2020北师大版初中七年级下册数学期末考试试卷及答案
2020北师大版七年级数学下学期期末数学测试题含答案
2020七年级下学期期末数学测试题一.精心选一选 (以下每小题给出的四个选项中,只有一个选项是正确的,将正确选项前的字母填在题后的括号内.本题有10小题,每小题3分,共30分)1.下列各式计算结果正确的是( )A .2a a a =+B .()2263a a =C .()1122+=+a a D .2a a a =⋅ 2.2004年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元,136515亿元用科学记数法表示(保留4个有效数字)为( )A .121.36510⨯元;B .131.365210⨯元;C .121.36510⨯元;D .121.36510⨯元3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个4.下列说法正确的是( )A .如果一件事不可能发生,那么它是必然事件,即发生的概率是1;B .概率很大的事情必然发生;C .若一件事情肯定发生,则其发生的概率1≥P ;D .不太可能发生的事情的概率不为05.下列关于作图的语句中正确的是( )A .画直线AB =10厘米;B .画射线OB =10厘米;C .已知A .B .C 三点,过这三点画一条直线;D .过直线AB 外一点画一条直线和直线AB 平行6.如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是( )A .60°B .70°C .80°D .90°7.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短8.下列乘法中,不能运用平方差公式进行运算的是( )A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )9.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,1l .2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( )A .骑车的同学比步行的同学晚出发30分钟;B .步行的速度是6千米/时;C .骑车的同学从出发到追上步行的同学用了20分钟;D .骑车的同学和步行的同学同时达到目的地l 23060545006y(千米)x(分)l 1 F E DC BA10.如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与△DEF 全等的是( ) A .(1)(5)(2) B .(1)(2)(3) C .(2)(3)(4) D .(4)(6)(1)二、耐心填一填 (请直接将答案填写在题中的横线上,每题3分,共24分)11.等腰三角形的一个角为100°,则它的底角为 .12.()32+-m (_________)=942-m ; ()232+-ab =_____________. 13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= ,P(摸到偶数)= .(第15题) (第17题) (第18题)15.如图,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交与点E ,若∠1=43°,则∠2= 度.16.有一个多项式为a 8-a 7b +a 6b 2-a 5b 3+…,按照此规律写下去,这个多项式的第八项是_____________.17.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是 分钟.三、细心算一算:19.(4分)①)()(2322c ab c ab ÷ (4分)②2)())((y x y x y x ++---20.(5分)先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a .21.(4分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?22.(6分)如图所示:ΔABC的周长为24cm,AB=10cm,边AB的垂直平分线DE交BC边于点E,垂足为D,求ΔAEC的周长.四、用心想一想23.(6分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,你能找出一对全等的三角形吗?为什么它们是全等的?24.(5分)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a、b的等式.25.(5分)已知如图,要测量水池的宽AB,可过点A作直线AC ⊥AB,再由点C观测,在BA延长线上找一点B’,使∠ACB’= ∠AC B,这时只要量出AB’的长,就知道AB 的长,对吗?为什么?26.(6分)请你设计一个摸球游戏:在袋子中装有若干个黄球、绿球和红球,使摸到球的概率:P (摸到红球)=41;P (摸到黄球)=32;P (摸到绿球)=121,那么袋子中黄球、绿球和红球至少各需要多少个?五、识图与计算:27.(12分)如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按同路从A 地出发驶往B 地,如图所示,图中的折线PQR 和线段MN 分别表示甲、乙所行驶的路程S 与该日下午时间t 之间的关系. 根据图象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个更早到达B 城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.(9分)下图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.24681012周一周二周三周四周五周六周日答 案1~10:DACDD BABDC11.40°; 12.32--m ,912422+-ab b a ; 13.E6395;14.101,21; 15.133°; 16.7ab -; 17.AB=DC 或∠A=∠D ; 18.37.2; 19.①)c ab ()c ab (2322÷=)c ab (c b a 23242÷=ab ②xy y 222+20.a a 332+,值为6.21.21 22.ΔAEC 的周长=AE+EC+AC=BE+EC+AC=BC+AC=24-10=14cm .23.△AED ≌△AFD .理由: 因为∠AED=∠AFD ,∠EAD=∠F AD ,AD 是公共边, 所以它们全等(AAS ).(或理由:因为角的平分线上的点到这个角的两边距离相等, 所以DE=DF ,AD 是公共的斜边,所以它们全等(HL ).)24.()()ab b a b a 422+==+等. 25.对,用ASA 可以证明三角形全等.26.红球3个,黄球8个,绿球1个.27.(1)甲比乙出发更早,要早1小时(2)乙比甲早到B 城,早了2个小时(3)乙出发半小时后追上甲(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B 城(5)乙的速度为50千米/时,甲的平均速度为12.5千米/时.28.(1)周三,1元,10元,(2)周一与周五都是6元,周六和周日都是10元,(3)()67101065146=÷++++++(元);(4)略.。
2020年北师大版七年级数学下册期末测试题(含答案)
精品试题精品试题,如需请下载,希望能帮到你第 1 页共 15 页第 2 页共 15 页第 3 页 共 15 页4- 6- 52020 年北师大版七年级数学下册期末测试题(含答案)一、 选择题( 每题 3 分,共 18 分)1、给出下列图形名称:( 1)线段 ( 2)直角 ( 3)等腰三角形 ( 4)平行四边形 ( 5)长方形,在这五种图形中是轴对称图形的有()A 、1 个B 、2 个C 、3 个D 、4 个2、下列运算正确的是()。
A 、 a5a5a10B 、 a6a4a24C 、 aa1a D 、 a4a4a3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A 、4B 、1 C 、1D215 35154、1 纳米相当于 1 根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径 ..是()A 、6 万纳米 B 、6×10 纳米C 、3×10 米D 、3×10 米5、下列条件中,能判定两个直角三角形全等的是()A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )( 1)汽车行驶时间为 40 分钟;( 2) AB 表示汽车匀速行驶;( 3)在第 30 分钟时,汽车的速度是90 千米/时;( 4)第 40 分钟时,汽车停下来了.A 、1 个B 、2 个C 、3 个D 、4 个速度 80 C D60 40 20AB1时间5 10 15 20 25 30 35 40第 4 页共 15 页第 5 页 共 15 页22二、填空题 (每空 3 分,共 27 分)AD7、单项式1 xy 3的次数是 .3OC8、一个三角形的三个内角的度数之比为 2: 3: 4,则该三角形按角分应为 三角形.B9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006 年中央财政用于“三农”的支出将达到33970000 万元,这个数据用科学记数法可表示为万元.10、如图AOB=125,AO O C , B0 0D 则COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1 道题不会做,于是随意选了一个答案 ( 每小题 4 个项) ,他选对的概率是.12、若 a22ka 9 是一个完全平方式,则 k 等于.13 、 2m 3 ( )= 4m2914、已知:如图,矩形 ABCD 的长和宽分别为 2 和 1,以 D 为圆心, AD 为半径作 AE 弧,再以 AB 的中点 F 为圆心, FB 长为半径作 BE 弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=5 ;2×3×4×5+1=121=11 2:3×4×5×6+1=361=19 ;2根据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1= 。
2020最新北师大版初中数学七年级下册期末试卷及答案〈精〉
