AC ∶CD ,即10∶DE =8∶5,∴DE =254.【点睛】本题主要考查了相似三角形的判定和性质,以及直角三角形斜边上的中线特征,找准对应边和对应角是解题的关键.22.(1)DE DC =,证明见详解;(2)⊙O 的直径为8.【解析】【分析】(1)连接AD ,根据直径所对圆周角可得AD BC ⊥,根据等腰三角形三线合一的性质可得到 EDBD =,即可得解;(2)根据已知条件求出BC ,再根据勾股定理建构方程求解即可得解;【详解】解:(1)DE BD =,证明:连接AD ,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD BC ⊥,在△ABC 中,AB=AC ,AD BC ⊥,CAD BAD ∴∠=∠,BD=DC ,(等腰三角形三线合一),∴ EDBD =,DE BD ∴=;∴DE=DC ;(2)∵12BD BC ==2AE =∴BC =设AB AC x ==,2EC AC AE x =-=-,∵AB 为⊙O 的直径,∴∠AEB=90°,在Rt △AEB 中,=,在Rt △CEB 中,BE =即(()22242x x -=--整理得22480x x --=因式分解得()()860x x -+=解得86x x ==-,(舍去),∴⊙O 的直径为8.【点睛】本题主要考查了圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,掌握圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,是解题的关键.23.(1)2106408800y x x =-+-;(2)此时的销售单价为30元或34元;(3)该商场每天销售此商品的最大利润为1440元.【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)及题意可得21064088001400x x -+-=,进而求解方程即可;(3)由2106408800y x x =-+-可得该二次函数的图象开口向下,对称轴为直线32x =,进而根据二次函数的性质可求解.【详解】解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由2106408800y x x =-+-可得100-<,∴该二次函数的图象开口向下,对称轴为直线32x =,∵每件小商品的售价不超过36元,∴当32x =时,该商场每天销售此商品的利润为最大,最大值为1440;答:该商场每天销售此商品的最大利润为1440元.24.(1)15°;(2);(3)35【解析】(1)根据矩形的性质和直角三角形的性质,先得到30AFB ∠=︒,再由折叠的性质可得到15CBE ∠=︒;(2)由三等角证得FAB EDF ∆∆∽,从而得2DE =,3EF CE ==,再由勾股定理求出DE ,则BC AD ==(3)过点N 作NG BF ⊥于点G ,可证得NFG BFA ∆∆∽.再根据相似三角形的性质得出对应边成比例及角平分线的性质即可得解.【详解】(1)∵矩形ABCD ,∴90A ∠=︒,//AD BC由折叠的性质可知BF=BC=2AB ,12CBE CBF ∠=∠,∴30AFB ∠=︒,∴30FBC AFB ∠=∠=°,∴15CBE ∠=︒(2)由题意可得90A D ∠=∠=︒,90AFB DFE ∠+∠=︒,90FED DFE ∠+∠=︒∴AFB DEF∠=∠∴FAB EDF∆∆∽∴AF AB DE DF=,∴1025AF DF DE AB === ∴3EF CE ==,由勾股定理得DF=∴AF==,∴BC AD AF FD==+=;(3)过点N作NG BF⊥于点G.∴90NGF A∠=∠=°又∵BFA NFG∠=∠∴NFG BFA∆∆∽.∴NG FG NFAB FA BF==.∵NF AN FD=+,即111222NF AD BC BF===∴12NG FG NFAB FA BF===,又∵BM平分ABF∠,90NG BF A⊥∠=︒,,∴NG=AN,∴12NG AN AB==,∴111222FG BF BG BC ABFA AN NF AB BC--===++整理得:35ABBC=.。
人教版九年级上册数学期中考试试卷带答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。
广东省深圳市深圳高级中学2024-2025学年九年级上学期期中考试数学试卷
高级中学2024-2025学年第一学期期中测试初三数学注意事项:1、答题前,考生务必在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。
3、考试结束,监考人员将答题卡收回。
第一部分选择题一.选择题:(每小题只有一个选项,每小题3分,共计24分)1.如图所示,该几何体的左视图是( )A. B. C. D.2.若两个相似三角形周长的比为,则这两个三角形对应边的比是( )A. B. C. D.3.下列说法错误的是( )A.一组对边平行且一组对角相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形4.在一幅长为、宽为的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是( )A. B. C. D.5.如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则()1:41:21:41:81:1650cm 30cm 22400cm cm x x 2402250x x +-=2802250x x +-=2402250x x --=2802250x x --=E ABCD AC EF AB ⊥F DE BC M AB G 4AF =2FB =MG =A. B. C. D.6.如图,平面直角坐标系中,在边长为1的正方形的边上有一动点沿A →B →C →D →A 运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )A. B. C. D.7.如图,在中,,,以点为圆心,以为半径作弧交于点,再分别以,为圆心,以大于的长为半径作弧,两弧相交于点,作射线交于点,连接.以下结论不正确的是( )A. B. C.D.8.若一个菱形的两条对角线长分别是关于的一元二次方程的两个实数根,且其面积为21,则该菱形的边长为( )A. B. C. D.二、填空题(每小题3分,共计15分)9.方程的根是_____.2+ABCD P P y P s ABC AB AC =36BAC ︒∠=C BC AC D B D 12BD P CP AB E DE 36BCE ︒∠=BC AE =BE AC =AEC BEC S S =△△x 2140x x m -+=22x x =10.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,,在同一水平线上,和均为直角,与相交于点.测得,,,则树高___.11.如图,4张卡片正面分别呈现了几种常见的生活现象,它们的背面完全相同.现将所有卡片背面朝上洗匀后从中随机抽取两张,这两张卡片正面图案呈现的现象恰好都属于化学变化的概率是_____.火柴燃烧水结成冰玻璃杯破碎铁锅生锈12.边长分别为5,3,2的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_____.13.如图,在四边形中,,对角线,相交于点.若,,,则的长为_____.三、解答题(共计61分)14.(6分)用适当的方法解下列方程:(1);(2).15.(7分)某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:ABC B Q ABC ∠AQP ∠AP BC D 40cm AB =20cm BD =10m AQ =PQ =m ABCD 90BCD ︒∠=AC BD O 5AB AC ==6BC =2ADB CBD ∠=∠AD 2290x x +-=()()251315x x -=-转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240295a 604落在“可乐”区域的频率0.60.610.6b 0.590.604(1)完成上述表格,其中_____,_____;(2)请估计当很大时,频率将会接近_____,假如你去动该转盘一次,你获得“可乐”的概率约是_____;(本小问结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是_____°;(4)在这次购物中,甲、乙两人随机从“微信”、“支付宝”、“银行卡”(依次用、、表示)三种支付方式中各选一种方式进行支付.请用画树状图或列表的方法,求甲、乙两人恰好都选择同一种支付方式的概率.16.(8分)如图,在正方形格纸中.(1)请在正方形格纸上建立平面直角坐标系,使,,并写出点坐标_____;(2)以坐标原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形并写出点的对应点的坐标_____;(3)若线段绕原点旋转后点的对应点为,写出点的坐标_____.17.(8分)如图,四边形是矩形,点在边上,点在延长线上,.(1)下列条件:①点是的中点;②平分;③点A 与点关于直线对称.请从中选择一个能证明四边形是菱形的条件,并写出完整证明过程.m na =b =n A B C ABC △()2,3A ()6,2C B O ABC △111A B C △A 1A AB O 90︒B 2B 2B ABCD E CD F DC AE BF E CD BE ABF ∠F BE ABFE选择条件:_____(填序号),理由如下.(2)若,,,求四边形的面积是多少.18.(8分)2024年奥运会在巴黎顺利召开,奥运会吉祥物“弗里热”爆红.(1)据统计某“弗里热”玩偶在某电商平台7月份的销售量是5万件,9月份的销售量是7.2万件,问月平均增长率是多少?(2)市场调查发现,某实体店“弗里热”玩偶的进价为每件60元,若售价为每件100元,每天能销售20件,售价每降价1元,每天可多售出2件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售“弗里热”玩偶每天获利1200元,则售价应降低多少元?19.(12分)某数学兴趣小组的同学在学完一元二次方程后,发现配方法可以求二次三项式的最值:他们对最值问题产生了浓厚兴趣,决定进行深入的研究.下面是该学习小组收集的素材,汇总如下,请根据素材帮助他完成相应任务:BEF DAE ∠=∠6AE =8BE =ABFE20.(12分)阅读理解:两个三角形中有一个角相等或互补,我们称这两个三角形是共角三角形,这个角称为对应角.根据上述定义,判断下列结论,正确的打“√”,错误的打“×”.(1)三角形一条中线分成的两个三角形是共角三角形.(_____)(2)两个等腰三角形是共角三角形.(_____)问题提出:小明在研究图1的时发现,因为点,分别在和上,所以和是共角三角形,并且还发现.以下是小明的证明思路,请帮小明完善证明过程.证明:分别过点,作于点,于点,得到图2,,又,(_____),.,,即.延伸探究:如图3,已知,请你参照小明的证明方法,求证:.D E AB AC ADE △ABC △ADE ABC S AD AE S AB AC⋅=⋅△△E C EG AB ⊥G CF AB ⊥F AGE AFC ∠=∠ A A ∠=∠ GAE ∴△∽()_____EG AE CF ∴=②1212ADE ABCAD EG S S AB CF ⋅=⋅ △△ADE ABC S AD EG AD AE S AB CF AB AC⋅∴==⋅⋅△△ADE ABC S AD AE S AB AC⋅=⋅△△180BAC DAE ︒∠+∠=ADE ABC S AD AE S AB AC ⋅=⋅△△结论应用:(1)如图4,在平行四边形中,是边上的点且满足,延长到,连接交的延长线于,若,,,的面积为60,则的面积是_____.(2)如图5,的面积为2,延长的各边,使,,,,则四边形的面积为_____.ABCD G BC 2BG GC =GA E DE BA F 6AB =5AG = 2.5AE =ABCD AEF △ABCD ABCD BE AB =2CF BC =3DG CD =4AH AD =EFGH。
九年级上学期数学期中考试卷及答案精选全文
可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。
13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。
浙江省温州市乐清市山海联盟2024-2025学年上学期九年级期中考试数学试卷[含答案]
