2019中考数学真题有答案

合集下载

【数学】2019年黑龙江省哈尔滨市中考真题(解析版)

【数学】2019年黑龙江省哈尔滨市中考真题(解析版)

黑龙江省哈尔滨市2019年中考试卷试卷第I 卷选择题(共30分)一、选择题(每小题3分,共计30分) 1.-9的相反数是( ) (A )-9 (B )-91(C )9 (D )91 【答案】C【解析】﹣9的相反数是9,故选:C . 2.下列运算一定正确的是( ). (A )2222a a a =+ (B )632a a a =∙ (C )6326)2(a a =(D )22))((b a b a b a -=-+【答案】D【解析】2a +2a =4a ,A 错误;a 2•a 3=a 5,B 错误;(2a 2)3=8a 6,C 错误;故选:D . 3.下列图形中既是轴对称图形又是中心对称图形的是( ).【答案】B【解析】A .是轴对称图形,但不是中心对称图形,故此选项错误; B .是中心对称图形,也是轴对称图形,故此选项正确; C .是轴对称图形,不是中心对称图形,故此选项错误;D .是轴对称图形,不是中心对称图形,故此选项错误.故选:B . 4.七个大小相同的正方体搭成的几何体如图所示,其左视图是( ).【答案】B【解析】这个立体图形的左视图有2列,从左到右分别是2,1个正方形, 故选:B .5.如图,P A ,PB 分别与⊙O 相切于A ,B 两点,点C 为⊙O 上一点,连接AC ,BC ,若∠P =50°,则∠ACB 的度数为( )(A )60° (B )75°(C )70°(D )65°【答案】D【解析】连接OA ,OB ,∵P A ,PB 分别与⊙O 相切于A ,B 两点, ∴OA ⊥P A ,OB ⊥PB , ∴∠OAP =∠OBP =90°,∴∠AOB =180°﹣∠P =180°﹣50°=130°, ∴∠ACB =∠AOB =×130°=65°. 故选:D .6.将抛物线22x y =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )(A )3)2(22++=x y (B )3)2(22+-=x y (C )3)2(22--=x y(D )3)2(22-+=x y【答案】B【解析】将抛物线y =2x 2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y =2(x ﹣2)2+3,故选:B .7.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). (A )20% (B )40% (C )18%(D )36%【答案】A【解析】设降价的百分率为x 根据题意可列方程为25(1﹣x )2=16 解方程得,(舍)∴每次降价得百分率为20% 故选:A .8.方程x x 3132=-的解为( ) (A )x =113 (B )x =311(C )x =73(D )x =37 【答案】C 【解析】xx 3132=-,∴2x =9x ﹣3, ∴x =73; 将检验x =73是方程的根, ∴方程的解为x =73;故选:C .9.点(-1,4)在反比例函数 的图象上,则下列各点在此函数图象上的是( )【答案】A【解析】将点(﹣1,4)代入y =, ∴k =﹣4, ∴y =,∴点(4,﹣1)在函数图象上, 故选:A .10.如图,在平行四边形ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )(A )DE NEBM AM =(B )AD ANAB AM =(C )BDBE ME BC =(D )EMBC BE BD =【答案】D【解析】∵在▱ABCD 中,EM ∥AD ∴易证四边形AMEN 为平行四边形 ∴易证△BEM ∽△BAD ∽△END ∴==,A 项错误=,B 项错误 ==,C 项错误 ==,D 项正确故选:D .第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数6 260 000科学记数法表示为_______________. 【答案】6.26×106【解析】6260000用科学记数法可表示为6.26×106,故答案为:6.26×106. 12.在函数323-=x xy 中,自变量x 的取值范围是_______________. 【答案】x ≠ 【解析】函数323-=x xy 中分母2x ﹣3≠0,∴x ≠; 故答案为x ≠.13.分解因式:22396ab b a a +-=_______________. 【答案】a (a ﹣3b )2 【解析】a 3﹣6a 2b +9ab 2=a (a 2﹣6ab +9b 2) =a (a ﹣3b )2. 故答案为:a (a ﹣3b )2.14.不等式组⎪⎩⎪⎨⎧≥+≤-123023x x的解集是________________.【答案】x ≥3 【解析】解不等式≤0,得:x ≥3,解不等式3x +2≥1,得:x ≥﹣, ∴不等式组的解集为x ≥3, 故答案为:x ≥3.15.二次函数8)6(2+--=x y 的最大值是_______________. 【答案】8【解析】∵a =﹣1<0, ∴y 有最大值,当x =6时,y 有最大值8. 故答案为8.16.如图将△ABC 绕点C 逆时针旋转得到△A ′B ′C ,其中点A ′与A 是对应点,点B ′与B 是对应点,点B ′落在边AC 上,连接A ′B ,若∠ACB =45°,AC =3,BC =2,则A ′B 的长为____.【答案】【解析】∵将△ABC 绕点C 逆时针旋转得到△A ′B ′C , ∴AC =A 'C =3,∠ACB =∠ACA '=45° ∴∠A 'CB =90° ∴A 'B ==故答案为17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是_____________度.【答案】110【解析】根据l===11π,解得:n=110,故答案为:110.18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为_______________度.【答案】60°或10【解析】分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10.19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为_______________.【答案】【解析】列表得:由表可知一共有36种情况,两枚骰子点数相同的有6种,所以两枚骰子点数相同的概率为=,故答案为:.20.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接B(D)CE,CE 与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为_______________.【答案】2【解析】如图,连接AC交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=6,∴DE=AD﹣AE=2,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=2,∴CF =CE ﹣EF =4,OF =OD ﹣DF =2, ∴OC ==2,∴BC ==2.三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分) 21.先化简再求值:24)44422(2--÷+----+x x x x x x x ,其中x =4tan45°+2cos30°. 解:原式=[﹣]÷=(﹣)•=•=, 当x =4tan45°+2cos 30°=4×1+2×=4+时,原式===.22.图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上;(1)在图1中画出以AC 为底边的等腰直角△ABC ,点B 在小正方形顶点上;(2)在图2中画出以AC 为腰的等腰△ACD ,点D 在小正方形的顶点上,且△ACD 的面积为8.解:(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B ; (2)以C 为圆心,AC 为半径作圆,格点即为点D ;23.建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动,为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育.科技.国防.农业.工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图,请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名解:(1)根据题意得:18÷30%=60(名),答:在这次调查中,一共抽取了60名学生;(2)60﹣(18+9+12+6)=15(名),则本次调查中,选取国防类书籍的学生有15名,补全条形统计图,如图所示:(3)根据题意得:1500×=225(名),答:该校最想读科技类书籍的学生有225名.24.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F ;(1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF .CE ,在不添加任何辅助线的情况下,请直 接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的81.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC ,∴∠ABE =∠DF , ∵AE ⊥BD 于点E ,CF ⊥BD 于点F , ∴∠AEB =∠CFD =90°, 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ),∴AE =CF .(2)解:△ABE 的面积=△CDF 的面积=△BCE 的面积=△ADF 的面积=矩形ABCD 面积的81.理由如下: ∵AD ∥BC ,∴∠CBD =∠ADB =30°, ∵∠ABC =90°,∴∠ABE =60°,∵AE ⊥BD ,∴∠BAE =30°,∴BE =AB ,AE =AD , ∴△ABE 的面积=BE ×AE =×AB ×AD =81AB ×AD =81矩形ABCD 的面积, ∵△ABE ≌△CDF ,∴△CDF 的面积═81矩形ABCD 的面积; 作EG ⊥BC 于G ,如图所示: ∵∠CBD =30°,∴EG =BE =×AB =AB ,∴△BCE 的面积=BC ×EG =BC ×AB =81BC ×AB =81矩形ABCD 的面积, 同理:△ADF 的面积=81矩形ABCD 的面积.25.寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;26.已知:MN为⊙O的直径,OE为⊙O的半径,A(B)CH是⊙O的两条弦,AB⊥OE于点D,CH ⊥MN于点K,连接HN.HE,HE与MN交于点P;(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;图1(2)如图2,连接ME,OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;图2(3)如图3,在(2)的条件下,连接O(C)B(C)AH,OC与EH交于点G,AH与MN交于点R,连接RG,若HK:ME=2:3,BC=2,求RG的长.图3解:(1)如图1,∵AB⊥OE于点D,CH⊥MN于点K,∴∠ODB=∠OKC=90°,∵∠ODB+∠DFK+∠OKC+∠EON=360°,∴∠DFK+∠EON=180°,∵∠DFK+∠HFB=180°,∴∠HFB=∠EON,∵∠EON=2∠EHN,∴∠HFB=2∠EHN.(2)如图2,连接OB,∵OA⊥ME,∴∠AOM=∠AOE,∵AB⊥OE,∴∠AOE=∠BOE,∴∠AOM+∠AOE=∠AOE+∠BOE,即:∠MOE=∠AOB,∴ME=AB,∵∠EON=4∠CHN,∠EON=2∠EHN,∴∠EHN=2∠CHN,∴∠EHC=∠CHN,∵CH⊥MN,∴∠HPN=∠HNM,∵∠HPN=∠EPM,∠HNM=HEM,∴∠EPM=∠HEM,∴MP=ME,∴MP=AB.(3)如图3,连接BC,过点A作AF⊥BC于F,过点A作AL⊥MN于L,连接AM,AC,由(2)知:∠EHC=∠CHN,∠AOM=∠AOE,∴∠EOC=∠CON,∵∠EOC+∠CON+∠AOM+∠AOE=180°,∴∠AOE+∠EOC=90°,∠AOM+∠CON=90°,∵OA⊥ME,CH⊥MN,∴∠OQM=∠OKC=90°,CK=HK,ME=2MQ,∴∠AOM+∠OMQ=90°,∴∠CON=∠OMQ,∵OC=OA,∴△OCK≌△MOQ(AAS),∴CK=OQ=HK,∵HK:ME=2:3,即:OQ:2MQ=2:3,∴OQ:MQ=4:3,∴设OQ=4k,MQ=3k,则OM===5k,AB=ME=6k,在Rt△OAC中,AC===5k,∵四边形ABCH内接于⊙O,∠AHC=∠AOC=×90°=45°,∴∠ABC=180°﹣∠AHC=180°﹣45°=135°,∴∠ABF=180°﹣∠ABC=180°﹣135°=45°,∴AF =BF =AB •cos ∠ABF =6k •cos45°=3k , 在Rt △ACF 中,AF 2+CF 2=AC 2,即:,解得:k 1=1,(不符合题意,舍去), ∴OQ =HK =4,MQ =OK =3,OM =ON =5,∴KN =KP =2,OP =ON ﹣KN ﹣KP =5﹣2﹣2=1,在△HKR 中,∠HKR =90°,∠RHK =45°,∴=tan ∠RHK =tan45°=1,∴RK =HK =4,∴OR =RN ﹣ON =4+2﹣5=1,∵∠CON =∠OMQ ,∴OC ∥ME ,∴∠PGO =∠HEM ,∵∠EPM =∠HEM ,∴∠PGO =∠EPM ,∴OG =OP =OR =1,∴∠PGR =90°,在Rt △HPK 中,PH ===2,∵∠POG =∠PHN ,∠OPG =∠HPN ,∴△POG ∽△PHN ,∴,即,PG =, ∴RG ===.27.如图,在平面直角坐标系中,点0为坐标原点,直线y =34x +4与x 轴交于点A ,与y 轴交 于点B ,直线BC 与x 轴交于点C ,且点C 与点A 关于y 轴对称;(1)求直线BC 的解析式;(2)点P 为线段AB 上一点,点Q 为线段BC 上一点,BQ =AP ,连接PQ ,设点P 的横坐标为t , △PBQ 的面积为S (S ≠0),求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点E 在线段OA 上,点R 在线段BC 的延长线上,且点R 的纵坐标为-52, 连接PE .BE .AQ ,AQ 与BE 交于点F ,∠APE =∠CBE ,连接PF ,PF 的延长线与y 轴的负半轴交 于点M ,连接QM .MR ,若tan ∠QMR =2324,求直线PM 的解析式.解:(1)∵y =34x +4,∴A (﹣3,0)B (0,4), ∵点C 与点A 关于y 轴对称,∴C (3,0),设直线BC 的解析式为y =kx +b ,将B (0,4),C (3,0)代入,, 解得k =34,b =4,∴直线BC 的解析式; (2)如图1,过点A 作AD ⊥BC 于点点D ,过点P 作PN ⊥BC 于N ,PG ⊥OB 于点G .∵∠APE=∠EBC,∠BAC=∠BCA,∴180°﹣∠APE﹣∠BAC=180°﹣∠EBC﹣∠ACB,∴∠PEA=∠BEC=∠AET,∴PT⊥AE,PS=ST,∴AP=AT,∠TAE=∠P AE=∠ACB,AT∥BC,∴∠TAE=∠FQB,∵∠AFT=∠BFQ,AT=AP=BQ,∴△ATF≌△QBF,∴AF=QF,TF=BF,∵∠PSA=∠BOA=90°,∴PT∥BM,∴∠TBM=∠PTB,∵∠BFM=∠PFT,∴△MBF≌△PTF,∴MF=PF,BM=PT,∴四边形AMPQ为平行四边形,∴AP∥MQ,MQ=AP=BQ,∴∠MQR=∠ABC,过点R作RH⊥MQ于点H,。

