《三角形内角和》拔高练习
三角形的内角和练习题
三角形的内角和练习题XXX铁骑整理制作XXX数学研究材料金戈铁骑整理制作三角形的内角和练卷(带解析)1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50°B.80°,56°C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。
A.108°B.180°C.1800°D.1080°3.三角形中最大的一个角一定()A.不小于60°B.大于90°C.小于90°D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。
A.相等B.面积大的三角形内角和大C.面积小的三角形内角和小D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角B.一定是锐角C.大概是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从极点升引一条直线分成两个一样大小的三角形,其中一个三角形的内角和是()A.30.B.60°C.90°D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度B.180度C.75度D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30°B.45°C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形B.平行四边形C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70°B.120°C.140°XXX铁骑收拾整顿制作XXX铁骑整理制作13.上面每组三个角,不大概在统一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450°B.30°C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。
人教版 八年级上册数学 第十一章《三角形》拔高题练习
第十一章《三角形》拔高题练习一.选择题1.在△ABC中,∠B、∠C的平分线交于点O,若∠BOC=132°,则∠A的度数为()A.42°B.48°C.84°D.100°2.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.83.八边形的内角和为()A.180°B.360°C.1080°D.1440°4.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形5.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°6.下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④7.下列图形中不具有稳定性的是()A.锐角三角形B.长方形C.直角三角形D.等腰三角形8.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()度.A.450 B.540 C.630 D.7209.在△ABC中,2(∠A+∠B)=3∠C,则∠C的补角等于()A.36°B.72°C.108°D.144°10.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm11.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长差为()A.6 B.3 C.2 D.不确定12.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个13.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°14.已知三角形的三边长分别为2,a﹣1,4,则化简|a﹣3|+|a﹣7|的结果为()A.2a﹣10 B.10﹣2a C.4 D.﹣415.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定二.填空题16.正八边形一个内角的度数为.17.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.18.甲地离学校4km,乙地离学校1km,记甲乙两地之间的距离为dkm,则d的取值范围为.19.用含30°角的两块同样大小的直角三角板拼图,拼出的不同四边形中能够满足对边互相平行的有种.20.如图,D为△ABC一点,AB=AC,BC=CD,∠ABD=15°,则∠A=°.=4cm2,21.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC 则阴影部分的面积为cm2.三.解答题22.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.23.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.24.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.25.如图,在△ABC中,∠ABC=65°,∠C=35°,AD是△ABC的角平分线.(1)求∠ADC的度数.(2)过点B作BE⊥AD于点E,BE延长线交AC于点F.求∠AFE的度数.26.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.(1)若∠A=40°,∠B=76°,求∠DCE的度数;(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.27.已知△ABC中,BE平分∠ABC,点P在射线BE上.(1)如图1,若∠ABC=40°,CP∥AB,求∠BPC的度数;(2)如图2,若∠BAC=100°,∠PBC=∠PCA,求∠BPC的度数;(3)若∠ABC=40°,∠ACB=30°,直线CP与△ABC的一条边垂直,求∠BPC的度数.参考答案一.选择题1.解:如图:∵∠BOC=132°,∠BOC+∠OBC+∠OCB=180°,∴∠OBC+∠OCB=180°﹣132°=48°,∵∠ABC与∠ACB的平分线相交于点O,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,∴∠A=180°﹣96°=84°,故选:C.2.解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.3.解:(8﹣2)•180°=6×180°=1080°.故选:C.4.解:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.5.解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选:B.6.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为E,纵观各图形,①②③都不符合高线的定义,④符合高线的定义.故选:D.7.解:长方形属于四边形,不具有稳定性,而三角形具有稳定性,故B符合题意;故选:B.8.解:如图∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠8+∠9+∠5+∠6+∠7,=五边形的内角和=540°,故选:B.9.解:∵2(∠A+∠B)=3∠C,∠A+∠B=180°﹣∠C,∴2(180°﹣∠C)=3∠C,∴∠C=72°,∴∠C的补角等于108°,故选:C.10.解:设第三根木棒长为xcm,由题意得:5﹣2<x<5+2,3<x<7,∴5cm符合题意,故选:C.11.解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差,=(AB+BC+AD)﹣(AC+BC+AD),=AB﹣AC,=5﹣3,=2,故选:C.12.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.13.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.14.解:由三角形三边关系定理得4﹣2<a﹣1<4+2,即3<a<7.∴|a﹣3|+|a﹣7|=a﹣3+7﹣a=4.故选:C.15.解:在△ABC中,∵∠A=120°,∴∠ABC+∠ACB=180°﹣120°=60°,又∵∠1=∠2=∠3,∠4=∠5=∠6,∴∠DBC+∠DCB=×60°=40°,∴∠BDC=180°﹣40°=140°,故选:C.二.填空题(共6小题)16.解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.17.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.18.解:(1)甲乙都在学校同侧,则d≥4﹣1=3;(2)甲乙在学校两侧,则d≤4+1=5;则d的取值范围为:3≤d≤5.19.解:30°角与60°的角拼在一起,30°角与90°的角拼在一起,90°的角与60°的角拼在一起,共3种.20.解:设∠A=x.∵BC=CD,∠ABD=15°,∴∠CBD =∠CDB =15+x .∵AB =AC ,∴∠ACB =∠ABC =30+x .∴x +2(30+x )=180°,x =40°.即∠A =40°.21.解:∵D 为BC 中点,根据同底等高的三角形面积相等,∴S △ABD =S △ACD =S △ABC =×4=2,同理S △BDE =S △CDE =S △BCE =×2=1,∴S △BCE =2,∵F 为EC 中点,∴S △BEF =S △BCE =×2=1.故答案为1.三.解答题(共6小题)22.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°,∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°﹣∠B ﹣∠BAD =180°﹣30°﹣50°=100°.23.解:(1)①∵∠MON =40°,OE 平分∠MON ∴∠AOB =∠BON =20°∵AB ∥ON ∴∠ABO =20°②∵∠BAD =∠ABD ∴∠BAD =20°∵∠AOB +∠ABO +∠OAB =180°∴∠OAC =120°∵∠BAD =∠BDA ,∠ABO =20°∴∠BAD =80°∵∠AOB +∠ABO +∠OAB =180°∴∠OAC =60°故答案为:①20°; ②120,60;(2)①当点D 在线段OB 上时,∵OE 是∠MON 的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20若∠BAD=∠BDA=(180°﹣70°)=55°,则x=35若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20、35、50、125.24.解:(1)∵△BCD中,BC=4,BD=5,∴5﹣4<CD<5+4,∴CD的取值范围是:1<CD<9;(2)∵AE∥BD,∴∠AEF=∠BDE=125°,∵∠AEF是△ACE的外角,∴∠C=∠AEF﹣∠A=125°﹣55°=70°.25.解:(1)∵∠ABC=65°,∠C=35°,∴∠BAC=80°,又∵AD是△ABC的角平分线,∴∠DAF=∠BAC=40°,∴△ACD中,∠ADC=180°﹣40°﹣35°=105°;(2)∵BE⊥AD,∴∠AEF=90°,由(1)可得∠EAF=40°,∴∠AFE=180°﹣40°﹣90°=50°.26.解:(1)∵∠A=40°,∠B=76°,∴∠ACB=64°,∵CE是∠ACB的平分线,∴∠ECB=∠ACB=32°,∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=14°∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;(2)∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β,∵CE是∠ACB的平分线,∴∠ECB=∠ACB=(180°﹣α﹣β),∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD=β﹣α;(3)如图所示,∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β,∵CE是∠ACB的平分线,∴∠ECB=∠ACB=(180°﹣α﹣β),∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD=β﹣α,由平移可得,GH∥CD,∴∠HGE=∠DCE=β﹣α.27.解:(1)∵BE平分∠ABC,∠ABC=40°,∴∠ABP===20°,∵CP∥AB,∴∠BPC=∠ABP=20°;(2)设∠ABP=x,则∠PBC=∠ACP=x,△ABC中,∠ACD=∠A+∠ABC,x+∠PCD=100°+2x,∴∠PCD=100+x,△BCP中,∠PCD=∠PBC+∠BPC,∴100+x=x+∠BPC,∴∠BPC=100°;(3)①当CP⊥BC时,如图3,则∠BCP=90°,∵∠PBC=20°,∴∠BPC=70°;②当CP⊥AC时,如图4,则∠ACP=90°,△BCP中,∠BPC=180°﹣20°﹣30°﹣90°=40°;③当CP⊥AB时,延长CP交直线AB于G,如图5,则∠BGC=90°,∵∠ABC=40°,∴∠BCG=50°△BPC中,∠BPC=180°﹣50°﹣20°=110°;综上,∠BPC的度数为70°或40°或110°.。