2020最新北师大版初中数学七年级下册期末试卷及答案〈精〉第2题图nm ba70°70°110°第3题图C B A2112第六题图DCB A七年级数学(下)期末考试卷一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是。
5、汽车司机在观后镜中看到后面一辆汽车的车牌号为,则这辆车的实际牌照是。
6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=na 。
8、已知412+-kx x 是一个完全平方式,那么k 的值为。
9、近似数25.08万精确到位,有位有效数字,用科学计数法表示为。
10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是() A . a 2+ a 2=a 4B. 211a a a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数,让参加者876954521第1页共4页DCBA DC B A FED CBA ED CBA 猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是()A. 91B. 61 C. 51 D. 3113、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()15、教室的面积约为60m 2,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是() A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个18、如图,点E 是BC 的中点,AB⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是()A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④第2页共4页乙甲BA OEDCBA三、解答题(共66分)19、计算(每小题4分,共12分)(1)201220112)23()32()31(-?--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分)某地区现有果树24000棵,计划今后每年栽果树3000棵。
2020年北师大版七年级数学下册期末测试题(含答案)(20211206014431)
2020 年北师大版七年级数学下册期末测试题(含答案)一、选择题(每题 3 分,共 18 分)1、给出以下图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()A、1个B、2个C、3个D、4个2、以下运算正确的选项是()。
A、a5 a 5a10B、a6 a 4 a 24C、a0 a 1aD、a4 a 4 a 03、一只小狗在如图的方砖上走来走去,最后停在暗影方砖上的概率是()A、4B、1C、1D 215 3 5 154、 1 纳米相当于 1 根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径..是()A、6 万纳米 B 、 6×104纳米 C 、3×10-6米 D 、3×10-5米5、以下条件中,能判断两个直角三角形全等的是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等6、如图,以下图是汽车行驶速度(千米/时)和时间(分)的关系图,以下说法此中正确的个数为()(1)汽车行驶时间为 40 分钟;( 2) AB表示汽车匀速行驶;(3)在第 30 分钟时,汽车的速度是 90 千米/时;( 4)第 40 分钟时,汽车停下来了.速度A、1个B、2个C、3个D、4个8060C D4020 A B 1时间5 10 15 20 25 30 35 40二、填空题(每空 3 分,共 27 分)A D1xy3的次数是7、单项式.3CO8、一个三角形的三个内角的度数之比为2: 3: 4,则该三角形按角分应为三角形. B9、在十届全国人大四次会议上谈到解决“三农”问题时说, 2006 年中央财政用于“三农”的支出将达到33970000 万元,这个数据用科学记数法可表示为万元.10、如图0D 则COD= .AOB=125,AO OC, B011、小明同学平常不用功学习,某次数学测试做选择题时,他有 1 道题不会做,于是任意选了一个答案( 每小题 4 个项 ) ,他选对的概率是.12、若a2 2ka 9 是一个完整平方式,则k 等于.13、2m 3 (_________)=4m2 914、已知:如图,矩形ABCD的长和宽分别为 2 和 1,以 D 为圆心,AD 为半径作AE 弧,再以AB的中点 F 为圆心, FB 长为半径作BE 弧,则暗影部分的面积为.15、察看以下运算并填空:1× 2× 3× 4+1=25=52;2× 3× 4× 5+1=121=112:3× 4× 5× 6+1=361=192;2依据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1=。
2020北师大版七年级数学下册期末测试题(含答案)
精品试题,如需请下载,希望能帮到你2020 北师大版七年级数学下册期末测试题(含答案)一、选择题(每题 3 分,共18 分)1、给出下列图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()A、1 个 B 、2 个 C 、3 个 D 、4 个2、下列运算正确的是()。
A、a 5 a 5 a 10B、a6 a 4 a 24C、a 0 a 1 aD、a 4 a 4 a 03、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A、4 B 、1 C 、1 D 215 3 5 154、1 纳米相当于1 根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径..是()A、6 万纳米 B 、6×104 纳米 C 、3×10 -6 米 D 、3×10-5 米5、下列条件中,能判定两个直角三角形全等的是()A、一锐角对应相等 B 、两锐角对应相等C、一条边对应相等 D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40 分钟;(2)AB表示汽车匀速行驶;( 3)在第 30 分钟时,汽车的速度是 90 千米/时;( 4)第 40 分钟时,汽车停下来了.速度C DAB时间二、填空题 (每空 3 分,共 27 分)5 10 15 20 25 30 35 40AD7、单项式 1 xy 3的次数是 .3OC8、一个三角形的三个内角的度数之比为 2: 3: 4,则该三角形按角分应为B三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说, 2006 年中央财政用于“三农”的支出将达到 33970000万元,这个数据用科学记数法可表示为万元.10、如图 AOB=1205,AO OC ,B0 0D 则 COD=.11、小明同学平时不用功学习,某次数学测验做选择题时,他有1 道题不会做,于是随意选了一个答案( 每小题 4 个项) ,他选对的概率是.12、若 a 2 2 k a 9 是一个完全平方式,则 k 等于 .13 、 2m 3 ()= 4m 2 914、已知:如图,矩形 ABCD 的长和宽分别为 2 和 1,以 D 为圆心, AD 为半径作 AE 弧,再以AB 的中点 F 为圆心, FB 长为半径作 BE 弧,则阴影部分的面积为.A 、1 个B 、2 个C 、3 个D 、4 个8060 40 2015、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112 :3×4×5×6+1=361=192 ;根据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1= 。
2020最新北师大版七年级数学下册期末考试试卷及答案
(北师大版)七年级数学下册期末模拟检测试卷及答案(本检测题满分:120分 时间:120分钟)一、选择题(每小题3分,共30分) 1.如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( ) A .100° B .60° C .40° D .20° 2.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( )A .2m 2n -3mn +n 2B .2n 2-3mn 2+n 2C .2m 2-3mn +n 2D .2m 2-3mn +n 3.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C .D .4.下列说法正确的个数为( )⑴形状相同的两个三角形是全等三角形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.A.3B.2C.1D.05.某电视台“走基层”栏目的一位记者乘汽车赴360 km 处的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( ) A .汽车在高速公路上的行驶速度为100 km/h B .乡村公路总长为90 kmC .汽车在乡村公路上的行驶速度为60 km/hD .该记者在出发后4.5 h 到达采访地6.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A.13 B.16 C.12 D.147.如图所示,在△ABC 中,AQ =PQ ,PR =PS ,,RAP SAP ∠=∠PR ⊥AB 于点R ,PS ⊥AC 于点S ,则三个结论①AS =AR ;②QP ∥AR ;③△BPR ≌△QPS 中( )A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确CBA8.如图所示是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A.△ABD ≌△ACDB.AF 垂直平分EGC.直线BG ,CE 的交点在AF 上D.△DEG 是等边三角形9.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题,如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1为( ) A.60° B.30° C.45° D.50° 10.