2019年数学中考试卷(含答案)

2019年数学中考试卷(含答案)
(2)如图 2,当 6<t<10 时,DE 是否存在最小值?若存在,求出 DE 的最小值;若不存 在,请说明理由. (3)当点 D 在射线 OM 上运动时,是否存在以 D,E,B 为顶点的三角形是直角三角形? 若存在,求出此时 t 的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78

2019年中考数学试卷及答案解析

2019年中考数学试卷及答案解析

2019年中考数学试卷及答案解析一、选择题(每小题3分,共30分)1. 已知集合A={1,2,3,4},B={2,3,4,5},则A∩B={( )}A. 1B. 2C. 3D. 4答案:B. 22. 已知等比数列{an}的前三项分别为a1=2,a2=4,a3=8,则a6=()A. 32B. 64C. 128D. 256答案:D. 2563. 已知正方形ABCD的边长为4,则正方形ABCD的面积为()A. 8B. 16C. 32D. 64答案:B. 164. 已知函数f(x)=2x-1,则f(-2)=()A. -3B. -1C. 1D. 3答案:A. -3二、填空题(每小题3分,共30分)5. 已知等差数列{an}的前三项分别为a1=2,a2=5,a3=8,则公差d= __________答案:36. 已知函数f(x)=2x+3,则f(-1)= __________答案:17. 已知正方形ABCD的边长为3,则正方形ABCD的周长为__________答案:128. 已知集合A={1,2,3,4},B={2,3,4,5},则A∪B= __________答案:{1,2,3,4,5}三、解答题(共40分)9. (本小题满分12分)已知等比数列{an}的前三项分别为a1=2,a2=4,a3=8,求该数列的通项公式。

解:由等比数列的定义可知,若a1≠0,且a2/a1=a3/a2=q,则数列{an}为等比数列,其通项公式为an=a1qn-1,由题意可得a1=2,q=a2/a1=4/2=2,故等比数列{an}的通项公式为an=2×2n-1=2n。

10. (本小题满分12分)已知函数f(x)=2x+3,求f(-2)的值。

解:由函数f(x)=2x+3可得,当x=-2时,f(-2)=2(-2)+3=-4+3=-1。

故f(-2)=-1。

11. (本小题满分16分)已知正方形ABCD的边长为4,求正方形ABCD的面积和周长。

2019年中考数学试题含答案

2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 2.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .185.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A.10B .5C .22D.36.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A 、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.127.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tan tanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,正比例函数1y=k x与反比例函数2ky=x的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x 的图象上,则k 的值为________.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .18.若一个数的平方等于5,则这个数等于_____.19.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 23.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.24.解方程:3x x +﹣1x =1. 25.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 2.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

天津市2019年中考数学真题试题(含解析)

