新课标高考数学
2023年普通高等学校招生全国统一考试新课标1卷数学参考答案
【分析】根据向量的坐标运算求出a b λ+a b μ+再根据向量垂直的坐标表示即可求出.【详解】因为()()1,1,1,1a b ==-所以(1,1a b λλ+=+-(1,1a b μμ+=+()()a b a b λμ+⊥+可得()()0a b a b λμ+⋅+= )()()()11110λμλμ+++--=整理得:1λμ=-.故选:D . Df x得ex>上单调递减在12e,-⎛⎫+∞⎪⎝⎭上单调递增OE AC E=∠则tan CAC1Rt ABF 中914,AF a =12cos F AF ∠=所以在12AF F △因为2223F A F B =-所以(又11F A F B ⊥所以1183F A F B c ⎛⋅= ⎝又点A 在C 上则2222254991c t a b -=所以22222225169c b c a a b -=即25整理得422550c c -)3A B +=即π4C =sin sin(B ==2222(0,2,1),(0,2,1)B C A D ∴=-=-2222B C A D ∴∥又2222B C A D ,不在同一条直线上2222B C A D ∥.(2)设(0,2,)(0P λλ则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C =--=--设平面22PA C 的法向量(,,)n x y z =22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ 2z =得3,1y x λλ=-=- (1,3,n λλ∴=--设平面222A C D 的法向量(,,m a b =则22222202m A C a c m D C a ⎧⋅=-=⎪⎨⋅=-⎪⎩1a =得1,=b c (1,1,2)m ∴=cos ,6n m n m n m⋅==化简可得2430λλ-+= 解得1λ=或3λ=(0,2,1)或(0,2,3)P0fx则(f x 时()f x 在R 上单调递减;在(),ln a -∞-上单调递减)2133a a =13()6d a +=){}n b 为等差数列13b b =+即2311)a -=1d >0n a ∴>又9999S T -50502550a a ∴-当12a d =16n p ++=本题第一问直接考查全概率公式的应用后两问的解题关键是根据题意找到递推式然1⎛⎫32.11⎛⎫。
新课标高考数学题型全归纳
新课标高考数学题型全归纳一、选择题新课标高考数学选择题主要考察学生对于基础知识的掌握与运用能力,题型较为灵活多样,涵盖了代数、几何、数论、概率统计等多个知识领域。
具体包括填空题、选择题和判断题等多种形式。
1.填空题填空题通常要求学生根据题意进行计算或推导得出唯一的答案,涵盖了代数、几何、数论等不同领域的知识点。
填空题考察学生对基本知识点的理解和运用能力,以及灵活性和创新性。
例题:已知2x + 3 = 7,求x的值。
2.选择题选择题是高考数学试题中出现较多的一种题型,涵盖了代数、几何、数论等多个知识点。
选择题通常包括单项选择和多项选择两种形式,要求学生根据题意选择正确答案。
例题:已知抛物线y = ax^2 + bx + c的顶点坐标为(1,-3),则a、b、c的关系是()。
A. a + b + c = 1B. a - b + c = 1C. a - b - c = 1D. a + b - c = 13.判断题判断题常常考察学生对于基本概念和定理的理解和掌握能力。
题目通常以简短的陈述形式呈现,要求学生判断其真假,并给出理由。
例题:若对于任意实数x,有f(x) = f(-x),则函数f(x)是奇函数。
()二、填空题填空题是高考数学试题中的一种主要题型,通常要求学生根据题意进行计算或推导,得出唯一的答案。
填空题涵盖了代数、几何、数论等多个知识领域,考察学生对基础知识的掌握和运用能力,以及灵活性和创新性。
1.代数填空题代数填空题主要考察学生对于代数表达式的计算和变形能力,包括多项式、方程、不等式等内容。
例题:已知方程2x^2 - 3x - 2 = 0的两根分别为x1和x2,求x1 + x2的值。
2.几何填空题几何填空题通常考察学生对于几何图形的性质和关系的理解,要求学生根据题意进行计算或推导,得出唯一的答案。
例题:在直角三角形ABC中,∠C = 90°,AB = 3,BC = 4,则AC =3.数论填空题数论填空题主要考察学生对于整数性质和基本定理的理解和运用能力,包括最大公约数、最小公倍数、质数分解等知识点。
2023新课标高考大纲数学
2023新课标高考大纲数学
知识范围
新课标高考大纲数学分为两个模块,一为基础数学,二为拓展
数学。
其中,基础数学包括数与式、函数、空间几何与图形、三角
函数、导数与微分、概率与统计等知识点;拓展数学则包括数列与
数学归纳法、不等式、平面向量、立体几何、常微分方程、解析几
何等知识点。
考试要求
数学考试形式为笔试,分为高考必考和选考两个部分。
其中,
基础数学为高考必考部分,占总分数50%;拓展数学为选考部分,
占总分数50%。
高考必考部分重点考察基本概念、基本运算和基本应用。
选考
部分主要考查学生对基础数学知识的应用能力,考试内容更有难度。
研究建议
1. 坚持每天的练和巩固基础知识,理清知识点之间的关系。
2. 多做历年高考试题,熟悉考试形式和题型。
3. 注意解题思路和方法,尤其是拓展数学部分,需要灵活应用基本概念和方法解决问题。
高考数学是很多学生的难点,需要投入大量时间和精力进行学习和练习。
但只要掌握了基础知识和解题方法,就可以在考试中发挥出自己的水平。
高中数学新课标高考解读
高中数学新课标高考解读随着教育改革的不断深入,高中数学课程标准也迎来了新的变革。
新课标下的高考,不仅对数学知识的掌握提出了更高的要求,同时也强调了数学思维的培养和实际应用能力的考察。
本文将对高中数学新课标下的高考进行解读,帮助学生和教师更好地理解和应对高考。
首先,新课标强调了数学基础知识的全面性和系统性。
在高考中,基础知识的考察将更加全面,不仅包括传统的代数、几何、概率统计等内容,还涵盖了函数、向量、复数等现代数学知识。
这要求学生不仅要掌握数学的基本概念和原理,还要能够灵活运用这些知识解决实际问题。
其次,新课标下的高考更加注重数学思维的培养。
这意味着在考试中,不仅仅是对数学公式和定理的记忆,更重要的是考察学生是否能够运用数学思维进行逻辑推理、问题分析和解决方案的制定。
因此,学生在学习过程中应该注重培养自己的数学思维能力,而不仅仅是机械地记忆和模仿。
再次,新课标高考强调了数学的实际应用能力。
在现实生活中,数学的应用无处不在,从金融分析到工程设计,从数据分析到科学研究,数学都发挥着重要的作用。
因此,高考中会出现更多与实际生活紧密相关的题目,考察学生是否能够将数学知识应用于解决实际问题。
此外,新课标还提倡数学与其他学科的交叉融合。
在高考中,可能会出现一些跨学科的题目,要求学生运用数学知识解决物理、化学、生物等领域的问题。
这不仅能够考察学生的综合应用能力,也有助于培养学生的创新思维和跨学科视野。
最后,新课标下的高考将更加注重学生的自主学习能力。
在考试中,可能会出现一些开放性问题,要求学生在没有明确指导的情况下,自主探索和解决问题。
这要求学生在学习过程中培养自主学习的习惯,提高自我学习和自我解决问题的能力。
综上所述,高中数学新课标下的高考,不仅考察学生的数学知识掌握程度,更注重数学思维的培养和实际应用能力的考察。
学生和教师应该根据新课标的要求,调整学习策略和教学方法,以更好地适应高考的变化。
2024年高考数学试题(新课标I卷)解析版
2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。
2023年新课标全国Ⅰ卷数学真题(解析版)
2023年普通高等学校招生全国统一考试数学(新高考全国Ⅰ卷)试卷类型:A一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1,2 C.{}2- D.2【答案】C【解析】因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .2.已知1i22iz -=+,则z z -=()A.i -B.iC.0D.1【答案】A【解析】根据复数除法运算求出z ,再由共轭复数的概念得到z ,从而解出.因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .3.已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A.1λμ+=B.1λμ+=-C.1λμ=D.1λμ=-【答案】D【解析】根据向量的坐标运算求出a b λ+ ,a b μ+,再根据向量垂直的坐标表示即可求出.因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+ 可得,()()0a b a b λμ+⋅+=,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .4.设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A.(],2-∞-B.[)2,0-C.(]0,2 D.[)2,+∞【答案】D【解析】利用指数型复合函数单调性,判断列式计算作答.函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D5.设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ()A.233B.C.D.【答案】A【解析】根据给定的椭圆方程,结合离心率的意义列式计算作答.