如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等的是( ) A.∥B.C.∠=∠D.∠=∠二、填空题(每小题3分,共24分)11.若代数式x 2+3x +2可以表示为(x -1)2+a (x -1)+b 的形式,则a +b 的值是 .12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为4、8、9的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的和为奇数,则甲获胜;若所抽取的两张牌面数字的和为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)13.如图所示,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2,则∠BPC =________.14.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数,)表格中反映的变量是 ,自变量是 ,因变量是 .(2)估计小亮家4月份的用电量是 千瓦时,若每千瓦时电是0.49元,估计他家4月份应交的电费是 元.15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:第9题图第8题图第7题图21PCBA第13题图第10题图根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 16.如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.17.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF .给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是 (将你认为正确的结论的序号都填上). 18.如图所示,在△中,是的垂直平分线,,△的周长为,则△的周长为______.三、解答题(共66分)19.(6分)下列事件哪些是随机事件,哪些是确定事件? (1)买20注彩票,中500万.(2)袋中有50个球,1个红球,49个白球,从中任取一球,取到红球. (3)掷一枚均匀的骰子,6点朝上.(4)100件产品中有2件次品,98件正品,从中任取一件, 刚好是正品.(5)太阳从东方升起. (6)小丽能跳高.20.(7分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人都行驶在途中?(不包括起点和终点)21.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投ABDCO E第16题图 第18题图第17题图Oy /kmx /min掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 22.(8分)把一副扑克牌中的三张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用列表法分析游戏规则对双方是否公平,并说明理由. 23.(8分)在正方形网格图①、图②中各画一个等腰三角形,每个等腰三角形的一个顶点为格点A ,其余顶点从格点B 、C 、D 、E 、F 、G 、H 中选取,并且所画的三角形不全等.第24题图321G BA CD E24.(9分)如图,于点,于点,.请问:平分吗?若平分,请说明理由.25.(10分)已知:在△中,,,点是的中点,点是边上一点.(1)垂直于点,交于点(如图①),求证:.(2)垂直,垂足为,交的延长线于点(如图②),找出图中与相等的线段,并证明.26.(10分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ;(2)AB =BC +AD .参考答案1.A 解析:过点C 作CD ∥a ,∵ a ∥b ,∴ CD ∥a ∥b , ∴ ∠ACD =∠1=40°,∠BCD =∠2=60°, ∴ ∠3=∠ACD +∠BCD =100°.故选A .2.C 解析:(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )=-8m 4n ÷(-4m 2n )+12m 3n 2÷(-4m 2n )-4m 2n 3÷(-4m 2n )=2m 2-3mn +n 2.故选C .第23题图第25题图①②第26题图3.D 解析:观察图形可知:单独涂黑的角顺时针旋转,只有D符合.故选D.4. C 解析:(1)形状相同但大小不一样的两个三角形也不是全等三角形,所以(1)错误;(2)全等三角形中互相重合的边叫做对应边,互相重合的角叫做对应角,如果两个三角形是任意三角形,就不一定有对应角或对应边了,所以(2)错误;(3)正确,故选C.5.C 解析:A.汽车在高速公路上的行驶速度为180÷2=90(km/h),故本选项错误;B.乡村公路总长为360-180=180(km),故本选项错误;C.汽车在乡村公路上的行驶速度为90÷1.5=60(km/h),故本选项正确;D.2+(360-180)÷[(270-180)÷1.5]=2+3=5 (h),故该记者在出发后5 h到达采访地,故本选项错误.故选C.6. C 解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为12.7.B 解析:∵PR=PS,PR⊥AB于点R,PS⊥AC于点S,AP=AP,∠RAP=∠SAP,∴△ARP≌△ASP,∴AS=AR.∵AQ=PQ,∴∠QPA=∠QAP,∴∠RAP=∠QPA,∴QP∥AR.∴①,②都正确.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.8. D 解析:A.因为此图形是轴对称图形,正确;B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D.题目中没有60°条件,不能判断是等边三角形,错误.故选D.9.A 解析:∵台球桌四角都是直角,∠3=30°,∴∠2=60°.∵∠1=∠2,∴∠1=60°,故选A.10. C 解析:A.∵∥,∴∠=∠.∵∥∴∠=∠.∵,∴△≌△,故本选项可以证出全等;B.∵=,∠=∠,∴△≌△,故本选项可以证出全等;C.由∠=∠证不出△与△全等,故本选项不可以证出全等;D.∵∠=∠,∠∠,,∴△≌△,故本选项可以证出全等.故选C.11.11 解析:∵x2+3x+2=(x-1)2+a(x-1)+b=x2+(a-2)x+(b-a+1),∴a-2=3,b-a+1=2,∴a=5,∴b-5+1=2,∴b=6,∴a+b=5+6=11,故答案为11.12.不公平解析:甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平.13.110°解析:因为∠A=40°,∠ABC= ∠ACB,所以∠ABC= ∠ACB=(180°-40°)=70°.又因为∠1=∠2,∠1+∠PCB =70°,所以∠2+∠PCB =70°, 所以∠BPC =180°-70°=110°.14.(1)日期、电表读数 日期 电表读数 (2)120 58.8解析:(1)变量有两个:日期和电表读数,自变量为日期,因变量为电表读数; (2)每天的用电量:(49﹣21)÷7=4,4月份的用电量=30×4=120千瓦时, ∵ 每千瓦时电是0.49元,∴ 4月份应交的电费=120×0.49=58.8(元). 15.解析:由表知,种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值. 16.4 解析:△和△,△和△△和△△和△共4对.17.①②③ 解析:∵ ∠E =∠F =90°,∠B =∠C ,AE =AF , ∴ △ABE ≌△ACF .∴ AC =AB ,∠BAE =∠CAF ,BE =CF ,∴ ②正确.∵ ∠B =∠C ,∠BAM =∠CAN ,AB =AC ,∴ △ACN ≌△ABM ,∴ ③正确. ∵∠1=∠BAE -∠BAC ,∠2=∠CAF -∠BAC ,又∵ ∠BAE =∠CAF , ∴ ∠1=∠2,∴ ①正确, ∴ 题中正确的结论应该是①②③.18. 19 解析:因为是的垂直平分线,所以,所以因为△的周长为,所以所以.所以△的周长为19.解:(1)买20注彩票,中500万,虽然可能性极小,但可能发生,是随机事件; (2)袋中有50个球,1个红球,49个白球,从中任取一球,取到红球,是随机事件; (3)掷一枚均匀的骰子,6点朝上,是随机事件;(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品,是随机事件; (5)太阳从东方升起,是确定事件;(6)小丽能跳高,不可能发生,是确定事件. 20.解:由图象可知:(1)甲先出发,先出发10 min 乙先到达终点,先到5 min . (2)甲的速度为6÷30=0.2(km/min ),乙的速度为6÷15=0.4(km/min ). (3)在甲出发后10 min 到25 min 这段时间内,两人都行驶在途中. 21.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概 率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数 不一定是100次.22.解:游戏规则不公平.理由如下: 列表如下:由上表可知,所有可能出现的结果共有9种, 故3193==,3296==. ∵31<32,∴ 此游戏规则不公平,小李赢的可能性大. 23. 解:以下答案供参考.图④、⑤、⑥中的三角形全等,只需画其中一个. 24. 解: 理由:因为于点,于点(已知),所以(垂直的定义),所以∥(同位角相等,两直线平行), 所以(两直线平行,内错角相等),(两直线平行,同位角相等).又因为(已知),所以(等量代换).所以平分(角平分线的定义). 25.(1)证明:因为垂直于点,所以∠,所以.又因为∠∠,所以∠∠.第23题答图因为, ∠,所以.又因为点是的中点,所以.因为,,,所以△≌△(ASA),所以.(2)解:.证明如下:在△中,因为,∠,所以,∠∠.因为,即∠,所以,所以.因为为等腰直角△斜边上的中线,所以,.在△和△中,,,,所以△≌△,所以.26.分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等).∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∠ADE=∠FCE,DE=CE,∠AED=∠FEC,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的对应边相等).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等).又BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF.∵BC+CF,又AD=CF(已证),∴AB=BC+AD(等量代换).。