乐清市山海联盟2024学年第一学期九年级期中考试数学试卷【注意事项】本试卷分试题卷和答题卷两部分,满分100分.考试时间共90分钟.一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.若⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是( )A .5B .6C .7D .82.抛物线257y x x =-+与y 轴的交点坐标是( )A .()7,0B .()5,0-C .()0,7D .()0,5-3.某班从4名男生和2名女生中任选1人参加演讲比赛,则选中男生的概率是( )A .12B .13C .14D .234.将抛物线23y x =向左平移1个单位长度,平移后抛物线的解析式为( )A .()231y x =+B .()231y x =-C .231y x =+D .231y x =-5.如图,四边形ABCD 是O e 的内接四边形,其中100A Ð=°,则C Ð的度数为( )A .120°B .100°C .80°D .50°6.一条排水管的截面如图所示, 已知排水管的半径5OB =, 水面宽8AB =, 则截面圆心O 到水面的距离OC 是( )A .4B .3C .2D .17.若()14,A y -,()22,B y -,()31,C y 为二次函数245y x x =--+图象上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .321y y y <<C .312y y y <<D .213y y y <<8.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,把Rt △ABC 绕着点A 逆时针旋转,使点C 落在AB 边的C ′上,C'B 的长度是( )A .1B .32C .2D .529.如图,⊙O 是ABC V 的外接圆,边BC 的垂直平分线与 AC 相交于D 点,若74B Ð=°,46C Ð=°,则 AD 的度数为( )A .23°B .28°C .30°D .37°10.已知抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +,则t 的最小值是( )A .3-B .1-C .0D .1二、填空题(本大题有6小题,每小题3分,共18分)11.抛物线2(2)3y x =-+的顶点坐标为.12.若扇形的圆心角为30°,半径为6,则扇形的面积为 .13.在一个不透明的盒子中装有红球和白球共20个,这些球除颜色外无其它差别,随机从盒子中摸出一个球,记下球的颜色后,放回并摇匀.通过大量的实验后发现摸出白球的频率稳定在0.4,则盒子中白球大约有个.14.如图,正五边形ABCDE 内接于O e ,P 为 DE 上的一点(点P 不与点D 重合),则CPD Ð= °.15.二次函数2(0)y ax bx c a =++¹的部分对应值如下表:x (3)-2-0135…y…708-9-5-7…则二次函数2y ax bx c =++在2x =时,y =.16.如图,AB 为O e 的直径,且26AB =,点C 为O e 上半圆的一点,CE AB ^于点E ,OCE Ð的角平分线交O e 于点D ,弦10AC =,那么ACD V 的面积是.三、解答题(本题共有6小题,共52分,解答时需要写出必要的文字说明、演算步骤或证明过程)17.如图,已知函数2y x bx c =-++图象经过点()1,0A -,B (0,3)(1)求b ,c 的值;(2)在图中画出这个函数的图象;(不必列表)(3)观察图像,当03x ££时,函数值y 的取值范围是 .18.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明“.小李同学购买了“二十四节气”主题邮票,他将A (小雪)、B (寒露)、C (秋分)、D (立秋)四张纪念邮票(除正面不同外,其余均相同)背面朝上洗匀.(1)小李从中随机抽取一张邮票,抽中是B (寒露)的概率是 .(2)小李先从中随机抽取一张邮票,记下内容后,正面朝下放回,重新洗匀后再随机抽取一张邮票.请用树状图或列表的办法求小李两次抽取的邮票中至少有一张是D (立秋)的概率.19.如图是由小正方形组成的88´网格.每个小正方形的顶点叫做格点,请用一把无刻度直尺及圆规借助网格根据要求作图,要求保留作图痕迹.(1)仅用一把无刻度直尺画出ABC V 的外心点O .并用圆规面出外接圆O e ;(2)仅用一把无刻度直尺画弦BD ,使得BD 平分ABC Ð.20.如图,AB 是O e 的直径,弦CD 交AB 于点E .连接AC AD 、.已知35BAC Ð=°.(1)求D Ð的度数;(2)若点C 为 ACD 的中点,求CEB Ð的度数.21.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点C 的坐标为3,102æö--ç÷èø.运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为51,4æöç÷èø,正常情况下,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B 点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由.22.如图1,ABC V 内接于O e ,10AB AC ==,12BC =,点E 为 AC 上一点,点F 为 CE的中点,连结BF 并延长与AE 交于点G ,连AF ,CF .(1)求证:AFC AFG Ð=Ð.(2)如图2,当BG 经过圆心O 时,①求FG 的长;②记AFG V ,BFC △的面积分别为12,S S .则12:S S = .1.A【详解】点在圆内,点到圆心的距离小于半径,又因为圆的半径为6,所以OP 的长小于6,因为5<6,所以选项A 符合题意,故选A 2.C【分析】根据题意,求0x =时的函数值即可.本题考查了抛物线与y 轴的交点,熟练掌握求交点的基本方法是解题的关键.【详解】解:根据题意,当0x =时,0077y =-+=,故抛物线与y 轴的交点坐标为()0,7.故选:C .3.D【分析】根据简单地概率公式计算解答即可.本题考查了简单地概率公式计算概率,熟练掌握公式是解题的关键.【详解】解:根据题意,得选中男生的概率是:42423=+.故选:D .4.A【分析】本题考查了抛物线的平移,根据平移规律:左加右减,上加下减,即可求解,掌握抛物线的平移规律是解题的关键.【详解】解:∵抛物线23y x =向左平移1个单位长度,∴平移后抛物线的解析式为()231y x =+,故选:A .5.C【分析】本题主要考查了圆内接四边形的性质,根据圆内接四边形的对角互补,列式计算即可,熟练掌握圆内接四边形的性质是解决此题的关键.【详解】∵四边形ABCD 为圆内接四边形,∴180A C Ð+Ð=°,∵100A Ð=°,∴180********C A Ð=°-Ð=°-°=°,故选:C .6.B【分析】根据垂径定理求出BC ,根据勾股定理求出OC 即可.【详解】解: ∵OC 是圆心O 到水面的距离∴OC AB ^, ∴142BC AC AB ===,在Rt OCB V 中,由勾股定理得:3OC =, 故选:B .【点睛】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC 是解决问题的关键.7.C【分析】二次函数抛物线向下,且对称轴为x =2ba- =−2.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】∵二次函数y =−x 2−4x +5=−(x +2)2+9,∴该二次函数的抛物线开口向下,且对称轴为:x =−2.∵点 A(−4,y 1) , B(-2,y 2) , C(1,y 3) 都在二次函数y =−x 2−4x +5的图象上,而三点横坐标离对称轴x =−2的距离按由远到近为:(1,y 3)、(−4,y 1)、(−2,y 2),∴y 3<y 1<y 2.故选C .【点睛】此题主要考查二次函数图象上点的坐标特征,关键是根据函数关系式,找出对称轴.8.A【分析】首先由勾股定理求出AB =5,再由旋转的性质得出4AC AC ¢==,从而可求出BC ¢的长.【详解】解:在Rt △ABC 中,∠C =90°,AC =4,BC =3,∴222AB AC BC =+∴5AB ===由旋转的性质得,4AC AC ¢==∴541C B AB AC ¢¢=-=-= 故选:A .【点睛】此题主要考查了旋转的性质和勾股定理的运用,运用勾股定理求出AB =5是解答此题的关键.9.B【分析】连接OA 、OB 、OC ,利用三角形的内角和定理、圆周角定理求出120BOC Ð=°,92AOB Ð=°,再由垂直平分线的性质,得到120BOD Ð=°,即可求出答案.【详解】解:如图,连接OA 、OB 、OC ,∵74ABC Ð=°,46ACB Ð=°,∴180744660BAC Ð=°-°-°=°,∴2260120BOC BAC Ð=Ð=´°=°,224692AOB ACB Ð=Ð=´°=°,∵OD 垂直平分边BC ,∴1(360120)1202BOD COD Ð=Ð=°-°=°,∴1209228AOD BOD AOB Ð=Ð-Ð=°-°=°,∴ AD 的度数为28°.故选:B .【点睛】本题考查了圆周角定理,三角形的内角和定理,垂直平分线的性质,解题的关键是熟练掌握所学的知识,正确的求出所需角的度数.10.A【分析】本题考查了二次函数的对称性和增减性,根据抛物线的对称轴以及对称轴公式确定1p m +=,即可得到1p m =-,由抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +得到()()22221211t p mp m m m m ==--=--+-,结合12m -££即可确定t 的最小值.【详解】解:∵抛物线22y x mx =-,∴抛物线的对称轴为直线221mx m -=-=´,∵抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +,∴点(),A p t 和点()2,B p t +关于对称轴对称,22t p mp =-,∴22p p m ++=,即1p m +=,∴1p m =-,∴()()221211t m m m m =---=-+,∵12m -££,∴2m =时,t 有最小值为:413-+=-.故选:A .11.(2,3)【分析】本题主要考查了二次函数的顶点式,根据形如2()y a x h k =-+的抛物线的顶点坐标是(,)h k 解答即可.【详解】解:抛物线2(2)3y x =-+的顶点坐标是(2,3).故答案为:(2,3).12.3p【分析】本题主要考查了求扇形的面积,根据扇形的面积公式计算即可.2360扇p =n R S ,其中n是圆心角的度数,R 是扇形的半径.【详解】∵30,6n R =°=,∴22306==3360360n R S p p p ´=扇.故答案为:3p .13.8【分析】直接用总数乘以频率即可得到答案.【详解】解:白球大约有200.48´=(个),故答案为:8.【点睛】本题考查频率估计概率,当进行大量重复试验时,频率可近似等于概率.14.36【分析】连接OC ,OD ,求出COD Ð的度数,再根据圆周角定理即可解决问题.【详解】解:如图,连接OC ,OD ,∵多边形ABCDE 是正五边形,∴360725COD °Ð==°,∴11723622CPD COD Ð=Ð=´°=°,∴CPD Ð的度数为36°.故答案为:36.【点睛】本题考查正多边形和圆,圆周角定理等知识.解题的关键是掌握中心角和圆周角定理.15.8-【分析】根据表格可知,3x =-和5x =的函数值相等,可以得到抛物线的对称轴,再利用抛物线的对称性,找到表格中与2x =关于对称轴对称的x 对应的函数值,即为所求.【详解】解:由表格可知,3x =-和5x =的函数值相等,∴抛物线的对称轴为:3512x -+==,∴2x =与0x =的函数值相等,即:当2x =时,y =8-;故答案为:8-.【点睛】本题考查二次函数的对称性.通过表格确定二次函数的对称轴,是解题的关键.16.85【分析】设AB ,CD 的交点为F ,连接OD ,证明CFE DFO V V ∽,继而得到OD AB ^,利用勾股定理,三角函数,计算,AF CE 的长,结合()1·2ACD ACF ADF S S S AF CE OD =+=+V V V ,计算解答即可.