吉林省2018年各科中考试题真题及答案
2018吉林省中考物理试卷(含解析)
2018吉林省初中升学考试物理试卷一、单项选择题(每题2分,共12分)1.(2018吉林,1,2分)下列表述中,符合生活中实际的是()A.我们用的物理课本长5 dmB. 洗澡水的温度为85℃C.成人步行速度一般为1.1m/sD.家庭电路电压为36 V【答案】C【解析】不同物理量的估算,有的需要凭借生活经验,有的需要简单的计算,有的要进行单位的换算,最后判断最符合实际的是哪一个。
A、我们用的物理课本长为26cm=2.6dm,故A不符合实际;B、人体正常体温在37℃左右,洗澡水的温度应该略高于体温,在40℃左右,不可能达到85℃,故B不符合实际;C、成人步行速度一般为1.1m/s,故C符合实际;D、家庭电路电压为220V,故D不符合实际。
【知识点】机械运动—长度的估测;热和能—温度的估测;机械运动—速度的估测;家庭电路安全用电—家庭电路的电压;2.(2018吉林,2,2分)小明在岸上看见鱼在水族馆游玩,看到的的“鱼”是()A. 光的反射形成的实像B. 光的反射形成的虚像C. 光的折射形成的实像D. 光的折射形成的虚像【答案】D【解析】光的折射:光从一种透明介质斜射入另一种透明介质时,光线的传播方向会发生改变,折射时形成的像是虚像。
看到水中的鱼是由于光线从水中通过空气进入人的眼睛的,因此是光的折射现象形成的,并且像为虚像,故ABC错误,D正确。
【知识点】光的折射光的色散看不见的光——光的折射现象3.(2018吉林,3,2分)下列现象中属于增大摩擦的是()A. 轴承中加润滑油B.行李箱安装滚动轮子C. 运动鞋底刻有花纹D.磁悬浮列车悬浮行驶【答案】C【解析】(1)增大摩擦力的方法:在接触面粗糙程度一定时,通过增大压力来增大摩擦力;在压力一定时,通过增大接触面的粗糙程度来增大摩擦力。
(2)减小摩擦力的方法:在接触面粗糙程度一定时,通过减小压力来减小摩擦力;在压力一定时,通过减小接触面的粗糙程度来减小摩擦力;使接触面脱离;用滚动摩擦代替滑动摩擦。
2018年吉林省中考物理试卷含答案
物理试卷第1页(共18页)物理试卷第2页(共18页)绝密★启用前吉林省2018年初中毕业生学业水平考试物化合卷物理部分本试卷满分70分,考试时间60分钟。
一、单项选择题(本题共6小题,每小题2分,共12分)1.下列表述中,符合生活实际的是()A .我们用的物理课本长5dmB .洗澡水的温度为85℃C .成人步行速度一般为1.1m /sD .家庭电路电压为36 V2.小明在岸上看见鱼在水中游玩,看到的“鱼”是()A .光的反射形成的实像B .光的反射形成的虚像C .光的折射形成的实像D .光的折射形成的虚像3.下列现象中属于增大摩擦力的是()A .轴承中加入润滑油B .行李箱安装滚动轮子C .运动鞋底刻有花纹D .磁悬浮列车悬浮行驶4.如图所示,电源电压保持不变,闭合开关S ,当滑片P 向右移动时()A .电压表的示数不变,总功率变小B .电流表的示数变大,总功率变大C .电压表的示数变大,灯的亮度变暗D .电流表的示数变小,灯的亮度变暗5.汽车在平直公路上匀速行驶时,下列属于平衡力的是()A .汽车受到的牵引力和阻力B .汽车受到的支持力和地面受到的压力C .汽车受到的牵引力和重力D .汽车受到的牵引力和地面受到的压力6.下列设备中与发电机工作原理相同的是()A .电磁铁B .电动机C .电铃D .动圈式话筒二、填空题(本题共9小题,每空1分,共18分)7.小明正在家里学习,窗外传来吉他声,他关上窗户,这是在控制噪声;吉他声是由琴弦的产生的。
8.大型载重平板车都装有很多车轮,这是通过增大的方式减小对路面的,以免损坏路面。
9.我国自主研制的国产大飞机C919,于2017年5月5日首飞成功。
客机在飞行时,机翼上方空气流速较快,压强,因此获得向上的升力;机上人员用吸管喝饮料时,饮料在的作用下被吸入口中。
10.把洗完的衣服展开晾在阳光下,并且挂在处,这是为了加快水份的。
11.我们通过电视观看世界杯足球赛,电视信号是通过传递过来的;比赛时,足球在下落过程中,重力势能转化为(空气阻力忽略不计)。
2018年吉林省中考化学试题及答案
吉林省2018年初中毕业生学业水平考试化学试题可能用到的相对原子质量:H-1 O-16 Na-23 C1-35.5一、单项选择题(每小题1分,共10分)1.物质的下列性质中,属于化学性质的是A.可燃性B.状态C.气味D.硬度2.空气是一种宝贵的资源,空气中体积分数最大的气体是A.稀有气体B.二氧化碳C.氧气D.氮气3.生活中可以使硬水软化成软水的常用方法是A.沉降B.消毒C.煮沸D.过滤4.下列实验操作正确的是5.有关物质的用途, 错误的是A.石墨做电极B.干冰用于人工降雨C.NH4Cl当做复合肥使用D.小苏打用于焙制糕点6.化学方程式_____+3CO2Fe+3CO2中,所缺物质的化学式为A. FeOB. Fe2O3C. Fe3O4D. FeCO37.“保护好我们的环境”是每位公民应尽的义务。
下列说法正确的是A.农药本身有毒,应该禁止施用农药B.有害气体和烟尘会对空气造成污染C.煤燃烧产生的二氧化碳会造成酸雨D. 工业废水不经处理就可以排放到江河里8.关于电解水实验的下列说法中正确的是A.从现象上判断:正极产生的是氢气B.从变化上分类: 该变化属于物理变化C.从宏观上分析:水是由氢气和氧气组成的D.从微观上分析:水分子是由氢原子和氧原子构成的9.下列实验设计能够实现其对应实验目的的是10.下列实验方案正确的是A.制备:用加热KCl和MnO2混合物的方法制O2B.鉴别:用稀盐酸鉴别铁粉、木炭粉和氧化铜粉末C.除杂:用溶解、蒸发的方法除去粗盐中的难溶性杂质D.检验:用内壁涂有澄清石灰水的烧杯罩在甲烷燃烧的火焰上方,检验有水生成二、填空题(每空1分,共10分)11.高纯硅是制造“芯片”的重要材料。
根据右图回答下列问题。
(1)硅原子的相对原子质量是________;(2)硅原子的最外层电子数n=_______;(3)沙子的主要成分是SiO2,SiO2中硅元素的化合价为_____价。
12. 请完成下列思维导图。
2018年吉林市中考数学试卷(含解析)