由21e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以3a =,故选:A 6.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.4C.4D.4【答案】B【解析】因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC ==,则PA ==,可得106sin ,cos44APC APC ∠==∠=,则sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22221cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎛⎫∠=∠=∠-∠=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即APB ∠为钝角,所以()sin sin πsin 4APB APB =-∠=∠=α;故选:B.7.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【解析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,222212n n n n S S S n n n d d dS na d a n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.故选:C8.已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79 B.19C.19-D.79-【答案】B【解析】根据给定条件,利用和角、差角的正弦公式求出sin()αβ+,再利用二倍角的余弦公式计算作答.因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A.2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B.2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C.2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D.2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差【答案】BD【解析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n ,则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=,因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小,例如:1,2,3,4,5,6,可得 3.5m n ==;例如1,1,1,1,1,7,可得1,2m n ==;例如1,2,2,2,2,2,可得112,6m n ==;故A 错误;对于选项B :不妨设123456x x x x x x ≤≤≤≤≤,可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确;对于选项C :因为1x 是最小值,6x 是最大值,则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差,例如:2,4,6,8,10,12,则平均数()12468101276n =+++++=,标准差11053s =,4,6,8,10,则平均数()14681074m =+++=,标准差2s ==显然53>,即12s s >;故C 错误;对于选项D :不妨设123456x x x x x x ≤≤≤≤≤,则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确;故选:BD.10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB燃油汽车106090混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A.12p p ≥B.2310p p >C.30100p p =D.12100p p ≤【答案】ACD【解析】根据题意可知[][]12360,90,50,60,40p p p L L L ∈∈=,结合对数运算逐项分析判断.由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg 20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg 0p p p L L p =-⨯≥,即12lg 0p p ≥,所以121pp ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥,所以23pp ≥23,0p p >,可得23p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg 40p p L p =⨯=,即30lg 2p p =,可得30100pp =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lgp p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.11.已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A.()00f =B.()10f =C.()f x 是偶函数 D.0x =为()f x 的极小值点【答案】ABC【解析】因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.故选:ABC .12.下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体【答案】ABD【解析】根据题意结合正方体的性质逐项分析判断.对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A 正确;对于选项B 1.4>,所以能够被整体放入正方体内,故B 正确;对于选项C 1.8<,所以不能够被整体放入正方体内,故C 正确;对于选项D :因为正方体的体对角线长为 1.2>,设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h ,如图,结合对称性可知:111111133,0.6222OC C A C O OC OO ===-=-,则1111C O h AA C A =,即30.6213h -=,解得10.60.340.0123h =->>,所以能够被整体放入正方体内,故D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【解析】分类讨论选修2门或3门课,对选修3门,再讨论具体选修课的分配,结合组合数运算求解.(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.14.在正四棱台1111ABCD A B C D -中,1112,1,2AB A B AA ===,则该棱台的体积为________.【答案】766【解析】结合图像,依次求得111,,AO AO A M ,从而利用棱台的体积公式即可得解.如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高,因为1112,1,2AB A B AA ===则11111111112,22222222AO AC B AO AC ======,故()111222AM AC AC =-=,则221116222A M A A AM =-=-=,所以所求体积为1676(4141)326V =⨯++⨯⨯=.故答案为:766.15.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[2,3)【解析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).16.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________.【答案】355【解析】依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a ==.故答案为:355.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010;(2)6.【解析】(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,310sin10A ∴==.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.18.如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .【答案】(1)证明见解析;(2)1.【解析】(1)以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图,则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=- ,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.