【详解】解:设AB ,CD 的交点为F ,连接OD ,∵ OD OC =,∴ODC OCD Ð=Ð;∵OCE Ð的角平分线交O e 于点D ,∴CEF OCD Ð=Ð;∴CEF ODC Ð=Ð;∵CFE DFO Ð=Ð,∴ODC OCD Ð=Ð;∴CFE DFO V V ∽,∴,EF CE CEF DOF FO DO=Ð=Ð,∵CE AB ^,∴OD AB ^,∵AB 为O e 的直径,∴90ACB Ð=°,∵26AB =, 10AC =,∴113,242OA OD AB BC =====,∴512sin ,cos 1313AC BC ABC ABC AB AB Ð==Ð==,∴120288sin ,cos 1313CE BC ABC BE BC ABC =Ð==Ð=g g ,∴5013AE AB BE =-=,∴11913OE AO AE =-=,∴120289EF CE EO DO CE ==+,∴12011984028913221EF =´=,∴1690221AF AE EF =+=,∴()1·2ACD ACF ADF S S S AF CE OD =+=+V V V 1169028985222113=´´=..【点睛】本题考查了圆的性质,三角形相似的判定和性质,勾股定理,三角函数,等腰三角形的判定和性质,熟练掌握性质,活用相似和三角函数是解题的关键.17.(1)b 的值为2,c 的值为3(2)见解析(3)04y ££【分析】(1)利用待定系数法依次解答即可;(2)根据列表,描点,连线画图象即可.(3)利用数形结合思想,根据函数的增减性,最值解答即可.【详解】(1)解:∵函数2y x bx c =-++图象经过点()1,0A -,B (0,3),∴103b c c --+=ìí=î,解得23b c =ìí=î,∴b 的值为2,c 的值为3.(2)解:由(1)得函数解析式为223y x x =-++,画图象如下:.(3)解:由(1)得函数解析式为()222314y x x x =-++=--+,∵抛物线开口向下,∴函数有最大值,且当1x =时,取得最大值,最大值为4,当0x =时,3y =,当3x =时,0y =,∴04y ££.【点睛】本题考查了待定系数法求解析式,数形结合思想,二次函数的增减性应用,二次函数的最值应用,熟练掌握二次函数的增减性应用,二次函数的最值应用是解题的关键.18.(1)14(2)716【分析】本题主要考查了概率公式,画树状图求概率,(1)根据概率公式计算;(2)画出树状图,确定所有可能出现的结果,符合题意的结果,再根据概率公式得出答案.【详解】(1)解:一共有4张邮票,符合题意的有1张,所以,抽中B 的概率是14.故答案为:14;(2)画树状图如下:一共有16种可能出现的结果,每种结果出现的可能性相同,符合题意的有7种,所以两次抽取邮票中至少有一张是D 的概率是716.19.(1)详见解析(2)详见解析【分析】本题主要考查了作图−应用与设计作图,角平分线的性质,垂直平分线的性质,垂径定理的推论,圆周角定理,三角形的外接圆与外心等知识,(1)画出BC的垂直平分线与AB的垂直平分线,两线交点O,以OC为半径作圆O即可得解;e于点D,连接BD即可(2)作AC所在矩形的对角线交于一点,过圆心和这点作射线交O得解;解题的关键是理解题意,灵活运用所学知识解决问题.【详解】(1)如图,∵BC的垂直平分线与AB的垂直平分线,两线交点O,∴点O到三角形三顶点的距离相等,e和点O即为所求;∴以OC为半径作的O(2)如图,∵矩形对角线的交点平分每一条对角线,∴过圆心和这点的射线必平分弦AC所对的 AC,∴=,AD CDÐ=Ð,∴ABD CBDÐ,∴BD平分ABC∴弦BD即为所求.20.(1)55°(2)105°【分析】本题主要考查了圆周角定理,等腰三角形的性质,三角形外角的性质,对于(1),根据圆周角定理求出BOC Ð,进而求出AOC Ð,再根据圆周角定理求出答案即可;对于(2),先根据“弧,弦,圆心角”之间的关系得AC CD =,即可求出ACD Ð,再根据三角形外角的性质得出答案.【详解】(1)如图所示,连接OC ,∵35BAC Ð=°,∴2=70BOC BAC Ð=а,∴18070110AOC Ð=°-°=°,∴1552D AOC Ð=Ð=°;(2)∵点C 是 ACD 的中点,∴ AC CD=,∴AC CD =,∴180270ACD D Ð=°-Ð=°.∵CEB Ð是ACE △的外角,∴3570105CEB CAE ACE Ð=Ð+Ð=°+°=°.21.(1)()255144y x =--+;()4,10B -(2)本次跳水失误,见解析【分析】(1)设抛物线的解析式为()2514y a x =-+,把原点坐标代入解析式,确定a 值,结合函数值计算即可;(2)根据3,102C æö--ç÷èø,运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,则此时该点的横坐标为37522-=米,计算对应的纵坐标,结合标准判断即可.本题考查了待定系数法,抛物线的应用,熟练掌握待定系数法,性质是解题的关键.【详解】(1)解:根据题意,设抛物线的解析式为()2514y a x =-+,把原点坐标代入解析式,得504a +=,解得54a =-,故抛物线的解析式为()255144y x =--+;∵水面边缘点C 的坐标为3,102æö--ç÷èø,C ,B 在一条直线上,∴点B 的纵坐标为10-,根据题意,得()25510144x -=--+,解得124,2x x ==-(舍去),故点()4,10B -.(2)解:根据3,102C æö--ç÷èø,运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,则此时该点的横坐标为37522-=米,当72x =时,2575105142416y æö=--+=-ç÷èø,由()105551051<616---=,根据运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,故本次跳水失误.22.(1)见解析(2)①72;②12【分析】(1)根据圆的内接四边形的性质,等腰三角形的性质,圆周角的性质,平角的定义,证明AFC AFG Ð=Ð即可.(2)①先证明()ASA AFC AFG V V ≌,得FG FC =,在利用垂径定理,勾股定理,计算FC 的长即可;②根据前面解答,得21171221222S BC FC ==´´=g ,过点A 作AK BF ^于点K ,利用勾股定理,圆周角定理,三角形的面积公式,求得112FG AK S =g ,再计算12:S S 即可.【详解】(1)证明:∵四边形ABCF 内接于O e ,∴180AFC ABC Ð=°-Ð;∵AB AC =,∴ACB ABC Ð=Ð;∵ACB AFB Ð=Ð,∴AFB ABC Ð=Ð;∴180180AFB ABC °-Ð=°-Ð;∵180AFB AFG °-Ð=Ð,∴AFC AFG Ð=Ð.(2)①解:∵点F 为 CE的中点,∴FAC FAG Ð=Ð.∵FAC FAG AF AF AFC AFG Ð=Ðìï=íïÐ=Ðî,∴()ASA AFC AFG V V ≌,∴FG FC =,设BC 的中点为H ,连接AH ,∵10AB AC ==,12BC =,∴162BH CH BC ===,AH BC ^,∴点O 一定AH上,8AH =,设O e 的半径为x ,则,8OB x OH x ==-,根据勾股定理,得()22268x x =+-,解得254x =,故252BF =,∵BF 是直径,∴90BCF Ð=°,∴72FC ==,∴72FG =.②解:根据前面解答,得21171221222S BC FC ==´´=g ,过点A 作AK BF ^于点K ,∵BF 是直径,252BF =,10AB =,∴90BAF Ð=°,∴152AF ==,∴6AB AF AK BF ==g ,∴11172162222S FG AK ==´´=g ,∴12211:2122:S S ==.【点睛】本题考查了圆周角定理,垂径定理,勾股定理,三角形全等的判定和性质,熟练掌握圆的性质,勾股定理,垂径定理是解题的关键.。
初三数学期中试题及答案
初三数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = -12. 如果一个数的平方根是2,那么这个数是多少?A. 4B. 2C. -4D. -23. 计算下列表达式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 9B. 4x^2 + 9C. 4x^2 + 6x - 9D. 4x^2 - 6x + 94. 一个矩形的长是宽的两倍,如果宽是3厘米,那么矩形的周长是多少?A. 18厘米B. 12厘米C. 24厘米D. 30厘米5. 一个圆的半径是5厘米,那么这个圆的面积是多少?A. 78.5平方厘米B. 25π平方厘米C. 100π平方厘米D. 78.5π平方厘米6. 如果一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么这个三角形的周长是多少?A. 16厘米B. 21厘米C. 26厘米D. 31厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 下列哪个选项是不等式3x - 2 > 5的解?A. x > 3B. x > 7/3C. x < 3D. x < 7/39. 计算下列表达式的结果:(a + b)^2 = ?A. a^2 + b^2B. a^2 + 2ab + b^2C. a^2 - 2ab + b^2D. a^2 + ab + b^210. 如果一个数的立方根是2,那么这个数是多少?A. 8B. 2C. -8D. -2二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是_________。
12. 一个数的倒数是2,那么这个数是_________。
13. 一个数的平方是9,那么这个数是_________或_________。
14. 一个数的立方是-27,那么这个数是_________。
九年级(上)期中数学试卷(解析版)
九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.20183.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠04.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y28.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.410.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.2018【解答】解:把x=﹣1代入方程得:a﹣b+6=0,即a﹣b=﹣6,则原式=2017﹣(﹣6)=2023,故选:B.3.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选:C.4.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°【解答】解:∵△ABC绕点C按顺时针方向旋转35°得到△A′B′C,∴∠ACA′=35°,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣35°=55°,∴∠A=55°.故选:C.5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=【解答】解:A、s=2t2﹣2t+1是二次函数,故A正确;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、y=3x﹣1是一次函数,故C错误;D、y=x2+不是二次函数,故D错误;故选:A.6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)【解答】解:抛物线y=﹣2(x﹣3)2+4的顶点坐标是(3,4),故选:C.7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【解答】解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,∴抛物线开口向上,在对称轴的左侧,y随x的增大而减小,又∵﹣3<﹣1<,∴y1>y2.故选:A.8.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵BD是∠ABC的平分线,∴∠ABD=45°,∵∠D=∠C=55°,∴∠BAD=180°﹣∠ABD﹣∠D=80°.故选:C.9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.4【解答】解:如图,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos 30°=÷=2;故选:A.10.