三角形的内角和 练习题
三角形的内角和练习题小学数学研究材料:三角形的内角和练卷(带解析)1.在一个三角形中,如果有一个角是44度,那么另外两个角可能是A。
96度,50度;B。
80度,56度;C。
90度,36度。
2.用10倍放大镜观察一个三角形,这个三角形的三个内角之和是A。
108度;B。
180度;C。
1800度;D。
1080度。
3.一个三角形中最大的角一定是A。
不小于60度;B。
大于90度;C。
小于90度;D。
大于60度但小于90度。
4.对于两个不相等的三角形,它们的内角和A。
相等;B。
面积大的三角形的内角和大;C。
面积小的三角形的内角和小;D。
不能比较。
5.如果一个三角形的最小内角为50度,那么这是一个A。
锐角三角形;B。
直角三角形;C。
钝角三角形;D。
以上都不对。
6.在一个三角形中,如果有两个角是锐角,那么第三个角A。
一定是钝角;B。
一定是锐角;C。
可能是钝角、锐角或直角。
7.下列哪组角可以组成一个三角形A。
∠1=80度,∠2=70度,∠3=15度;B。
∠1=50度,∠2=85度,∠3=63度;C。
∠1=60度,∠2=60度,∠3=70度;D。
∠1=74度,∠2=16度,∠3=90度。
8.将一个等边三角形从顶点处用一条直线分成两个相等的三角形,其中一个三角形的内角和是A。
30度;B。
60度;C。
90度;D。
180度。
9.在一个三角形中,如果∠1=70度,∠3=35度,那么∠2=A。
45度;B。
180度;C。
75度;D。
90度。
10.在一个等腰直角三角形中,其中一个底角是A。
30度;B。
45度;C。
60度。
11.下列图形中,内角和不是180度的图形是A。
等腰三角形;B。
平行四边形;C。
锐角三角形。
12.在一个等腰三角形中,如果顶角是60度,那么底角和是A。
70度;B。
120度;C。
140度。
13.下列每组三个角,不可能在同一个三角形中的是A。
15度、87度、78度;B。
120度、55度、5度;C。
80度、50度、50度;D。
人教版八年级数学上册第一单元《三角形的内角和》同步练习2(含参考答案)
人教版八年级数学上册第一单元《三角形的内角和》同步练习2(含参考答案)一.选择题1.已知在Rt△ABC中,∠B=90°,∠C=35°,则∠A等于()A.35°B.45°C.55°D.65°2.如右图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°3.如右图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠2=∠3 C.∠1=∠4 D.∠1=30°4.直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°5.如右图△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是()A.45°B.20°C.30°D.15°二.填空题6.若直角三角形的一个锐角为15°,则另一个锐角等于.7.如右图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为.8.在直角三角形中,两个锐角的度数比为2:3,那么较小锐角的度数是.9.如右图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.10.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.三.解答题11.AD、BE为△ABC的高,AD、BE相交于H点,∠C=50°,求∠BHD.12.解方程组:.参考答案一.选择题1.已知在Rt△ABC中,∠B=90°,∠C=35°,则∠A等于()A.35°B.45°C.55°D.65°【分析】根据直角三角形的两锐角互余计算即可.【解答】解:在Rt△ABC中,∠B=90°,∠C=35°,则∠A=90°﹣35°=55°,故选:C.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.2.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°【分析】根据直角三角形的性质求出∠AEB的度数,根据对顶角相等求出∠DEC,根据直角三角形的两个锐角互余计算即可.【解答】解:∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键.3.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠2=∠3C.∠1=∠4D.∠1=30°【分析】根据垂直得出∠ADC=∠BDC=90°,再根据直角三角形的性质逐个判断即可.【解答】解:A.∵∠ACB=90°,∴∠1+∠2=90°,故本选项不符合题意;B.∵CD⊥AB,∴∠ADC=90°,∴∠1+∠3=90°,∵∠1+∠2=90°,∴∠2=∠3,故本选项不符合题意;C.∵CD⊥AB,∴∠BDC=90°,∴∠2+∠4=90°,∵∠1+∠2=90°,∴∠1=∠4,故本选项不符合题意;D.根据已知条件不能推出∠1=30°,故本选项符合题意;故选:D.【点评】本题考查了垂直定义和直角三角形的性质,注意:直角三角形的两锐角互余.4.直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选:B.【点评】本题考查的是直角三角形的性质,熟知直角三角形的性质是解答此题的关键.5.△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是()A.45°B.20°C.30°D.15°【分析】根据三角形的内角和∠B=60°,根据角平分线的定义得出∠BAE=45°,根据直角三角形的两锐角互余得出∠BAD=30°,即可根据角的和差得解.【解答】解:∵∠BAC=90°,∠B=2∠C,∴∠B=60°,∵AD⊥BC,AE平分∠BAC,∴∠ADB=90°,∠BAE=∠BAC=45°,∴∠BAD=90°﹣60°=30°,∴∠DAE=45°﹣30°=15°.故选:D.【点评】此题考查了直角三角形的性质,熟记直角三角形的两锐角互余是解题的关键.二.填空题6.若直角三角形的一个锐角为15°,则另一个锐角等于75°.【分析】根据直角三角形的两锐角互余列式计算即可.【解答】解:∵直角三角形的一个锐角为15°,∴另一个锐角=90°﹣15°=75°,故答案为:75°.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.7.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为60°.【分析】利用平行线的性质,三角形的外角的性质求出∠A即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.【点评】本题考查平行线的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.在直角三角形中,两个锐角的度数比为2:3,那么较小锐角的度数是36°.【分析】根据比例设两锐角分别为2k、3k,然后利用直角三角形两锐角互余列方程求解即可.【解答】解:设两锐角分别为2k、3k,由题意得2k+3k=90°,解得k=18°,所以较小锐角的度数为18×2=36°.故答案为:36°.【点评】本题考查了直角三角形的性质,解题时注意:在直角三角形中,两个锐角互余.9.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是40°.【分析】根据角平分线的定义得∠CAB=40°,由直角三角形的性质计算即可得解.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.【点评】本题考查了角平分线的定义和直角三角形的性质,熟记性质是解题的关键.10.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=90°.【分析】如图,连接两交点,根据两直线平行,同旁内角互补和直角三角形两锐角互余的性质解答.【解答】解:如图,连接两交点,根据矩形两边平行,得∠1+∠2+∠3+∠4=180°,又矩形的角等于90°,∴∠3+∠4=90°,∴∠1+∠2=180°﹣90°=90°.故答案为:90.【点评】本题主要考查平行线的性质和直角三角形两锐角互余的性质.三.解答题11.AD、BE为△ABC的高,AD、BE相交于H点,∠C=50°,求∠BHD.【分析】根据同角的余角相等求出∠BHD=∠C,从而得解.【解答】解:∵AD是△ABC的高,∴∠BHD+∠HBD=90°,∵BE是△ABC的高,∴∠HBD+∠C=90°,∴∠BHD=∠C,∵∠C=50°,∴∠BHD=50°.【点评】本题考查了直角三角形两锐角互余的性质,同角的余角相等的性质,熟记性质并准确识图是解题的关键.12.解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=8,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。
《三角形的内角和及外角定理》热点专题高分特训
《三角形的内角和及外角定理》热点专题高分特训一、单选题(共12道,每道8分)1.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( )A.30°B.40°C.60°D.80°答案:B解题思路:试题难度:三颗星知识点:三角形内角和2.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )A.40°B.45°C.50°D.55°答案:A解题思路:试题难度:三颗星知识点:三角形的内角和3.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数为( )A.10°B.12°C.15°D.18°答案:A解题思路:试题难度:三颗星知识点:三角形的内角和4.如图,在△ABC中,∠B=∠C,FD⊥BC于点D,DE⊥AB于点E,∠AFD=158°,则∠EDF=( )A.79°B.68°C.44°D.42°答案:B解题思路:试题难度:三颗星知识点:角度的运算5.如图,在△ABC中,∠BAC=4∠1=4∠C,BD⊥CA于点D,则∠DBA=( )A.30°B.45°C.60°D.75°答案:A解题思路:试题难度:三颗星知识点:角度的运算6.如图,一个直角三角形纸片ABC,剪去直角后,得到一个四边形GBCH,则∠1+∠2=( )A.90°B.180°C.240°D.270°答案:D解题思路:试题难度:三颗星知识点:三角形的内角和7.如图,在四边形ABCD中,∠A=62°,∠B=38°,∠BCD=140°,则∠D的度数为( )A.40°B.24°C.50°D.45°答案:A解题思路:试题难度:三颗星知识点:三角形外角定理8.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC的度数为( )A.55°B.60°C.80°D.90°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理9.一副三角板按如图所示叠放在一起,则图中α的度数为( )A.90°B.105°C.120°D.135°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理10.如图,P为△ABC内任一点,延长CP交AB于点D,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:试题难度:三颗星知识点:三角形外角定理11.已知△ABC中,∠BAC=50°,∠ABC=60°,AD⊥BC,BE⊥AC,垂足分别为D,E,AD,BE相交于点H,则∠AHB的度数为( )A.90°B.100°C.110°D.120°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理12.已知:如图,在△ABC中,AD是∠BAC的角平分线,∠B=∠1,∠ADC=80°.求∠C的度数.解:如图,∵∠ADC是△ABD的一个外角(外角的定义)∴∠ADC=∠1+∠B(_______________________)∵∠B=∠1(已知)∴∠ADC=2∠1(等式的性质)∵∠ADC=80°(已知)∴∠1=∠ADC=40°(_______________________)∵AD是∠BAC的角平分线(已知)∴∠2=∠1=40°(角平分线的定义)∴∠C=180°-∠2-∠ADC=180°-40°-80°=60°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.②④①B.③④①C.③②①D.②⑤④答案:B解题思路:试题难度:三颗星知识点:三角形外角定理。