天津市2019年中考数学真题试题(含解析)

2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。

第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。

2019年中考数学试卷及答案

2019年中考数学试卷及答案

2019年中考数学试卷及答案一、选择题1.下列计算正确的是( ) A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 2.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .43.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <34.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .155.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+6.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .47.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米9.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin ∠ACD的值为()A.53B.255C.52D.2311.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A .24B .16C .413D .2312.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.15.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C落在该反比例函数图象上,则n 的值为___.16.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧BC的长为 cm.17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式A B C D利润(元/台)160200240320表2:甲、乙两店电脑销售情况电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.22.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.23.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)24.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.B解析:B【解析】【分析】6的大小,即可得到结果.【详解】<<,46 6.2526 2.5∴<<,则在数轴上,与表示6的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.3.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.5.D解析:D 【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.6.C解析:C 【解析】 【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项. 【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题; ②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是随机事件,故错误,是假命题, 真命题有3个, 故选C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.7.D解析:D 【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x-÷--=2221·1x x x x x --- =()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x--=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 8.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答 【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况 故本题答案应为:A 【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.10.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.11.C解析:C 【解析】 【分析】由菱形ABCD 的两条对角线相交于O ,AC=6,BD=4,即可得AC ⊥BD ,求得OA 与OB 的长,然后利用勾股定理,求得AB 的长,继而求得答案. 【详解】∵四边形ABCD 是菱形,AC=6,BD=4, ∴AC ⊥BD ,OA=12AC=3, OB=12BD=2,AB=BC=CD=AD ,∴在Rt △AOB 中,AB=222+3=13,∴菱形的周长为413.故选C .12.C 解析:C【解析】【分析】【详解】∵A (﹣3,4),∴OA=2234+=5,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==.故答案为1 3 .点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.15.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O 的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).17.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.18.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD 的对称点为点A∴PE+PC=PE+AP根据两点之间【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22125+=.考点:1.轴对称-最短路线问题;2.正方形的性质.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 三、解答题21.(1)310(2)应对甲店作出暂停营业的决定 【解析】【分析】(1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元),乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元),∵248>204,∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.22.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.24.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.。

2019年数学中考试卷及答案

2019年数学中考试卷及答案

2019年数学中考试卷及答案一、选择题1.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.2.下列几何体中,其侧面展开图为扇形的是( )A.B.C.D.3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差4.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个5.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C53D.36.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .8.估6的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间9.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .9210.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .12.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.16.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.17.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.正六边形的边长为8cm ,则它的面积为____cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.解方程:x 21x 1x-=-. 22.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.24.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩25.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,53在Rt△OAE中,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.6.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 7.A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .8.C解析:C【解析】【分析】 先化简后利用的范围进行估计解答即可.【详解】 =6-3=3, ∵1.7<<2, ∴5<3<6,即5<<6, 故选C .【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.10.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:416.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x >﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, ∵解不等式①得:x≤﹣4,解不等式②得:x >﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.2x=.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)24.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.25.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,C D=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.。

2019年中考数学试卷带答案

2019年中考数学试卷带答案
∴该组数据的众数是80分或90分.
故选D.
【点睛】
本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.
7.C
解析:C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
8.A
解析:A
【解析】
【分析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°= ,构建方程即可解决问题.
【详解】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.
在Rt△CDN中,∵ ,设CN=4k,DN=3k,
A.21.7米B.22.4米C.27.4米D.28.8米
9.已知 为矩形 的对角线,则图中 与 一定不相等的是()
A. B. C. D.
10.若关于x的一元二次方程 有两个实数根,则k的取值范围是()
A. B. C. D.
11.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )
A. B. C. D.
9.D
解析:D
【解析】
【分析】
【详解】
解:A选项中,根据对顶角相等,得 与 一定相等;
B、C项中无法确定 与 是否相等;
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1.
故选:D
10.D
解析:D
【解析】
【分析】
运用根的判别式和一元二次方程的定义,组成不等式组即可解答
【详解】

浙江省丽水市2019年中考数学真题试题(含解析)

浙江省丽水市2019年中考数学真题试题(含解析)

浙江省丽水市2019年中考数学试卷一、选择题目(共10题;共30分)1.初数4的相反数是()A. B. -4 C. D. 4【答案】 B【考点】相反数及有理数的相反数【解析】【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a3【答案】 D【考点】同底数幂的除法【解析】【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 8【答案】 C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】 C【考点】极差、标准差【解析】【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.【答案】 A【考点】等可能事件的概率【解析】【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P= .故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处【答案】 D【考点】钟面角、方位角【解析】【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=1【答案】 A【考点】配方法解一元二次方程【解析】【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=【答案】 C【考点】锐角三角函数的定义【解析】【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα= ,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα= ,∴AC= = ,∴AO= AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC= = ,∴BD=AC= ,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO= AC即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】 D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr· r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π× = .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr· r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.【答案】 A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴= = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.二、填空题目(共6题;共24分)11.不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.数据3,4,10,7,6的中位数是________.【答案】 6【考点】中位数【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.【答案】【考点】代数式求值【解析】【解答】解:∵x=1,y=- ,∴x2+2xy+y2=(x+y)2=(1- )2= .故答案为:.【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。

2019年河北省中考数学试卷-答案

2019年河北省中考数学试卷-答案

河北省2019年初中毕业生升学文化课考试数学答案解析一、选择题1.【答案】D【解析】正五边形五个角相等,五条边都相等,故选:D 。

【提示】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案。

【考点】多边形2.【答案】B【解析】“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作-3。

故选:B 。

【提示】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示。

“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作3-。

【考点】正数和负数3.【答案】B【解析】∵从点C 观测点D 的视线是CD ,水平线是CE ,∴从点C 观测点D 的仰角是DCE ∠,【提示】根据仰角的定义进行解答便可。

【考点】解直角三角形的应用-仰角俯角问题4.【答案】A【解析】“x 的18与x 的和不超过5”用不等式表示为158x x +≤故选:A 。

【提示】x 的18即18x ,不超过5是小于或等于5的数,按语言叙述列出式子即可。

【考点】由实际问题抽象出一元一次不等式5.【答案】D【解析】∵四边形ABCD 是菱形,150D ∠=︒,∴AB CD ∥,21BAD ∠=∠,∴180BAD D ∠+∠=︒,∴18015030BAD ∠=︒-︒=︒,∴115∠=︒;故选:D 。

【提示】由菱形的性质得出21AB CD BAD ∠=∠∥,,求出30BAD ∠=︒,即可得出115∠=︒。

【考点】菱形的性质6.【答案】C【解析】①a b c ab ac +=+(),正确;②a b c ab ac -=-(),正确;③0b c a b a c a a -÷=÷-÷≠()(),正确; ④0a b c a b a c a ÷+=÷+÷≠()(),错误,无法分解计算。

故选:C 。

【提示】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案。

2019年湖南省常德市中考数学真题(答案+解析)

2019年湖南省常德市中考数学真题(答案+解析)