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.【解答】解:∵一次函数y=ax+b的图象经过第一、三、四象限,∴a>0,b<0,∴二次函数y=ax2+bx的图象的开口向上,对称轴在y轴的右侧,且过原点.故选:C.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0.【解答】解:一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0;故答案为:3x2+9x+13=0.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是1.【解答】解:∵点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),∴a=﹣3,1﹣b=1,解得b=0,所以,a b=(﹣3)0=1.故答案为:1.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是m<﹣.【解答】解:由题意可得出:,解得:m<﹣.故答案为:m<﹣.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为y=(x+6)2﹣1.【解答】解:抛物线y=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),∵向上平移2个单位长度,再向左平移4个单位长度,∴﹣2﹣4=﹣6,﹣3+2=﹣1,∴平移后的抛物线的顶点坐标为(6,﹣1),∴所得抛物线的解析式为y=(x+6)2﹣1.故答案为:y=(x+6)2﹣1.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是150°.【解答】解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故答案为:150°.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.【解答】解:(1)∵(x+3)(x+5)=0,∴x+3=0或x+5=0,解得:x=﹣3或x=﹣5;(2)∵a=3、b=1、c=﹣5,∴△=1﹣4×3×(﹣5)=61>0,则x=,即x1=、x2=.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.【解答】解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)∠OAB=45°.理由如下:设直线AB的解析式为y=kx+b(k≠0),∵A(6,﹣3),B(0,﹣5),∴,解得,∴y=x﹣5,当x=﹣3时,y=×(﹣3)﹣5=﹣6,∴点A1在直线AB上,∵OA=OA1,∠AOA1=90°,∴△AOA1是等腰直角三角形,∴∠OAB=45°.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.【解答】(1)证明:如图,∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴BE=CF;(2)解:如图,∵四边形ABDF为菱形,∴DF=AF=2,DF∥AB,∴∠1=∠BAC=45°,∴△ACF为等腰直角三角形,∴CF=AF=2,∴CD=CF﹣DF=2﹣2.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=1寸,CD=10寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【解答】解:(1)由题意可得:S=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000依题意:x≤40×1.9,即x≤76,对于二次函数S=﹣10(x﹣80)2+16000,当x≤80时,s随x的增大而增大,故当x最大为76时,s最大为15840元.23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣2,0),B(6,0)两点,∴方程x2+bx+c=0的两根为x=﹣2或x=6,∴﹣2+6=﹣b,﹣2×6=c,∴b=﹣4,c=﹣12,∴二次函数解析式是y=x2﹣4x﹣12.(2)∵y=x2﹣4x﹣12=(x﹣2)2﹣16,∴抛物线的对称轴x=2,顶点坐标(2,﹣16).(3)设P的纵坐标为|y P|,=32,∵S△PAB∴•AB•|y P|=32,∵AB=6+2=8,∴|y P|=8,∴y P=±8,把y P=8代入解析式得,8=x2﹣4x﹣12,解得,x=2±2,把y P=﹣8代入解析式得,﹣8=x2﹣4x﹣12,解得x=2±2,又知点P为y轴右侧抛物线上一个动点,即x=2±2(负值舍去)或x=2±2(负值舍去),综上点P的坐标为(2+2,8)或(2+2,﹣8).。
九年级(上)期中数学试卷(答案解析版)
九年级(上)期中数学试卷一、选择题:(每题3分共30分)1.下列图形中即是轴对称图形,又是中心对称图形的是()A.B.C.D.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.0.53.抛物线y=﹣2x2+4x+3的顶点坐标是()A.(﹣1,﹣5)B.(1,5)C.(﹣1,﹣4)D.(﹣2,﹣7)4.已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7 B.5 C.D.5或5.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张6.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形 B.正五边形 C.等腰梯形 D.菱形7.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.D.8.某超市一月份的营业额为100万元,第一季度的营业额共800万元.如果平均每月增长率为x,则所列方程应为()A.100(1+x)2=800 B.100+100×2x=800C.100+100×3x=800 D.100[1+(1+x)+(1+x)2]=8009.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()A.②③B.②④C.①③D.①④二、填空题(每题3分共24分)10.点(4,﹣3)关于原点对称的点的坐标是.11.将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是.12.如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC的度数是度.13.在半径为2的⊙O中,弦AB的长为2,则弦AB所对的圆周角的度数为.14.有一个班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了1560张,这个班的人数是.15.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为cm.16.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为度.17.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为.三、解答题(共66分)18.解下列方程(1)y2﹣2y+3=0(2)4(x﹣1)2=5(3)3(x﹣1)2=x(x﹣1)(4)x2﹣x+=0.19.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.20.已知一抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式.21.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.22.设a,b,c是△ABC的三条边,关于x的方程x2+x+c﹣a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx﹣3m=0的两个根,求m的值.23.如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.24.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.参考答案与试题解析一、选择题:(每题3分共30分)1.下列图形中即是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,结合所给图形的特点进行判断即可.【解答】解:A不是轴对称图形,是中心对称图形,不符合题意;B是轴对称图形,也是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D是中心对称图形,也是轴对称图形,符合题意;综上可得符合题意的有2个.故选:B、D.【点评】本题考查了轴对称及中心对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.0.5【考点】一元二次方程的解;一元二次方程的定义.【专题】计算题.【分析】先把x=0代入方法求出a的值,然后根据一元二次方程的定义确定满足条件的a的值.【解答】解:把x=0代入方程得a2﹣1=0,解得a=1或﹣1,由于a﹣1≠0,所以a的值为﹣1.故选A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.3.抛物线y=﹣2x2+4x+3的顶点坐标是()A.(﹣1,﹣5)B.(1,5)C.(﹣1,﹣4)D.(﹣2,﹣7)【考点】二次函数的性质.【分析】利用顶点公式(﹣,)解题.也可以用配方法求顶点坐标.【解答】解:∵x=﹣=﹣=1,y===5.∴顶点坐标为(1,5).故选B.【点评】熟练运用顶点公式进行解题.4.已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7 B.5 C.D.5或【考点】勾股定理;解一元二次方程-因式分解法.【专题】分类讨论.【分析】求出方程的解,得出直角三角形的两边长,分为两种情况:①当3和4是两直角边时,②当4是斜边,3是直角边时,根据勾股定理求出第三边即可.【解答】解:x2﹣7x+12=0,(x﹣3)(x﹣4)=0,x﹣3=0,x﹣4=0,解得:x1=3,x2=4,即直角三角形的两边是3和4,当3和4是两直角边时,第三边是=5;当4是斜边,3是直角边时,第三边是=,即第三边是5或,故选D.【点评】本题考查了解一元二次方程和勾股定理,注意:解此题时要进行分类讨论.5.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张【考点】中心对称图形.【专题】压轴题.【分析】本题主要考查了中心对称图形的定义,根据定义即可求解.【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A.【点评】当所有图形都没有变化的时候,旋转的是成中心对称图形的,有变化的时候,旋转的便是有变化的.6.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形 B.正五边形 C.等腰梯形 D.菱形【考点】中心对称图形;轴对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:正三角形不是中心对称图形,是轴对称图形;正五边形不是中心对称图形,是轴对称图形;等腰梯形不是中心对称图形,是轴对称图形;菱形是中心对称图形,是轴对称图形;故选:D.【点评】此题主要考查了中心对称图形和轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.D.【考点】垂径定理;勾股定理.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.【点评】注意由题目中的折叠即可发现OD=OA=1.考查了勾股定理以及垂径定理.8.某超市一月份的营业额为100万元,第一季度的营业额共800万元.如果平均每月增长率为x,则所列方程应为()A.100(1+x)2=800 B.100+100×2x=800C.100+100×3x=800 D.100[1+(1+x)+(1+x)2]=800【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=800,把相关数值代入即可.