2018年吉林省初中毕业、升学考试数学(满分120分,考试时间120分钟)一.单项选择题(每小题2分,共12分)1.(2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A . 【知识点】有理数的乘法2.(2018吉林省,2, 2分)如图是由4个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .【答案】B【解析】从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B . 【知识点】三视图3.(2018吉林省,3, 2分)下列计算结果为6a 的是( )A. 23a a •B. 122a a ÷ C. 23()a D. 23()a -【答案】C【解析】分别根据同底数幂相乘, 同底数幂相除,幂的乘方逐一计算即可判断.23236()a aa ⨯==,故选C.【知识点】幂的乘方、同底数幂乘除.4. (2018吉林省,4, 2分)如图,将木条a,b 与c 钉在一起,∠1=70°,∠2=50°. 要使木条a 与b 平行,木条a 旋转的度数至少是( )A. 10°B. 20°C. 50°D. 70°【答案】B【解析】由两直线平行,同位角相等,旋转变化后为∠1=50°,所以木条a旋转的度数为70°-50°=20°,故选B.【知识点】平行线的性质5.(2018吉林省,5, 2分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.15【答案】A【解析】∵D为BC的中点,且BC=6,∴BD=12BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12.【知识点】翻折变换的性质:6.(2018吉林省,6, 2分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.352294x yx y+=⎧⎨+=⎩B.354294x yx y+=⎧⎨+=⎩C.354494x yx y+=⎧⎨+=⎩D.352494x yx y+=⎧⎨+=⎩【答案】D【解析】根据题意可以列出相应的方程组,从而可以解答本题,故选:D.【知识点】由实际问题抽象出二元一次方程组.二.填空题(每小题3分,共24分)7.(2018吉林省,7, 216=4.【答案】4【解析】161616故答案为4.【知识点】算术平方根】8.(2018吉林省,8, 2分)买单价3元的圆珠笔m支,应付______元【答案】3m【解析】金额=单价×数量这一数量关系容易得出应付3m 元 【知识点】列代数式9.(2018吉林省,9, 2分)若a +b=4,ab=1,则22a b ab += 4 . 【答案】4【解析】:∵a +b=4,ab=1, ∴22a b ab +2=ab (a +b )=1×4=4. 【知识点】提取公因式法分解因式.10.(2018吉林省,10, 2分)若关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值为 ﹣1 . 【答案】B【解析】方程有两个相等的实数根,可知其判别式为0,据此列出关于m 的不等式,所以∆=0,即2²-4×1×(-m )=0,解得m=-1.【知识点】根的判别式11. (2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1. 则点C 坐标为(-1,0) 【知识点】尺规作图,实数与数轴的一一对应关系12.(2018吉林省,12, 2分)如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB= 100 m .【答案】100【解析】两角对应相等可得△BAD ∽△CED ,利用对应边成比例可得两岸间的大致距离AB . 易证△ABD ∽△ECD ,∴AB BD EC CD =,即1205060AB =,∴AB=100.【知识点】相似三角形的应用13.(2018吉林省,13, 2分)如图,A,B,C,D是⊙O上的四个点,=⌒BC,,若∠AOB=58°,则∠BDC=___度.【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系14.(2018吉林省,14, 2分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=12,则该等腰三角形的顶角为度.【答案】36【解析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.设顶角为α,则其底角为1-2α︒(180),由k=12,可得1-2α︒(180)=2α,解出α=36°。
2018年吉林省中考语文试卷(含答案与解析)
语文试卷 第1页(共20页)语文试卷 第2页(共8页)绝密★启用前 吉林省2018年初中毕业生学业水平考试语 文本试卷满分150分,考试时间120分钟。
一、积累与运用(15分)请在相应的田字格中或横线上端正地书写正确答案,或填写相应选项。
(第1~4题每句1分,第5题每小题1分,第6,7题每题2分) 1.人不知而不愠?(《论语·学而》)2,一览众山小。
(杜甫《望岳》)3.陆游的《游山西村》中描写山村秀丽风光写景中蕴含哲理的诗句是:“,”。
4.苏轼的《水调歌头·明月几时有》中表达对亲人美好祝愿的诗句是: “, ”。
5.阅读语段,按要求完成下面各题。
这样的小溪我见过不少,却不知有哪一条比温泉镇村边这条溪水更招人喜爱。
因为..它流经的地方是那样偏僻,那样贫瘠,但是..每到春天,还是吸引着那么多人。
①一坐几省闻名的温泉疗养院就设在这里。
②一路上我设想猜测过它的容貌。
温泉,你是条泼辣的瀑布从高处一泻而下__③__还是一股柔软的热流从地下缓缓升起?(1)语段中加点的一对关联词搭配不当,应将其中的“______”改为“_______”。
(2)“贫瘠”中“瘠”的读音是“________”。
(3)①句中有一处错别字,应改为“_________”。
(4)②句存在语病,请将改正后的语句抄在下面。
____________________________________________________________________________________________________________________________________________________ (5)语段中③处应该选择哪个标点符号更恰当? ( )A .;B .,C .——D .? 6.下面各项中,修辞手法与选句一致的一项是( ) A .比喻——五十岁上下的女人站在我面前,两手搭在髀间,没有系裙,张着两脚,正像一个画图仪器里细脚伶仃的圆规。
吉林省2018年中考物理试题(word版,有答案)
吉林省2018年初中毕业生学业水平考试物理试题一、单项选择题(每题2分,共12分)()1、下列表述中,符合生活实际的是A.我们用的物理课本长5dm B.洗澡水的温度为85℃C.成人步行速度一般为1.1m/s D.家庭电路电压为36V()2、小明在岸上看见鱼在水中游玩,看到的“鱼”是A.光的反射形成的实像B.光的反射形成的虚像C.光的折射形成的实像D.光的折射形成的虚像()3、下列现象中属于增大摩擦力的是A.轴承中加入润滑油B.行李箱安装滚动轮子C.运动鞋底刻有花纹D.磁悬浮列车悬浮行驶()4、如图1所示,电源电压保持不变,闭合开关S,当滑片P向右移动时A.电压表的示数不变,总功率变小B.电流表的示数变大,总功率变大C.电压表的示数变大,灯的亮度变暗D.电流表的示数变小,灯的亮度变暗()5、汽车在平直公路上匀速行驶时,下列属于平衡力的是A.汽车受到的牵引力和阻力B.汽车受到的支持力和地面受到的压力C.汽车受到的牵引力和重力D.汽车受到的牵引力和地面受到的压力()6、下列设备中与发电机工作原理相同的是A.电磁铁B.电动机C.电铃D.动圈式话筒二、填空题(每空1分,共18分)7、小明正在家里学习,窗外传来吉他声,他关上窗户,这是在______________控制噪声;吉他声是由琴弦的_________产生的。