2019年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.点(﹣1,2)关于原点的对称点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)【答案】B【解析】根据中心对称的性质,得点(﹣1,2)关于原点的对称点的坐标为(1,﹣2).故选:B.2.下列各数中比3大比4小的无理数是()A.B.C.3.1 D.【答案】A【解析】∵四个选项中是无理数的只有和,而>4,3<<4∴选项中比3大比4小的无理数只有.故选:A.3.下列运算正确的是()A.+=B.=3C.=﹣2 D.=【答案】D【解析】A.原式=+2,所以A选项错误;B.原式=2,所以B选项错误;C.原式=2,所以C选项错误;D.原式==,所以D选项正确.故选:D.4.某公司全体职工的月工资如下:该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差【答案】A【解析】∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选:A.5.如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A.B.C.D.【答案】C【解析】如图所示,该几何体的左视图是:故选:C.6.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<14【答案】B【解析】根据题意可得:,可得:12≤x≤15,∴12<x<15故选:B.7.如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是()A.20 B.22 C.24 D.26【答案】D【解析】如图,根据题意得△AFH∽△ADE,∴=()2=()2=设S△AFH=9x,则S△ADE=16x,∴16x﹣9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42﹣16=26.故选:D.8.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0 B.1 C.7 D.8【答案】A【解析】∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.故选:A.二、填空题(本大题8个小题,每小题3分,满分24分)9.数轴上表示﹣3的点到原点的距离是3.【解析】在数轴上表示﹣3的点与原点的距离是|﹣3|=3.故答案为:3.10.不等式3x+1>2(x+4)的解为x>7.【解析】3x+1>2(x+4),3x+1>2x+8,x>7.故答案为:x>7.11.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7,方差分别是S甲2=2.83,S乙2=1.71,S丙2=3.52,你认为适合参加决赛的选手是乙.【解析】∵S甲2=2.83,S乙2=1.71,S丙2=3.52,而1.71<2.83<3.52,∴乙的成绩最稳定,∴派乙去参赛更好,故答案为乙.12.国产手机芯片麒麟980是全球首个7纳米制程芯片,已知1纳米=0.000 000 001米,将7纳米用科学记数法表示为7×10﹣9米.【解析】7纳米=0.000 000 007米=7×10﹣9米.故答案为:7×10﹣9.13.二元一次方程组的解为.【解析】,②﹣①得x=1 ③将③代入①得y=5,∴,故答案为:.14.如图,已知△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD 绕点A逆时针旋转45°得到△ACD′,且点D′、D、B三点在同一条直线上,则∠ABD的度数是22.5°.【解析】∵将△ABD绕点A逆时针旋转45°得到△ACD′,∴∠BAC=∠CAD'=45°,AD=AD',∴∠AD'D=67.5°,∠D'AB=90°,∴∠ABD=22.5°,故答案为:22.5°15.若x2+x=1,则3x4+3x3+3x+1的值为4.【解析】∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4;故答案为:4.16.规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是①②④.(填序号)【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;②平行四边形有一组对边平行,没有一组邻边相等,②错误;③由给出条件无法得到一组对边平行,③错误;④设点P(m,m2),则Q(m,﹣1),∴MP==,PQ=+1,∵点P在第一象限,∴m>0,∴MP=+1,∴MP=PQ,又∵MN∥PQ,∴四边形PMNQ是广义菱形.④正确;故答案为①②③;三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:6sin45°+|2﹣7|﹣()﹣3+(2019﹣)0.解:原式=6×﹣2+7﹣8+1=.18.(5分)解方程:x2﹣3x﹣2=0.解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2=.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再选一个合适的数代入求值:(﹣)÷(﹣1).解:(﹣)÷(﹣1)=[]÷[]====,当x=2时,原式==.20.(6分)如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2),把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,∴S△APC=|3﹣x|×2=5,∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0).五、(本大题2个小题,每小题7分,满分14分)21.(7分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.解:(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100;(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.22.(7分)如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE ∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中,∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:∵BD是⊙O切线,∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.六、(本大题2个小题,每小题8分,满分16分)23.(8分)为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户.为检査帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了多少户贫困户?(2)抽查了多少户C类贫困户?并补全统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.解:(1)本次抽样调查的总户数为260÷52%=500(户);(2)抽查C类贫困户为500×24%=120(户),补全图形如下:(3)估计至少得到4项帮扶措施的大约有13000×(24%+16%)=5200(户);(4)画树状图如下:由树状图知共有12种等可能结果,其中恰好选中甲和丁的有2种结果,所以恰好选中甲和丁的概率为=.24.(8分)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=,cos37°=,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50﹣15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∴∠CBF=55°,∴∠BCF=35°,∵tan35°=,∴CF≈=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180﹣20=160,∴安装师傅应将支架固定在离地面160cm的位置.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(﹣1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使△PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.解:(1)二次函数表达式为:y=a(x﹣1)2+4,将点B的坐标代入上式得:0=4a+4,解得:a=﹣1,故函数表达式为:y=﹣x2+2x+3…①;(2)设点M的坐标为(x,﹣x2+2x+3),则点N(2﹣x,﹣x2+2x+3),则MN=x﹣2+x=2x﹣2,GM=﹣x2+2x+3,矩形MNHG的周长C=2MN+2GM=2(2x﹣2)+2(﹣x2+2x+3)=﹣2x2+8x+2,∵﹣2<0,故当x=﹣=2,C有最大值,最大值为10,此时x=2,点N(0,3)与点D重合;(3)△PNC的面积是矩形MNHG面积的,则S△PNC=×MN×GM=×2×3=,连接DC,在CD得上下方等距离处作CD的平行线m、n,过点P作y轴的平行线交CD、直线n于点H、G,即PH=GH,过点P作PK∥⊥CD于点K,将C(3,0)、D(0,3)坐标代入一次函数表达式并解得:直线CD的表达式为:y=﹣x+3,OC=OD,∴∠OCD=∠ODC=45°=∠PHK,CD=3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),S△PNC==×PK×CD=×PH×sin45°×3,解得:PH==HG,则PH=﹣x2+2x+3+x﹣3=,解得:x=,故点P(,),直线n的表达式为:y=﹣x+3﹣=﹣x+…②,联立①②并解得:x=,即点P′、P″的坐标分别为(,)、(,);故点P坐标为:(,)或(,)或(,).26.(10分)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC 于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN 于点F,求证:PE+PF=BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵CM⊥AB,BN⊥AC,∴∠BMC=∠CNB=90°,在△BMC和△CNB中,,∴△BMC≌△CNB(AAS);(2)∵△BMC≌△CNB,∴BM=NC,∵PE∥AB,∴△CEP∽△CMB,∴=,∵PF∥AC,∴△BFP∽△BNC,∴=,∴+=+=1,∴PE+PF=BM;(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,∴MC=BN,∵∠ANB=90°,∴∠MAC+∠ABN=90°,∵∠OMB=90°,∴∠MOB+∠ABN=90°,∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,∴△AMC∽△OMB,∴=,∴AM•MB=OM•MC,∴AM×(PE﹣PF)=OM•BN,∴AM•PF+OM•BN=AM•PE.。

江苏省扬州市2019年中考数学真题试题(含解析)

江苏省扬州市2019年中考数学真题试题(含解析)