【解答】解:∵一月份的营业额为100万元,平均每月增长率为x,∴二月份的营业额为100×(1+x),∴三月份的营业额为100×(1+x)×(1+x)=100×(1+x)2,∴可列方程为100+100×(1+x)+100×(1+x)2=800,故选D.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()A.②③B.②④C.①③D.①④【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】①由二次函数y=ax2+bx+c(a≠0)的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,由此即可判定a﹣b+c的符号;③根据图象知道当x<﹣1时抛物线在x轴的下方,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,∴a<0,∵与y轴交点在x轴上方,∴c>0,∴ac<0;②∵当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,∴a﹣b+c<0;③根据图象知道当x<﹣1时抛物线在x轴的下方,∴当x<﹣1,y<0;④从图象可知抛物线与x轴的交点的横坐标都大于﹣1,∴方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.故错误的有①③.故选C.【点评】此题主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子,如:当x=1时,y>0,a+b+c>0;x=﹣1时,y<0,a﹣b+c<0.二、填空题(每题3分共24分)10.点(4,﹣3)关于原点对称的点的坐标是(﹣4,3).【考点】关于原点对称的点的坐标.【分析】点关于原点的对称点,横、纵坐标都互为相反数,据此知道(x,y)关于原点的对称点是(﹣x,﹣y).【解答】解:点(4,﹣3)关于原点对称的点的坐标是(﹣4,3).故答案为:(﹣4,3).【点评】本题主要是通过作图总结规律,记住,然后应用.11.将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是y=6(x+2)2+3.【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=6x2先向左平移2个单位得到解析式:y=6(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=6(x+2)2+3.故答案为:y=6(x+2)2+3.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.12.如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC的度数是25度.【考点】圆周角定理.【分析】先求出∠ACB的度数,圆周角∠ACB等于圆心角∠AOB的一半,再根据平行,得到内错角∠OAC=∠ACB.【解答】解:∵AO∥BC,∴∠OAC=∠ACB.又∠AOB与∠ACB都是弧AB所对的角,∴∠ACB=∠AOB=25°,∴∠OAC的度数是25°.故答案为:25.【点评】本题利用了圆周角定理和两直线平行内错角相等求解.13.在半径为2的⊙O中,弦AB的长为2,则弦AB所对的圆周角的度数为30°或150°.【考点】圆周角定理;圆内接四边形的性质.【专题】计算题;分类讨论.【分析】根据弦长等于半径,得这条弦和两条半径组成了等边三角形,则弦所对的圆心角是60°,要计算它所对的圆周角,应考虑两种情况:当圆周角的顶点在优弧上时,则根据圆周角定理,得此圆周角是30°;当圆周角的顶点在劣弧上时,则根据圆内接四边形的对角互补,得此圆周角是150°.【解答】解:根据题意,弦AB与两半径组成等边三角形,∴先AB所对的圆心角=60°,①圆周角在优弧上时,圆周角=30°,②圆周角在劣弧上时,圆周角=180°﹣30°=150°.∴圆周角的度数为30°或150°.【点评】注意:弦所对的圆周角有两种情况,且两种情况的角是互补的.14.有一个班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了1560张,这个班的人数是40.【考点】一元二次方程的应用.【分析】设这个班的人数是x,则每人需送出(x﹣1)张照片,共送出x(x﹣1)张,结合题意即可列出方程,进而求出答案.【解答】解:设这个班的人数是x,根据题意得:x(x﹣1)=1560,解得x1=40,x2=﹣39(舍去)答:这个班的人数是40.故答案为:40.【点评】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送x﹣1张相片,有x个人是解决问题的关键.15.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为6cm.【考点】垂径定理;勾股定理.【专题】动点型.【分析】根据垂线段最短,可以得到当OP⊥AB时,点P到圆心O的距离最短.根据垂径定理和勾股定理即可求解.【解答】解:根据垂线段最短知,当点P运动到OP⊥AB时,点P到到点O的距离最短,由垂径定理知,此时点P为AB中点,AP=8cm,由勾股定理得,此时OP==6cm.【点评】本题利用了垂线段最短和垂径定理及勾股定理求解.16.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为15度.【考点】圆周角定理.【专题】压轴题.【分析】根据量角器的读数,可求得圆心角∠AOB的度数,然后利用圆周角与圆心角的关系可求出∠1的度数.【解答】解:∵∠AOB=70°﹣40°=30°;∴∠1=∠AOB=15°(圆周角定理).故答案为:15°.【点评】本题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.17.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为﹣2.【考点】二次函数的定义;二次函数的性质.【分析】先依据二次函数的定义知,系数1﹣m一定不为0,1﹣m>0,再得出m 2﹣2=2,求出m的值即可.【解答】解:由题意:∴1﹣m≠1,1﹣m>0,m<1,m 2﹣2=2,解得:m=±2,∴m=﹣2.故答案为:﹣2.【点评】此题主要考查了二次函数的定义以及二次函数的性质,根据性质得出m的值是解题关键.三、解答题(共66分)18.解下列方程(1)y2﹣2y+3=0(2)4(x﹣1)2=5(3)3(x﹣1)2=x(x﹣1)(4)x2﹣x+=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)利用直接开平方法解方程;(3)先移项得到3(x﹣1)2﹣x(x﹣1)=0,然后利用因式分解法解方程;(4)利用配方法解方程.【解答】解:(1)(y﹣3)(y﹣1)=0,y﹣3=0或y﹣1=0,所以y1=3,y2=1;(2)(x﹣1)2=,x﹣1=±,所以x1=1+,x2=1﹣;(3)3(x﹣1)2﹣x(x﹣1)=0,(x﹣1)(3x﹣3﹣x)=0,x﹣1=0或3x﹣3﹣x=0,所以x1=1,x2=;(4)x2﹣x+()2=0,(x﹣)2=0,所以x1=x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.【考点】圆心角、弧、弦的关系.【专题】证明题.【分析】根据圆心角、弧、弦的关系定理,弦AD=BC,则弧AD=弧BC,则弧AB=弧CD,则AB=CD.【解答】证明:∵AD=BC,∴=,∴+=+,即=.∴AB=CD.【点评】本题考查了圆心角、弦、弧之间的关系定理,在同圆或等圆中,两个圆心角、两条弧、两个弦中有一组量相等,它们所对应的其余各组量也相等.20.已知一抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式.【考点】待定系数法求二次函数解析式.【分析】由抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),设解析式为一般式或交点式用待定系数法求得二次函数的解析式.【解答】解:设这个抛物线的解析式为y=ax2+bx+c.由已知,抛物线过A(﹣2,0),B(1,0),C(2,8)三点,得,①+③得,8a+2c=8,即4a+c=4④,①+②×2得6a+3c=0⑤,④×3﹣⑤得,6a=12,即a=2,把a=2代入④得,c=﹣4,把a=6,c=﹣4代入②得,b=2,故.∴所求抛物线的解析式为y=2x2+2x﹣4.【点评】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.21.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.【解答】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=﹣70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【点评】本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.22.设a,b,c是△ABC的三条边,关于x的方程x2+x+c﹣a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx﹣3m=0的两个根,求m的值.【考点】一元二次方程的应用.【分析】(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,c的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可求出a,b,c的关系;(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m.【解答】解:(1)∵关于x的方程x2+x+c﹣a=0有两个相等的实数根,∴△=1﹣4×(c﹣a)=0,整理得4a﹣4c+1=0 ①,∴a≠c,又∵3cx+2b=2a的根为x=0,∴a=b ②,∴△ABC为等腰三角形;(2)a,b是方程x2+mx﹣3m=0的两个根,∴方程x2+mx﹣3m=0有两个相等的实数根,∴△=m2﹣4×(﹣3m)=0,即m2+12m=0,∴m1=0,m2=﹣12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=﹣12.【点评】本题考查了一元二次方程的应用,一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23.如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.【考点】圆心角、弧、弦的关系;垂径定理.【分析】(1)根据等腰三角形性质和平行线性质推出∠BAC=∠OAC即可;(2)根据平行得出相似,根据相似得出比例式,代入求出即可.【解答】(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠O AC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)解:∵OE⊥AB,∴AE=BE=AB=1.又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.∴OE=AB•cos60°=2×=.【点评】本题考查了垂径定理,相似三角形的性质和判定,平行线的性质,等腰三角形的性质,勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)根据图象可得出A、B两点的坐标,然后将其代入抛物线的解析式中即可求得二次函数的解析式.(2)根据(1)得出的抛物线的解析式,用配方法或公式法即可求出对称轴和顶点坐标.(3)将P点坐标代入抛物线的解析式中,即可求出m的值,P,Q关于抛物线的对称轴对称,那么两点的纵坐标相等,因此P点到x轴的距离同Q到x轴的距离相等,均为m的绝对值.【解答】解:(1)将x=﹣1,y=﹣1;x=3,y=﹣9,分别代入y=ax2﹣4x+c得,解得,∴二次函数的表达式为y=x2﹣4x﹣6.(2)对称轴为x=2;顶点坐标为(2,﹣10).(3)将(m,m)代入y=x2﹣4x﹣6,得m=m2﹣4m﹣6,解得m1=﹣1,m2=6.∵m>0,∴m1=﹣1不合题意,舍去.∴m=6,∵点P与点Q关于对称轴x=2对称,∴点Q到x轴的距离为6.【点评】本题考查二次函数的有关知识,通过数形结合来解决.。