2020北师大版七年级数学下册期末试卷-含答案
最新2020北师大版七年级数学下册期末试卷-含答案-CAL-FENGHAI.-(YICAI)-Company One1北师大版七年级数学下期末达标检测卷(满分:120分时间:120分钟)一、选择题(每小题3分,共30分)1.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为( )2.人体中红细胞的直径约为0.0000077m,将数字0.0000077用科学记数法可表示为( ) A.77×10-5 B.0.77×10-7C.7.7×10-6 D.7.7×10-73.下列各组数作为三条线段的长能构成三角形的一组是( )A.2,3,5 B.4,4,8C.14,6,7 D.15,10,94.下列计算正确的是( )A.a4+a4=a8 B.(a3)4=a7C.12a6b4÷3a2b-2=4a4b2 D.(-a3b)2=a6b25.如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( ) A.∠B=48° B.∠AED=66°C.∠A=84° D.∠B+∠C=96°(第5题图)(第7题图)6.下列说法中不正确的是( )A.“某射击运动员射击一次,正中靶心”属于随机事件B.“13名同学至少有2名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到-1℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件7.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3的度数为( )A.55° B.50° C.45° D.60°8.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B 的度数是( )A.45° B.60° C.50° D.55°(第8题图)(第9题图)9.如图,扇形OAB上的动点P从点A出发,沿弧AB,线段BO,OA匀速运动到点A,则OP 的长度y与运动时间t的关系用图象表示大致是( )10.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列说法中:①∠ADE=∠F;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC=S.正确的个数有( )四边形DBCFA.4个 B.3个 C.2个 D.1个(第10题图)二、填空题(每小题3分,共24分)11.在△ABC中,若∠A∶∠B∶∠C=9∶13∶22,则这个三角形按角分类是________三角形.12.计算:(2m+3)(2m-3)=________;x(x+2y)-(x+y)2=________.13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,则小杰被抽到参加首次活动的概率是________.14.如图,直线a ,b 都垂直于直线c ,直线d 与a ,b 相交.若∠1=135°,则∠2=________°.(第14题图) (第15题图)15.如图,直线AB ∥CD ∥EF ,如果∠A +∠ADF =208°,那么∠F =________°.16.如图,在△ABD 和△ACE 中,有下列四个条件:①AB =AC ;②AD =AE ;③∠B =∠C ;④BD =CE .请以其中三个为条件,另一个为结果,写出一个正确的结论____________(用序号⊗⇒⊗⊗⊗形式写出).(第16题图)17.如图,在△ABC 中,BD 平分∠ABC 交AC 于D ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8.若S △ABC =28,则DE 的长为________.(第17题图) (第18题图)18.如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 的延长线交于点E ,则四边形AECF 的面积是________. 三、解答题(共66分) 19.(12分)计算或化简:(1)|-3|+(-1)2017×(π-3)0-⎝ ⎛⎭⎪⎫-12-3;(2)(-3ab2)3÷a3b3·(-2ab3c);(3)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).20.(6分)先化简,再求值:(3x+2y)2-(3x-2y)2+2(x+y)(x-y)-2x(x+4y),其中x=1,y=-1.21.(8分)如图,已知AB∥CD,DA平分∠BDC,∠A=∠C.(1)试说明:CE∥AD;(2)若∠C=30°,求∠B的度数.(第21题图)22.(8分)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C的度数.(第22题图)23.(10分)如图,在△ABC中,AB=AC,D,E,F分别在三边上,且BE=CD,BD=CF,G 为EF的中点.(1)若∠A=40°,求∠B的度数;(2)试说明:DG垂直平分EF.(第23题图)24.(10分)某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑.当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是__________________,因变量是__________________;(2)求小明和朱老师的速度;(3)小明与朱老师相遇________次,相遇时距起点的距离分别为________米.(第24题图)25.(12分)如图①,在△ABC中,∠BAC=90°,AB=AC,直线MN过点A,且MN∥BC,点D是直线MN上一点,不与点A重合.(1)若点E是图①中线段AB上一点,且DE=DA,请判断线段DE与DA的位置关系,并说明理由;(2)请在下面的A,B两题中任选一题解答.A:如图②,在(1)的条件下,连接BD,过点D作DP⊥DB交线段AC于点P,请判断线段DB 与DP的数量关系,并说明理由;B:如图③,在图①的基础上,改变点D的位置后,连接BD,过点D作DP⊥DB交线段CA 的延长线于点P,请判断线段DB与DP的数量关系,并说明理由.(第25题图)我选择:________.参考答案与解析一、1.B 2.C 3.D 4.D 5.B 6.C 7.A 8.C 9.D 10.A 二、11.直角 12.4m 2-9 -y 213.75014.45 15.28 16.①②④③(答案不唯一) 17.418.16 解析:根据题意可知∠BAE =∠DAF =90°-∠BAF ,AB =AD ,∠ABE =∠ADF =90°,∴△AEB ≌△AFD (ASA),∴S 四边形AECF =S 正方形ABCD =42=16. 三、19.解:(1)原式=3+(-1)×1-(-2)3=3-1+8=10.(4分) (2)原式=-27a 3b 6÷a 3b 3·(-2ab 3c )=-27b 3·(-2ab 3c )=54ab 6c .(8分)(3)原式=2a 3b 2÷(-2a 3b 2)-4a 4b 3÷(-2a 3b 2)+6a 5b 4÷(-2a 3b 2)=-1+2ab -3a 2b 2.(12分) 20.解:原式=9x 2+12xy +4y 2-9x 2+12xy -4y 2+2x 2-2y 2-2x 2-8xy =16xy -2y 2.(3分)当x =1,y =-1时,原式=16×1×(-1)-2×(-1)2=-18.(6分)21.解:(1)∵AB ∥CD ,∴∠A =∠ADC .(1分)∵∠A =∠C ,∴∠ADC =∠C ,∴CE ∥AD .(3分) (2)由(1),可得∠ADC =∠C =30°.∵DA 平分∠BDC ,∠ADC =∠ADB ,∴∠CDB =2∠ADC =60°.(6分)∵AB ∥DC ,∴∠B +∠CDB =180°,(9分)∴∠B =180°-∠CDB =120°.(8分) 22.解:∵AB =BD ,∴∠BDA =∠A .∵BD =DC ,∴∠C =∠CBD .(2分)设∠C =∠CBD =x ,则∠BDA =180°-∠BDC =2x ,(3分)∴∠A =2x ,∴∠ABD =180°-4x ,(4分)∴∠ABC =∠ABD +∠CBD =180°-4x +x =105°,解得x =25°,∴2x =50°,(6分)即∠A =50°,∠C =25°.(8分)23.解:(1)∵AB =AC ,∴∠C =∠B .∵∠A =40°,∴∠B =180°-40°2=70°.(4分)(2)连接DE ,DF .(5分)在△BDE 与△CFD 中,⎩⎪⎨⎪⎧BD =CF ,∠B =∠C ,BE =CD ,∴△BDE ≌△CFD (SAS),∴DE =DF .(8分)∵G 为EF 的中点,∴DG ⊥EF ,∴DG 垂直平分EF .(10分)24.解:(1)小明出发的时间t 距起点的距离s (2分)(2)小明的速度为300÷50=6(米/秒),朱老师的速度为(300-200)÷50=2(米/秒).(6分) (3)2 300和420(10分)25.解:(1)DE ⊥DA .(1分)理由如下:∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°.(2分)∵MN ∥BC ,∴∠DAE =∠B =45°.(3分)∵DA =DE ,∴∠DEA =∠DAE =45°,∴∠ADE =90°,即DE ⊥DA .(4分)(2)A DB =DP .(5分)理由如下:∵DP ⊥DB ,∴∠BDP =90°,∴∠BDE +∠EDP =90°.(8分)∵DE ⊥DA ,∴∠PDA +∠EDP =90°,∴∠BDE =∠PDA .(10分)∵∠DEA =∠DAE =45°,∴∠BED =135°,∠DAP =135°,∴∠BED =∠PAD .(11分)在△DEB 和△DAP 中,⎩⎪⎨⎪⎧∠BDE =∠PDA ,DE =DA ,∠BED =∠PAD ,∴△DEB ≌△DAP (ASA),∴DB =DP .(12分) B DB =DP .(5分)理由:如图,延长AB 至F ,连接DF ,使DF =DA .(6分)同(1)得∠DFA =∠DAF =45°,∴∠ADF =90°.∵DP ⊥DB ,∴∠FDB =∠ADP .(8分)∵∠BAC =90°,∠DAF =45°,∴∠PAD =45°,∴∠BFD =∠PAD .(9分)在△DFB 和△DAP 中,⎩⎪⎨⎪⎧∠FDB =∠ADP ,DF =DA ,∠BFD =∠PAD ,∴△DFB ≌△DAP (ASA),∴DB =DP .(12分)(第25题答图)。