扬州市2019学初中毕业、升学统一考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.下列图案中,是中心对称图形的是( D )A. B. C. D.【考点】:中心对称图形【解析】:中心对称图形绕某一点旋转180°与图形能够完全重合【答案】:D.2.下列个数中,小于-2的数是(A)【考点】:数的比较大小,无理数【解析】:根据二次根式的定义确定四个选项与-2的大小关系,可得【答案】:A.【解析】:分式的分母整体提取负号,则每一个都要变号【答案】:故选B.4.一组数据3、2、4、5、2,则这组数据的众数是( A)A.2B.3C.3.2D.4【考点】:统计,数据的集中趋势与离散程度【解析】:众数是出现次数最多的数据【答案】:故选:A5.如图所示物体的左视图是( B)【考点】:三视图【解析】:三视图的左视图从物体的左边看【答案】:选B.6.若点P 在一次函数4+-=x y 的图像上,则点P 一定不在( C ).A.第一象限B. 第二象限C. 第三象限D. 第四象限【考点】:一次函数的图像【解析】:坐标系中,一次函数4+-=x y 经过第一、二、四象限,所以不经过第三象限【答案】:C7.已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( D )A.4个B. 5个C. 6个D. 7个【考点】:正整数,三角形三边关系【解析】:方法一:∵n 是正整数∴n=1时,三边为3,9,3构不成三角形,不符合n=2时,三边为4,10,6构不成三角形,不符合n=3时,三边为5,11,9可以构成三角形,符合n=4时,三边为6,12,12可以构成三角形,符合n=5时,三边为7,13,15可以构成三角形,符合n=6时,三边为8,14,18可以构成三角形,符合n=7时,三边为9,15,21可以构成三角形,符合n=8时,三边为10,16,24可以构成三角形,符合n=9时,三边为11,17,27可以构成三角形,符合n=10时,三边为12,18,30不可以构成三角形,不符合∴总共7个方法二:当n+8最大时424238238832<<<>><>n n n n n n n n n n n ⇒⎩⎨⎧⇒⎪⎩⎪⎨⎧++-++++∴n=3当3n 最大时10483283382<<>n n n n n n n n n ≤⇒⎪⎩⎪⎨⎧+≥+--+++∴n=4,5,6,7,8,9综上:n 总共有7个【答案】:选:D.8.若反比例函数xy 2-=的图像上有两个不同的点关于y 轴对称点都在一次函数y =-x +m 的图像上,则m 的取值范围是( C )A.22>mB.22-<m ①C.22-22<或>m mD.2222-<<m【考点】:函数图像,方程,数形结合【解析】: ∵反比例函数xy 2-=上两个不同的点关于y 轴对称的点 在一次函数y =-x +m 图像上 ∴是反比例函数x y 2=与一次函数y =-x +m 有两个不同的交点 联立两个函数解方程02222=+-⇒+-=⇒⎪⎩⎪⎨⎧+-==mx x m x x m x y x y ∵有两个不同的交点∴022=+-mx x 有两个不等的根△=m 2-8>0 根据二次函数图像得出不等式解集 所以22-22<或>m m【答案】:C.二、填空题(本大题共10小题,每小题3分,共30分)9.2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全场约1790000米,数据1790000用科学记数法表示为 1.79×106 .【考点】:科学计数法【答案】:1.79×106【考点】:因式分解,【解析】:先提取公因式,在使用平方差公式因式分解【答案】: ab (3-x )(3+x )11.扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 0.92 .(精确到0.01)【考点】:频率与频数【解析】:频率接近于一个数,精确到0.01【答案】:0.9212.一元二次方程()22-=-x x x 的根式__x 1=1 x 2=2___.【考点】:解方程【解析】:()22-=-x x x解:()()021=--x x x 1=1 x 2=2【答案】:x 1=1 x 2=2.13.计算:()()20192018252-5+2+ .【考点】:根式的计算,积的乘方【解析】:()()[]()2525252-52018+=++【答案】:25+.14.将一个矩形 纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD= 128°.【考点】:矩形的性质,折叠问题,等腰三角形,平行线,平角【解析】:解:延长DC 到F∵矩形纸条折叠∴∠ACB=∠∠BCF∵AB∥CD∴∠ABC=∠BCF=26°∴∠ACF=52°∵∠ACF+∠ACD=180°∴∠ACD=128°【答案】:128°15.如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。

2019年数学中考试题(附答案)

2019年数学中考试题(附答案)
C.(﹣1.5)8÷(﹣1.5)7=﹣1.5D.﹣1.58÷(﹣1.5)7=﹣1.5
9.如图,已知 ,那么下列结论正确的是( )
A. B. C. D.
10.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1B.0,1C.1,2D.1,2,3
11.二次函数 的图象如图所示,则一次函数 与反比例函数 在同一坐标系内的图象大致为( )
2019年数学中考试题(附答案)
一、选择题
1.下列命题中,其中正确命题的个数为( )个.
①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.
A.1B.2C.3D.4
2.不等式组 的解集在数轴上表示正确的是()
A. B. C. D.
∴∠DAB=90°,
∴∠DAM=30°,
∴AM= ,
故选:B.
【点睛】
本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,
4.A
解析:A
【解析】
试题分析:∵今后项目的数量﹣今年的数量=20,∴ .故选A.
考点:由实际问题抽象出分式方程.
5.C
解析:C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
(收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)

【中考真题】2019年全国中考数学试卷(含答案及解析)

【中考真题】2019年全国中考数学试卷(含答案及解析)

【中考真题】2019年全国中考数学试卷(含答案及解析)2019年全国中考数学试卷(含答案及解析)。

一、选择题。

1.已知函数y=2x+3,那么当x=5时,y的值是多少?A. 8B. 10C. 13D. 15。

解析,将x=5代入y=2x+3中,得到y=25+3=13,因此答案为C。

2.下列各数中,最小的是()。

A. -5B. -3C. 1D. 2。

解析,-5是负数中最小的,因此答案为A。

3.已知集合A={x|x是2的倍数},集合B={x|x是3的倍数},则A∪B是()。

A. {x|x是2和3的公倍数}B. {x|x是2或3的倍数} 。

C. {x|x是2和3的公因数}D. {x|x是2和3的倍数}。

解析,A∪B表示A和B的并集,即A和B中所有的元素的集合。

A={...,-4,-2,0,2,4,...},B={...,-6,-3,0,3,6,...},A∪B={...,-6,-4,-3,-2,0,2,3,4,6,...},即A∪B是2和3的倍数的集合,因此答案为D。

4.已知△ABC中,AB=BC=6cm,AC=8cm,则△ABC的周长是()。

A. 12cmB. 20cmC. 24cmD. 30cm。

解析,△ABC的周长为AB+BC+AC=6+6+8=20cm,因此答案为B。

5.已知直角三角形的两条直角边分别为3cm和4cm,则斜边长为()。

A. 5cmB. 7cmC. 9cmD. 12cm。

解析,根据勾股定理,斜边长为√(3^2+4^2)=√(9+16)=√25=5cm,因此答案为A。

6.已知a:b=3:4,b:c=2:5,则a:b:c=()。

A. 3:4:5B. 6:8:10C. 12:16:20D. 15:20:25。

解析,根据比例的性质,a:b=3:4,b:c=2:5,将两个比例相连结,得到a:b:c=32:42:45=6:8:20,因此答案为B。

7.已知(-2)×(-3)×(-4)×(-5)的结果是()。

2019年中考数学试题含答案

2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .23.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( ) A .27B .9C .﹣7D .﹣164.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .155.定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .256.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形 C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC 5BC =2,则sin ∠ACD 的值为( )A .5 B .25C .5 D .239.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 10.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)11.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .11 12.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.16.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 1.414≈,3 1.732≈)23.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.A解析:A 【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.5.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:0.0007=7×10﹣4 故选C . 【点睛】本题考查科学计数法,难度不大.7.D解析:D【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可. 【详解】对角线互相垂直且平分的四边形是菱形,故A 是假命题; 对角线互相垂直平分且相等的四边形是正方形,故B 是假命题; 对角线相等且平分的四边形是矩形,故C 是假命题; 对角线互相平分的四边形是平行四边形,故D 是真命题. 故选D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键10.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

2019年数学中考试题附答案

2019年数学中考试题附答案

2019年数学中考试题附答案一、选择题1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( ) A . B . C . D .2.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .63.在数轴上,与表示6的点距离最近的整数点所表示的数是( )A .1B .2C .3D .44.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分5.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .15B .14C .15D .417 6.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A .B .C .D .7.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-8.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元A .8B .16C .24D .329.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A .B .C .D .10.下列计算正确的是( )A .()3473=a b a bB .()232482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a11.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 12.若0xy <2x y )A .x y -B .x yC .x y -D .x y --二、填空题13.已知62x =,那么222x x -的值是_____.14.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 15.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm16.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.19.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.22.解方程:x21 x1x-= -.23.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?24.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.B解析:B【解析】【分析】利用平方根定义估算6的大小,即可得到结果.【详解】46 6.25<<Q,26 2.5∴<<,则在数轴上,与表示6的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.4.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.5.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC=2241-=15,则cos B=BCAB=15,故选A6.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.7.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.8.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.9.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D10.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.11.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.12.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简. 解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义二、填空题13.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=∴(22x=,∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.14.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x =4时点R 到达Px=9时点R 到Q 点则PN=4QP=5∴矩形MNPQ 的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R 到达P ,x=9时,点R 到Q 点,则PN=4,QP=5∴矩形MNPQ 的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时, 要注意数形结合.19.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n 种可 解析:12. 【解析】 【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q 共6个数,大于3的数有3个,P ∴(大于3)3162==; 故答案为12. 【点睛】 本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 三、解答题21.(1)过点C 作CG ⊥AB 于G在Rt △ACG 中 ∵∠A =60°∴sin60°=∴……………1分在Rt △ABC 中 ∠ACB =90°∠ABC =30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.x .22.2【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.24.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)2π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC=2213+=10,点C旋转至C2经过的路径长=9010180π⋅⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。