【小问2详解】设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z = ,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c = ,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令1a =,得1,2==b c ,(1,1,2)m ∴=,3cos ,cos1502n m n m n m ⋅∴==︒= ,化简可得,2430λλ-+=,解得1λ=或3λ=,(0,2,1)P ∴或(0,2,3)P ,21B P ∴=.19.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案详见解析;(2)证明详见解析【解析】(1)因为()()e xf x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.(2)由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a在2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.20.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【答案】(1)3n a n =;(2)5150d =.【解析】(1)21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d =++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n ∴=+-⋅=.(2){}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【答案】(1)0.6;(2)1121653i -⎛⎫⨯+ ⎪⎝⎭;(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=+ ⎪ ⎪⎝⎭⎝⎭.(3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nnnn n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【答案】(1)214y x =+;(2)见解析.【解析】(1)设(,)P x y ,则y =,两边同平方化简得214y x =+,故21:4W y x =+.(2)设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0,则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<-,同理令0BC k b c n =+=>,且1mn =-,则1m n=-,设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+,则11||||(((2C AB BC b a c b c a n n ⎛=+=-+-≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()0f x '=,解得22x =,当20,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增,则min 227()24f x f ⎛⎫== ⎪ ⎪⎝⎭,故13322C ≥=,即C ≥.当C =时,,2n m ==,且((b a b a -=-m n =时等号成立,矛盾,故C >得证.。
2024年高考真题汇编(数学)(新课标卷+全国卷)PDF版含答案
2024年高考真题汇编数学(新课标卷+全国卷)目录2024年普通高等学校招生全国统一考试(新课标I卷)数学2024年普通高等学校招生全国统一考试(新课标II卷)数学2024年普通高等学校招生全国统一考试(全国甲卷)理科数学2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}--D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i -- B.1i -+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.,则圆锥的体积为()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞B.[1,0]-C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f >C.(10)1000f <D.(20)10000f <二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.2024年普通高等学校招生全国统一考试(新课标II 卷)数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =()A.0B.1C.D.22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >)B.221168x y +=(0y >)C.221164y x +=(0y >)D.221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1- B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18B.14C.12D.1二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB ⊥D.满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=+,则sin()αβ+=_______.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =,sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.2024年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.32D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件 D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间262450乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001 k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C.D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.32D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学参考答案一、单项选择题【答案】1.A 【解析】【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.【答案】2.C 【解析】【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.【答案】3.D 【解析】【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.【答案】4.A 【解析】【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.【答案】5.B 【解析】【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.【答案】6.B【解析】【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.【答案】7.C【解析】【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx∈上函数π2sin36y x⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C【答案】8.B【解析】【详解】因为当3x<时()f x x=,所以(1)1,(2)2f f==,又因为()(1)(2)f x f x f x>-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f>+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f>+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.二、多项选择题【答案】9.BC 【解析】【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .【答案】10.ACD 【解析】【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.【答案】11.ABD 【解析】【详解】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于B24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.