三角形内角和专项练习60题
三角形内角和解答题专项练习60 题1.如图,在△ ABC中,∠ BAC=60°,∠ B=45°,AD是△ ABC的一条角平分线,求∠2.如图△ ABC中,AD,AE分别是△ ABC的高和角平分线,∠ B=36°,∠ DAE=16° 的度数.ADC的度.求∠ CAD∠ A=27°,∠ C=30°,试求∠ ADE的度数.4.如图,△ ABC中,BD、CD分别是∠ ABC和∠ ACB的角平分线,BD、CD相交于点∠D=90° + ∠A.5.如图,在△ ABC中,∠ A=3x°,∠ ABC=4x°,∠ ACB=5x°,BD,CE分别是边高,且BD,CE相交于点H,求∠ BHC的度数.6.如图,D 是△ ABC的BC边上一点,∠ ABC=40°,∠ BAC=80°.求:(1)∠ C的度数;(2)如果AD是△ ABC的BC边上的角平分线,求∠ ADC的度数.D,求证:AB上的7.如图,在△ ABC中,点D是∠ ACB与∠ ABC的角平分线的交点,BD的延长线交AC于E,且∠ EDC=60°.求∠ A 的度数.8.如图,∠ A=50°∠ ABC=60°.(1)若BD为∠ ABC平分线,求∠ BDC.BD 于E,求∠ BEC.9.如图,在△ ABC中,∠ B 和∠ C的平分线相交于O点.(1)若∠ A=60°,求∠ BOC的度数.(只需写出结果)(2)若∠ A=α ,求∠ BOC的度数.18010.如图,已知∠ ABC=∠ACB ,∠ 1=∠2,∠ 3=∠F ,(1)试判断 EC 与 DF 是否平行,并说明理由; (2)若∠ ACF=110°,求∠ A 的度数. 11.在三角形中,每两条边所组成的角叫三角形的内角,如图 1,在三角形 ABC 中,∠ B ,∠BAC 和∠ C 是它的三个内角.其实,在学习了平行线的性质以后,我们可以用几何推理的 方法去证明 “三角形的内角的和等于 180°”.请在以下给出的证明过程中填空或填写理由. ),( )(平角定义)),即,三角形的内角的和等于 ∴∠ 2=∠( ____________ ∵∠ 1+∠ 2+∠ BAC=180° ∴∠ B+∠ C+∠∴∠ 1=∠( ___________ ),( ____________ )又∵ AE ∥ BC (已作)12.如图,已知△ ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠ BAC的平分线.求:∠DAE 的度数.(写出推导过程)13.如图,已知,D、E分别是△ ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠ AED=48°,求∠ F 和∠ BDF的度数.14.如图,已知三角形ABC,∠ ACB=90°,∠ BCD+∠B=90°,∠ A与∠ BCD有怎样的大小关系?说明你的理由.15.如图,△ ABC中,∠ C=70°,AD、BD 是△ ABC的外角平分线,AD 与BD 交于点D,(1)求∠ D 的度数;(2)若去掉∠ C=70°这个条件,试写出∠ C与∠ D之间的数量关系.16.(1)如图1,在△ ABC中,∠ C=90°,∠ BAC=45°,∠ BAC的平分线与外角∠ CBE的平分线相交于点D,则∠ D= ____________ 度.2)如图2,将(1)中的条件“∠BAC=45°”去掉,其他条件不变,求∠D的度数.17.已知:如图,AC∥DE,∠ ABC=70°,∠ E=50°,∠ D=75° 求:∠ A 和∠ABD的度数.18.△ ABC中,(1)若∠ A=70°,BO、CO分别平分∠ ABC和∠ ACB,求∠ BOC的度数;∠ OCB= ∠ACB,∠ A=n°,请直接写出用n °表示∠ BOC的关系式.19.已知,如图,在△ ABC中,BD⊥ AC于D,若∠ A:∠ ABC:∠ ACB=3:4:5,试求∠ ABD 的度数.20.如图,把△ ABC纸片沿DE折叠,使点C落在四边形BADE内部点F 的位置.(1)已知∠ CDE=50°,求∠ ADF的大小;1+∠ 2 的大小.21.已知△ ABC中,∠∠C,判断三角形的形状?22.如图,在△ ABC中,BA平分∠ DBC,∠ BAC=124°,BD⊥ AC于D,求∠ C的度数.23.如图,AD是△ ABC的BC边上的高,AE是∠ BAC的角平分线,若∠ B=47°,∠ C=73°,求∠ DAE的度数.24.如图,已知△ ABC中,∠ A=40°,角平分线BE、CF相交于O,求∠ BOC的度数.25.如图,在△ ABC中,CF⊥AB于F,ED⊥AB于D,∠ 1=∠ 2.(1)求证:FG∥ BC;(2)若∠ A=60°,∠ AFG=40°,求∠ ACB的度数.26.已知△ ABC中,∠ BAC=90°,∠ C=30°,点D为BC边上一点,连接AD,作DE⊥ AB于点E,DF⊥ AC于点F.(1)若AD为△ ABC的角平分线(如图1),图中∠ 1、∠ 2有何数量关系?为什么?(2)若AD为△ ABC的高(如图2),求图中∠ 1、∠2 的度数.27.如图:证明“三角形的内角和是180已知:_____________求证:_____________28.如图,BD平分∠ ABC,CD平分∠ ACE,请写出∠ A 和∠ D的关系式,并说明理由.29.已知△ ABC.(1)若∠ BAC=40°,画∠ BAC和外角∠ ACD的角平分线相交于O1 点(如图①),度数;(2)在(1)的条件下,再画∠ O1BC和∠ O1CD的角平分线相交于O2点(如图②)的度数;(3)若∠ BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.30.(1)如图(1),在△ ABC中,∠ ABC、∠ ACB的平分线相交于点O,∠A=40°,求∠ BOC的度数.(2)如图(2),△ DEF两个外角的平分线相交于点G,∠ D=40°,求∠ EGF的度数.(3)由(1)、(2)可以发现∠ BOC与∠ EGF有怎样的数量关系?设∠ A=∠D=n° ∠EGF 是否还具有这样的数量关系?为什么?求∠ BO1C 的,求∠ BO2C,∠ BOC与31.在△ ABC 中,已知∠ ABC=66°,∠ ACB=54°, BE ,CF 分别是 AC 和AB 边上的高, H 是 BE 和 CF的交点,求∠ BHC 的度数.C 的度数.BCD.∠ A=36°,∠ M=44°,求34.如图,在△ ABC中,∠ A=40°,∠ B=72°,CD是AB边上的高;CE是∠ ACB的平分线,DF⊥ CE 于F,求∠ BCE和∠ CDF的度数.35.已知:点D是△ ABC的BC边的延长线上的一点,DF⊥ AB交AB于F,交AC于E,∠A=30°,36.已知,如图,在△ ABC中,AD,AE分别是△ ABC的高和角平分线,若∠ B=30°,∠C=50°,求∠ DAE的度数.37.如图所示,在△ ABC中,∠ B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠ AFD=158°,求∠ EDF 的度数.38.如图,CD是∠ ACB的平分线,DE∥BC,∠ B=70°,∠ ACB=50°,求∠EDC,∠ BDC的度39.已知:如图,在△ ABC中,∠ BAC=80°,AD⊥BC于D,AE平分∠∠ B=60°;求∠DAE的度数.40.如图,△ ABC中,AD是BC边上的高,AE是三角形∠ BAC的角平分线,若B=40°,∠C=70°,则∠ DAE为多少度?∠ A=40°,∠ D=50°,求∠ ACB的度数.42.在△ ABC中,∠ B=∠ A+10°,∠ C=∠ B+10°,求△ ABC各内角的度数.43.已知,如图,在△ ABC中,AD,AE分别是△ ABC的高和角平分线,若∠ B=30°,∠C=50°(1)求∠ DAE的度数;(2)试写出∠ DAE与∠ C﹣∠ B有何关系?(不必证明)44.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠ A=30°,∠FCD=80°,求∠ D.45.如图,已知△ ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠ BAC的平分线,求∠ DAE 的度数.AD⊥BC,AE平分∠ BAC,∠ B=70°,∠ C=34度.求∠ DAE的度数.47.如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠ BEP=40°,求∠ P 的度数.48.如图已知△ ABC中,∠ B和∠ C外角平分线相交于点P.(1)若∠ ABC=30°,∠ ACB=70°,求∠ BPC度数.2)若∠ ABC=α,∠ BPC=β,求∠ ACB 度数.50.如图: AB ∥ CD ,直线 l 交 AB 、CD 分别于点 E 、F ,点 M 在 EF 上, N 是直线 CD 上的一个 动点(点 N 不与 F重合)求证: AB ∥ CD .1)当点N 在射线FC上运动时,∠ FMN+∠FNM=∠AEF,说明理由;2)当点N在射线FD上运动时,∠ FMN+∠FNM与∠ AEF有什么关系并说明理由.51.如图,△ ABC中,∠ B=40°,∠ C=70°,AD为∠ BAC的平分线,AE 为BC边上的高,求∠DAE 的度数.52.如图,在△ ABC中,∠ ABC=60°,∠ ACB=50°,BD平分∠ ABC,CD平分∠ ACB.求∠ D 的度数.54.已知:图中,∠ B=40°,∠ C=60°, AD 、AF 分别是△ ABC 的角平分线和高.(1)∠ BAC 等于多少度?1,∠ D 的度数.B=27°, AC ⊥ DE ,求∠2)∠ DAF 等于多少度?55.△ ABC 中, BE 平分∠ ABC , AD 为 BC 上的高,且∠ ABC=60°,∠ BEC=75°,求∠ DAC 的度 数.56.如图,在△ ABC 中,∠ ABC=80°,∠ ACB=50°, BP 平分∠ ABC , CP 平分∠ ACB ,求∠ BPC57.如图, BE ∥AO ,∠1=∠2,OE ⊥OA 于点 O ,EH ⊥CO 于点 H ,那么∠ 5=∠ 6,为什么?58.如图,已知△ ABCΦ, Z ABc^nZ ACB的平分线BD CE相交于点0, BOal勺度且/ A=60 ,求/ 数.59.已知:如图,在△ ABC中,∠ C>∠ B,AD⊥ BC交于点D,AE平分∠ BAC,试说明:∠ EAD=(1)求∠ A和∠ B的度数;(2)如图(2),BD是△ ABC中∠ ABC的平分线:①写出图中与BD相等的线段,并说明理由;②直线BC上是否存在其它的点P,使△ BDP为等腰三角形,如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠ BDP的度数;如果不存在,请说明理由.。
三角形内角和外角练习题及作业
三⾓形内⾓和外⾓练习题及作业11.2 与三⾓形有关的⾓习题课⼀、知识要点1、三⾓形内⾓和定理:三⾓形三个内⾓的和等于______,即:在△ABC中,∠A+∠B+∠C=_____理解与延伸:①⼀个三⾓形中最多只有⼀个钝⾓或直⾓②⼀个三⾓形中最少有⼀个⾓不⼩于60°③等边三⾓形每个⾓都是60°2、直⾓三⾓形的性质与判定性质:直⾓三⾓形的两个锐⾓__________;判定:有两个⾓互余的三⾓形是_______________3、三⾓形的外⾓:三⾓形的⼀边与另⼀边的______________组成的⾓特点:①三⾓形的⼀个外⾓和与它同顶点的内⾓互为_______________②三⾓形有____个外⾓,每个顶点处有____个外⾓,但算三⾓形外⾓和时,每个顶点处只算____个外⾓,外⾓和是指三个外⾓的和,三⾓形的外⾓和为________ 性质:三⾓形的外⾓等于与它______________的两个内⾓的和⼆、知识应⽤1、三⾓形内⾓和定理应⽤(1)已知两⾓求第三⾓ (2)已知三⾓的⽐例关系求各⾓ (3)已知三⾓之间相互关系求未知⾓2、三⾓形外⾓性质的应⽤(1)已知外⾓和它不相邻两个内⾓中的⼀个可求“另⼀个”(2)可证⼀个⾓等于另两个⾓的_______(3)经常利⽤它作为中间关系式证明两个⾓相等.三、例题分析1、如图,⼀种滑翔伞的形状是左右对称的四边形ABCD,其中∠A = 150°,∠B = ∠D = 40°则∠C=_______2、如图,⼀个直⾓三⾓形纸⽚,剪去直⾓后,得到⼀个四边形,则∠1+∠2=_______3、△ABC中,∠B = ∠A + 10°,∠C = ∠B + 10°.求△ABC的各内⾓的度数4. 将⼀个直⾓三⾓板和⼀把直尺如图放置,如果∠α=43°,求∠β的度数5、如图,求∠A+∠B+∠C+∠D+∠E的度数变式:(1)如图①,五⾓形的顶点分别为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E=_____(2)如图②,∠A+∠DBE+∠C+∠D+∠E=_____(3)如图③,∠A+∠B+∠C+∠D+∠E=_____6、(1)如图1,BO、CO分别是△ABC中∠ABC和∠ACB的平分线,则∠BOC与∠A的关系是____________________________(2)如图2,BO、CO分别是△ABC两个外⾓∠CBD和∠BCE的平分线,则∠BOC与∠A的关系是____________________________(3)如图3,BO、CO分别是△ABC⼀个内⾓和⼀个外⾓的平分线,则∠BOC与∠A的关系是____________________________(4)请就图2及图2中的结论进⾏证明四、课外作业:A 组题1、如图,已知点B 、C 、D 、E 在同⼀直线上,△ABC 是等边三⾓形,且CG=CD ,DF=DE ,则∠E=______2、如图,∠1+∠2+∠3+∠4+∠5+∠6=______3、把⼀副三⾓板按如图⽅式放置,则两条斜边所形成的钝⾓α=_______度.4、如图,∠1、∠2、∠3的⼤⼩关系为()A .∠2>∠1>∠3B .∠1>∠3>∠2C .∠3>∠2>∠1D .∠1>∠2>∠35、如果三⾓形的⼀个外⾓和与它不相邻的两个内⾓的和为180°,那么与这个外⾓相邻的内⾓的度数为( )A 、30°B 、60°C 、90°D 、120°6、如图,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=()A 、360°B 、540°C 、240°D 、280°7、如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠A=46°,∠1=52°,求∠2的度数.8、⼀个零件的形状如图,按规定∠A= 90°,∠B 和∠C ,应分别是32°,和21°,检验⼯⼈量得∠BDC = 148°,就断定这两个零件不合格,运⽤三⾓形的有关知识说明零件不合格的理由。