2019年四川省眉山市中考数学真题(答案+解析)

2019年四川省眉山市中考数学真题(答案+解析)

2019年四川省眉山市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的.1.下列四个数中,是负数的是()A.|﹣3| B.﹣(﹣3)C.(﹣3)2 D.﹣【答案】D【解析】|﹣3|=3,﹣(﹣3)=3,(﹣3)2=9,∴四个数中,负数是﹣.故选:D.2.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个【答案】C【解析】120亿个用科学记数法可表示为:1.2×1010个.故选:C.3.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.【答案】D【解析】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选:D.4.下列运算正确的是()A.2x2y+3xy=5x3y2B.(﹣2ab2)3=﹣6a3b6C.(3a+b)2=9a2+b2D.(3a+b)(3a﹣b)=9a2﹣b2【答案】D【解析】A.2x2y和3xy不是同类项,故不能合并,故选项A不合题意;B.(﹣2ab2)3=﹣8a3b6,故选项B不合题意;C.(3a+b)2=9a2+6ab+b2,故选项C不合题意;D.(3a+b)(3a﹣b)=9a2﹣b2,故选项D符合题意.故选:D.5.如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C 的度数是()A.50°B.60°C.70°D.80°【答案】C【解析】∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.6.函数y=中自变量x的取值范围是()A.x≥﹣2且x≠1 B.x≥﹣2 C.x≠1 D.﹣2≤x<1【答案】A【解析】根据二次根式有意义,分式有意义得:x+2≥0且x﹣1≠0,解得:x≥﹣2且x≠1.故选:A.7.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.【答案】B【解析】原式=×=×=a+b.8.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是()A.6 B.6.5 C.7 D.8【答案】C【解析】∵5,6,6,x,7,8,9,这组数据的平均数是7,∴x=7×7﹣(5+6+6+7+8+9)=9,∴这组数据从小到大排列为:5,6,6,7,8,9,9则最中间为7,即这组数据的中位数是7.故选:C.9.如图,一束光线从点A(4,4)出发,经y轴上的点C反射后经过点B(1,0),则点C 的坐标是()A.(0,)B.(0,)C.(0,1)D.(0,2)【答案】B【解析】如图所示,延长AC交x轴于点D.∵这束光线从点A(4,4)出发,经y轴上的点C反射后经过点B(1,0),∴设C(0,c),由反射定律可知,∴∠OCB=∠OCD∵CO⊥DB于O∴∠COD=∠BOC∴在△COD和△COB中∴△COD≌△COB(ASA)∴OD=OB=1∴D(﹣1,0)设直线AD的解析式为y=kx+b,则将点A(4,4),点D(﹣1,0)代入得∴∴直线AD为y=∴点C坐标为(0,).故选:B.10.如图,⊙O的直径AB垂直于弦CD,垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6B.3C.6 D.12【答案】A【解析】∵CD⊥AB,∴CE=DE,∵∠BOC=2∠A=2×22.5°=45°,∴△OCE为等腰直角三角形,∴CE=OC=×6=3,∴CD=2CE=6.故选:A.11.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是()A.1 B.C.2 D.【答案】B【解析】连接CE,如图所示:∵四边形ABCD是菱形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即DE=;故选:B.12.如图,在菱形ABCD中,已知AB=4,∠ABC=60°,∠EAF=60°,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∽△EFC;④若∠BAE=15°,则点F到BC的距离为2﹣2.则其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】∵四边形ABCD是菱形,∴AB=BC,∠ACB=∠ACD,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠ACD=∠ACB=60°,∴∠ABE=∠ACF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴AE=AF,BE=CF.故①正确;∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠AEB+∠CEF=∠AEB+∠EAB=60°,∴∠EAB=∠CEF,故②正确;∵∠ACD=∠ACB=60°,∴∠ECF=60°,∵∠AEB<60°,∴△ABE和△EFC不会相似,故③不正确;过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=2,AG=2,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴∠ABE=∠ACF=120°,EB=CF=2﹣2,∴∠FCE=60°,在Rt△CHF中,∵∠CFH=30°,CF=2﹣2,∴CH=﹣1.∴FH=(﹣1)=3﹣.∴点F到BC的距离为3﹣,故④不正确.综上,正确结论的个数是2个,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分.13.分解因式:3a3﹣6a2+3a=3a(a﹣1)2.【解析】3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.14.设a、b是方程x2+x﹣2019=0的两个实数根,则(a﹣1)(b﹣1)的值为﹣2017.【解析】∵a、b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,ab=﹣2019,∴(a﹣1)(b﹣1)=ab﹣(a+b)+1=﹣2019+1+1=﹣2017.故答案为:﹣2017.15.已知关于x,y的方程组的解满足x+y=5,则k的值为2.【解析】,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代入①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:216.如图,在Rt△ABC中,∠B=90°,AB=5,BC=12,将△ABC绕点A逆时针旋转得到△ADE,使得点D落在AC上,则tan∠ECD的值为.【解析】在Rt△ABC中,由勾股定理可得AC=13.根据旋转性质可得AE=13,AD=5,DE=12,∴CD=8.在Rt△CED中,tan∠ECD==.故答案为.17.如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为2.【解析】连接OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,∴OP==4,∴PQ==2.故答案为2.18.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB,BC于点D、E.若四边形ODBE的面积为12,则k的值为4.【解析】由题意得:E、M、D位于反比例函数图象上,则S△OCE=|k|,S△OAD=|k|,=|k|,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S▱ONMG=4|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S▱ONMG由于函数图象在第一象限,∴k>0,则++12=4k,∴k=4.三、解答题:本大题共6个小题,共46分.请把解答过程写在答题卡相应的位置上.19.(6分)计算:(﹣)﹣2﹣(4﹣)0+6sin45°﹣.解:原式=9﹣1+6×﹣3=9﹣1+3﹣3=8.20.(6分)解不等式组:解:,解①得:x≤4,解②得x>﹣1,则不等式组的解集为﹣1<x≤4.21.(8分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.证明:∵AE=BE,∴∠EAB=∠EBA,∵AB∥DC,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB,∵点E是CD的中点,∴DE=CE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴∠D=∠C.22.(8分)如图,在岷江的右岸边有一高楼AB,左岸边有一坡度i=1:2的山坡CF,点C 与点B在同一水平面上,CF与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45°,然后沿坡面CF上行了20米到达点D处,此时在D处测得楼顶A的仰角为30°,求楼AB的高度.解:在Rt△DEC中,∵i==,DE2+EC2=CD2,CD=20,∴DE2+(2DE)2=(20)2,解得:DE=20(m),∴EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,∵∠ACB=45°,AB⊥BC,∴AB=BC,设AB=BC=x m,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,∵=tan∠ADG,∴=,解得:x=50+30.答:楼AB的高度为(50+30)米.23.(9分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中三等奖所在扇形的圆心角的度数是108度;(2)请将条形统计图补全;(3)获得一等奖的同学中有来自七年级,有来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.解:(1)∵被调查的总人数为16÷40%=40(人),∴扇形统计图中三等奖所在扇形的圆心角的度数是360°×=108°,故答案为:108;(2)一等奖人数为40﹣(8+12+16)=4(人),补全图形如下:(3)一等奖中七年级人数为4×=1(人),九年级人数为4×=1(人),则八年级的有2人,画树状图如下:由树状图知,共有12种等可能结果,其中所选出的2人中既有八年级同学又有九年级同学的有4种结果,所以所选出的2人中既有八年级同学又有九年级同学的概率为=.24.(9分)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?解:(1)设乙工程队每天能完成绿化的面积是x m2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=200(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.四、解答题:本大题共2个小题,共20分,请把解答过程写在答题卡相应的位置上.25.(9分)如图1,在正方形ABCD中,AE平分∠CAB,交BC于点E,过点C作CF⊥AE,交AE的延长线于点G,交AB的延长线于点F.(1)求证:BE=BF;(2)如图2,连接BG、BD,求证:BG平分∠DBF;(3)如图3,连接DG交AC于点M,求的值.(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠EAB+AEB=90°,∵AG⊥CF,∴∠FCB+∠CEG=90°,∵∠AEB=∠CEG,∴∠EAB=∠FCB,在△ABE和△CBF中,,∴△ABE≌△CBF(ASA),∴BE=BF;(2)证明:∵四边形ABCD是正方形,∴∠ABD=∠CAB=45°,∵AE平分∠CAB,∴∠CAG=∠F AG=22.5°,在△AGC和△AGF中,,∴△AGC≌△AGF(ASA),∴CG=GF,∵∠CBF=90°,∴GB=GC=GF,∴∠GBF=∠GFB=90°﹣∠FCB=90°﹣∠GAF=90°﹣22.5°=67.5°,∴∠DBG=180°﹣∠ABD﹣∠GBF=180°﹣45°﹣67.5°=67.5°,∴∠DBG=∠GBF,∴BG平分∠DBF;(3)解:连接BG,如图3所示:∵四边形ABCD是正方形,∴DC=AB,∠DCA=∠ACB=45°,∠DCB=90°,∴AC=DC,∵∠DCG=∠DCB+∠BCF=∠DCB+∠GAF=90°+22.5°=112.5°,∠ABG=180°﹣∠GBF=180°﹣67.5°=112.5°,∴∠DCG=∠ABG,在△DCG和△ABG中,,∴△DCG≌△ABG(SAS),∴∠CDG=∠GAB=22.5°,∴∠CDG=∠CAG,∵∠DCM=∠ACE=45°,∴△DCM∽△ACE,∴==.26.(11分)如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.解:(1)抛物线的表达式为:y=﹣(x+5)(x﹣1)=﹣x2﹣x+,则点D(﹣2,4);(2)设点P(m,﹣m2﹣m+),则PE=﹣m2﹣m+,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(﹣m2﹣m+﹣4﹣2m)=﹣(m+)2+,∵﹣<0,故当m=﹣时,矩形PEFG周长最大,此时,点P的横坐标为﹣;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠ADB,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM∽△AMN,,而AB=6,AD=BD=5,①当MN=DM时,∴△BDM≌△AMN,即:AM=BD=5,则AN=MB=1;②当NM=DN时,则∠NDM=∠NMD,∴△AMD∽△ADB,∴AD2=AB×AM,即:25=6×AM,则AM=,而,即=,解得:AN=;③当DN=DM时,∵∠DMN>∠DAB,而∠DAB=∠DMN,∴∠DNM>∠DMN,∴DN≠DM;故AN=1或.。

