高中数学第一章三角函数1.3三角函数的图象和性质1.3.4三角函数的应用教案苏教版必修
高中数学高一必修第一章《三角函数的图象与性质》教育教学课件
画余弦函数y=cos x,x∈[0,2π]的图象,五个关键
点是(0,1),π2,0,(π,-1),32π,0,(2π,1) .
学习目标 要点疑点 深入探究 课堂检测
填要点·记疑点
3.正弦、余弦曲线的联系
根据引诱公式cos x=sin x+π2 ,要得到y=cos x的
第一章 三角函数
§1.4 三角函数的图象与性质
MORESHI POWERPOINT 主讲老师:
CONTENTS
学习目标 要点疑点 深入探究 课堂检测
明目标、知重点
• 了解利用单位圆中的正弦线画正弦曲线的方法. • 掌控“五点法”画正弦曲线和余弦曲线的步骤和方法,能
用“五点法”作出简单的正弦、余弦曲线. • 理解正弦曲线与余弦曲线之间的联系.
学习目标 要点疑点 深入探究 课堂检测
明目标、知重点
摸索2 如何由y=sin x,x∈[0,2π]的图象得到y=sin x, x∈R的图象? 答 由于终边相同的角有相同的三角函数值,所以函数y=sin x,x∈[2kπ,2(k+1)π),k∈Z且k≠0的图象,与函数y=sin x,x∈[0,2π)的图象的形状完全一致.于是我们只要将函数y= sin x,x∈[0,2π)的图象向左、向右平行移动(每次2π个单位 长度),就可以得到正弦函数y=sin x,x∈R的图象.
摸索2 如何用描点法画出y=sin x,x∈[0,2π]的图象?
答 在精确度要求不太高时,y=sin x,x∈[0,2π]可以通过找出 (0,0), π2,1,(π,0),32π,-1,(2π,0)五个关键点,再用光滑曲线将它们 连接起来,就可得 y=sin x,x∈[0,2π]的图象,这种方法简称“五点法”.
高中数学三角函数教案
高中数学三角函数教案三角函数内容在高中数学课程中占有重要的地位,它是描述现实世界周期现象的重要模型,又是高中教材中基本初等函数的其中之一。
下面店铺为你整理了高中数学三角函数教案,希望对你有帮助。
高中数学三角函数教案:任意角的三角函数一、教学目标1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.4.培养学生求真务实、实事求是的科学态度.二、重点、难点、关键重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.难点:把三角函数理解为以实数为自变量的函数.关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).三、教学理念和方法教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.四、教学过程[执教线索:回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业](一)复习引入、回想再认开门见山,面对全体学生提问:在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?探索任意角的三角函数(板书课题),请同学们回想,再明确一下:(情景1)什么叫函数?或者说函数是怎样定义的?让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y= f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域高中数学三角函数教案:三角函数的诱导公式1教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
高中数学第一章三角函数1.3三角函数的图象和性质1.3.2三角函数的图象与性质教案苏教版必修4
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
教学内容分析
本节课的主要教学内容为高中数学第一章三角函数1.3节三角函数的图象和性质中的1.3.2节,具体内容包括:
1.了解正弦函数、余弦函数和正切函数的图象特点,掌握它们的基本性质,如奇偶性、周期性、对称性等。
2.实际应用:提供一些实际问题,让学生运用三角函数图象和性质的知识解决,例如测量角度、声音的传播等。
3.数学软件:推荐一些数学软件或APP,如Mathematica、MATLAB、Desmos等,让学生在课后自己探索三角函数图象和性质的更多内容。
4.在线课程:推荐一些在线课程或视频,如MOOC、Khan Academy等,让学生在课后自主学习三角函数图象和性质的进阶内容。
2.学生观看视频资源,加深对三角函数图象和性质的理解。
3.学生可就阅读和观看过程中遇到的问题向教师请教,教师应及时解答疑问。
4.学生结合本节课所学内容,尝试解决一些际问题,如测量物体的高度、计算电路中的电压等。
5.学生可参加数学社团或小组,与同学一起探讨三角函数图象和性质的更多知识点。
6.学生可用所学知识创作一些数学作品,如数学日记、数学小论文等,展示自己的学习成果。
4.板书要与教学内容紧密相关,避免与教学内容脱节。
5.板书要易于展示,方便学生观看和记录。
6.板书设计要根据教学进度和学生的实际情况进行调整,以适应不同的教学需求。
教学评价与反馈
1.课堂表现:
-观察学生是否积极参与课堂讨论和互动。
-评估学生对三角函数图象和性质的基本概念和性质的理解程度。
人教A版高中数学必修4《一章 三角函数 1.4 三角函数的图像与性质 探究与发现》优质课教案_18
1.4.2正弦、余弦函数的性质学习目的:1、要求学生能理解三角函数的奇、偶性和单调性;2、掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。