2023~2024学年第一学期期中九年级数学期中练习卷【含答案】
2023-2024学年度第一学期期中练习卷九年级数学(本试卷共6页.全卷满分120分.时间为120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在括号内) 1.下列方程中,是一元二次方程的是( ) A . 2x -y =5B .x +1x=0C .5x 2=1D .y 2-x +3=02.一元二次方程x 2-4x =-4的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.已知1是关于x 的一元二次方程x 2+x +k 2-3k -6=0的一个实数根,则实数k 的值是( ) A .4或-1 B .-4或1C .-1D .4 4.甲、乙两名运动员在6次射击测试中的成绩如下表(单位:环):甲的成绩 6 7 8 8 9 9 乙的成绩596 ?910如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为?)可以是( ) A .6环 B .7环 C .8环 D .9环5.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是( ) A .70° B .120° C .140°D .160°6.如图,△ABC 内接于⊙O ,∠BAC =45°,AD ⊥BC ,垂足为D ,BD =6,DC =4. 则AB 的长( )A .6 2B .10C .12D .6 5 二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置.......上) 7.数据2、4、3、-4、1的极差是 .8.已知x 1,x 2是方程x 2-3x +2=0的实数根,则x 1+x 2- x 1x 2= .(第6题)(第5题)C9.已知⊙O 的半径为6cm ,点P 在⊙O 内,则线段OP 的长 6cm (填“<”、“=”或“>”).10.某公司决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目 创新能力综合知识语言表达测试成绩/分708090将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 分.11.如图,AB 是半圆的直径,P 是AB 延长线上一点,PC 切半圆于点C ,若∠CAB=31°,则∠P = °.12.在⊙O 中,弦AB 的长为4,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,OD ∶CD =3∶2,则⊙O 半径长 .13.一个圆锥的底面半径为3,母线长为4,其侧面积是 .14.某企业2020年盈利3000万元,2022年盈利3662万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程 .15.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE = °.16.如图,在等腰直角三角形ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长 .P(第11题)D EABC(第15题) FG H(第16题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)x 2+2x -3=0; (2)(x -2)2=3x -6. 18.(8分)关于x 的一元二次方程x 2-4x -k -6=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1 =3x 2,求k 的值.19.(6分)如图,在⊙O 中,AB 是非直径的弦,CD 是直径,且CD 平分AB ,并交AB 于点M ,求证:CD ⊥AB ,AC ⌒=BC ⌒,AD ⌒=BD ⌒.(第20题)20.(9分)甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是 分、 分; (2)利用方差判断这两名同学该项测试成绩的稳定性; (3)结合数据,请再写出一条与(1)(2)不同角度的结论.21.(6分)要建一个面积为150 m 2的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35 m .若墙足够长,则养鸡场的长与宽各为多少?(第19题)甲 乙(第21题)墙22.(8分)用直尺和圆规完成下列作图:(不写作法,保留作图的痕迹)(1)如图①,经过A 、B 、C 三点作⊙P ;(2)如图②,已知M 是直线l 外一点.作⊙O ,使⊙O 过M 点,且与直线l 相切.23.(8分)如图,在△ABC 中,AB =AC ,过点A ,C 的⊙O 与BC ,AB 分别交于点D ,E ,连接DE . (1)求证DB =DE ;(2)延长ED ,AC 相交于点P ,若∠P =33°,则∠A 的度数为▲________°.B(第23题)AED CO(第22题) BAClM①②24.(7分)某商店将进价为30元的商品按售价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得12000元的利润,且尽量减少库存,应涨价为多少元?25.(8分)如图,D为⊙O上一点,点C是直径BA延长线上的一点,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线BE交CD的延长线于点E.若BC=12,AC=4,求BE的长.C(第25题)26.(10分)如果关于x的一元二次方程ax2+bx+c=0满足a+b+c=0,那么称这样的方程为“美好方程”.例如,方程x2-4x+3=0,1-4+3=0,则这个方程就是“美好方程”.(1)下列方程是“美好方程”的是▲ ;①x2+2x-3=0 ②x2-3x=0 ③x2+1=0 ④x(x-1)=2(x-1)(2)求证:“美好方程”ax2+bx+c=0总有两个实数根;(3)若美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根,求证:a+c=2 b.27.(10分)(1)证明定理:圆内接四边形的对角互补.已知:如图①,四边形ABCD 内接于⊙O . 求证:∠A +∠C =∠B +∠D =180°.(2)逆命题证明:若四边形的一组对角∠A +∠C =180°,则这个四边形的4个顶点共圆(图②) 可以用反证法证明如下:在图②中,经过点A ,B ,D 画⊙O .假设点C 落在⊙O 外,BC 交⊙O 于点E ,连接DE , ∵四边形ABED 内接于⊙O∴可得 =180°, ∵∠A +∠C =180°,∴∠BED = ,与∠BED >∠C 得出矛盾; 同理点C 也不会落在⊙O 内, ∴A ,B ,C ,D 共圆.(3)结论运用:如图∠BAC =120°,线段AB =83,点D ,E 分别在射线AC 和线段AB 上运动,以DE 为边在∠BAC 内部作等边△DEF ,则BF 的最小值为 .②DCBAO①FCAEBD③2023~2024学年度第一学期期中练习卷 九年级数学数学试卷参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(每小题2分,共20分) 7.8 8. 1 9. <10.77 11.28° 12.5213.12π14.3000(1+x )2=366215.67.5°16.π三、解答题(本大题共11小题,共88分)17.(8分)(1)解:x 2+2x -3=0x 2+2x +1=3+1 ···················································································· 1分 (x +1)2=4 ····························································································· 2分 x +1=±2 ····························································································· 3分 ∴x 1=1, x 2=-3 ················································································ 4分 (2)解:(x -2)2-3(x -2)=0 ············································································ 5分(x -2) (x -2-3)=0 ··············································································· 6分 ∴x 1=2, x 2=5. ·················································································· 8分18.(8分)(1)∵x 2-4x -k -6=0有两个不相等的实数根 ∴(-4)2-4(-k -6) >0…………… …………… 2分 ∴k >-10………………………………………………4分(2)∵x 1,x 2是方程两个实数根∴x 1+x 2=4,x 1x 2=-k -6…………………………………………5分 ∵x 1 =3x 2∴4x 2=4∴x 2=1…………………………………………6分 ∴x 1 =3…………………………………7分 ∴x 1x 2=3=-k -6∴k =-9………………………………………8分题号 1 2 3 4 5 6 答案CAABCD19.(6分)证明:连接OA ,OB , ∵OA =OB,CD 平分AB∴∠AMO =∠BMO =90°,…………………2分 ∴CD ⊥AB ,…………………………3分 ∵CD 是直径,∴AC ⌒=BC ⌒,AD ⌒=BD ⌒. (6)20.(9分)(1)80,80 ··················································································· 2分 (2)方差分别是:s 2甲=(80-80)2+(90-80) 2+(80-80)2+(70-80)2+(80-80)25=40分2 ···································· 4分 s 2乙=(60-80)2+(70-80) 2+ (90-80)2+(80-80)2+(100-80)25=200分2 ································ 6分 由s 2甲<s 2乙可知,甲同学的成绩更加稳定. ·························································· 7分 (3)甲同学的成绩在70,80,90间上下波动,而乙的成绩从60分到100分,呈现上升趋势,越来越好,进步明显. ·················································································· 9分21.(6分)解 :设养鸡场的宽为x m ,则长为(35-2x )m ,由题意得: x (35-2x )=150…………………………………2分整理得:2x 2-35x +150=0…………………………………3分 解得:x 1=10,x 2=152.…………………………………4分当x 1=10时,35-2 x 1=15;当x 2=152时,35-2 x 2=20.……………………5分答: 养鸡场长为15 m ,宽为10 m 或长为20 m ,宽为152………………………6分 22.(本题8(1)(4分)(2)(lD(第20题)23.(本题8分)(1)∵AB=AC,∴∠B=∠C,又∵四边形AEDC为⊙O的内接四边形,∴∠AED+∠C=180°,∵∠BED+∠AED=180°,∴∠BED=∠C∴∠BED=∠B∴DB=DE.··························································································6分(2)38° ·······························································································8分24.