2019年四川省巴中市中考数学真题(答案+解析)

2019年四川省巴中市中考数学真题(答案+解析)

2019年四川省巴中市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一个选项是正确的)1.下列四个算式中,正确的是()A.a+a=2a B.a5÷a4=2a C.(a5)4=a9D.a5﹣a4=a【答案】A【解析】A.a+a=2a,故本选项正确;B.a5÷a4=a,故本选项错误;C.(a5)4=a20,故本选项错误;D.a5﹣a4,不能合并,故本选项错误.故选:A.2.在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)【答案】C【解析】∵点A(﹣4,3),点A与点B关于原点对称,∴点B(4,﹣3).故选:C.3.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A.93×108元B.9.3×108元C.9.3×107元D.0.93×108元【答案】C【解析】将9300万元用科学记数法表示为:9.3×107元.故选:C.4.如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()A.B.C.D.【答案】C【解析】如图所示,它的主视图是:.故选:C.5.已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.0【答案】B【解析】将代入得:,∴a+b=2;故选:B.6.下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线互相垂直的矩形是正方形D.四边相等的平行四边形是正方形【答案】C【解析】A.对角线相等的平行四边形是矩形,所以A选项错误;B.对角线相等的平行四边形是矩形,所以B选项错误;C.对角线互相垂直的矩形是正方形,所以C选项正确;D.四边相等的菱形是正方形,所以D选项错误.故选:C.7.如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A.120人B.160人C.125人D.180人【答案】B【解析】学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解析】设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.9.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b ﹣c>0,④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④【答案】A【解析】①∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=﹣=﹣1,∴b=2a,∴2a+b﹣c=4a﹣c,∵a<0,4a<0,c>0,﹣c<0,∴2a+b﹣c=4a﹣c<0,故③错误;④∵对称轴为直线x=﹣1,抛物线与x轴一个交点﹣3<x1<﹣2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.二、填空题(本大题共5个小题,每小题4分,共20分)11.函数y=的自变量x的取值范围x≥1,且x≠3.【解析】根据题意得:,解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.12.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为.【解析】根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4﹣5)2+(5﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=,故答案为:.13.如图,反比例函数y=(x>0)经过A、B两点,过点A作AC⊥y轴于点C,过点B 作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连结AD,已知AC=1、BE=1、S矩形BDOE=4.则S△ACD=.【解析】过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,如图:∵S矩形BDOE=4,反比例函数y=(x>0)经过B点,∴k=4,∴S矩形ACOH=4,∵AC=1,∴OC=4÷1=4,∴CD=OC﹣OD=OC﹣BE=4﹣1=3,∴S矩形ACDF=1×3=3,∴S△ACD=,故答案为:.14.若关于x的分式方程+=2m有增根,则m的值为1.【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1,故m的值是1,故答案为1.15.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP =10.则S△ABP+S△BPC=24+16.【解析】如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16,故答案为:24+16.三、解答题(本大题共11个小题,共90分)16.(5分)计算(﹣)2+(3﹣π)0+|﹣2|+2sin60°﹣.解:原式=.17.(5分)已知实数x、y满足+y2﹣4y+4=0,求代数式•÷的值.解:•÷=••=,∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x=3,y=2,∴原式==.18.(8分)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=a,CD=AE=b,∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.19.(8分)△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);②如图,△A2B2C为所作;③OB==,点B经过的路径长==π.20.(8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=,解得x=90,经检验,x=90符合题意,∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件,由题意得:5000≤100y+90(55﹣y)≤5050,解得5≤y≤10,∴共有6种选购方案.21.(10分)如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为4,众数为4.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.22.(8分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.解:①根据题意得:△=(2m+1)2﹣4(m2﹣1)>0,解得:m,②根据题意得:x1+x2=﹣(2m+1),x1x2=m2﹣1,x12+x22+x1x2﹣17=﹣x1x2﹣17=(2m+1)2﹣(m2﹣1)﹣17=0,解得:m1=,m2=﹣3(不合题意,舍去),∴m的值为.23.(8分)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴AE==,∴BE=300﹣,又BF=DE=x,∴CF=414﹣x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414﹣x,又BE=CF,即:300﹣=414﹣x,解得:x=214,故:点D到AB的距离是214m.24.(8分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=﹣2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b﹣<0.25.(10分)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.解:①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.26.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.解:①∵点B、C在直线为y=x+n上,∴B(﹣n,0)、C(0,n),∵点A(1,0)在抛物线上,∴,∴a=﹣1,b=6,∴抛物线解析式:y=﹣x2+6x﹣5;②由题意,得,PB=4﹣t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4﹣t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m﹣5﹣(﹣m2+6m﹣5)=4解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m>5,∴m=,Ⅲ.NH﹣HP=4,∴﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m<0,∴m=,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷类型:b二○2○年山东省威海市初中升学考试数学第 I 卷 (选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.据统计,截止到5月31日上海世博会累计入园人数803.27万人.803.27万这个数字(保留两位有效数字)用科学记数法表示为A .8.0×102 B. 8.03×102 C. 8.0×106 D. 8.03×1062.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是A .40°B .60°C .70°D .80° 3.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是A .-2B .-1C .2D .34.下列运算正确的是 A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 5.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为A .9㎝B .12㎝C .15㎝D .18㎝6.化简a a b a b -÷⎪⎭⎫⎝⎛-2的结果是A .1--aB .1+-aC .1+-abD .b ab +-7.右图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是A .5B .6C .7D .88.已知1=-b a ,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 9.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BE得 分评卷人AE A DE左视图俯视图B .∠A =∠EDAC .BC =2ADD .BD ⊥AC10.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 A .24 B .4 C .33D .5211.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是A .21B .31C .41D .5112.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为A .2009235⎪⎭⎫ ⎝⎛B .2010495⎪⎭⎫ ⎝⎛C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛CABD OC绝密★启用前试卷类型:A威海市二○一○年初中升学考试数 学第 II 卷 (非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分. 只要求填出最后结果)13.在函数x y -=3中,自变量x 的取值范围是 . 14.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若 ∠AOD =30°,则∠BCD 的度数是 .15.