学习重点:正、余弦函数的奇、偶性和单调性;学习难点:正、余弦函数奇、偶性和单调性的理解与应用授课类型:新授课学习模式:启发、诱导发现学习.教 具:多媒体、实物投影仪学习过程:一、讲解新课:1.奇偶性请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?(1)余弦函数的图形当自变量取一对相反数时,函数y 取同一值。
例如: f(-3π)=21,f(3π)=21 ,即f(-3π)=f(3π);…… 由于cos(-x)=cosx ∴f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y )是函数y=cosx 的图象上的任一点,那么,与它关于y 轴的对称点(-x,y)也在函数y=cosx 的图象上,这时,我们说函数y=cosx 是偶函数。
定义:一般地,如果对于函数f(x)的定义域内任意一个x ,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。
例如:函数f(x)=x 2+1, f(x)=x 4-2等都是偶函数。
(2)正弦函数的图形观察函数y=sinx 的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。
也就是说,如果点(x,y )是函数y=sinx 的图象上任一点,那么与它关于原点对称的点(-x,-y )也在函数y=sinx 的图象上,这时,我们说函数y=sinx 是奇函数。
定义:一般地,如果对于函数f(x)的定义域内任意一个x ,都有 f(-x)=-f(x) ,那么函数f(x)就叫做奇函数。
例如:函数y=x, y=x1 都是奇函数。
如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。
注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:(1)其定义域关于原点对称;(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。
高中数学 第一章 三角函数 1.4 三角函数的图象与性质(第3课时)教学设计 新人教A版必修4
高中数学第一章三角函数1.4 三角函数的图象与性质(第3课时)教学设计新人教A版必修4年级:姓名:1.4 三角函数的图象与性质(第3课时)1.4.3正切函数的性质与图象教学目标1.知识与技能:(1)用单位圆中的正切线作正切函数的图象; (2)用正切函数图象解决函数有关的性质; 2.过程与方法:(1)理解并掌握作正切函数图象的方法;(2)理解用函数图象解决有关性质问题的方法,培养学生分析问题,解决问题的能力,培养学生数形结合的思想方法。
(3)培养学生类比,归纳的数学思想方法 3.情态与价值: 培养认真学习的精神。
教学重点:用单位圆中的正切线作正切函数图象 教学难点:正切函数的性质 教学过程 一、复习引入问题:1.正弦曲线是怎样画的? 2.练习:画出下列各角的正切线:下面我们来作正切函数的图象.二、讲解新课1.正切函数tan y x =的定义域是什么? ⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ2.正切函数是不是周期函数?()tan tan ,,2x x x R x k k z πππ⎛⎫+=∈≠+∈ ⎪⎝⎭且,∴π是tan ,,2y x x R x k k z ππ⎛⎫=∈≠+∈ ⎪⎝⎭且的一个周期。
π是不是正切函数的最小正周期?下面作出正切函数图象来判断。
3.作tan y x =,x ∈⎪⎭⎫⎝⎛-2,2ππ的图象说明:(1)正切函数的最小正周期不能比π小,正切函数的最小正周期是π;(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”。
(3)正切曲线是由被相互平行的直线()2x k k Z ππ=+∈所隔开的无穷多支曲线组成的。
4.正切函数的性质 引导学生观察,共同获得:π-Oπ23-π2π-2ππ23yx(1)定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ;(2)值域:R 观察:当x 从小于()z k k ∈+2ππ,2π+π−→−k x 时,tan x −−→+∞当x 从大于()z k k ∈+ππ2,ππk x +−→−2时,-∞−→−x tan 。
高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教
中的第三点和第五点),有
π3ω+φ=π,
ω=2.
56πω+φ=2π,解得φ=π3.
∴y=3sin(2x+π3).
法三:(图象变换法)
由 T=π,点(-π6,0),A=3 可知图象由 y=3sin 2x 向左
平移π6个单位长度而得,所以有 y=3sin 2(x+π6),
即 y=3sin(2x+π3),且 ω=2,φ=π3.
2
第八页,共42页。
2.(2014·高考江苏卷)已知函数 y=cos x 与 y=sin(2x+ φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则 φ 的
π 值是____6____. 解析:利用函数 y=cos x 与 y=sin(2x+φ)(0≤φ<π)的交点横 坐标,列方程求解.
由题意,得 sin2×π3+φ=cos π3,因为 0≤φ<π,所以 φ=π6.
2.已知函数 y=Asin(ωx+φ),ω>0,且|φ|<π2的图象的一段 如图所示,求此函数的解析式.