(7分)解:设涨价x元,根据题意得:(50-30+x)(500-10x)=12000.…………………………3分解得:x1=10,x2=20. …………………………5分∵要尽量减少库存,∴x2=20(舍). …………………………6分答:涨价10元.…………………………7分25.(8分)证明:(1)连接OD.∴∠ADO=∠OAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠ABD+∠BAD=90°,∵∠CDA=∠CBD,∴∠CDO=∠CDA+∠ADO=90°,即CD⊥OD. ················································································ 3分分(43.∵BE2+BC2=EC∴x 2+122=(x+42.∴x=43.即BE的长为43.·········································································· 8分26.(10分)(1)①④…………………………………2分(2)证明:∵ax2+bx+c=0是“美好方程”∴a+b+c=0………………3分∴b=-a-c………………4分判别式b 2-4 ac=(-a-c)2-4 ac=c2-2 a c+a2=(c-a)2≥0………………5分∴“美好方程”ax2+bx+c=0总有两个实数根.………………6分(3)证明:方法一:∵美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根∴(c-a)2-4(b-c) (a-b) =0…………………………………7分∴c2-2 a c+a2-4 ab+4 b2+4 a c-4 b c=0∴c2+2 a c+a2-4 ab-4 b c+4 b2=0…………………………………8分∴(c+a)2-4(a+c) b+4 b2=0∴(c+a-2 b)2=0…………………………………9分∴c+a-2 b=0,即a+c=2 b.…………………………………10分方法二:将x=1代入美好方程(b-c)x2+(c-a)x+(a-b)=0左右两边,左边=右边从而得出x=1是方程的解。
九年级(上)期中数学试卷(答案解析)
九年级(上)期中数学试卷一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣22.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣14.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=25.下列标志中,可以看作是轴对称图形的是()A.B.C.D.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.39.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.18.解方程:2x2﹣7x+6=0.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.参考答案与试题解析一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、()2+﹣2=0是分式方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、2x2+3x=2x2﹣2是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣1【考点】根的判别式.【专题】计算题.【分析】根据根的判别式,令△>0即可求出根的判别式.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m>0,∴4﹣4m>0,解得m<1.故选A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【考点】垂径定理;勾股定理.【分析】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.【点评】本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.9.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【专题】几何图形问题.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m<0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=﹣或1.【考点】换元法解一元二次方程.【分析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2.【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为(4,2).【考点】坐标与图形变化-旋转.【专题】几何变换.【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.16.观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【专题】规律型.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣(2015+π)0=2+3﹣2﹣3﹣1=﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:2x2﹣7x+6=0.【考点】解一元二次方程-因式分解法.【分析】利用十字相乘法因式分解得到(2x﹣3)(x﹣2)=0,推出2x﹣3=0,x﹣2=0,求出方程的解即可.【解答】解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x1=,x2=2,【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).【考点】根与系数的关系.【分析】(1)根据根与系数的关系得出α+β和αβ,再把α2+β2变形(α+β)2﹣2αβ,代入计算即可;(2)把化为,再代入计算即可.【解答】解:(1)∵方程x2+3x﹣1=0的两个实数根为α、β,∴α+β=﹣3,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=9+2=11;(2)∵α+β=﹣3,αβ=﹣1,∴===﹣11.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】根据A点坐标得到OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB 绕原点O顺时针旋转90°得到RtOA′C,根据旋转的性质得到A′C=AB=3,OC=OB=4,再写出A′点的坐标.【解答】解:AB⊥y轴于B,A′C⊥x轴于C,如图,OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB绕原点O顺时针旋转90°得到RtOA′C,则A′C=AB=3,OC=OB=4,所以点A′的坐标为(4,﹣3).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.【考点】圆心角、弧、弦的关系;圆周角定理.【分析】(1)根据∠AOD=∠BOE可知=,再由=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【解答】(1)证明:∵∠AOD=∠BOE,∴=.∵=,∴=,∴BE=CE;(2)解:∵∠B=50°,OB=OE,∴∠BOE=180°﹣50°﹣50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°﹣80°﹣80°=20°.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ 的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练掌握列一元一次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴A B2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==2【点评】本题考查了抛物线与x轴的交点,利用了根的判别式,根据根与系数的关系,利用完全平方公式得出二次函数是解题关键,又利用了二次函数的性质.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.【考点】二次函数综合题.【分析】(1)根据题意联立抛物线和直线的解析式,化为一元二次方程,运用△>0即可求出a的取值范围和交点的坐标;(2)根据轴对称性质表示出点P的坐标并代入抛物线,求出a的值,用△ACP的面积减去△ADC 的面积即可求出△PCD的面积.【解答】解:(1)由题意联立,整理得:2x2+5x﹣4a=0,由△=25+32a>0,解得:,∵a≠0,∴且a≠0,当x=0时,y=a,∴A(0,a),∵y=﹣x2﹣2x+a=﹣(x+1)2+a+1,∴M(﹣1,a+1).(2)设直线MA为:y=kx+b,代入A(0,a),M(﹣1,a+1)得,,解得:,所以直线MA为y=﹣x+a,联立,解得,所以:N(,),∵点P是N关于y轴的对称点,∴P(﹣,),代入y=﹣x2﹣2x+a,得,解得:a=,或a=0(舍去),∴抛物线为y=﹣x2﹣2x+,直线BC为y=﹣,当x=0时,y=﹣,∴C(0,﹣),A(0,),M(﹣1,),∴|AC|=,∴S△PCD=S△PAC﹣S△DAC=|AC|×|x p|﹣|AC|×|x D|=××3﹣××1=.【点评】此题主要考查二次函数的综合问题,会运用待定系数法求函数解析式,会求函数图象的交点和三角形的面积是解题的关键.。
市北初级中学2024学年第一学期九年级数学期中练习卷解析
市北初级中学2024学年第一学期九年级数学期中练习卷(完卷时间: 100分钟 满分: 150分) 2024.11一、选择题(本题共6小题,每题4分,满分24分)1. 已知, 则下列比例式成立的是 ( ),() x 2=y 3; ()x +y y =43; (C )x 3=y 2; (D )x +y x =35.2. 如图, 在直角坐标系中, 点A 的坐标是(8,12), 则的值是( ).(A )23; (B )32; (C )32; (D )1312.3. 大自然是美的设计师,一个盆景也会产生最具美感的黄金分割比. 如图,点B 为AC的黄金分点(AB>BC) , 则 BC AB =( ).(A )AB AC ; (B )AC BC ; (C )AB BC ; (D )AB 2AC 2.4. 已知单位向量与非零向量、,下列四个选项中,正确的是 ( ).(A )|a |e =a ; (B )|e |b =b ; (C=|b |b ; (D =e .5.在△ABC 中, 点D 、E 分别在边AB 、AC 上, 下列条件中, 能判定DE∥BC 的是( ).(A )AD AE =DB EC ; (B )AD AC =AE AB ; (C) DB·AD=EC·AE; (D )AD AB =DEBC .6. 如图,已知菱形ABCD 的边长为4, E 是BC 的中点, AF 平分∠EAD 交CD 于点F, FG∥AD 交AE 于点G, 若 cos B =14,则FG 的长是( ).(A)3; (B )52; (C )2153; (D) 83二、填空题(本题共12题,每小题4分,满分48分)7. 计算: 2b ―12(6a ―2b )= .8. 已知( 0°<α<90°),如果 cos α=34,那么= .y x 32=C A αtan B e a b B A D a b 33-αsin 479. 在比例尺为1:1000000的地图上量得港珠澳大桥长厘米,则大桥的实际长度为 千米.10.小红沿坡比为1: 3的斜坡上走了 100米,则她实际上升了 米.11. 如图, 直线AB∥CD∥EF, AC:CE=2:3, BD=3, 则DF的长是.12. 两个相似三角形的面积比为 49,其中较小三角形的周长为4,则较大三角形的周长为 .13. 如图, 已知平行四边形ABCD 中, AB =a ,AC =b ,, E 为AD 上一点, AE=2ED, 那么用表示 AE = .14. 