(完整版)三角形内角和练习题
三角形的内角和练习【例题分析】例1. 在△ABC 中,已知∠A =21∠B =31∠C ,请你判断三角形的形状。
分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠C 是最大的角,因此只需求出∠C 的度数即可判断三角形的形状。
例2. 如图,已知DF ⊥AB 于点F ,且∠A =45°,∠D =30°,求∠ACB 的度数。
例3. 如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BAC =54°,求∠DAC 的度数。
例4. 已知在△ABC 中,∠A =62°,BO 、CO 分别是∠ABC 、∠ACB 的平分线,且BO 、CO 相交于O ,求∠BOC 的度数。
〖拓展与延伸〗(1)已知△AB 中C ,BO 、CO 分别是∠ABC 、∠ACB 的平分线,且BO 、CO 相交于点O ,试探索∠BOC 与∠A 之间是否有固定不变的数量关系。
B C D B D C 2 4 31AB C AB C A(2)已知BO 、CO 分别是△ABC 的∠ABC 、∠ACB 的外角角平分线,BO 、CO 相交于O ,试探索∠BOC 与∠A 之间是否有固定不变的数量关系。
(3)已知:BD 为△ABC 的角平分线,CO 为△ABC 的外角平分线,它与BO 的延长线交于点O ,试探索∠BOC 与∠A 的数量关系。
由前面的探索同学们可以发现三角形三个角(或外角)的平分线所夹的角与第三个内角之间存在着一定的数量关系。
例5. 已知多边形的每一个内角都等于135°,求这个多边形的边数。
例6. 一个零件的形状如图,按规定∠A =90°,∠B 和∠C 应分别是32°和21°,检验工人量得∠BDC =149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
分析:验证的关键是求出∠A 的度数,即把∠A 用已知的角∠B 、∠C 、∠BDC 联系起来,利用三角形关于角的性质就可以发现它们之间的关系EB C EA B DE C【随堂检测】A 组1、在△ABC 中, ∠A =40°,∠B =∠C ,则∠C = 。
三角形的内角和练习题
三角形的内角和练习题一、基础练习1、判断下列说法是否正确,并说明理由。
(1)一个三角形的内角和是180度。
(2)一个三角形的内角和等于3个直角。
(3)一个等边三角形的内角和等于一个等腰三角形的内角和。
2、一个三角形的三个内角分别为A、B、C,已知A=30度,B=80度,求C的度数。
二、提升练习1、一个三角形的三个内角分别为A、B、C,已知A=70度,B=90度,求C的度数。
2、一个等边三角形的三个内角分别为A、B、C,已知A=60度,求B 和C的度数。
3、一个等腰三角形的两个内角分别为A、B,已知A=80度,求B的度数(该三角形是等腰三角形,有两边长度相等)。
三、拓展练习1、一个四边形由两个等边三角形组成,它的四个内角分别为A、B、C、D,求A+B+C+D的度数。
2、一个五边形由三个等边三角形组成,它的五个内角分别为A、B、C、D、E,求A+B+C+D+E的度数。
3、一个n边形(n≥3)的所有内角之和是多少?在解答上述问题的过程中,我们可以使用三角形内角和定理以及多边形的内角和公式来进行计算。
我们还需要了解等边三角形和等腰三角形的性质,以便解决相关问题。
三角形的内角和教学设计一、教材分析三角形的内角和是义务教育课程标准实验教科书(人教版)四年级下册第8单元数学广角里的内容,本节课是在学生已经学习了三角形的概念及分类的基础上进一步研究三角形的有关知识,教材中安排了三部分内容:第一部分是例1通过测量计算三个内角的度数和,第二部分是例2通过撕拼、旋转、翻转等不同的方法验证三角形的内角和等于180度,第三部分是例3用已知的两个角度求出第三个角的度数。
通过这些活动,培养学生动手操作能力和数学思维能力。
同时,还体现了数学来源于生活,又应用于生活这一理念。
二、学情分析作为四年级的学生,他们已经具备了一定的观察、猜测、动手操作、积极思考的能力,因此他们可以根据自己的实际情况选择喜欢的方法来研究验证三角形的内角和。
三角形内角和解答题专项练习60题(有答案)
三角形内角和解答题专项练习60题(有答案)三角形内角和解答题专项练习60题(有答案)1.如图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC 的一条角平分线,求∠ADC的度数?2.如图△ABC中,AD,AE分别是△ABC的高和角平分线,∠B=36°,∠DAE=16°.求∠CAD的度数.3.如图,已知∠CBE=96°,∠A=27°,∠C=30°,试求∠ADE 的度数.2013年10月1581698636的初中数学组卷2013年10月1581698636的初中数学组卷7.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于E,且∠EDC=60°.求∠A的度数.8.如图,∠A=50°∠ABC=60°.(1)若BD为∠ABC平分线,求∠BDC.(2)若CE为∠ACB平分线且交BD于E,求∠BEC.9.如图,在△ABC中,∠B和∠C的平分线相交于O点.(1)若∠A=60°,求∠BOC的度数.(只需写出结果)(2)若∠A=α,求∠BOC的度数.2013年10月1581698636的初中数学组卷10.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,(1)试判断EC与DF是否平行,并说明理由;(2)若∠ACF=110°,求∠A的度数.11.在三角形中,每两条边所组成的角叫三角形的内角,如图1,在三角形ABC中,∠B,∠BAC和∠C是它的三个内角.其实,在学习了平行线的性质以后,我们可以用几何推理的方法去证明“三角形的内角的和等于180°”.请在以下给出的证明过程中填空或填写理由.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(_________ ),(_________ )又∵AE∥BC(已作)∴∠2=∠(_________ ),(_________ )∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(_________ ),即,三角形的12.如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC 边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)13.如图,已知,D、E分别是△ABC的边AB、AC上的点,DE 交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.14.如图,已知三角形ABC,∠ACB=90°,∠BCD+∠B=90°,∠A与∠BCD有怎样的大小关系?说明你的理由.15.如图,△ABC中,∠C=70°,AD、BD是△ABC的外角平分线,AD与BD交于点D,(1)求∠D的度数;(2)若去掉∠C=70°这个条件,试写出∠C与∠D之间的数量关系.16.(1)如图1,在△ABC中,∠C=90°,∠BAC=45°,∠BAC 的平分线与外角∠CBE的平分线相交于点D,则∠D=_________ 度.(2)如图2,将(1)中的条件“∠BAC=45°”去掉,其他条件不变,求∠D的度数.17.已知:如图,AC∥DE,∠ABC=70°,∠E=50°,∠D=75°.求:∠A和∠ABD的度数.18.△ABC中,(1)若∠A=70°,BO、CO分别平分∠ABC和∠ACB,求∠BOC 的度数;(2)若∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,请直接写出用n°表示∠BOC的关系式.19.已知,如图,在△ABC中,BD⊥AC于D,若∠A:∠ABC:∠ACB=3:4:5,试求∠ABD的度数.20.如图,把△ABC纸片沿DE折叠,使点C落在四边形BADE 内部点F的位置.(1)已知∠CDE=50°,求∠ADF的大小;(2)已知∠C=60°,求∠1+∠2的大小.21.已知△ABC中,∠A=∠B=∠C,判断三角形的形状?22.如图,在△ABC中,BA平分∠DBC,∠BAC=124°,BD⊥AC于D,求∠C的度数.23.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,若∠B=47°,∠C=73°,求∠DAE的度数.24.如图,已知△ABC中,∠A=40°,角平分线BE、CF相交于O,求∠BOC的度数.25.如图,在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AFG=40°,求∠ACB的度数.26.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.27.如图:证明“三角形的内角和是180°”已知:_________求证:_________证明:过B点作直线EF∥AC.28.如图,BD平分∠ABC,CD平分∠ACE,请写出∠A和∠D 的关系式,并说明理由.29.已知△ABC.(1)若∠BAC=40°,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠BO1C的度数;(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠BO2C的度数;(3)若∠BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.30.(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数.(2)如图(2),△DEF两个外角的平分线相交于点G,∠D=40°,求∠EGF的度数.(3)由(1)、(2)可以发现∠BOC与∠EGF有怎样的数量关系?设∠A=∠D=n°,∠BOC与∠EGF是否还具有这样的数量关系?为什么?31.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE,CF分别是AC和AB边上的高,H是BE和CF的交点,求∠BHC的度数.32.如图,△ABC中,∠ACB=∠B=2∠A,CD是AB边上的高,求∠BCD.33.如图,已知DM平分∠ADC,BM平分∠ABC,∠A=36°,∠M=44°,求∠C的度数.34.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高;CE是∠ACB的平分线,DF⊥CE于F,求∠BCE和∠CDF 的度数.35.已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB 交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB的度数.36.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.37.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.38.如图,CD是∠ACB的平分线,DE∥BC,∠B=70°,∠ACB=50°,求∠EDC,∠BDC的度数.39.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠DAE的度数.40.如图,△ABC中,AD是BC边上的高,AE是三角形∠BAC 的角平分线,若∠B=40°,∠C=70°,则∠DAE为多少度?41.