三、填空题【答案】12.32【解析】【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:32【答案】13.ln 2【解析】【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 2【答案】14.12【解析】【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.四、解答题【答案】15.(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin 2C ==,又因为sin C B =,即cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a c b c +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得2338c =,所以c =【答案】16.(1)由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,352AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d ,则1255352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,1255=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k ----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.【答案】17.(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,2DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.【答案】18.(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【答案】19.(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.2024年普通高等学校招生全国统一考试(新课标II 卷)数学参考答案一、单项选择题【答案】1.C 【解析】【详解】若1i z =--,则z ==.故选:C.【答案】2.B 【解析】【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.【答案】3.B 【解析】【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.【答案】4.C 【解析】【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.【答案】5.A 【解析】【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 【答案】6.D 【解析】【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.【答案】7.B 【解析】【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知111131662222ABC A B C S S =⨯⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=++=,解得433h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,。
2023年新课标I卷数学高考真题
2023 年普通高等学校招生全国统一考试数学(新课标I卷)本试卷共 4 页,22 小题,满分 150 分。
考试用时120 分钟一、选择题: 本大题共8 小题, 每小题 5 分, 共40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的1. 已知集合M={−2,−1,0,1,2},N={x∣x2−x−6≥0}, 则M∩N=A. {−2,−1,0,1}B. {0,1,2}C. {−2}D. {2}2. 已知z=1−i2+2i, 则z−z‾=A. −iB. iC. 0D. 13. 已知向量a=(1,1),b=(1,−1). 若(a+λb)⊥(a+μb), 则A. λ+μ=1B. λ+μ=−1C. λμ=1D. λμ=−14. 设函数f(x)=2x(x−a)在区间(0,1)单调递减, 则a的取值范围是A. (−∞,−2]B. [−2,0)C. (0,2]D. [2,+∞)5. 设椭圆C1:x2a2+y2=1(a>1),C2:x24+y2=1的离心率分别为e1,e2. 若e2=√3e1, 则a=A. 2√33B. √2C. √3D. √66. 过点(0,−2)与圆x2+y2−4x−1=0相切的两条直线的夹角为α, 则sinα=A. 1B. √154C. √104D. √647. 记S n为数列{a n}的前n项和, 设甲: {a n}为等差数列; 乙: {S nn}为等差数列, 则A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8. 已知sin(α−β)=13,cosαsinβ=16, 则cos(2α+2β)=A. 79B. 19C. −19D. −79二、选择题: 本题共 4 小题, 每小题 5 分, 共20 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得0 分9. 有一组样本数据x1,x2,⋯,x6, 其中x1是最小值, x6是最大值, 则A. x2,x3,x4,x5的平均数等于x1,x2,⋯,x6的平均数B. x2,x3,x4,x5的中位数等于x1,x2,⋯,x6的中位数C. x2,x3,x4,x5的标准差不小于x1,x2,⋯,x6的标准差D. x2,x3,x4,x5的极差不大于x1,x2,⋯,x6的极差10. 噪声污染问题越来越受到重视, 用声压级来度量声音的强弱, 定义声压级L p=20×lg pp0, 其中常数p0(p0>0)是听觉下限阑值, p是实际声压. 下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3, 则A. p1≥p2B. p2>10p3C. p3=100p0D. p1≤100p211. 已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y), 则A. f(0)=0B. f(1)=0C. f(x)是偶函数D. x=0为f(x)的极小值点12. 下列物体中, 能够被整体放入核长为1 (単位: m) 的正方体容器(容器壁厚度忽略不计)内的有A. 直径为0.99m的球体B. 所有棱长均为1.4m的四面体C. 底面直径为0.01m, 高为1.8m的圆柱体D. 底面直径为1.2m, 高为0.01m的圆柱体三、填空题: 本大题共 4 小题, 每小题 5 分, 共20 分.13. 某学校开设了4 门体育类选修课和4 门艺术类选修课, 学生需从这8 门课中选修2 门或 3 门课, 并且每类选修课至少选修 1 门, 则不同的选课方案共有种(用数字作答).14. 在正四棱台ABCD−A1B1C1D1中, AB=2,A1B1=1,AA1=√2, 则该棱台的体积为15. 已知函数 f (x )=cosωx −1(ω>0) 在区间 [0,2π] 有且仅有 3 个零点, 则 ω 的取值范围是16. 已知双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 的左、右焦点分别为 F 1,F 2. 点 A 在C 上. 点 B 在 y 轴上, F 1A ⃗⃗⃗⃗⃗⃗⃗ ⊥F 1B ⃗⃗⃗⃗⃗⃗⃗ ,F 2A ⃗⃗⃗⃗⃗⃗⃗ =−23F 2B ⃗⃗⃗⃗⃗⃗⃗ , 则C 的离心率为 四、解答题: 本大题共 6 小题, 共 70 分. 解答应写出必要的文字说明、证明过程或演算步骤.17. 已知在 △ABC 中, A +B =3C,2sin (A −C )=sinB .(1) 求 sinA ;(2)设 AB =5, 求 AB 边上的高.18. 如图, 在正四棱杜 ABCD −A 1B 1C 1D 1 中, AB =2,AA 1=4. 点 A 2,B 2,C 2,D 2 分别在棱 AA 1,BB 1,CC 1,DD 1 上, AA 2=1, BB 2=DD 2=2,CC 2=3.(1) 证明: B 2C 2//A 2D 2;(2) 点 P 在棱 BB 1 上, 当二面角 P −A 2C 2−D 2 为 150∘ 时, 求B 2P .19. 已知函数 f (x )=a (e x +a )−x .(1) 讨论 f (x ) 的単调性;(2)证明: 当 a >0 时, f (x )>2lna +32.20. 设等差数列 {a n } 的公差为 d , 且 d >1, 令 b n =n 2+n a n , 记 S n ,T n 分别为数列{a n }, {b n } 的前 n 项和.(1) 若 3a 2=3a 1+a 3,S 3+T 3=21, 求 {a n } 的通项公式;( 2 ) 若 {b n } 为等差数列, 且 S 99−T 99=99, 求 d .21. 甲乙两人投篮, 每次由其中一人投篮, 规则如下: 若命中则此人继续投篮, 若末命中则 换为对方投篮. 无论之前投篮情况如何, 甲每次投篮的命中率均为 0.6 , 乙每次投篮的 命中率均为 0.8 , 由抽签决定第一次投篮的人选, 第一次投篮的人是甲, 乙的概率各为 0.5 .( 1 ) 求第 2 次投篮的人是乙的概率;( 2 ) 求第 i 次投篮的人是甲的概率;( 3 ) 已知: 若随机变量 X i 服从两点分布, 且 P (X i =1)=1−P (X i =0)=q i ,i =1,2,⋯,n , 则 E (∑X i n i=1)=∑q i n i=1, 记前 n 次 (即从第 1 次到第 n 次投篮) 中甲 投篮的次数为 Y , 求 E (Y ).22. 在直角坐标系 xOy 中, 点 P 到 x 轴的距离等于点 P 到点 (0,12) 的距离, 记动点 P 的轨迹为 W .(1) 求 W 的方程;( 2 ) 已知矩形 ABCD 有三个顶点在 W 上, 证明: 矩形 ABCD 的周长大于 3√3.。