如图, △ABC 中, G 是重心, GD⊥BC, AH⊥BC, 那么 GD AH = .15.如图, △ABC 是一块锐角三角形余料, 边BC=12m, 高AD=8m, 要把它加工成一个正方形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上. 则该正方形的边长是 米.16. 我国古代数学家赵爽利用影子对物体进行测量的方法,至今仍有借鉴意义. 如图所示,现将一高度为2米的木杆CG 放在灯杆AB 前,测得其影长CH 为1米,再将木杆CG 沿着射线BC 方向移动到点 D 的位置,CD=3.6米,此时测得影长DF 为3米,那么灯杆AB 的高度为 5.6 米.17. 新定义:将一个凸四边形分成一个等腰三角形和一个等腰直角三角形的对角线叫做这个四边形的“等腰直角线”. 已知一个直角梯形的“等腰直角线”等于4,它的面积是 .18. 矩形ABCD 中, AB=5, BC=4, 点E 是AB 边上一点, AE=3, 连接DE, 点F 是BC 延长线上一点, 连接AF , 且 ∠F =12∠EDC ,则BF= 10 .三、解答题(本大题共7题,满分78分)19. (本题满分10分)计算: ―12024+(12)―2+―(π―2024)0+【解析】5.55550296b a ,a b 3232-318.412244或+ 30tan 3|23|-20. (本题满分10分)如图, 在梯形ABCD 中, AB∥CD, E 是CD 的中点,且 EC =25AB , AC 与BE 交于点 F.(1)若 AB =m ,AD =n ,请用m ,n 来表示 DC ,AF ;(2)请直接在图中画出AC 在m ,n 方向上的分向量.(不要求写作法,但要保留作图痕迹,并写明结论)【解析】① ② 过点C 作交于点,即为所求 21. (本题满分10分)已知: 如图,在△ABC 中, AB=13, AC=8, cos ∠BAC =513,BD ⊥AC ,垂足为点D ,E 是BD 的中点,连结AE 并延长, 交边BC 于点 F.(1)求∠EAD 的正切值; (2)求 BF CF 的值.【解析】①②43213332133341=-+-+=-+-⨯++-=m n F A m C D 747554+==、AD CT //AB T T A D A 、56tan =∠EAD 85=CF BF22. (本题满分10分, 第(1)小题5分, 第(2) 小题5分)小华家准备购买一套新房,经过考察小华家发现有的房产开发商,在政府允许的规定下,为了获取更大利益,缩短楼间距,以增加住宅楼栋数. 某市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米. 如果楼间距过小,将影响其他住户的采光(如图所示,窗户高1.3米).(1)某市的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度.为了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米? (保留到0.1米)(2) 小华一家决定在该小区中B、C两栋楼中选择一套进行购买,现向售楼中心咨询得到如下信息:1. B、C两栋楼中各套房子的面积均为100m².2. A、B、C三栋楼平行排列, A楼在B楼正南方且间距68米, B楼在C楼的正南方且间距76米.3. B楼一楼售价每平方米4.8万元,每升高一层楼,每平方米单价增加0.2万元;C楼一楼售价每平方米5万,每升高一层楼,每平方米单价增加0.3万元.若小华家预算有限,但又希望全年光照充足. 那你是否能结合计算出的相关数据,给小华家一些选购建议.(本题参考值: sin81.4°=0.99,cos81.4°=0.15,tan81.4°=6.61; sin34.88°=0.57,cos34.88°=0.82,tan34.88°=0.70)【解析】①两栋楼的楼间距至少为78.1米②每增加一层楼,单价增加0.1万元时,B栋和C栋购买费用相同;每增加一层楼,单价增加小于0.1万元时,C栋购买费用少一些;每增加一层楼,单价增加大于0.1万元时,B栋购买费用少一些;23. (本题满分12分, 第(1) 小题6分, 第(2)小题6分)如图, 正方形ABCD 中, E 、F 分别是AD 、AB 上的点, AP⊥BE 于点P.(1)如图1, 如果点F 是AB 的中点, 求证: BP·BE=2PF·BC;(2)如图2, 如果AE=AF, 连接CP, 求证: CP⊥FP.【解析】①省略②省略24. (本题满分12分, 第(1)小题6分, 第(2)小题6分)如图,在平面直角坐标系中,点A 的坐标为 (―417,0),点B 在直线l : y =14x 上且位于第三象限,过点B 作AB 的垂线,过原点O 作直线的垂线,两垂线相交于第二象限内的点C.(1) 设BC 与AO 相交于点D,①若BA=BO, 求证: CD=CO;②求点A 到直线的距离;(2) 是否存在点B, 使得以A 、B 、C 为顶点的三角形与以点 B 、C 、O 为顶点的三角形相似? 若存在,求OB 的长;若不存在,请说明理由.【解析】①省略②距离为4③OB的长为l l 3483488+-或或25. (本题满分14分, 其中第(1) 小题4分, 第(2) 小题5分, 第(3) 小题5分)如图, 梯形ABCD 中, ADBC ,AB =26,BC =42,cos B =513,AD =DC .点M 在射线CB 上,点N 在射线CD 上, 且CM=CN, 联结MN, 交射线CA 于点G.(1)求线段AD 的长;(2)设线段 CM =x ,AG GC =y ,当点N 在线段CD 上时,试求出关于的函数关系式,并写出的取值范围;(3)联结DM ,当∠NMC=2∠DMN 时,求线段CM 的长.【解析】①②③ y x x 25=AD )250(50≤<-=x x x y 5511125或=CM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级第一学期期中数学测试卷
(总计120分 考试时间120分钟)
一.选择题(每小题2分,共计24分)
1.下列二次根式中,与2是同类二次根式的是( )。
A .3 B. 4 C. 8 D. 12 2.化简(-3)2
的结果是 (
A .3
B .-3
C .±3
D .9 3.方程x x =2的解是( ).
A .0=x
B .1=x
C .1,021==x x
D .1,021-==x x 4.已知方程x 2-x +1=0,则 ( )
A.方程有两个不相等的实数根
B.方程有两个相等的实数根
C.方程没有实数根
D.方程只有一个实数根 5.用配方法将方程762
+-x x =0变形,结果正确的是 ( ).
A .4)3(2+-x =0
B .2)3(2--x =0
C .2)3(2+-x =0
D .4)3(2++x =0 6.已知菱形的两条对角线长分别为6cm 和8cm ,则菱形的边长为( ) A .10cm B .5cm C .5cm D .10cm
7.在四边形ABCD 中,依次连结各边中点所得的四边形是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 8.平行四边形、矩形、菱形、正方形都具有的性质( ) A .对角线相等 B .对角线互相平分 C .对角线平分一组对角 D .对角线互相垂直
9.如图,在长为5,宽为3的长方形内部有一平行四边形, 它的面积等于( )
A .5
B .6
C .7
D .6.5
10.下列计算中,错误..的是( )
A.632=
⨯ C.252322=+ D. 416±=
11.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:
(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);(3)甲班成绩比乙班成绩波动大。
上述结论正确的是( )
A .(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)
12.小明拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙。
再对折一次得丙.然后用剪刀沿图丙中的虚线(虚线与底边平行)剪去一个角.打开后的形状是 ( )
二.填空题(每小题3分,共计15分) 13.当x 时,式子
4-x 在实数范围内有意义。
14.已知菱形ABCD 中对角线AC 、BD 相交于点O ,添加条件______________可使菱形ABCD 成为正方形.
15.若梯形的面积为122cm ,高为3cm ,则此梯形的中位线长为 cm 。
16.请你写出一个关于x 的的一元二次....方程,且有一根为0: . 17.已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC=AD ,∠D=120
°,且梯形的周长为
20,则BC=_________.
三.化简与求解(每小题5分,共计20分) 18.化简:222
1
218+-
19.化简:)32(2)53)(53(-+-+
20.解方程:0342
=+-x x
A
B
D
21.解方程:()()2232
-=-x x x
四.操作与解释(每小题6分,共计18分)
22.如图是面积为48cm 2的正方形,四个角分别是面积为3cm 2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的体积。
(结果保留根号)
23.如图:已知四边形ABCD 是平行四边形,E 、F 是AC 上的两点,且AE=CF 。
证明:DE=BF 。
24甲、乙两位同学五次数学测验成绩如下表:
请你在表中的空白处填上适当的数,用学到的统计知识对两位同学的成绩进行分析,并写出一条合理化建议.
五.阅读与思考(本题8分)
25.解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原
来的方程的系数有什么联系?
(1)222
(1)请同学们仔细观察方程的解,你会发现方程的解与方程中未知数的系数和常数项之间
有一定的关系。
一般的,对于关于x 的方程220(40)x px q p q p q ++=-≥,为常数,的两根为1x 、2x 则12x x +=_____________,
x
x 2
1
.=_____________。
(2)运用以上发现,解决下面的问题:
①已知一元二次方程x 2-2x -7=0的两个根为x 1,x 2,则x 1+x 2的值为( ) A .-2 B .2 C .-7 D .7
②已知x 1,x 2是方程x 2
-x -3=0的两根,利用上述结论,不解方程,求x 12
+x 22
的值。
六.解决问题(每小题8分,共计16分)
26.我国政府为减轻农民负担,决定从2005年开始,计划在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年农业税降低的百分率相同.
⑴求平均每年降低农业税的百分率;
⑵若小红家有4人,那么明年小红家的农业税将减少多少元?
27.如图,有一地面为长方形的仓库,一边长为5m ,现在将它改建为简易住房,改建后分
为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,若已知卫生间的面积为6平方米,试求长方形仓库的另一边的长.
七.探究与思考(第28题10分,第29题9分,共计19分)
28.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线D-C-B方向以2cm/s的速度运动,动点N从点D出发,沿 DA方向以1cm/s的速度向点A运动.动点M、N 同时出发,当一个点到达终点时,另一个点也随即停止运动。
(1)若点E在线段BC上,且BE=4cm,经过几秒钟,点A、E、M、N组成平行四边形?(2)动点M、N在运动的过程中,线段MN是否经过矩形ABCD的两条对角线的交点?如果线段MN过此交点,请求出运动的时间; 如果线段MN不过此交点,请说明理由.
29.如图1,在△ABC中,AB=BC=5,AC=6. △ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE 是怎样的特殊四边形?证明你的结论;
(2)如图2,P 是线段B C 上一动点(图2),(不与点B 、C 重合),连接PO 并延长交线段AB 于点Q ,QR ⊥BD ,垂足为点R .四边形P Q ED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形P Q ED 的面积;
(图1) 1
C
O
E
D
B
A
(备用图) 1
C
O
E
D
B
A
R P
Q
C O
E
D
B
A (图2)。