8、大型载重平板车都装有很多车轮,这是通过增大_______________的方式减小对路面的__________,以免损坏路面。
9、我国自主研制的国产大飞机C919,于2017年5月5日首飞成功。
客机在飞行时,机翼上方空气流速较快,压强________,因此获得向上的升力;机上人员用吸管喝饮料时,饮料在____________的作用下被吸入口中。
10、把洗完的衣服展开晾在阳光下,并且挂在________处,这是为了加快水份的________。
11、我们通过电视观看世界杯足球赛,电视信号是通过__________传递过来的;比赛时,足球在下落过程中,重力势能转化为_________。
2018年吉林省中考数学试卷(含详细解析)
2018年吉林省中考数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣32.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2.00分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)34.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.156.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:=.8.(3.00分)买单价3元的圆珠笔m支,应付元.9.(3.00分)若a+b=4,ab=1,则a2b+ab2=.10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m 的值为.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=m.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC=度.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤(1)用测得∠ADE=α;(2)用测得BC=a米,CD=b米.计算过程22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲30013乙0150分析数据:表二种类平均数中位数众数方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x (min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC 于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC 上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)×(﹣2)=2.故选:A.【点评】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2.00分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.15【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.【解答】解:∵D为BC的中点,且BC=6,∴BD=BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,故选:A.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:=4.【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3.00分)买单价3元的圆珠笔m支,应付3m元.【分析】根据总价=单价×数量列出代数式.【解答】解:依题意得:3m.故答案是:3m.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.(3.00分)若a+b=4,ab=1,则a2b+ab2=4.【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m 的值为﹣1.【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB==5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),【点评】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB=(米).故答案为:100.【点评】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC=29度.【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接OC.∵=,∴∠AOB=∠BOC=58°,∴∠BDC=∠BOC=29°,故答案为29.【点评】本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.【点评】考查了平方差公式和实数的运算,去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.【点评】本题考查正方形的性质全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.【解答】解:列表得:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=.【点评】本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征,能求出P点的坐标是解此题的关键.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴=40.答:甲队每天修路的长度为40米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×=8π.【点评】本题考查作图﹣旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.计算过程【分析】在Rt△ADE中,求出AE,再利用AB=AE+BE计算即可;【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.(3)计算过程:∵四边形BCDE是矩形,∴DE=BC=a,BE=CD=b,在Rt△ADE中,AE=ED•tanα=a•tanα,∴AB=AE+EB=a•tanα+b.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得.【解答】解:整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.