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与 个砝码C 的质量相等.16.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .17.小明家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125kg 降至2000㎏﹙全球人均目标碳排放量﹚,则小明家未来两年人均碳排放量平均每年须降低的百分率是 .18.从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .得 分评卷人(第15题图)图 ①图 ②(第16题图)C﹙第14题图﹚ B三、解答题(本大题共7小题,共66分) 19.(7分)解不等式组:20.(7分)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.得 分评卷人得 分评卷人⎪⎩⎪⎨⎧--125x x ≤()342-x .得分评卷人21.(9分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列(2)随机抽取的这部分学生中男生体育成绩的平均数是,众数是 ;女生体育成绩的中位数是 .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?22.(10分)如图,一次函数b kx y +=的图象与反比例函数xmy =的图象交于点A ﹙-2,-5﹚, C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数xmy =和一次函数b kx y +=(2) 连接OA ,OC .求△AOC 的面积.23.(10分)如图,在□ABCD 中,∠DAB =60°,AB =15㎝.已知⊙O 的半径等于3㎝,AB ,AD 分别与⊙O 相切于点E ,F .⊙O 在□ABCD 内沿AB 方向滚动,与BC 边相切时运动停止.试得 分评卷人得 分评卷人求⊙O 滚过的路程.24.(11分)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1.﹙1﹚将△ABC ,△A 1B 1C 1如图②摆放,使点A 1与B 重合,点B 1在AC 边的延长线上,连接CC 1交BB 1于点E .求证:∠B 1C 1C =∠B 1BC .﹙2﹚若将△ABC ,△A 1B 1C 1如图③摆放,使点B 1与B 重合,点A 1在AC 边的延长线上,连接CC 1交A 1B 于点F .试判断∠A 1C 1C 与∠A 1BC 是否相等,并说明理由.得 分评卷人AB (A 1)CB 1C 1图 ②EC 1B (B 1)FA 1B 1C 1ABC(图①)﹙3﹚写出问题﹙2﹚中与△A 1FC 相似的三角形 .25.(12分)(1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等? 若存在,请求出此时点E 的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚得 分评卷人ABD CM N 图 ①C图 ②A BD M F EG备用图威海市二○一○年初中升学考试数学试题参考解答及评分意见评卷说明:1.第一大题(选择题)和第二大题(填空题)的每小题,只有满分和零分两个评分档,不给中间分.2.第三大题(解答题)每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.部分试题有多种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.二、填空题(本大题共6小题,每小题3分,共18分)13.x≤3;14.105°;15.2;16.﹙0,1﹚;17.20%;18.211 .6三、解答题(本大题共7小题, 共66分)19.(本小题满分7分)解:⎪⎩⎪⎨⎧-≤--+-②(①>).342125,3231x x xx解不等式①,得x <5. ………………………………………………………………3分 解不等式②,得x ≥-2. ………………………………………………………………6分 因此,原不等式组的解集为-2≤x <5. ………………………………………………7分 20.(本小题满分7分)解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³.……1分根据题意,得 10%)251(9096=+-x x . …………………………………………………3分解这个方程,得x =2.4. …………………………………………………………………6分 经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元). 所以,该市今年居民用气的价格为3元/ m³. ………………………………………7分 21.(本小题满分9分)﹙1﹚80; …………………………………………………………………………………3分 ﹙2﹚26.4, 27, 27; ……………………………………………………﹙每空1分﹚6分﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ……………………………………9分22.(本小题满分10分)解:(1)∵ 反比例函数xmy =的图象经过点A ﹙-2,-5﹚,∴ m =(-2)×( -5)=10. ∴ 反比例函数的表达式为xy 10=. ……………………………………………………2分 ∵ 点C ﹙5,n ﹚在反比例函数的图象上, ∴ 2510==n . ∴ C 的坐标为﹙5,2﹚. …………………………………………………………………3分 ∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得 ⎩⎨⎧+=+-=-.5225b k b k , 解得⎩⎨⎧-==.31b k , ………………………………………………………5分∴ 所求一次函数的表达式为y =x -3. …………………………………………………6分 (2) ∵ 一次函数y =x -3的图像交y 轴于点B ,∴ B 点坐标为﹙0,-3﹚. ………………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . ………………10分23.(本小题满分10分)解:连接OE ,OA .……………………1分 ∵ AB ,AD 分别与⊙O 相切于点E ,F .∴ OE ⊥AB ,OE =3㎝.………………2分 ∵ ∠DAB =60°,∴ ∠OAE =30°. ……………………3分AE在Rt △AOE 中,AE=3tan tan 30OE OAE ︒==∠. …………………………………5分 ∵ AD ∥BC ,∠DAB =60°,∴ ∠ABC =120°. ……………………………………………………………………6分 设当运动停止时,⊙O 与BC ,AB 分别相切于点M ,N ,连接ON ,OB . ……………7分 同理可得 BN =3㎝. …………………………………………………………………9分 ∴ )3415(33315-=--=--=BN AE AB EN ㎝.∴ ⊙O 滚过的路程为()3415-㎝. …………………………………………………10分24.(本小题满分11分)(1)证明:由题意,知△ABC ≌△A 1B 1C 1,∴ AB= A 1B 1,BC 1=AC ,∠2=∠7,∠A =∠1.∴ ∠3=∠A =∠1. ……………………………………………………………………1分 ∴ BC 1∥AC .∴ 四边形ABC 1C 是平行四边形. ………………2分∴ AB ∥CC 1. ∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6, ∴ ∠B 1C 1C =∠B 1BC .……………………………4分 ﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分 理由如下:由题意,知△ABC ≌△A 1B 1C 1,∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A =∠2.∴ ∠3=∠A ,∠4=∠7. ………………………6分∵ ∠1+∠FBC =∠8+∠FBC ,∴ ∠C 1BC =∠A 1BA . …………………………7分 ∵ ∠4=21(180°-∠C 1BC ),∠A=21(180°-∠A 1BA ). ∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6,∴ ∠A 1C 1C =∠A 1BC .……………………………………………………………………9分 ﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚25.(本小题满分12分)﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F .∵ AD ∥BC ,AD =BC , ∴ 四边形ABCD 为平行四边形.∴ AB ∥CD .∴ ME = NF .∵S △ABM =ME AB ⋅21,S △ABN =NF AB ⋅21, ∴ S △ABM = S △ABN . ……………………………………………………………………1分 ②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA =∠EKB =90°. ∵ AD ∥BE , A B (A 1)C B 1 C 1 图 ② E 1 4 3 2 5 6 7 A 1C 1 C A B (B 1) 图 ③ F 3 6 4 5 12 7 8 A B D C MN 图 ① E F H C 图 ② A B D M F EG K∴ ∠DAH =∠EBK .∵ AD =BE ,∴ △DAH ≌△EBK .∴ DH =EK . ……………………………2分∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EK AB ⋅21, ∴ S △ABM = S △ABG . ………………………………………………………………………3分 ﹙2﹚答:存在. …………………………………………………………………………4分 解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y . 又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a . ∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . ………………………5分 ∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k . ∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-.∴ CH =CG -HG =4-2=2. …………………………………………………………6分 设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC ①若E 点在直线AD 的上方﹙如图③-1﹚,则PF =m -3,EF =322++-m m . ∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分 当2=m 时,PF =3-2=1,EF=1+2=3.∴ E 点坐标为(2,3). 同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分 ②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. ……………………………………………9分 ∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分 当2173+=m 时,E 点的纵坐标为2171221733+-=-+-; 当2173-=m 时,E 点的纵坐标为2171221733+-=---. ∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);1712173(2+-+,E 171173(+--, ﹙其他解法可酌情处理﹚。

相关文档
最新文档