2020年北师大版七年级数学下册期末数学试卷附答(一)
2020年北师大版七年级数学下册期末数学试卷附答一、选择题(共10小题;共50分)1. 计算的结果是A. B. C. D.2. 下列选项中是轴对称图形的是A. B.C. D.3. 已知三角形的两边长为,,则第三边的长度可能是A. B. C. D.4. 下列运算能用平方差公式的是A. B.C. D.5. 如图所示,已知直线,,其中,点在直线上,,若,则A. B. C. D.6. 为庆祝交通大学建校周年,我校特别推出校庆纪念卡片,卡片有两种,一种卡片正面印着交通大学的校训,另一种卡片正面印着交通大学的校徽,两种卡片除此之外完全相同.现将张校训卡和张校徽卡正面向下放置在桌面上,随机翻出张卡片.则下列事件是必然事件的是A. 至少有一张是校训卡B. 至少有一张是校徽卡C. 翻出的卡既有校训卡又有校徽卡D. 发出的卡片只有一种类型7. 如图,已知圆柱底面周长为,高为,在圆柱的侧面上,点和点相对,过点和点嵌有一圈金属丝,则这圈金属丝的长度最小为A. B. C. D.8. 已知,,则A. B. C. D.9. 如图,探索图中的规律,根据规律,从到箭头的方向是A. B.C. D.10. 如图,在四边形中,,,分别是,上的点,当周长最小时,的度数为A. B. C. D.二、填空题(共6小题;共30分)11. 氧原子的直径约为米,数据用科学记数法表示为.12. 将一枚质地均匀的骰子掷一次,向上一面的点数是质数的概率是.13. 如图,已知,分别是的外角,的平分线,其中,则.14. 直角三角形中,,,,点为线段上的动点,当点运动时,设,的面积为,则关于的表达式为.15. 等腰三角形一腰上的高线与另一腰夹角为,则该三角形的顶角为.16. 如图,在四边形中,,,为上一点,分别以,为折痕将这两个角(,)向内折起,点,恰好落在边的处,若,,则的面积为.三、解答题(共7小题;共91分)17. 计算:(1);(2).18. 如图,已知线段,,其中,求作直角三角形,使得为直角,,(尺规作图,保留作图痕迹,不写作法).19. 如图,已知荷叶高出水面,一阵风吹来,荷叶紧贴水面,这时它偏离原来的水平距离为,求荷叶的高度.20. 一个不透明的袋子里装着个黄球,个黑球和个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为一次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在附近,问裁判放入了多少个红球?21. 如图,在四边形中,,,于点,.(1)求证:;(2)若,求的度数.22. 如图,在正方形中,,点从出发,沿着的方向运动,设点运动的时间为(秒),的面积为,则和的关系如图所示:(1)点在第到第在上运动,在上运动的速度为,的面积的最大值为.(2)当为多少时,?23. (1)如图,是的平分线,请你在图中画出一对以所在直线为对称轴的全等三角形;。
2020年北师大版七年级数学下册期末考试卷及答案
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!2020年北师大版七年级数学下册期末考试卷及答案一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个 2、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 152 4、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米 5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个 B 、2个 C 、3个 D 、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形. 9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元. 10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……ODCBA根据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1= 。
2020年北师大版七年级下册数学《期末检测题》(附答案)
北师大版数学七年级下学期期 末 测 试 卷(时间:120 总分:120分) 学校________ 班级________ 姓名________ 座号________ 一、选择题(每小题3分,共30分)1.下列世界博览会会徽图案中是轴对称图形的是( )A. B. C. D.2.下列计算正确的是 ( ) A. a 5+a 5=a 10B. a 3·a 2=a 6C. a 7÷a=a 6D. (-a 3)2=-6a 63.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠44. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( ) A. 5,1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45.如图①所示,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“信”的概率是( )A.12B.13C.23D.166.利用基本作图,不能作出唯一三角形的是( ) A. 已知三边 B. 已知两边及其夹角C. 已知两角及其夹边D. 已知两边及其中一边对角7.下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③在同一平面内平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有( ) A 1个B. 2个C. 3个D. 4个8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. 22()()a b a b a b +-=-B. 222()2a b a ab b +=++C. 22()22a a b a ab +=+D. 222()2a b a ab b -=-+9.如图,等腰△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A. 13B. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图像描述大致是( )A. B. C. D.二、填空题(每小题3分,共15分)11.0.000 000 087用科学记数法可表示为_____. 12.如图,已知AB∥CD,∠1=120°,则∠C=____.13.一棵树高h(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出 h(m)与n(年)之间的关系式:h =____.n(年) 2 4 6 8 10 …h(m) 2.6 3.2 3.8 4.4 5.0 …14.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个.15.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠BAC=145°,则∠α=____.三、解答题(共75分)16.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=-3217.校园一角的形状如图所示,其中AB,BC,CD表示围墙,小亮通过作角平分线在图示的区域中找到了一点P,使得点P到三面墙的距离都相等,请你用尺规作图法帮小亮画出P点.(保留作图痕迹)18.请将下列事件发生的概率标在图中.(1)抛出的篮球会下落;(2)从装有3个红球、7个白球的口袋中取一个球,恰好是红球(这些球除颜色外完全相同);(3)掷一枚质地均匀硬币,硬币落下后正面朝上.19.如图所示,已知AD∥BC,且DC⊥AD于D.(1)DC与BC有怎样的位置关系?说说你的理由;(2)你能说明∠1+∠2=180°吗?20.如图,已知P 点是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,垂足为C 、D . (1)∠PCD=∠PDC 吗?为什么? (2)OP 是CD 的垂直平分线吗?为什么?21.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆; (2)若D ∠=50°,求B Ð的度数.22.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍. (1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?23.已知:CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CFA =∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想: .答案与解析一、选择题(每小题3分,共30分)1.下列世界博览会会徽图案中是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称的定义即可解答. 【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图叫做轴对称图形,这条直线叫做对称轴,根据轴对称的定义可得只有B选项是轴对称图形.故选B.【点睛】本题考查轴对称的定义,熟悉掌握是解题关键.2.