2024年高考数学试题新课标全国Ⅱ卷+答案详解
2024年高考数学试题新课标全国Ⅱ卷+答案详解(试题部分)一、单选题1.已知1i z =−−,则z =( )A .0B .1CD .22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题3.已知向量,a b 满足1,22a a b =+=,且()2b a b −⊥,则b =( )A .12BCD .14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在[)900,1200之间,单位:kg )并部分整理下表据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >) C .221164y x +=(0y >) D .221168y x +=(0y >) 6.设函数2()(1)1f x a x =+−,()cos 2g x x ax =+,当(1,1)x ∈−时,曲线()y f x =与()y g x =恰有一个交点,则=a ( ) A .1− B .12 C .1 D .27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12 B .1 C .2 D .38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .1二、多选题 9.对于函数()sin 2f x x =和π()sin(2)4g x x =−,下列说法正确的有( ) A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =−+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+= . 14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .四、解答题15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =−−.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD =,12AF AB =,将AEF △沿EF 对折至△PEF ,使得PC =(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m −=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11k k +−的等比数列; (3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.2024年高考数学试题新课标全国Ⅱ卷+答案详解(答案详解)一、单选题1.已知1i z =−−,则z =( )A .0B .1CD .2 【答案】C【解析】若1i z =−−,则z = 故选C.2.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题 【答案】B 【解析】对于p 而言,取=1x −,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题. 故选B. 3.已知向量,a b 满足1,22a a b =+=,且()2b a b −⊥,则b =( )A .12B C D .1 【答案】B【分析】由()2b a b −⊥得22b a b =⋅,结合1,22a a b =+=,得22144164a b b b +⋅+=+=,由此即可得解. 【解析】因为()2b a b −⊥,所以()20b a b −⋅=,即22b a b =⋅, 又因为1,22a a b =+=,所以22144164a b b b +⋅+=+=, 从而22=b . 故选B.4.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在[)900,1200之间,单位:kg )并部分整理下表据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【答案】C【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【解析】A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , A 错误;B ,亩产量不低于1100kg 的频数为341024=+,因此低于1100kg 的稻田占比为1003466%100−=,B 错误; C ,稻田亩产量的极差最大为1200900300−=,最小为1150950200−=,C 正确;D ,根据频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30−++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,D 错误. 故选C.5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >) C .221164y x +=(0y >) D .221168y x +=(0y >) 【答案】A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>. 故选A.6.设函数2()(1)1f x a x =+−,()cos 2g x x ax =+,当(1,1)x ∈−时,曲线()y f x =与()y g x =恰有一个交点,则=a ( ) A .1−B .12C .1D .2【答案】D【分析】解法一:令()()21,cos a x F x ax G x =−=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =−∈−,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【解析】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +−=+,可得21cos a x ax −=+,令()()21,cos a x F x ax G x =−=+,原题意等价于当(1,1)x ∈−时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a −=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +−=因为()1,1x ∈−,则220,1cos 0x x ≥−≥,当且仅当0x =时,等号成立,可得221cos 0x x +−≥,当且仅当0x =时,等号成立,则方程221cos 0x x +−=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =正确;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =−=+−−∈−,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x −=−+−−−=+−−=,则()h x 为偶函数,由偶函数的对称性可知()h x 的零点只能为0,即()020h a =−=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+−∈−,又因为220,1cos 0x x ≥−≥当且仅当0x =时,等号成立, 可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =正确;故选D.7.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12B .1C .2D .3【答案】B【分析】解法一:根据台体的体积公式可得三棱台的高h =做辅助线,结合正三棱台的结构特征求得AM =进而根据线面夹角的定义分析求解;解法二:将正三棱台111ABC A B C -补成正三棱锥−P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V −=,进而可求正三棱锥−P ABC 的高,即可得结果.【解析】解法一:分别取11,BC B C 的中点1,D D,则11AD A D =可知1111316693,23222ABC A B C S S =⨯⨯⨯==⨯⨯= 设正三棱台111ABC A B C -的为h , 则(11115233ABC A B C V h −==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AADNAD AM MN x =--=, 可得1DD == 结合等腰梯形11BCCB 可得22211622BB DD −⎛⎫=+ ⎪⎝⎭,即()221616433x x +=++,解得x = 所以A 1A 与平面ABC 所成角的正切值为tan ∠A 1AD =A 1MAM =1; 解法二:将正三棱台111ABC A B C -补成正三棱锥−P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ==,则111127P A B C P ABCV V −−=,可知1112652273ABC A B C PABC V V −−==,则18P ABC V −=, 设正三棱锥−P ABC 的高为d,则11661832P ABC V d −=⨯⨯⨯=,得d =取底面ABC 的中心为O ,则PO ⊥底面ABC ,且AO =所以PA 与平面ABC 所成角的正切值tan 1PO PAO AO∠==. 