如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.42.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC 各内角的度数.43.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)44.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB 于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.45.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC 边上的高,AE是∠BAC的平分线,求∠DAE的度数.46.如图:在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34度.求∠DAE的度数.47.如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠P 的度数.48.如图已知△ABC中,∠B和∠C外角平分线相交于点P.(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.(2)若∠ABC=α,∠BPC=β,求∠ACB度数.49.如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB∥CD.50.如图:AB∥CD,直线l交AB、CD分别于点E、F,点M 在EF上,N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时,∠FMN+∠FNM=∠AEF,说明理由;(2)当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有什么关系并说明理由.51.如图,△ABC中,∠B=40°,∠C=70°,AD为∠BAC的平分线,AE为BC边上的高,求∠DAE的度数.52.如图,在△ABC中,∠ABC=60°,∠ACB=50°,BD平分∠ABC,CD平分∠ACB.求∠D的度数.53.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D 的度数.54.已知:图中,∠B=40°,∠C=60°,AD、AF分别是△ABC 的角平分线和高.(1)∠BAC等于多少度?(2)∠DAF等于多少度?55.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.56.如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.57.如图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?58.如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.259.已知:如图,在△ABC中,∠C>∠B,AD⊥BC交于点D,AE平分∠BAC,试说明:∠EAD=(∠C﹣∠B).60.如图(1),△ABC中,AB=AC,∠B=2∠A.(1)求∠A和∠B的度数;(2)如图(2),BD是△ABC中∠ABC的平分线:①写出图中与BD相等的线段,并说明理由;②直线BC上是否存在其它的点P,使△BDP为等腰三角形,如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠BDP的度数;如果不存在,请说明理由.三角形内角和解答题60题参考答案:1.∵AD是△ABC的一条角平分线,∴∠BAD=∠BAC=×60°=30°,∴∠ADC=∠BAD+∠B=30°+45°=75°2.∵AD⊥BC,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B=36°,∴∠BAD=90°﹣36°=54°,∵∠DAE=16°,∴∠BAE=54°﹣16°=38°,∵AE平分∠BAC,∴∠CAE=∠BAE=38°,∴∠CAD=38°﹣16°=22°3.∵∠A=27°,∠C=30°,∴∠DFC=∠A+∠C=57°,∵∠DBF=∠CBE=96°,∴∠ADE=180°﹣∠DFC﹣∠FBD=180°﹣57°﹣96°=27°.4.在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠D=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A,即:∠D=90°+∠A.5.在△ABC中,∵∠A=3x°,∠ABC=4x°,∠ACB=5x°.又∵∠A+∠ABC+∠ACB=180°.∴3x°+4x°+5x°=180°,解得x=15,∠A=3x°=45°,∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∵在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°6.(1)∵∠ABC=40°,∠BAC=80°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣40°﹣80°=60°;(2)∵∠BAC=80°,AD是△ABC的BC边上的角平分线,∴∠DAC=∠BAC=40°,∵∠C=60°,∴∠ADC=180°﹣∠CAD﹣∠C=180°﹣40°﹣60°=80°7.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∵∠EDC=∠DBC+∠DCB=60°,∴(180°﹣∠A)=60°,∴∠A=60°8.(1)∵BD为∠ABC平分线,∴∠ABD=∠ABC=×60°=30°,∴∠BDC=∠A+∠ABD=50°+30°=80°.(2)∵∠ACB=180°﹣∠A﹣∠ABC=180°﹣50°﹣60°=70°,又∵CE为∠ACB平分线,∴∠DCE=∠ACB=×70°=35°,∴∠BEC=∠DCE+∠BDC=35°+80°=115°9.(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣60°=120°,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×120°=60°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°;(2))∵∠A=α,∴∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣α)=90°﹣α,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣α)=90°+α10.(1)BC∥DF,理由:∵∠ABC=∠ACB,∠1=∠2,∴∠ABC﹣∠1=∠ACB﹣∠2,即∠3=∠ECB,∵∠3=∠F,∴∠ECB=∠F,∴EC∥DF(同位角相等,两直线平行);(2)∵∠ACF=110°,∴∠ACB=70°,∵∠ABC=∠ACB,∴∠ABC=70°,∴∠A=∠ACF﹣∠ABC=110°﹣70°=40°11.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(∠B ),(两直线平行,同位角相等)又∵AE∥BC(已作)∴∠2=∠(∠C ),(两直线平行,内错角相等)∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换),即,三角形的内角的和等于180°.12.∵△ABC中,∠B=40°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C =180°﹣40°﹣62°=78°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=39°,∵AD是BC边上的高,∴在直角△ADC中,∠DAC=90°﹣∠C=90°﹣62°=28°,∴∠DAE=∠EAC﹣∠DAC=39°﹣28°=11°13.∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F =180°﹣67°﹣26°=87°14.∠A=∠BCD,理由是:∵∠ACB=90°,∴∠A+∠B=90°,∵∠BCD+∠B=90°,∴∠A=∠BCD15.(1)∵∠C=70°,∴∠CAB+∠CBA=180°﹣70°=110°,∴∠EAB+∠FBA=360°﹣110°=250°,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA)=125°,∴∠D=180°﹣125°=55°;(2)由题意可得,∠CAB+∠CBA=180°﹣∠C,∴∠EAB+∠FBA=360°﹣(∠CAB+∠CBA),=360°﹣(180°﹣∠C),=180°+∠C,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA),=(180°+∠C),=90°+∠C,∴∠D=180°﹣(90°+∠C),=90°﹣∠C.16.(1)∵∠CBE是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°;故答案为:45;(2)∵∠CBE是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°.17.∵AC∥DE,∠E=50°,∠D=75°,∴∠ACB=∠E=50°…(1分)∠1=∠D=75°(3分)又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣50°=60°…(6分)∠ABD=∠1﹣∠A=75°﹣60°=15°…(9分)∴∠A=60°,∠ABD=15°.18.(1)∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=70°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(180°﹣70°)=125°.故∠BOC的度数为:125°.(2)∵∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,∵∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠OBC+∠OCB)=180°﹣(180°﹣n°)=120°+n°.故∠BOC=120°+n°19.设∠A、∠ABC、的度数分别为3x、4x、5x.则3x+4x+5x=180°,解得x=15°.∴∠A=45°,∠ACB=75°.又∵∠A+∠ABD=90°,∴∠ABD=90°﹣45°=45°20.(1)由折叠的过程可知:∠3=∠CDE,∵∠CDE=50°,∴∠3=50°,∴∠1=180°﹣∠3﹣∠CDE=80°,即∠ADF=80°;(2)∵∠C=60°,∴∠CDE+∠CED=120°,∵由折叠的过程可知∠CDE+∠CED=∠3+∠4=180°﹣∠C=120°,∴∠CDE+∠CED+∠3+∠4=240°,∵∠1+∠3+∠CDE+∠2+∠4+∠CED=360°,∴∠1+∠2+∠3+∠4+∠CDE+∠CED=360°,∴∠1+∠2=120°21.∵∠ABC+∠ACB+∠BAC=180°,∠A=∠B=∠C,∴∠A+2∠A+3∠A=180°.∴∠A=30°,∠B=60°,∠C=90°.所以△ABC是直角三角形22.在△ABD中,∠BAC=∠D+∠DBA,∵BD⊥AC,∴∠D=90°.又∵∠BAC=124°,∴∠DBA=34°.∵BA平分∠DBC,∴∠DBC=2∠DBA=68°,在△CBD中,∠C=180°﹣(∠D+∠DBC)=22°.23.∵∠B=30°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE是角平分线,∴∠EAC=∠BAC=30°.∵AD是高,∠C=73°,∴∠DAC=90°﹣∠C=17°,∴∠EAD=∠EAC﹣∠DAC=30°﹣17°=13°24.如图,∵角平分线BE、CF相交于O,∴∠ABC=2∠1,∠ACB=2∠2,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠1+2∠2=180°,∴∠1+∠2=90°﹣∠A,又∵∠1+∠2+∠BOC=180°,∴∠1+∠2=180°﹣∠BOC,∴180°﹣∠BOC=90°﹣∠A,∴∠BOC=90°+∠A,而∠A=40°,∴∠BOC=90°+×40°=11025.(1)证明:如图,∵CF ⊥AB,ED⊥AB,∴DE∥FC,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴FG∥BC;(2)解:如图,在△AFG中,∠A=60°,∠AFG=40°,∴∠AGF=180°﹣∠A﹣∠AFG=100°.又由(1)知,FG∥BC,∴∠ACB=∠AGF=80°,即∠ACB的度数是80°.26.