【点评】本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x (min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为200m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s故答案为:4000,200(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC 于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.【分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,故答案为:菱形;(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.【点评】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC 上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=s;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.【分析】(1)当PQ⊥AB时,BQ=2PB,由此构建方程即可解决问题;(2)分三种情形分别求解即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2tx×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan∠DEA=tan∠QPB,∴=,解得x=,综上所述,当x=s或时,直线AM将矩形ABCD的面积分成1:3两部分.【点评】本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为(﹣1,4),OE=3;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=OE=3,∴﹣3a=3,∴a=﹣,∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).【点评】本题考查二次函数综合题、一次函数的应用、等腰直角三角形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018年吉林省中考数学试卷(带解析)
2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)计算(﹣1)×(﹣2)的结果是()A.2B.1C.﹣2D.﹣3【解答】解:(﹣1)×(﹣2)=2.故选:A.2.(2分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.3.(2分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.4.(2分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a 与b平行,木条a旋转的度数至少是()A .10°B .20°C .50°D .70°【解答】解:如图.∵∠AOC=∠2=50°时,OA ∥b ,∴要使木条a 与b 平行,木条a 旋转的度数至少是70°﹣50°=20°.故选:B .5.(2分)如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为()A .12B .13C .14D .15【解答】解:∵D 为BC 的中点,且BC=6,∴BD=12BC=3,由折叠性质知NA=ND ,则△DNB 的周长=ND +NB +BD=NA +NB +BD=AB +BD=3+9=12,故选:A .6.(2分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为()A.+=352+2=94B.+=354+2=94C.+=354+4=94D.+=352+4=94【解答】解:由题意可得,+=352+4=94,故选:D.二、填空题(共8小题,每小题3分,满分24分)7.(3分)计算:16=4.【解答】解:∵42=16,∴16=4,故答案为4.8.(3分)买单价3元的圆珠笔m支,应付3m元.【解答】解:依题意得:3m.故答案是:3m.9.(3分)若a+b=4,ab=1,则a2b+ab2=4.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.10.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m 的值为﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.11.(3分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=32+42=5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),12.(3分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【解答】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD ,=,=×,解得:AB=120×5060=100(米).故答案为:100.13.(3分)如图,A ,B ,C ,D 是⊙O 上的四个点,=,若∠AOB=58°,则∠BDC=29度.【解答】解:连接OC .∵=,∴∠AOB=∠BOC=58°,∴∠BDC=12∠BOC=29°,故答案为29.14.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=12,则该等腰三角形的顶角为36度.【解答】解:∵△ABC 中,AB=AC ,∴∠B=∠C ,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=12,∴∠A :∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.三、解答题(共12小题,满分84分)15.(5分)某同学化简a (a +2b )﹣(a +b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2)(第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a 2+2ab ﹣(a 2﹣b 2)=a 2+2ab ﹣a 2+b 2=2ab +b 2.16.(5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE=CF ,求证:△ABE ≌△BCF .【解答】证明:∵四边形ABCD 是正方形,∴AB=BC ,∠ABE=∠BCF=90°,在△ABE 和△BCF 中,=∠=∠=,∴△ABE ≌△BCF .17.