下列计算正确的是 ( )A. a5+a5=a10B. a3·a2=a6C. a7÷a=a6D. (-a3)2=-6a6【答案】C【解析】A. a5+a5=2a5,故A选项错误;B. a3·a2=a5,故B选项错误;C. a7÷a=a6,正确;D. (-a3)2=a6,故D选项错误,故选C.3.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠4【答案】B【解析】∵∠1=∠2,∴AB//CD(内错角相等,两直线平行),故选B.4. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是()A. 5, 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 4【答案】D【解析】A、3+1<5,不能构成三角形,故本选项错误;B、2+2=4,不能构成三角形,故本选项错误;C、3+3<7,不能构成三角形,故本选项错误;D、2+3>4,能构成三角形,故本选项正确,故选D.5.如图①所示,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“信”的概率是( )A. 12B.13C.23D.16【答案】D 【解析】一共有6张卡片,只有一张上的汉字是“信”字,所以从中任意翻开一张是汉字“信”的概率是:16,故选D.6.利用基本作图,不能作出唯一三角形的是()A. 已知三边B. 已知两边及其夹角C. 已知两角及其夹边D. 已知两边及其中一边的对角【答案】D【解析】【分析】根据全等三角形判定定理一一判断即可.【详解】A.根据SSS定理可知能作出唯一三角形,故本选项错误;B.根据SAS定理可知能作出唯一三角形,故本选项错误;C.根据ASA定理可知能作出唯一三角形,故本选项错误;D.根据已知两边及其中一边的对角不能作出唯一三角形,故本选项正确. 故选D.【点睛】本题考查了全等三角形的判定定理,熟练掌握定理是解题的关键.7.下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③在同一平面内平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有( ) A. 1个 B. 2个C. 3个D. 4个【答案】C 【解析】 【分析】根据垂线的性质、平行线的性质、平行公理的推论逐个判断即可.【详解】解:在同一平面内过一点有且只有一条直线和已知直线垂直,正确,故①正确; 垂线段最短,故②正确;在同一平面内平行于同一条直线的两条直线也互相平行,故③正确; 只有两直线平行时,同位角才相等,错误,故④错误; 正确的个数是3个, 故选C .【点睛】本题考查了垂线的性质、平行线的性质、平行公理的推论等知识点,能熟记知识点的内容是解此题的关键.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. 22()()a b a b a b +-=- B. 222()2a b a ab b +=++C. 22()22a a b a ab +=+D. 222()2a b a ab b -=-+【答案】A 【解析】 【分析】根据阴影部分面积的两种表示方法,即可解答. 【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b+-,则22()()a b a b a b+-=-故选:A. 【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为()A. 13B. 14C. 15D. 16【答案】A【解析】试题分析:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.考点:线段垂直平分线的性质;等腰三角形的性质.10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A. B. C. D.【答案】B【解析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.根据题意和图示分析可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y最大,当火车开始出来时y逐渐变小,故选B.二、填空题(每小题3分,共15分)11.0.000 000 087用科学记数法可表示为_____.10-【答案】8.7×8【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,10-,所以:0.000 000 087=8.7×810-.故答案为8.7×812.如图,已知AB∥CD,∠1=120°,则∠C=____.【答案】60°【解析】∵∠1+∠FEB=180°,∠1=120°,∴∠FEB=180°-∠1=60°,∵AB//CD,∴∠C=∠FEB=60°,故答案为60°.13.一棵树高h(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出 h(m)与n(年)之间的关系式:h=____.n(年) 2 4 6 8 10 …h(m) 2.6 3.2 3.8 4.4 5.0 …【答案】2+0.3n.【解析】∵2.6=2+0.3×2;3.2=2+0.3×4;3.8=2+0.3×6;…∴h=2+0.3n,故答案为2+0.3n.14.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个.【答案】15【解析】试题分析:利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.考点:利用频率估计概率.15.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠BAC=145°,则∠α=____.【答案】70°【解析】∵△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,∴∠BAE=∠BAC=145°,∠DAC=∠BAC=145°,∠E=∠ACD=∠ACB,∴∠DAE=∠BAC+∠BAE+∠DAC-360°=145°+145°+145°-360°=75°,∴∠EAC=∠DAC-∠DAE=145°-75°=70°,∵∠E+∠α+∠EMD=180°,∠EAC+∠AMC+∠ACD=180°,∠EMD=∠AMC,∴∠α=∠EAC=70°,故答案为70°.【点睛】本题考查了翻折的性质,三角形的内角和是180度等,掌握翻折前后的两个三角形是全等的,对应角是相等的是解题的关键.三、解答题(共75分)16.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=-3 2【答案】-1.【解析】试题分析:先去括号,然后再合并同类项,最后代入数值进行计算即可. 试题解析:原式=a2+4a+4-a2+1=4a+5,当a=-32时,原式=4×(-32)+5=-1.17.校园一角的形状如图所示,其中AB,BC,CD表示围墙,小亮通过作角平分线在图示的区域中找到了一点P,使得点P到三面墙的距离都相等,请你用尺规作图法帮小亮画出P点.(保留作图痕迹)【答案】见解析【解析】试题分析:分别作∠ABC、∠BCD的角平分线BP、CP,BP与CP的交点即为满足条件的点.试题解析:如图所示,点P即为所求作的点.18.请将下列事件发生的概率标在图中.(1)抛出的篮球会下落;(2)从装有3个红球、7个白球的口袋中取一个球,恰好是红球(这些球除颜色外完全相同);(3)掷一枚质地均匀的硬币,硬币落下后正面朝上.【答案】(1)1处.(2)310处.(3)12处. 【解析】 试题分析:先分别计算所给事件的概率,然后根据概率在图中标记即可.根据随机事件概率大小的求法,找准两点:(1)符合条件的情况数目;(2)全部情况的总数;二者的比值就是其发生的概率的大小.试题解析:(1)抛出的篮球会落下,是必然事件,所以概率为1,因此应该标在1(100%)处;(2)袋子中一共有10个球,其中有3个红球,因此从中任意取一个球是红球的概率为310,因此应该标在310(30%)处; (3)掷一枚质地均匀的硬币,硬币落下后正面朝上的概率为12,因此应该标在12(50%)处. 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 19.如图所示,已知AD∥BC,且DC⊥AD 于D.(1)DC 与BC 有怎样的位置关系?说说你的理由;(2)你能说明∠1+∠2=180°吗?【答案】(1)见解析;(2)见解析【解析】试题分析:(1)根据垂直的定义可得∠ADC=90°,然后根据两直线平行,同旁内角互补求出∠DCB=90°,即可得证;(2)先根据两直线平行,同旁内角互补得到∠2+∠3=180°,然后根据对顶角相等的性质得到∠1=∠3,进行等量代换即可得证.试题解析:(1)DC⊥BC.理由:∵AD//BC,∴∠ADC+∠DCB=180°,∵DC⊥AD,∴∠ADC=90°,∴∠DCB=90°,∴DC⊥BC;(2∵AD∥BC,∴∠2+∠3=180°,∵∠1=∠3,∴∠1+∠2=180°.20.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?【答案】(1)见解析;(2)见解析【解析】试题分析:(1)由角平分线的性质易得PC=PD,根据等边对等角即可得出∠PCD=∠PDC;(2)易证△POC≌△POD,则OC=OD,根据线段垂直平分线的性质逆定理可得OP垂直平分CD.试题解析:(1)∠PCD=∠PDC,理由如下:∵点P 是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,∴PC =PD ,∴∠PCD =∠PDC ;(2)OP 垂直平分CD .理由:∵PC=PD,OP=OP ,∴Rt △POC ≌Rt △POD (HL ),∴OC=OD ,∴OP 垂直平分CD (线段垂直平分线的性质逆定理).21.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆;(2)若D ∠=50°,求B Ð的度数.【答案】(1)证明见解析;(2)70°.【解析】【详解】解:(1)∵点C 是线段AB 的中点,∴AC BC =,又∵CD 平分ACE ∠,CE 平分BCD ∠,∴∠1=∠2,∠2=∠3,∴∠1=∠3在ACD ∆和BCE ∆中,13CD CE AC BC =⎧⎪∠=∠⎨⎪=⎩∴ACD ∆≌BCE ∆(2)解:∴∠1+∠2+∠3=180°∴∠1=∠2=∠3=60°∵ACD ∆≌BCE ∆∴E D ∠=∠=50°∴180370B E ∠=︒-∠-∠=︒.22.