(1)∠1=∠2,理由如下:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,DF∥AB,∴∠1=∠DAC,∠2=∠DAB,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠1=∠2;(2)∵DE⊥AB,DF⊥AC,AD ⊥BC,∴∠ADB=∠ADC=∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,∴∠BDE=∠C=30°,∴∠1=∠ADB﹣∠BDE=30°,∵∠FDC=180°﹣∠DFC﹣∠C=60°,∴∠2=∠ADC﹣∠FDC=60°27.过点B作EF∥AC,∴∠EBA=∠A,∠FBC=∠C,∵∠EBA+∠ABC+∠FBC=180°,∴∠A+∠C+∠ABC=180°,∴三角形的内角和等于180°.故答案为△ABC,∠A+∠B+∠C=180°28.∠A=2∠D.理由如下:∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∴∠A=∠ACE﹣∠ABC,∠D=∠DCE﹣∠DBC=(∠ACE﹣∠ABC),∴∠A=2∠D29.∵O1B、O1C分别平分∠ABC 和∠ACD,∴∠ACD=2∠O1CD,∠ABC=2∠O1BC,而∠O1CD=∠O1+∠O1BC,∠ACD=∠ABC+∠A,∴∠A=2∠01=40°,∴∠O1=20°,同理可得∠O1=2∠O2,即∠A=22∠02=40°,∴∠O2=10°,∴∠A=2n∠A n,∴∠A n=n °×()n.则∠BO2012C=0.30.(1)∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°.∵BO、CO分别是∠ABC、∠ACB 的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×140°=70°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣70°=110°;(2)设△ABC的两个外角为α、β.则∠G=180°﹣(α+β)(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知α+β=∠D+∠DFE+∠D+∠DEF=180°+40°=220°,∴∠G=180°﹣(α+β)=70°;(3)∠A=∠D=n°,∠BOC与∠EGF互补.证明:当∠A=n°时,∠BOC=180°﹣[(180°﹣n°)÷2]=90°+,∵∠D=n°,∠EGF=180°﹣[360°﹣(180°﹣n°)]÷2=90°﹣,∴∠A+∠D=90°++90°﹣=180°,∴∠BOC与∠EGF互补.31.如图,在△ABC中,∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB180°﹣66°﹣54°=60°,∵BE和CF分别为AC和AB边上的高,∴∠AEB=∠BFC=90°,在Rt△ABE中,∠1=180°﹣∠A﹣∠AEB=180°﹣90°﹣60°=30°,在△BHC中,∠BHC=∠1+∠BFC=30°+90°=120°32.∵∠ACB=∠B=2∠A,∴∠A+∠B+∠ACB=∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠B=2∠A=2×36°=72°,∵CD是AB边上的高,∴∠BCD=90°﹣∠B=90°﹣72°=18°33.∵DM平分∠CDA,∴∠CDM=∠MDA,又∵BM平分∠ABC,∴∠CBM=∠ABM,又∵∠MDA+44°=∠CBM+36°,∴∠CBM﹣∠MDA=8°,∴2∠CBM﹣2∠MDA=16°,即∠ABC﹣∠ADC=16°,又∵∠ADC+∠C=∠ABC+∠A,∴∠C=36°+16°=52°34.∵∠A+∠B+∠ACB=180°,∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,∴∠BCE=∠ACB=×68°=34°,∵CD⊥AB,∴∠CDB=90°,∵∠B=72°,∴∠BCD=90°﹣72°=18°,∴∠FCD=∠BCE﹣∠BCD=16°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=74°,即∠BCE=34°,∠CDF=74°35.在△BFD中,∵DF⊥AB,∠D=20°,∴∠B=90°﹣∠D=90°﹣20°=70°,在△ABC中,∵∠B=70°,∠A=30°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣70°=80°.答:∠ACB度数是80°36.∵∠BAC+∠B+∠C=180°,而∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AE是△ABC的角平分线,∴∠EAC=∠BAC=50°又∵AD为高线,∴∠ADC=90°,而∠C=50°,∴∠DAC=180°﹣90°﹣50°=40°,∴∠DAE=∠EAC﹣∠DAC=50°﹣40°=10°37.∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°38.∵CD是∠ACB的平分线,∴∠BCD=25°.∵DE∥BC,∴∠EDC=∠BCD=25°,∴在△BDC中,∠BDC=180°﹣∠B﹣∠BCD=180°﹣70°﹣25°=85°.39.∵AD⊥BC,∴∠BDA=90°.∵∠B=60°,∴∠BAD=180°﹣90°﹣60°=30°∵∠BAC=80°∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°.∵AE平分∠DAC,∴∠DAE=0.5∠DAC=25°140.∵∠B=40°,∠C=70°,∴在△ABC中,∠BAC=180°﹣40°﹣70°=70°,又∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,又∵AD是BC边上的高,∴AD⊥BC,∴∠ADC=90°,∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=20°,∴∠DAE=∠EAC﹣∠DAC=35°﹣20°=15°41.在△BDF中,∠B=180﹣∠BFD﹣∠D=180°﹣90°﹣50°=40°,在△ACB中,∠A=40°,故∠ACB=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°42.∵∠B=∠A+10°,∠C=∠B+10°,又∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+10°+10°)=180°,3∠A+30°=180°,3∠A=150°,∠A=50°.∴∠B=60°,∠C=70°.43.(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°﹣∠B=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣50=10°;(2)∠C﹣∠B=2∠DAE 44.∵DE⊥AB(已知),∴∠FEA=90°(垂直定义).∵在△AEF中,∠FEA=90°,∠A=30°(已知),∴∠AFE=180°﹣∠FEA﹣∠A(三角形内角和是180)=180°﹣90°﹣30°=60°.又∵∠CFD=∠AFE(对顶角相等),∴∠CFD=60°.∴在△CDF中,∠CFD=60°∠FCD=80°(已知)∠D=180°﹣∠CFD﹣∠FCD =180°﹣60°﹣80°=40°45.在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°46.在△ABC中∠BAC=180﹣∠B﹣∠C=76°,又∵AE平分∠BAC,∴∠EAC=38°,在直角△ACD中,∠DAC=90﹣∠C=56°,∴∠DAE=∠DAC﹣∠EAC=18°47.∵EP⊥EF,∴∠PEM=90°,∠PEF=90°.∵∠BEP=40°,∴∠BEM=∠PEM﹣∠BEP=90°﹣40°=50°.∵AB∥CD,∴∠BEM=∠EFD=50°.∵FP平分∠EFD,∴∠EFP=∠EFD=25°,∴∠P=90°﹣25°=65°.48.(1)∠BPC=180°﹣(∠EBC+∠BCF)=180°﹣(∠EBC+∠BCF)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣(180°﹣30°+180°﹣70°)=50°;(2)∠BPC=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=(∠ABC+∠ACB),∵∠BPC=β,∠ABC=α,∴β=(α+∠ACB).故∠ACB=2β﹣α49.在△ABC中,∠A+∠B+∠1=180°,∠B=42°,∴∠A+∠1=138°,又∵∠A+10°=∠1,∴∠A+∠A+10°=138°,解得:∠A=64°.∴∠A=∠ACD=64°,∴AB∥CD(内错角相等,两直线平行)50.(1)∵AB∥CD,∴∠AEF+∠MFN=180°.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM=∠AEF.(2)∠FMN+∠FNM+∠AEF=180°.理由:∵AB∥CD,∴∠AEF=∠MFN.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM+∠AEF=180°.51.∵∠B=40°,∠C=70°,∴∠BAC=180°﹣40°﹣70°=70°,又AD为平分线,∴∠DAC=35°.∵AE⊥BC,∴∠EAC=90°﹣∠C=20°,∴∠DAE=35°﹣20°=15°252.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC=30°,∠DCB=∠ACB=25°,又∵∠DBC+∠DCB+∠D=180°,∴∠D=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣25°=125°53.∵AC⊥DE,∴∠APE=90°.∵∠1是△AEP的外角,∴∠1=∠A+∠APE.∵∠A=20°,∴∠1=20°+90°=110°.在△BDE中,∠1+∠D+∠B=180°,∵∠B=27°,∴∠D=180°﹣110°﹣27°=43°54.(1)根据三角形的内角和定理,得:∠BAC=180°﹣∠B﹣∠C=80°;(2)∵AD是△ABC的角平分线,∴∠BAD=∠BAC=40°,∴∠ADF=∠B+∠BAD=80°,又∵AF是△ABC的高,∴∠DAF=10°55.∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣30°﹣75°=75°.又∵∠C+∠DAC=90°,∴∠DAC=90°﹣∠C=90°﹣75°=15°56.在△ABC中,∵∠ABC=80°,BP平分∠ABC,∴∠CBP=∠ABC=40°.∵∠ACB=50°,CP平分∠ACB,∴∠BCP=∠ACB=25°.在△BCP中∠BPC=180°﹣(∠CBP+∠BCP)=115°57.由OE⊥OA,得∠2+∠3=90°,又∵∠1=∠2,∠1+∠2+∠3+∠4=180°,∴∠3=∠4,∵EH⊥CO,∴∠5=90°﹣∠3=90°﹣∠4,∴∠5=∠2,∵BE∥AO,∴∠2=∠6,∴∠5=∠658.∵∠ABC和∠ACB的平分线BD、CE相交于点O,∴∠1=∠2,∠3=∠4,∴∠2+∠4=(180°﹣∠A)=(180°﹣60°)=60°,故∠BOC=180°﹣(∠2+∠4)=180°﹣60°=120°.59.∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC∵∠BAC=180°﹣(∠B+∠C)∴∠EAC=[180°﹣(∠B+∠C)]∵AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣∠ADC﹣∠C=90°﹣∠C,∵∠EAD=∠EAC﹣∠DAC∴∠EAD=[180°﹣(∠B+∠C)]﹣(90°﹣∠C)=(∠C ﹣∠B)60.(1)∵AB=AC,∠B=2∠A ∴AB=AC,∠C=∠B=2∠A又∵∠C+∠B+∠A=180°∴5∠A=180°,∠A=36°∴∠B=72°;(2)①∵BD是△ABC中∠ABC 的平分线∴∠ABD=∠CBD=36°∴∠BDC=72°∴BD=AD=BC;②当BD是腰时,以B为圆心,以BD为半径画弧,交直线BC于点P1(点C除外)此时∠BDP=∠DBC=18°.以D为圆心,以BD为半径画弧,交直线BC于点P3(点C 除外)此时∠BDP=108°.当BD是底时,则作BD的垂直平分线和BC的交点即是点P2的一个位置.此时∠BDP=∠PBD=36°。
三角形内角和专项练习60题