(5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【解答】解:列表得:AB C A (A ,A )(B ,A )(C ,A )B (A ,B )(B ,B )(C ,B )C(A ,C )(B ,C )(C ,C )由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率=39=13.18.(5分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=3.19.(7分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:400=600+20,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.600﹣400=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,400=40.答:甲队每天修路的长度为40米.20.(7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×90⋅⋅4180=8π.21.(7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a 米,CD=b 米.计算过程【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a 米,CD=b 米.(3)计算过程:∵四边形BCDE 是矩形,∴DE=BC=a ,BE=CD=b ,在Rt △ADE 中,AE=ED•tan α=a•tan α,∴AB=AE+EB=a•tanα+b.22.(7分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【解答】解:整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.23.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为100m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=200m/s 故答案为:4000,100(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤40 3(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.24.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D 为AB 中点,∴AD=12AB ,∵DE ∥AC ,点D 为AB 中点,∴DE=12AC ,∵AB=AC ,∴AD=DE ,∴平行四边形ADEF 为菱形,故答案为:菱形;(3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形,∴AF ∥DE ,AF=DE ,∵EG=DE ,∴AF ∥DE ,AF=GE ,∴四边形AEGF 是平行四边形,∵AD=AG ,EG=DE ,∴AE ⊥EG ,∴四边形AEGF 是矩形.25.(10分)如图,在矩形ABCD 中,AB=2cm ,∠ADB=30°.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB ﹣BC 运动,在AB 上的速度是2cm/s ,在BC 上的速度是23cm/s ;点Q 在BD 上以2cm/s 的速度向终点D 运动,过点P 作PN ⊥AD ,垂足为点N .连接PQ ,以PQ ,PN 为邻边作▱PQMN .设运动的时间为x (s ),▱PQMN 与矩形ABCD 重叠部分的图形面积为y (cm 2)(1)当PQ ⊥AB 时,x=23s ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.【解答】解:(1)当PQ ⊥AB 时,BQ=2PB ,∴2x=2(2﹣2x ),∴x=23s .23s .(2)①如图1中,当0<x ≤23时,重叠部分是四边形PQMN .y=2x ×3x=23x 2.23<x ≤1时,重叠部分是四边形PQEN .y=12(2﹣x +2tx ×3x=32x 2+3x③如图3中,当1<x <2时,重叠部分是四边形PNEQ.y=12(2﹣x +2)×[3x ﹣23(x ﹣1)]=32x 2﹣33x +43;综上所述,y={232(0<≤23)322+3(23<≤1)322−33+43(1<<2).(3)①如图4中,当直线AM 经过BC中点E 时,满足条件.则有:tan ∠EAB=tan ∠QPB ,∴32=32−2−,解得x=25.②如图5中,当直线AM 经过CD 的中点E 时,满足条件.此时tan ∠DEA=tan ∠QPB ,231=32−2−,解得x=47,综上所述,当x=25或47时,直线AM 将矩形ABCD 的面积分成1:3两部分.26.(10分)如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=﹣1时,抛物线顶点D 的坐标为(﹣1,4),OE=3;(2)OE 的长是否与a 值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x 2﹣2x +3,∴顶点D (﹣1,4),C (0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=3OE=33,∴﹣3a=33,∴a=﹣3,∴45°≤β≤60°,a的取值范围为﹣3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,DM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).。
吉林省2018年中考物理试卷及参考答案
吉林省2018年中考物理试卷一、单选题1. 下列表述中,符合生活中实际的是()A . 我们用的物理课本长5 dmB . 洗澡水的温度为85℃C . 成人步行速度一般为1.1m/sD . 家庭电路电压为36 V2. 小明在岸上看见鱼在水中游玩,看到的“鱼”是()A . 光的反射形成的实像B . 光的反射形成的虚像C . 光的折射形成的实像D . 光的折射形成的虚像3. 下列现象中属于增大摩擦力的是()A . 轴承中加入润滑油B . 行李箱安装滚动轮子C . 运动鞋底刻有花纹D . 磁悬浮列车悬浮行驶4. 如图所示,电源电压保持不变,闭合开关S,当滑片P向右移动时()A . 电压表的示数不变,总功率变小B . 电流表的示数变大,总功率变大C . 电压表的示数变大,灯的亮度变暗D . 电流表的示数变小,灯的亮度变暗5. 汽车在平直公路上匀速行驶时,下列属于平衡力的是()A . 汽车受到的牵引力和阻力B . 汽车受到的支持力和地面受到的压力C . 汽车受到的牵引力和重力D . 汽车受到的牵引力和地面受到的压力6. 下列设备中与发电机工作原理相同的是()A . 电磁铁B . 电动机C . 电铃D . 动圈式话筒二、填空题7. 小明正在家里学习,窗外传来吉他声,他关上窗户,这是在________控制噪声;吉他声是由琴弦的________产生的。