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?【答案】(1)0.5 h.(2)1.75h,25km【解析】【详解】解:(1)小明骑车速度:1020(km/h)0.5=在甲地游玩的时间是:1﹣0.5=0.5(h)(2) 妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(43,0)代入得b2=﹣80∴y=60x﹣80∴20106080 y xy x=-⎧⎨=-⎩解得1.7525 xy=⎧⎨=⎩∴交点F(1.75,25)【点睛】中等难度题.此题有较强的综合性,要求考生正确认识函数的性质和函数的图像,此题是一题很好的实际应用题,考生可以通过训练此类型的题目以达到举一反三的效果.23.已知:CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想: .【答案】(1)BE=CF;(2)∠BCA=180°-∠α,(3)EF=BE+AF.【解析】试题分析:(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CF;②只有满足△BEC≌△CDA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠BCA=180°-∠α;(2)只要通过条件证明△BEC≌△CFA(可通过ASA证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.试题解析:(1)①∵∠BCA=90°,∠α=90°,∴∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC与△CDA中,∵BEC CFACBE ACD CA CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△CFA(AAS),∴BE=CF故答案为=;②∠α与∠BCA应满足的关系是∠BCA=180°-∠α,理由为:∵∠α+∠BCA=180°,∴∠α+∠BCE+∠FCA=180°,∵∠α+∠BCE+∠CBE=180°(三角形内角和等于180°),∴∠CBE=∠ACD,又∵∠BEC=∠CFA,CA=CB,∴△BEC≌△CFA(AAS),∴BE=CF,则∠α与∠BCA应满足的关系是∠BCA=180°-∠α;(2)探究结论:EF=BE+AF,∵∠1+∠2+∠BCA=180°,∠2+∠3+∠CFA=180°,又∵∠BCA=∠α=∠CFA,∴∠1=∠3;又∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点睛】本题主要考查三角形全等的判定,涉及到三角形内角和定理,线段比较长短等知识点,仔细阅读,弄清题意是解题的关键.。
2020北师大版七年级数学下册期末试卷及答案
)2020北师大版七年级数学下册期末试卷及答案*一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )、A 、1个B 、2个C 、3个D 、4个2、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米B 、6×104纳米C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等^C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .<8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到万元,这个数据用科学记数法可表示为 万元. 10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .ODCBA12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .;15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
2020北师大版七年级数学下册期末测试题及答案
精品试题,如需请下载,希望能帮到你2020 北师大版七年级数学下册期末测试题及答案一、选择题(每题 3 分,共18 分)1、给出下列图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()A、1 个 B 、2 个 C 、3 个 D 、4 个2、下列运算正确的是()。
A、a 5 a 5 a 10B、a6 a 4 a 24C、a 0 a 1 aD、a 4 a 4 a 03、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A、4B 、1C 、1D2 153 5 154、1 纳米相当于 1 根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半.径.是()A、6 万纳米 B 、6×104 纳米 C 、3×10-6 米 D 、3×10-5 米5、下列条件中,能判定两个直角三角形全等的是()A、一锐角对应相等 B 、两锐角对应相等C、一条边对应相等 D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40 分钟;(2)AB表示汽车匀速行驶;(3)在第30 分钟时,汽车的速度是90 千米/时;(4)第40 分钟时,汽车停下来了.A、1 个 B 、2 个 C 、3 个 D 、4 个二、填空题(每空3 分,共27 分)1速度80C D604020A B时间5 10 15 20 25 30 35 40A D7、单项式xy 3 的次数是.38、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为O C1B2三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006 年中央财政用于“三农”的支出将达到 33970000万元,这个数据用科学记数法可表示为 万元.10、如图 AOB=1205,AO OC ,B0 0D 则 COD=.11、小明同学平时不用功学习,某次数学测验做选择题时,他有1 道题不会做,于是随意选了一个答案( 每小题 4 个项) ,他选对的概率是. 12、若 a 2 2 k a 9 是一个完全平方式,则 k 等于.13 、 2m 3 ()= 4m2914、已知:如图,矩形 ABCD 的长和宽分别为 2 和 1,以 D 为圆心, AD 为半径作 AE 弧,再以 AB的中点 F 为圆心, FB 长为半径作 BE 弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=19 ;根据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(北师大版)七年级数学下册期末模拟检测试卷及答案(本检测题满分:120分 时间:120分钟)一、选择题(每小题3分,共30分) 1.如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( ) A .100° B .60° C .40° D .20° 2.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( ) A .2m 2n -3mn +n 2 B .2n 2-3mn 2+n 2 C .2m 2-3mn +n 2 D .2m 2-3mn +n 3.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C .D .4.下列说法正确的个数为( )⑴形状相同的两个三角形是全等三角形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.A.3B.2C.1D.05.某电视台“走基层”栏目的一位记者乘汽车赴360 km 处的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( ) A .汽车在高速公路上的行驶速度为100 km/h B .乡村公路总长为90 kmC .汽车在乡村公路上的行驶速度为60 km/hD .该记者在出发后4.5 h 到达采访地6.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A.13 B.16 C.12 D.147.如图所示,在△ABC 中,AQ =PQ ,PR =PS ,,RAP SAP ∠=∠PR ⊥AB 于点R ,PS ⊥AC 于点S ,则三个结论①AS =AR ;②QP ∥AR ;③△BPR ≌△QPS 中( )A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确CBA8.如图所示是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A.△ABD ≌△ACDB.AF 垂直平分EGC.直线BG ,CE 的交点在AF 上D.△DEG 是等边三角形9.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题,如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1为( ) A.60° B.30° C.45° D.50° 10.如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等的是( ) A.∥B.C.∠=∠D.∠=∠二、填空题(每小题3分,共24分)11.若代数式x 2+3x +2可以表示为(x -1)2+a (x -1)+b 的形式,则a +b 的值是 .12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为4、8、9的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的和为奇数,则甲获胜;若所抽取的两张牌面数字的和为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)13.如图所示,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2,则∠BPC =________.14.