故选B.8.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( ) A .18B .14C .12D .1【答案】C 【分析】解法一:根据题意可知:()f x 的定义域为(),b ∞−+,分类讨论a −与,1b b −−的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:根据题意可知:()f x 的定义域为(),b ∞−+,令0x a +=解得x a =−;令ln()0x b +=解得1x b =−;若−≤−a b ,当(),1x b b ∈−−时,可知()0,ln 0x a x b +>+<,此时()0f x <,错误;若1b a b −<−<−,当(),1x a b ∈−−时,可知()0,ln 0x a x b +>+<,此时()0f x <,错误;若1a b −=−,当(),1x b b ∈−−时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∞∈−+时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b −=−,正确;若1a b −>−,当()1,x b a ∈−−时,可知()0,ln 0x a x b ++,此时()0f x <,错误;综上所述:1a b −=−,即1b a =+,则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =−=时,等号成立, 所以22a b +的最小值为12;解法二:根据题意可知:()f x 的定义域为(),b ∞−+,令0x a +=解得x a =−;令ln()0x b +=解得1x b =−;则当(),1x b b ∈−−时,()ln 0x b +<,故0x a +≤,所以10b a −+≤; ()1,x b ∞∈−+时,()ln 0x b +>,故0x a +≥,所以10b a −+≥;故10b a −+=, 则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭, 当且仅当11,22a b =−=时,等号成立,所以22a b +的最小值为12.故选C.二、多选题 9.对于函数()sin 2f x x =和π()sin(2)4g x x =−,下列说法正确的有( ) A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴 【答案】BC【分析】由正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【解析】A 令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(2)04g x x =−=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 错误;B 显然max max ()()1f x g x ==,B 正确;C 由周期公式,(),()f x g x 的周期均为2ππ2=,C 正确; D 由正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k −=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 错误. 故选BC 。
新课标高考数学考试知识点
以下是高考数学知识点:一、必修一:1. 集合与函数的概念:包括集合的运算、函数的性质和定义域等。
2. 基本的初等函数:包括指数函数、对数函数和幂函数的性质和应用。
二、必修二:1. 立体几何:主要考察空间几何体的性质和计算,包括点、线、面的位置关系和距离等。
2. 直线和圆的方程:包括直线的方程、圆的方程以及直线与圆的位置关系。
三、必修三:1. 算法初步:主要考察算法的逻辑和基本程序框图。
2. 统计:包括数据的收集、整理、描述和分析,以及概率初步知识。
四、必修四:1. 三角函数:包括三角函数的性质、图像和变换等。
2. 平面向量:包括向量的运算、向量的模、向量的数量积和向量的向量积等。
五、必修五:1. 解三角形:包括正弦定理、余弦定理和三角形的面积等。
2. 数列:包括数列的通项公式和求和公式等。
3. 不等式:包括不等式的性质和解法等。
4. 线性规划:包括线性规划的基本知识和应用等。
5. 推理证明:主要考察命题逻辑和简单的演绎推理。
6. 随机变量及其分布:包括随机变量的概念、概率分布和数学期望等。
7. 复数:包括复数的概念、运算和复数的三角形式等。
8. 正态分布:主要涉及正态分布的概念和应用。
9. 参数方程与极坐标:涉及参数方程和极坐标的基本概念和应用。
10. 数理逻辑初步:考察命题逻辑的基础知识。
六、选修1-1、1-2:1. 圆锥曲线:包括椭圆、双曲线和抛物线的性质和应用。
2. 导数及其应用:主要涉及导数的计算和应用,如单调性、极值和曲线的切线等。
3. 推理与证明:加深对命题逻辑和数学归纳法的理解和应用。
4. 复数:深入学习复数的三角形式,以及复数在电工学中的应用。
5. 参数方程与极坐标:进一步学习参数方程和极坐标的应用,如抛物线、双曲线的参数方程等。
6. 空间向量与立体几何:将空间向量与立体几何结合,研究空间向量的运算和向量的数量积、向量积和混合积等运算,以及空间几何的一些性质和应用。
今年高考数学新课标是什么
今年高考数学新课标是什么
今年高考数学新课标主要强调了以下几个方面:
1. 数学核心素养:新课标强调培养学生的数学核心素养,包括数学思维、数学应用、数学交流和数学文化等。
2. 数学知识结构:新课标对数学知识结构进行了优化,更加注重知识
之间的联系和逻辑性,使得学生能够更好地理解和掌握数学知识。
3. 问题解决能力:新课标注重培养学生的问题解决能力,鼓励学生通
过实际问题来学习数学,提高他们分析问题和解决问题的能力。
4. 创新意识:新课标鼓励学生发展创新意识,通过探索和实践来发现
数学的新方法和新思路。
5. 信息技术的应用:新课标提倡将信息技术融入数学教学中,利用计
算机和互联网等工具来辅助教学和学习。
6. 数学思想方法:新课标强调数学思想方法的传授,如归纳法、演绎法、分类讨论法等,帮助学生建立正确的数学思维模式。
7. 数学文化:新课标注重数学文化的教育,让学生了解数学的历史、
发展以及在社会中的应用,增强学生的数学文化素养。
8. 评价方式:新课标提倡多元化的评价方式,不仅关注学生的考试成绩,也关注学生在学习过程中的表现和进步。
9. 课程内容:新课标对课程内容进行了调整,增加了一些新的知识点,
如数据分析、概率统计等,以适应现代社会的需求。
10. 教学方法:新课标鼓励教师采用多样化的教学方法,如探究式学习、合作学习等,以提高教学效果。
这些变化旨在使高考数学更加贴近实际,培养学生的综合能力,为他们的未来发展打下坚实的基础。
新课标全国一卷数学
新课标全国高考数学一卷一、单选题1.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.122.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°下3.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位5.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( )A.{} 2345,,,B.{}234,,C.{}345,,D.{}34,8.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]9.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( )A.D. 11.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .100二、填空题12.已知球的体积为36π,则该球大圆的面积等于______.13.定义25(0),()8(0).x x f x x x ⎧+≤⎪=>在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为( )。
全国统一数学高考新课标
全国统一数学高考新课标全国统一数学高考新课标是根据教育部最新教学大纲制定的,旨在全面提高学生的数学素养,培养他们的逻辑思维、抽象思维和创新能力。
新课标强调数学知识与实际生活的联系,注重数学思想方法的传授,以及数学技能的培养。
新课标的内容涵盖了数与代数、几何、概率与统计、函数与方程、空间与图形等多个领域。
在数与代数部分,重点强调了数的概念、运算法则、方程与不等式的解法等。
几何部分则侧重于平面几何和立体几何的基础概念、性质和定理,以及空间想象能力的培养。
概率与统计部分则让学生了解数据的收集、处理和分析,以及概率的基本概念和计算方法。
函数与方程是高中数学的核心内容之一,新课标特别强调了函数的概念、性质、图像以及方程的解法。
空间与图形部分则让学生掌握空间几何的基本性质和定理,以及图形的变换和对称。