8. 大型载重平板车都装有很多轮子,这是通过增大________的方式减小对路面的________。
以免损坏路面。
9. 我国自主研制的国产大飞机C919,于2017年5月5日首飞成功。
客机在飞行时,机翼上方空气流速较快,压强____ ____。
由此获得向上的升力;机上人员用吸管喝饮料时,饮料在________的作用下被吸入口中。
10. 我们通过电视机看世界杯足球赛。
电视信号是通过________传递过来的;比赛时,足球在下落过程中,重力势能转化为________。
(空气阻力不计)11. 十九大报告中指出:“绿水青山就是金山银山”,倡导保护环境。
【中考真题】2018年吉林省中考物理试卷(附答案)
吉林省2018年初中毕业生水平考试一、单项选择题1. 下列表述中,符合生活中实际的是()A. 我们用的物理课本长5 dmB. 洗澡水的温度为85℃C. 成人步行速度一般为1.1m/sD. 家庭电路电压为36 V【答案】C【解析】A. 我们用的物理课本长约2.5dm,故A不符合实际;B. 洗澡水的温度略高于人的体温,温度约为40℃,故B不符合实际;C. 成人步行速度一般为1.1m/s,故C符合实际;D. 家庭电路电压为220V,故D不符合实际;故选C。
点睛:此类型的题目要求对所学的物理量有熟悉的认知,特别是单位大小要认识清楚,要多注意理论联系实际,生活中留心积累。
2. 小明在岸上看见鱼在水族馆游玩,看到的的“鱼”是()A. 光的反射形成的实像B. 光的反射形成的虚像C. 光的折射形成的实像D. 光的折射形成的虚像【答案】D【解析】人在岸上看到水中的鱼,是鱼反射的光线斜射到水面时,要发生折射,根据折射定律知,光线由水中斜向入空气中时,折射角大于入射角,折射光线进入眼睛我们就看到了鱼;由于折射时,折射角大于入射角,所以我们看到的是折射光线反向延长相交而形成的虚像。
故D正确;点睛:重点是折射成像的特点,记清楚光由水中斜射到空气中时,折射角大于入射角,折射光线反向延长相交而形成虚像,且像的位置比实际物体的位置高一些。
3. 下列现象中属于增大摩擦的是()A. 轴承中加润滑油B. 行李箱安装滚动轮子C. 运动鞋底刻有花纹D. 磁悬浮列车悬浮行驶【答案】C【解析】A. 轴承中加润滑油,用油膜代替机件的直接接触,减小摩擦力,故A不符合题意;B. 行李箱安装滚动轮子,用滚动代替滑动,可以大大减小摩擦力,故B不符合题意;C. 运动鞋底刻有花纹,是利用增大接触面粗糙程度的方法,来增大摩擦力的,故C符合题意;D. 磁悬浮列车悬浮行驶,车与轨道不接触,可以大大减小摩擦力,故D不符合题意;故选C。
点睛:重点是增大和减小摩擦力的方法,牢记影响滑动摩擦力的两个因素,即压力和接触面的粗糙程度,可以通过增大压力或增大接触面的粗糙程度来增大摩擦力,反之减小摩擦力,另外用滚动代替滑动可以大大减小摩擦力。
吉林省2018年中考数学真题试题(含解析)
吉林省2018年中考数学真题试题一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣32.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A. B. C. D.3.(2.00分)下列计算结果为a6的是()A.a2•a3 B.a12÷a2C.(a2)3D.(﹣a2)34.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10° B.20° C.50° D.70°5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.156.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A. B.C. D.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:= .8.(3.00分)买单价3元的圆珠笔m支,应付元.9.(3.00分)若a+b=4,ab=1,则a2b+ab2= .10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= m.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 度.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE ≌△BCF.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动: 第一步:点D 绕点A 顺时针旋转180°得到点D 1; 第二步:点D 1绕点B 顺时针旋转90°得到点D 2; 第三步:点D 2绕点C 顺时针旋转90°回到点D . (1)请用圆规画出点D→D 1→D 2→D 经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g )如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据: 表一分析数据:表二得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E 为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q 在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN 为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE= ;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n 关于m的函数解析式及自变量m的取值范围.参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)×(﹣2)=2.故选:A.【点评】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A. B. C. D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2.00分)下列计算结果为a6的是()A.a2•a3 B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10° B.20° C.50° D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.15【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.