三角形内角和解答题专项练习60题1.如图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC的一条角平分线,求∠ADC的度数?2.如图△ABC中,AD,AE分别是△ABC的高和角平分线,∠B=36°,∠DAE=16°.求∠CAD 的度数.3.如图,已知∠CBE=96°,∠A=27°,∠C=30°,试求∠ADE的度数.4.如图,△ABC中,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D,求证:∠D=90°+∠A.5.如图,在△ABC中,∠A=3x°,∠ABC=4x°,∠ACB=5x°,BD,CE分别是边AC,AB上的高,且BD,CE相交于点H,求∠BHC的度数.6.如图,D是△ABC的BC边上一点,∠ABC=40°,∠BAC=80°.求:(1)∠C的度数;(2)如果AD是△ABC的BC边上的角平分线,求∠ADC的度数.7.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于E,且∠EDC=60°.求∠A的度数.8.如图,∠A=50°∠ABC=60°.(1)若BD为∠ABC平分线,求∠BDC.(2)若CE为∠ACB平分线且交BD于E,求∠BEC.9.如图,在△ABC中,∠B和∠C的平分线相交于O点.(1)若∠A=60°,求∠BOC的度数.(只需写出结果)(2)若∠A=α,求∠BOC的度数.10.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,(1)试判断EC与DF是否平行,并说明理由;(2)若∠ACF=110°,求∠A的度数.11.在三角形中,每两条边所组成的角叫三角形的内角,如图1,在三角形ABC中,∠B,∠BAC和∠C是它的三个内角.其实,在学习了平行线的性质以后,我们可以用几何推理的方法去证明“三角形的内角的和等于180°”.请在以下给出的证明过程中填空或填写理由.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(_________ ),(_________ )又∵AE∥BC(已作)∴∠2=∠(_________ ),(_________ )∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(_________ ),即,三角形的内角的和等于180°.12.如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)13.如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.14.如图,已知三角形ABC,∠ACB=90°,∠BCD+∠B=90°,∠A与∠BCD有怎样的大小关系?说明你的理由.15.如图,△ABC中,∠C=70°,AD、BD是△ABC的外角平分线,AD与BD交于点D,(1)求∠D的度数;(2)若去掉∠C=70°这个条件,试写出∠C与∠D之间的数量关系.16.(1)如图1,在△ABC中,∠C=90°,∠BAC=45°,∠BAC的平分线与外角∠CBE的平分线相交于点D,则∠D= _________ 度.(2)如图2,将(1)中的条件“∠BAC=45°”去掉,其他条件不变,求∠D的度数.17.已知:如图,AC∥DE,∠ABC=70°,∠E=50°,∠D=75°.求:∠A和∠ABD的度数.18.△ABC中,(1)若∠A=70°,BO、CO分别平分∠ABC和∠ACB,求∠BOC的度数;(2)若∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,请直接写出用n°表示∠BOC的关系式.19.已知,如图,在△ABC中,BD⊥AC于D,若∠A:∠ABC:∠ACB=3:4:5,试求∠ABD 的度数.20.如图,把△ABC纸片沿DE折叠,使点C落在四边形BADE内部点F的位置.(1)已知∠CDE=50°,求∠ADF的大小;(2)已知∠C=60°,求∠1+∠2的大小.21.已知△ABC中,∠A=∠B=∠C,判断三角形的形状?22.如图,在△ABC中,BA平分∠DBC,∠BAC=124°,BD⊥AC于D,求∠C的度数.23.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,若∠B=47°,∠C=73°,求∠DAE的度数.24.如图,已知△ABC中,∠A=40°,角平分线BE、CF相交于O,求∠BOC的度数.25.如图,在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AFG=40°,求∠ACB的度数.26.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.27.如图:证明“三角形的内角和是180°”已知:_________求证:_________证明:过B点作直线EF∥AC.28.如图,BD平分∠ABC,CD平分∠ACE,请写出∠A和∠D的关系式,并说明理由.29.已知△ABC.(1)若∠BAC=40°,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠BO1C的度数;(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠BO2C 的度数;(3)若∠BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.30.(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数.(2)如图(2),△DEF两个外角的平分线相交于点G,∠D=40°,求∠EGF的度数.(3)由(1)、(2)可以发现∠BOC与∠EGF有怎样的数量关系?设∠A=∠D=n°,∠BOC与∠EGF是否还具有这样的数量关系?为什么?31.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE,CF分别是AC和AB边上的高,H是BE 和CF的交点,求∠BHC的度数.32.如图,△ABC中,∠ACB=∠B=2∠A,CD是AB边上的高,求∠BCD.33.如图,已知DM平分∠ADC,BM平分∠ABC,∠A=36°,∠M=44°,求∠C的度数.34.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高;CE是∠ACB的平分线,DF⊥CE于F,求∠BCE和∠CDF的度数.35.已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB的度数.36.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.37.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.38.如图,CD是∠ACB的平分线,DE∥BC,∠B=70°,∠ACB=50°,求∠EDC,∠BDC的度数.39.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠DAE的度数.40.如图,△ABC中,AD是BC边上的高,AE是三角形∠BAC的角平分线,若∠B=40°,∠C=70°,则∠DAE为多少度?41.如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.42.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.43.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)44.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.45.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.46.如图:在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34度.求∠DAE的度数.47.如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠P的度数.48.如图已知△ABC中,∠B和∠C外角平分线相交于点P.(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.(2)若∠ABC=α,∠BPC=β,求∠ACB度数.49.如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB∥CD.50.如图:AB∥CD,直线l交AB、CD分别于点E、F,点M在EF上,N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时,∠FMN+∠FNM=∠AEF,说明理由;(2)当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有什么关系并说明理由.51.如图,△ABC中,∠B=40°,∠C=70°,AD为∠BAC的平分线,AE为BC边上的高,求∠DAE的度数.52.如图,在△ABC中,∠ABC=60°,∠ACB=50°,BD平分∠ABC,CD平分∠ACB.求∠D 的度数.53.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.54.已知:图中,∠B=40°,∠C=60°,AD、AF分别是△ABC的角平分线和高.(1)∠BAC等于多少度?(2)∠DAF等于多少度?55.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.56.如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC 的度数.57.如图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?58.如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.59.已知:如图,在△ABC中,∠C>∠B,AD⊥BC交于点D,AE平分∠BAC,试说明:∠EAD=(∠C﹣∠B).60.如图(1),△ABC中,AB=AC,∠B=2∠A.(1)求∠A和∠B的度数;(2)如图(2),BD是△ABC中∠ABC的平分线:①写出图中与BD相等的线段,并说明理由;②直线BC上是否存在其它的点P,使△BDP为等腰三角形,如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠BDP的度数;如果不存在,请说明理由.。
(完整版)三角形内角和外角练习题
(完整版)三⾓形内⾓和外⾓练习题规律⽅法指导1.三⾓形内⾓和为180°,三⾓形三个外⾓的和是360°,这是在做题时题设不⽤加以说明的已知条件;在三个⾓中已知其中两个⾓的度数便能求第三个⾓的⼤⼩.2.在⼀个三⾓形中最多只能有⼀个钝⾓或者⼀个直⾓,最少有两个锐⾓.3.三⾓形内⾓和定理和三⾓形外⾓的性质是求⾓度数及有关的推理论证时经常使⽤的理论依据.外⾓的性质应⽤:①证明⼀个⾓等于另两个⾓的和;②作为中间关系式证明两⾓相等;③证明⾓的不等关系. 4.利⽤作辅助线求解问题,会使问题变得简便.经典例题透析类型⼀:三⾓形内⾓和定理的应⽤1.已知⼀个三⾓形三个内⾓度数的⽐是1:5:6,则其最⼤内⾓的度数为()A.60° B.75° C.90° D.120°举⼀反三:【变式1】在△ABC中,∠A=55°,∠B⽐∠C⼤25°,则∠B的度数为()A.50° B.75°C.100° D.125°【变式2】三⾓形中⾄少有⼀个⾓不⼩于________度。
类型⼆:利⽤三⾓形外⾓性质证明⾓不等2.如图所⽰,已知CE是△ABC外⾓∠ACD的平分线,CE交BA延长线于点E。
求证:∠BAC >∠B。
举⼀反三:【变式】如图所⽰,⽤“<”把∠1、∠2、∠A联系起来________。
类型三:三⾓形内⾓和定理与外⾓性质的综合应⽤3.如图,求∠A+∠B+∠C+∠D+∠E的度数.举⼀反三:【变式】如图所⽰,五⾓星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°。
类型四:与⾓平分线相关的综合问题4.如图9,△ABC中,∠ABC、∠ACB的平分线相交于点D.(1)若∠ABC=70°,∠ACB=50°,则∠BDC=________;(2)若∠ABC+∠ACB=120°,则∠BDC=________;(3)若∠A=60°,则∠BDC=________;(4)若∠A=100°,则∠BDC=________;(5)若∠A=n°,则∠BDC=________.举⼀反三:【变式1】如图10,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF 交于G,若∠BDC= 140°,∠BGC=110°,求∠A 的⼤⼩.80【变式2】如图11, △ABC的两个外⾓的平分线相交于点D,如果∠A=50°,求∠D.【变式3】如图12,在△ABC中,AE是⾓平分线,且∠B=52°,∠C=78°,则∠AEB的度数是_____.【变式4】(2009北京四中期末)如图所⽰,△ABC的外⾓∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠F的度数。
人教版四年级数学“三角形的内角和”练习题
人教版四年级数学“三角形的内角和”练习题
一、填空.