为了适应新课标的要求,高考数学试题的设计也进行了相应的调整。
试题更加注重对学生综合运用数学知识解决问题的能力的考察,题型更加灵活多样,包括选择题、填空题、解答题等。
同时,试题也更加注重对学生数学思维能力的考察,如逻辑推理、抽象概括、数学建模等。
在教学过程中,教师需要根据新课标的要求,调整教学方法和策略,更多地采用启发式、探究式的教学方式,鼓励学生主动思考和实践。
同时,教师还应该注重培养学生的数学兴趣和自信心,帮助他们建立起正确的数学学习态度和习惯。
总的来说,全国统一数学高考新课标是对传统教学模式的一次革新,它要求学生不仅要掌握数学知识,更要具备运用数学知识解决实际问题的能力。
这对于学生的终身学习和未来的职业发展都具有重要的意义。
2024年高考数学试题(新课标II卷)
2024年高考数学试题(新课标II卷)一、选择题:本题共8小题,每小题5分,满分40分.每小题给出的四个选项中,只有一个是符合题意的.1.已知z=-1-i,则z =A.0B.1C.2D.22.已知命题p:∀x∈R,x+1>1;命题q:∃x>0,x3=x,则A.p和q都是真命题B.¬p和q都是真命题C.p和¬q都是真命题D.¬p和¬q都是真命题3.已知向量a,b满足:a =1,a+2b=2,且b-2a⊥b,则b =A.12 B.22 C.32 D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理如下表所示.亩产[900,950)[950,1000)[1000,1050)[1050,1150)[1150,1200)频数612182410根据表中数据,下列结论正确的是A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过40%C.100块稻田亩产量的极差介于200kg到300kg之间D.100块稻田亩产量的平均值介于900kg到1000kg之间5.已知曲线C:x2+y2=16y>0,从C上任意一点P向x轴作垂线段PP ,P 为垂足,则线段PP 的中点M的轨迹方程为A.x216+y24=1y>0B.x216+y28=1y>0C.y216+x24=1y>0D.y216+x28=1y>06.设函数f x =a x+12-1,g x =cos x+2ax(a为常数),当x∈-1,1时,曲线y=f x 和y=g x 恰有一个交点,则a=A.-1B.12 C.1 D.27.已知正三棱台ABC-A B C 的体积为523,AB=6,A1B1=2,则AA 与平面ABC所成角的正切值为A.12 B.1 C.2 D.38.设函数f x =x+aln x+b,若f x ≥0,则a2+b2的最小值为A.18 B.14 C.12 D.1二、选择题:本题共3小题,每小题6分,满分18分.每小题给出的备选答案中,有多个选项是符合题意的.全部选对得6分,部分选对得3分,选错或不选得0分.9.对于函数f x =sin2x和g x =sin(2x-π4),下列正确的有A.f x 与g x 有相同零点B.f x 与g x 有相同最大值C.f x 与g x 有相同的最小正周期D.f x 与g x 的图象有相同对称轴10.抛物线C:y2=4x的准线为l,P为C上动点,过P作⊙A:x2+y-42=1的一条切线,Q为切点.过P作C的垂线,垂足为B,则A.l与⊙A相切B.当P、A、B三点共线时,PQ=15C.当PB=2时,P A⊥AB D.满足P A=PB的点A有且仅有2个11.设函数f x =2x3-3ax2+1,则A.当a>1时,f x 的三个零点B.当a<0时,x=0是f x 的极大值点C.存在a,b,使得x=b为曲线f x 的对称轴D.存在a,使得点1,f1为曲线y=f x 的对称中心三、填空题:本题共3小题,每小题5分,满分15分.12.记S n为等差数列a n的前n项和,若a3+a4=7,3a2+a5=5,则S10=.13.已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sinα+β=.14.在下图的4*4方格表中有4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法;在符合上述要求的选法中,选中方格中的四个数之和的最大值是.12345678910111213141516四、解答题:本题共5小题,满分87分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本题满分13分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin A+3cos A=2.(1)求A;(2)若a=2,2b sin C=c sin2B,求△ABC的周长.16.(本题满分15分)已知函数f x =e x -ax -a 3.(1)当a =1时,求曲线y =f x 在点1,f 1 处的切线方程;(2)若f x 有极小值,且极小值小于0,求a 的取值范围.17.(本题满分15分)如图,平面四边形ABCD 中,AB =8,CD =3,AD =53,∠ADC =90°,∠BAD =30°,点E ,F 满足AE =75AD ,AF =12AB,将△AEF 沿EF 对折至△PEF ,使得PC =43.(1)证明:EF ⊥PD ;(2)求面PCD 与面PBF 所成的二面角的正弦值.ABCDEFP18.(本题满分17分)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中1次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若p =0.4,q =0.5,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率;(2)假设0<p <q .(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.(本题满分17分)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1,按照如下公式依次构造点P n n =2,3,⋯ :过点P n -1作斜率为k 的直线与C 的左支点交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对于任意正整数n ,S n =S n +1.。
新课标三高考数学
新课标三高考数学随着教育改革的不断深入,新课标三高考数学作为高中数学教学的重要组成部分,其重要性日益凸显。
新课标三高考数学不仅考察学生的数学基础知识和基本技能,更注重考察学生的数学思维能力、创新能力和实践能力。
本文将从以下几个方面对新课标三高考数学进行探讨:课程内容、教学方法、考试形式以及备考策略。
一、课程内容新课标三高考数学的课程内容涵盖了高中数学的多个领域,包括但不限于代数、几何、概率统计、函数与方程等。
这些内容不仅要求学生掌握数学的基本概念、基本原理和基本方法,还要求学生能够运用这些知识解决实际问题。
1. 代数:包括数列、不等式、复数、矩阵等,重点培养学生的抽象思维能力。
2. 几何:包括平面几何、立体几何、解析几何等,重点培养学生的空间想象能力和逻辑推理能力。
3. 概率统计:包括随机事件的概率、统计数据的收集与分析等,重点培养学生的数据分析能力和问题解决能力。
4. 函数与方程:包括函数的性质、方程的解法等,重点培养学生的数学建模能力和创新思维能力。
二、教学方法为了更好地适应新课标三高考数学的要求,教学方法也需要进行相应的改革和创新。
1. 启发式教学:教师应通过提问、讨论等方式激发学生的思考,引导学生主动探索数学知识。
2. 探究式学习:鼓励学生通过实验、调查等方式自主探究数学问题,培养学生的实践能力和创新能力。
3. 合作学习:通过小组合作、讨论等方式,培养学生的团队协作能力和沟通能力。
4. 信息技术的应用:利用计算机、网络等信息技术辅助教学,提高教学效率和学生的学习兴趣。
三、考试形式新课标三高考数学的考试形式也进行了相应的改革,以更好地考察学生的综合能力。
1. 选择题:考察学生的基础知识和基本技能。
2. 填空题:考察学生的计算能力和逻辑推理能力。
3. 解答题:考察学生的综合运用能力和创新思维能力。
4. 应用题:考察学生运用数学知识解决实际问题的能力。
四、备考策略为了在新课标三高考数学中取得好成绩,学生需要采取有效的备考策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高考数学试卷分析及2014年高考第二、三轮复习策略一、试卷分析1.考试范围考试范围分为必考内容和选考内容。
必考内容具体如下:必修1:集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)必修2:立体几何初步、平面解析几何初步必修3:算法初步、统计、概率必修4:基本初等函数Ⅱ(三角函数)、平面向量、三角恒等变换.必修5:解三角形、数列、不等式选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何选修2—2:导数及其应用、推理与证明、数系的扩充与复数的引入选修2—3:计数原理、统计案例、概率选考内容如下:选修4—1:几何证明选讲选修4—4:坐标系与参数方程选修4—5:不等式选讲2.考试要求数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。
数学科考试要发挥数学作为基础学科的作用,既考查中学数学的知识和方法,又要考查考生进入高校继续学习的潜能。
3.试卷结构(1)试题类型全卷分为第Ⅰ卷和第Ⅱ卷两部分,满分为150分.试卷结构如下:(2)难度控制试题按其难度分为容易题、中等题和难题。