【解答】解:∵D为BC的中点,且BC=6,∴BD=BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,故选:A.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A. B.C. D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:= 4 .【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3.00分)买单价3元的圆珠笔m支,应付3m 元.【分析】根据总价=单价×数量列出代数式.【解答】解:依题意得:3m.故答案是:3m.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.(3.00分)若a+b=4,ab=1,则a2b+ab2= 4 .【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1 .【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB==5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),【点评】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= 100 m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB=(米).故答案为:100.【点评】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 29 度.【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接OC.∵=,∴∠AOB=∠BOC=58°,∴∠BDC=∠BOC=29°,故答案为29.【点评】本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.【点评】考查了平方差公式和实数的运算,去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE ≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.【点评】本题考查正方形的性质全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.【解答】解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=.【点评】本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征,能求出P点的坐标是解此题的关键.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x、x+20均不为零,∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴=40.答:甲队每天修路的长度为40米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×=8π.【点评】本题考查作图﹣旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平【分析】在Rt△ADE中,求出AE,再利用AB=AE+BE计算即可;【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.(3)计算过程:∵四边形BCDE是矩形,∴DE=BC=a,BE=CD=b,在Rt△ADE中,AE=ED•tanα=a•tanα,∴AB=AE+EB=a•tanα+b.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得.【解答】解:整理数据:表一分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.【点评】本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为4000 m,小玲步行的速度为200 m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s故答案为:4000,200(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E 为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.【分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,故答案为:菱形;(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.【点评】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q 在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN 为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= s ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.【分析】(1)当PQ⊥AB时,BQ=2PB,由此构建方程即可解决问题;(2)分三种情形分别求解即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2tx×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan∠DEA=tan∠QPB,∴=,解得x=,综上所述,当x=s或时,直线AM将矩形ABCD的面积分成1:3两部分.【点评】本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题.26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为(﹣1,4),OE= 3 ;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n 关于m的函数解析式及自变量m的取值范围.【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=OE=3,∴﹣3a=3,∴a=﹣,∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).【点评】本题考查二次函数综合题、一次函数的应用、等腰直角三角形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21。