1、三角形的内角和是().
2、在直角三角形中.两个锐角的和是().
3、在一个三角形中.有两个角分别是110°和40°.那么第三个角是()度.
4、在一个等腰三角形中.顶角是60°.它的一个底角是().
二、判断.(对的画“√”.错的画“×”)
1.直角三角形中只能有一个角是直角.( )
2.等边三角形一定是锐角三角形.( )
3.三角形共有一条高.( )
4.两个底角都是28°的三角形.一定是钝角三角形.( )
三、选择.
1.一个等腰三角形.其中一个底角是750.顶角是( )
A.750 B.450 C.300 D.600
2.三角形越大.内角和( )
A.越大 B.不变 C.越小
四、求下面三角形中∠3的度数.并指出是什么三角形.
1.∠1=300. ∠2=1080.∠3= ( ).它是( )三角形.
2.∠1=900. ∠2=450. ∠3=( ).它是( )三角形.
3.∠1=700. ∠2=700. ∠3=( ).它是( )三角形.
五、(辨析题)在能组成的三角形的三个角后面画“√”.
1. 900 500 400 ( )
2. 500 500 500 ( )
六、(开放题).在能组成三角形的三条线段后面画“√”.
1.2厘米 3厘米 4厘米 ( )
2.10厘米 20厘米 40堙米 ( )
1 / 1。
人教版四年级数学下册第5单元《三角形的内角和》专项精选试卷附答案
人教版四年级数学下册核心考点专项评价10.三角形的内角和一、我会选。
(每小题4 分,共32 分)1.一个三角形的两个内角之和小于90°,这个三角形一定是( )。
A.锐角三角形B.直角三角形C.钝角三角形D.无法判断2.在三角形ABC中,∠A+∠B=∠C,这个三角形一定是( )。
A.锐角三角形B.直角三角形C.钝角三角形D.无法判断3.把一个三角形分成两个小三角形,每个小三角形的内角和都是( )。
A.90°B.180°C.360°D.90°或180°4.下面是有趣的三角尺拼图,图中所标的角是( )。
A.105°B.150°C.120°D.75°5.一块三角形的玻璃,截去一个角(如图),剩下部分的内角和是 ( )°。
A.60 B.150 C.180D.3606.三角形中,一个内角是120°,另一个内角可能是( )。
A.50°B.60°C.120°D.130°7.等腰三角形的一个内角是70°,则它的一个底角是( )。
A.110°B.55°C.70°D.55°或70°8.下面四组角度中,不是等腰三角形中的角度的是( )。
① 90°,45°② 120°,30°③ 80°,40°④ 50°,45°A.①和③B.②和③C.③和④D.①和④二、我会填。
(每空2 分,共30 分)1.一个三角形的两个内角和是96°,第三个内角是( )°。
2.每个三角形中至少有( )个锐角,最多有( )个直角或钝角。
3.一个三角形的一个内角是96°,另外两个内角分别可能是( )°和( )°。
三角形内角和练习题
三角形内角和练习姓名________学号_____1.填空题1. 等腰三角形的一个内角是94°,那么它的另外两个内角是()和()。
2. 三角形的两个内角之和是85°,第三个角是()°,这个三角形是()三角形。
3. 一个直角三角形的一个锐角是45°,另一个内角是(),按边分这是()三角形。
4. 三角形最多()个直角,最多()个钝角,最少()个锐角。
5. 已知等腰三角形的一个内角是80°,另外两个内角分别是()、()或()、()。
6. 一个三角形有两个角都是45°,它按角分是(),按边分是()。
二、选择题1、一个三角形中,有一个角是65°,另外的两个角可能是()A.95°,20°B.45°,80°C.55°,60°2、一个等腰三角形,顶角是100°,一个底角是()。
A.100°B. 40°C.55°3、一个等腰三角形,一个底角是顶角的2倍,这个三角形顶角()度,底角()度。
A. 36°B.72°C.45°D.90°4、一个三角形的最小的一个角大于45°,这个三角形一定是()。
A.锐角三角形 B直角三角形 C 钝角三角形5、下面说法错误的是()。
A.一个三角形中最多有一个钝角。
B.一个三角形中最多有两个锐角。
C.两个完全一样的直角三角形能拼成一个大三角形,拼成的大三角形内角和是360度。
D.钝角三角形的两个锐角和一定小于90°。
二、下列各组角能组成三角形吗?如果能,请说明是什么三角形;如果不能,请说明理由。
1、80°,95°,5°2、60°,70°,90°3、30°,40°,50°4、50°,50°,80°5、60°,60°,60°3、解决问题1.某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带( )去。
新的三角形内角和练习题
新的三角形内角和练习题一、基础概念理解1. 请写出三角形内角和的定理。
2. 一个三角形的两个内角分别是30° 和60°,求第三个内角的度数。
3. 如果一个三角形的两个内角相等,且其中一个内角是45°,求这个三角形的内角和。
4. 一个等边三角形的每个内角是多少度?5. 一个等腰三角形的底角是50°,求顶角的度数。
二、内角和计算6. 已知一个三角形的两个内角分别是25° 和85°,求第三个内角的度数。
7. 一个三角形的两个内角分别是110° 和20°,求第三个内角的度数。
8. 如果一个三角形的两个内角分别是70° 和55°,求这个三角形的内角和。
9. 一个三角形的两个内角分别是40° 和50°,求第三个内角的度数。
10. 一个三角形的两个内角分别是90° 和30°,求第三个内角的度数。
三、特殊三角形内角和11. 一个直角三角形的两个锐角分别是30° 和60°,求第三个内角的度数。
12. 一个等腰直角三角形的两个锐角分别是多少度?13. 一个等边三角形的内角和是多少度?14. 一个等腰三角形的底角是40°,求顶角的度数。
15. 一个等腰三角形的顶角是80°,求底角的度数。
四、内角和与外角关系16. 一个三角形的内角和与它的一个外角之和是多少度?17. 如果一个三角形的两个外角分别是110° 和120°,求第三个外角的度数。
18. 一个三角形的两个外角分别是50° 和80°,求第三个外角的度数。
19. 已知一个三角形的两个外角分别是70° 和60°,求第三个外角的度数。
20. 一个三角形的两个外角分别是100° 和80°,求第三个外角的度数。
五、综合应用21. 一个三角形的两个内角分别是45° 和85°,求第三个内角和这个三角形的类型。
中考数学三角形的内角和定理练习
中考数学三角形的内角和定理练习1.如图,等腰三角形ABC中,顶角∠A=36°,BD平分∠ABC,D 点是AC的黄金分割点,若AC=4cm,则BD= cm(结果保留三个有效数字)2.在△ABC中,A1、A2、…A5为AC边上不同的点,连接BA1,图中有3个不同的三角形;再连接BA2,图中有6个不同的三角形;如此继续下去,当连接BA5时,则图中不同的三角形共有个。
3.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠An-1BC的平分线与∠An﹣1CD的平分线交于点An,设∠A=θ,则:(1)∠A1=();(2)∠An=()。
4.已知△ABC中,∠A:∠B:∠C=1:3:5,则△ABC是三角形。
5.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长。
6.按要求完成作图,并回答问题:如图,三角形ABC中(1)画线段BC的中点D,并连接AD;(2)过点A画BC的垂线,垂足为E;(3)根据上述作图,若∠ABC=60°,则∠BAE= ,若BD=2cm,则BC= cm;(4)用“<”、“=”、“>”填空:AB+AC BC,根据.7.下面命题中:(1)旋转不改变图形的形状和大小(2)轴反射不改变图形的形状和大小(3)连接两点的所有线中,线段最短(4)三角形的内角和等于180°属于公理的有()A.1个B.2个C.3个D.4个8.已知一个三角形中有两个内角之和为n°,最大角比最小角大24°,则n的取值范围是。
9.下列四种说法:①若一个三角形三个内角的度数比为2:3:4,则这个三角形是锐角三角形。
②“掷两枚质地均匀的正方体骰子点数之和一定大于6”是必然事件。
③购买一张彩票可能中奖。
④已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为100°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题。
1. 三角形按角分类分为()三角形、()三角形和()三角形。
2. 锐角三角形的三个角都是()角;直角三角形中必定有一个是()角;钝角三角形中也必定有一个角是()角。
3. 在三角形中,已知∠1=55°,∠2=48°,∠3=()。
4. 等腰三角顶角是60°,它的一个底角是(),它又叫()三角形。
如底角是70°,顶角是();如果底角是45°,它的顶角是(),又叫()三角形。
二、根据要求画三角形。
①两条边分别是2厘米和5厘米,它们的②两条边都是3厘米,它们的夹角是90°。
夹角是60°。
四、∠1、∠2、∠3分别是三角形中的三个内角。
1.∠1=140°,∠2=25°,求∠3。
2.∠2=65°,∠3=90°,求∠1。
六、按要求完成下列各题。
1.如下图三角形ABC的周长是86厘米,∠B=∠C,
2.根据下图求出∠2和∠3各是多少度。
BC=16厘米,求AB的长是多少厘米。
(∠1=60°,∠4=125°)。