难度在0.7以上的试题为容易题,难度为0.4~0.7的试题是中等难度题,难度在0.4以下的试题为难题.三种难度的试题应控制合适的分值比例,全卷难度控制适中。
高频考点1.侧重于支撑学科体系的主干内容的考查函数、数列、不等式、三角、立体几何、解析几何、概率统计是高中数学的主干内容,也是高考所考查的重点。
核心知识是不会有意识回避的,诸如函数的图象与性质、三角函数简单的变形、不等式的应用、等差(等比)数列、曲线与方程(直线、圆、椭圆)、空间中直线与平面的位置关系、几何体的有关计算、概率统计在实际生活中的应用等,在每年的试题中都会重复考查。
2.侧重于必修模块的考查一般必修内容占百分之七十左右,选修内容占百分之三十左右。
3.侧重对新增内容的考查新增内容的考查占百分之二十左右。
新增内容包括:算法、样本估计总体、线性回归(最小二乘法)、独立性检验、全称量词与特称量词、几何概型、定积分、推理与证明、参数方程、极坐标、条件概率等都是新课标增加的内容。
此外还有一些新增加的概念:函数零点、超几何分布、两点分布等。
2013年高考数学(新课标)卷分析1.试卷考点内容统计及所占分值2.注重基础考查试题区分度明显纵观全卷,选择题简洁平稳,填空题难度适中,解答题层次分明.选择、填空题考查知识点单一,注重了对基础知识、基本方法、基本技能及高中数学主干知识的考查,有利于稳定考生情绪,也有助于考生发挥出自己理想的水平.而在解答题中,每道题均以多问形式出现,其中第一问相对容易,大多数考生能顺利完成;而第二问难度逐渐加大,灵活性渐强,对知识的迁移和应用知识解决问题的能力要求较高,给个性品质优秀、数学成绩良好的考生留有较大的展示空间.3.淡化技巧重视通法能力立意强化思维试题淡化特殊技巧,注重通性通法和对数学思想方法的考查.如第(10)、(11)题考查了数形结合思想;第(21)题涉及函数与方程思想及分类讨论思想等.试卷突出对五个能力和两个意识的考查.如第(6)、(16)、(21)题重点考查数学思维能力;第(4)、(7)、(9)、(18)题考查空间想象能力;第(3)、(11)、(20)题综合考查思维能力、运算能力、实践能力、创新意识和应用意识等.4.诠释考试说明内涵运算能力决定成败试题以高中内容为主,但高层次包括低层次的内容,例如在立体几何中考查平面几何的性质和数值的运算,在解三角形和解析几何中包含着方程思想,试题表述比较常规,运算能力与运算手段决定了考试的成败.试题对今后复习的启示1.研究课标,重视课标的指导性作用;2.研讨考纲,重视考纲的方向性作用;3.研究高考真题,重视真题的示范性作用;4.回归教材,重视教材的基础性作用。
二、考试大纲解读高考命题的依据高考命题的依据是《考试说明》.但最根本的依据是教材.•教材是课程的载体和具体化,是高考中、低档试题的直接来源,•因此,高考命题最根本的依据是教材试题考什么?依据《考试说明》制定.试题内容怎么呈现?依据教材.•依纲靠本,依据教材编题,不易偏离教材,不易产生偏题、怪题或过难的题.•易切合学生实际,有利于检查知识,考查能力,稳定心态,正常发挥.易实现考试目标.注意“新课标内容变化”1、《课标》新增内容●必修部分必修1:幂函数。
函数与方程。
函数模型及其应用。
必修2:投影,三视图。
必修3:算法初步。
统计部分频率折线图,茎叶图,由直方图估计总体的数字特征,变量的相关性。
概率部分随机数,几何概型。
●必选部分:(1)全称量词,存在量词。
(文1—1理2—1)(2)回归分析,独立性检验.(文1—2理2—3)(3)文科还增加两个内容:①“导数”部分求导公式由2个增加为8个,要求与理科一致。
②增加了复数,与理科要求一致。
③框图(工序流程图、结构图)。
(4)理科还增加三个内容:①条件概率。
②超几何分布。
③定积分。
●选考部分:选修系列4三个专题:几何证明选讲。
(4—1)坐标系与参数方程。
(4—4)不等式选讲。
(4—5)2、《课标》删去的内容(1)立体几何中的三垂线定理及其逆定理;异面直线的距离,点到平面的距离,平行平面间的距离的求解.(2)直线和圆中两条直线所成的角,夹角公式,到角公式,圆的参数方程(移到选修系列4-4中) .(3)三角函数中的余切函数,同角三角函数的基本关系式tanαcotα =1,已知三角函数值求角.(4)平面向量中线段定比分点公式,平移公式.(5)不等式中分式不等式,含绝对值的不等式的解法,|a|-|b|≤|a+b|≤ |a|+|b| 的理解(移到选修系列4-5中).(6)圆锥曲线中椭圆的参数方程(移到选修系列4-4中).(7)理科排列、组合中组合数的两个性质.文科排列、组合、二项式定理整章.3、《课标》降低要求的内容(1)函数中的反函数:《课标》只要求了解指数函数与对数函数互为反函数,不要求一般性地讨论反函数定义,也不要求求反函数.(2)数列要保证基本技能的训练,但要控制难度和复杂程度.(3)立体几何中对于柱、锥、台、球及其简单组合体,《课标》只要求认识其结构特征,会求表面积和体积(从2012年开始公式要求记忆),对棱柱、正棱锥、正棱台、球的性质不作要求.(4)计数原理中完成一件事的方法种数N=m1+m2或N=m1×m2.(5)概率中对于古典概型,《课标》仅要求利用“列举法”求概率,不要求利用排列组合和计数原理求概率。
(6)解析几何中,对双曲线、抛物线的定义、几何图形和标准方程的要求由“掌握”降为“了解”,对其有关性质由“掌握”降为“知道(了解层次)”。
(7)对于极限不要求利用运算法则求极限,只在导数部分出现极限符号,以达到“能够了解导数概念的实际背景”,“通过函数图像直观理解导数的几何意义”的目的即可。
不要求用函数的极限分析函数的连续性,能用函数图象是一条连续不断的曲线说明函数的连续性即可。
4.数学知识关于“考核目标与要求 ”1、在知识要求方面由“传统内容”要求的三个层次“了解、理解和掌握、灵活和综合运用”改变为“大纲”要求的“了解、理解、掌握”三个层次。
并对这三个层次的含义作了新的定义,首次在“大纲”中对能力级别的行为动词进行了归类,给出了这一层次所涉及的行为动词。
1、在知识要求方面(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识之间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学知识内容对有关问题进行比较、判断、讨论,具备利用所学的知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等。
(2013全国课标卷·文·12) 若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞ 【解析】因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数(),()2x f x x a g x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,所以选D.(2012全国课标卷·理·5)已知{}n a 为等比数列, 472a a +=,568a a =-,则110a a +=( ) ()A 7 ()B 5 ()C -5 ()D -7 【解析】472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=- 选D1、在知识要求方面(3)掌握:要求能够对所列知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。
2、在能力要求方面由“传统内容”的五项指标“思维能力、运算能力、空间想象能力、实践能力、创新意识”增加到了“大纲”的七项指标“空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、应用意识、创新意识”;将“思维能力”修改为更加明确的要求,既“抽象概括能力、推理论证能力”。
增加了“数据处理能力”,将“实践能力”也变成了“应用意识”,给出了新的解释,在用词、变化、排序等方面都充分体现了“课程标准”理念,在解读“大纲”时要重视这种变化。
(1)空间想像能力能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。
(2013全国课标卷·文·12) 若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )(A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【解析】因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数(),()2x f x x a g x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,所以选D.【解析】在空间直角坐标系中,先画出四面体的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),所以选A.【解析】在空间直角坐标系中,先画出四面体的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),所以选A.(2)抽象概括能力抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某类对象的公共属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而(2013全国课标卷·理·7) 一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视 图可以为(A) (B) (C) (D)概括必须在抽象的基础上得出某种观点和某个结论。