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数,日期12345678电表读数(千瓦时) 21 24 28 33 39 42 46 49(1)表格中反映的变量是 ,自变量是 ,因变量是 .(2)估计小亮家4月份的用电量是 千瓦时,若每千瓦时电是0.49元,估计他家4月份应交的电费是 元.15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率 0.850 0.795 0.8150.793 0.802 0.801第9题图第8题图第7题图21PCBA第13题图第10题图根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 16.如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.17.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF .给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是 (将你认为正确的结论的序号都填上). 18.如图所示,在△中,是的垂直平分线,,△的周长为,则△的周长为______.三、解答题(共66分)19.(6分)下列事件哪些是随机事件,哪些是确定事件? (1)买20注彩票,中500万.(2)袋中有50个球,1个红球,49个白球,从中任取一球,取到红球. (3)掷一枚均匀的骰子,6点朝上.(4)100件产品中有2件次品,98件正品,从中任取一件, 刚好是正品.(5)太阳从东方升起. (6)小丽能跳高.20.(7分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人都行驶在途中?(不包括起点和终点)21.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 10ABDCO E第16题图 第18题图第17题图Oy /kmx /min掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 22.(8分)把一副扑克牌中的三张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用列表法分析游戏规则对双方是否公平,并说明理由. 23.(8分)在正方形网格图①、图②中各画一个等腰三角形,每个等腰三角形的一个顶点为格点A ,其余顶点从格点B 、C 、D 、E 、F 、G 、H 中选取,并且所画的三角形不全等.第24题图321G BA CD E24.(9分)如图,于点,于点,.请问:平分吗?若平分,请说明理由.25.(10分)已知:在△中,,,点是的中点,点是边上一点.(1)垂直于点,交于点(如图①),求证:.(2)垂直,垂足为,交的延长线于点(如图②),找出图中与相等的线段,并证明.26.(10分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ;(2)AB =BC +AD .参考答案1.A 解析:过点C 作CD ∥a ,∵ a ∥b ,∴ CD ∥a ∥b , ∴ ∠ACD =∠1=40°,∠BCD =∠2=60°, ∴ ∠3=∠ACD +∠BCD =100°.故选A .2.C 解析:(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )=-8m 4n ÷(-4m 2n )+12m 3n 2÷(-4m 2n )-4m 2n 3÷(-4m 2n )=2m 2-3mn +n 2.故选C .第23题图第25题图①②第26题图3.D 解析:观察图形可知:单独涂黑的角顺时针旋转,只有D符合.故选D.4. C 解析:(1)形状相同但大小不一样的两个三角形也不是全等三角形,所以(1)错误;(2)全等三角形中互相重合的边叫做对应边,互相重合的角叫做对应角,如果两个三角形是任意三角形,就不一定有对应角或对应边了,所以(2)错误;(3)正确,故选C.5.C 解析:A.汽车在高速公路上的行驶速度为180÷2=90(km/h),故本选项错误;B.乡村公路总长为360-180=180(km),故本选项错误;C.汽车在乡村公路上的行驶速度为90÷1.5=60(km/h),故本选项正确;D.2+(360-180)÷[(270-180)÷1.5]=2+3=5 (h),故该记者在出发后5 h到达采访地,故本选项错误.故选C.6. C 解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为12.7.B 解析:∵PR=PS,PR⊥AB于点R,PS⊥AC于点S,AP=AP,∠RAP=∠SAP,∴△ARP≌△ASP,∴AS=AR.∵AQ=PQ,∴∠QPA=∠QAP,∴∠RAP=∠QPA,∴QP∥AR.∴①,②都正确.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.8. D 解析:A.因为此图形是轴对称图形,正确;B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D.题目中没有60°条件,不能判断是等边三角形,错误.故选D.9.A 解析:∵台球桌四角都是直角,∠3=30°,∴∠2=60°.∵∠1=∠2,∴∠1=60°,故选A.10. C 解析:A.∵∥,∴∠=∠.∵∥∴∠=∠.∵,∴△≌△,故本选项可以证出全等;B.∵=,∠=∠,∴△≌△,故本选项可以证出全等;C.由∠=∠证不出△与△全等,故本选项不可以证出全等;D.∵∠=∠,∠∠,,∴△≌△,故本选项可以证出全等.故选C.11.11 解析:∵x2+3x+2=(x-1)2+a(x-1)+b=x2+(a-2)x+(b-a+1),∴a-2=3,b-a+1=2,∴a=5,∴b-5+1=2,∴b=6,∴a+b=5+6=11,故答案为11.12.不公平解析:甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平.13.110°解析:因为∠A=40°,∠ABC= ∠ACB,所以∠ABC= ∠ACB=(180°-40°)=70°.又因为∠1=∠2,∠1+∠PCB =70°,所以∠2+∠PCB =70°, 所以∠BPC =180°-70°=110°.14.(1)日期、电表读数 日期 电表读数 (2)120 58.8解析:(1)变量有两个:日期和电表读数,自变量为日期,因变量为电表读数; (2)每天的用电量:(49﹣21)÷7=4,4月份的用电量=30×4=120千瓦时, ∵ 每千瓦时电是0.49元,∴ 4月份应交的电费=120×0.49=58.8(元). 15.解析:由表知,种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值. 16.4 解析:△和△,△和△△和△△和△共4对.17.①②③ 解析:∵ ∠E =∠F =90°,∠B =∠C ,AE =AF , ∴ △ABE ≌△ACF .∴ AC =AB ,∠BAE =∠CAF ,BE =CF ,∴ ②正确.∵ ∠B =∠C ,∠BAM =∠CAN ,AB =AC ,∴ △ACN ≌△ABM ,∴ ③正确. ∵∠1=∠BAE -∠BAC ,∠2=∠CAF -∠BAC ,又∵ ∠BAE =∠CAF , ∴ ∠1=∠2,∴ ①正确, ∴ 题中正确的结论应该是①②③. 18. 19 解析:因为是的垂直平分线,所以,所以因为△的周长为,所以所以.所以△的周长为19.解:(1)买20注彩票,中500万,虽然可能性极小,但可能发生,是随机事件; (2)袋中有50个球,1个红球,49个白球,从中任取一球,取到红球,是随机事件; (3)掷一枚均匀的骰子,6点朝上,是随机事件;(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品,是随机事件; (5)太阳从东方升起,是确定事件; (6)小丽能跳高,不可能发生,是确定事件. 20.解:由图象可知:(1)甲先出发,先出发10 min 乙先到达终点,先到5 min . (2)甲的速度为6÷30=0.2(km/min ),乙的速度为6÷15=0.4(km/min ). (3)在甲出发后10 min 到25 min 这段时间内,两人都行驶在途中. 21.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概 率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数 不一定是100次.22.解:游戏规则不公平.理由如下: 列表如下:小李小王3453 (3,3) (3,4) (3,5)4 (4,3) (4,4) (4,5) 5(5,3)(5,4)(5,5)由上表可知,所有可能出现的结果共有9种, 故3193==,3296==. ∵31<32,∴ 此游戏规则不公平,小李赢的可能性大. 23. 解:以下答案供参考.图④、⑤、⑥中的三角形全等,只需画其中一个. 24. 解: 理由:因为于点,于点(已知),所以(垂直的定义),所以∥(同位角相等,两直线平行), 所以(两直线平行,内错角相等),(两直线平行,同位角相等).又因为(已知),所以(等量代换).所以平分(角平分线的定义). 25.(1)证明:因为垂直于点,所以∠,所以.又因为∠∠,所以∠∠.第23题答图因为, ∠,所以.又因为点是的中点,所以.因为,,,所以△≌△(ASA),所以.(2)解:.证明如下:在△中,因为,∠,所以,∠∠.因为,即∠,所以,所以.因为为等腰直角△斜边上的中线,所以,.在△和△中,,,,所以△≌△,所以.26.分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等).∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∠ADE=∠FCE,DE=CE,∠AED=∠FEC,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的对应边相等).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等).又BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF.∵BC+CF,又AD=CF(已证),∴AB=BC+AD(等量代换).。