第二十七页,共42页。
解:由图易知 A= 2,T2=|10-2|=8,所以 T=16. 又因为 T=|2ωπ|,ω>0,所以 ω=π8. 因为点(2, 2)在图象上,所以 y= 2sin(π8×2+φ)= 2, 所以 sin(π4+φ)=1,所以π4+φ=2kπ+π2(k∈Z), 又|φ|<π2,所以 φ=π4,所以 y= 2sin(π8x+π4).
第十五页,共42页。
法二:①把 y=sin x 的图象上所有点的横坐标伸长到原来 的 2 倍(纵坐标不变),得到 y=sin12x 的图象; ②把 y=sin12x 图象上所有的点向右平移π2个单位长度,得到 y=sin12(x-π2)=sin(12x-π4)的图象; ③把 y=sin(12x-π4)的图象上所有点的纵坐标伸长到原来的 3 倍(横坐标不变),就得到 y=3sin(12x-π4)的图象.
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制和分析三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学重点:1. 三角函数的定义和图像。
2. 三角函数的性质。
三、教学难点:1. 三角函数图像的绘制和分析。
2. 理解和应用三角函数的性质。
四、教学准备:1. 教学课件或黑板。
2. 三角函数图像的示例。
3. 练习题和解答。
五、教学过程:1. 引入:通过生活中的实例,如温度、声音等,引入三角函数的概念,激发学生的兴趣。
2. 讲解:讲解三角函数的定义和基本概念,引导学生理解三角函数的周期性和奇偶性。
3. 演示:使用课件或黑板,展示三角函数的图像,让学生观察和分析图像的形状和特点。
4. 练习:让学生绘制一些简单的三角函数图像,并分析其性质。
5. 讲解:讲解三角函数的性质,如单调性、奇偶性、周期性等,引导学生理解和应用。
6. 练习:让学生解决一些实际问题,运用三角函数的性质进行计算和分析。
7. 总结:对本节课的内容进行总结,强调三角函数的图像和性质的重要性。
8. 作业:布置一些练习题,让学生巩固所学内容。
六、教学反思:本节课通过实例引入三角函数的概念,激发学生的兴趣。
通过讲解和演示,让学生理解和掌握三角函数的图像和性质。
通过练习和实际问题解决,让学生应用所学知识。
整个教学过程中,注意引导学生主动参与,培养学生的动手能力和思维能力。
作业的布置有助于巩固所学内容。
总体来说,本节课达到了预期的教学目标。
六、教学目标:1. 能够运用三角函数的性质解决简单的三角方程和不等式问题。
2. 理解正弦、余弦和正切函数的图像是如何由基础函数通过平移、伸缩等变换得到的。
3. 能够分析实际问题,选择合适的三角函数模型进行求解。
七、教学重点:1. 三角函数图像的变换规律。
2. 三角方程和不等式的求解方法。
八、教学难点:1. 理解三角函数图像的变换规律及其对函数性质的影响。
2. 解决实际问题中三角函数的应用。
高中数学第一章三角函数1.4三角函数的图象与性质教学案新人教A版必修4
第 1 课时 正弦函数、余弦函数的图象
[ 核心必知 ]
1.预习教材,问题导入
根据以下提纲,预习教材 P30~ P33 的内容,回答下列问题.
(1) 观察教材 P31 图 1.4 - 3,你认为正弦曲线是如何画出来的?
提示:利用单位圆中的正弦线可以作出
y= sin_ x, x∈ [0 , 2π ] 的图象,将 y= sin_ x 在 [0 , 2π ] 内的
5.不等式 cos x< 0, x∈[0 , 2π ] 的解集为 (
)
π 3π
π 3π
π
π
A. 2 , 2 B. 2 , 2 C. 0, 2 D. 2 ,2π
解析:选 A 由 y= cos x 的图象知,
π 3π 在 [0 ,2π ] 内使 cos x< 0 的 x 的范围是 2 , 2 .
6.函数 y= 2cos x - 2的定义域是 ________.
( k∈ Z) .
题组 3 正、余弦曲线与其他曲线的交点问题
3
8. y=1+ sin x, x∈ [0 ,2π ] 的图象与直线 y= 2交点的个数是 (
)
A. 0 B . 1 C .2 D . 3
3 解析:选 C 画出 y= 2与 y= 1+ sin x, x∈[0 , 2π ] 的图象,由图象可得有 2 个交点.
sin x 0 1 0 - 1 0
sin x -1 0 -1 -2 -1
-1
描点、连线,如图.
(2) 列表: 描点、连线,如图.
π
3π
x
0 2 π 2 2π
cos x 1 0 - 1 0 1
2+ cos 32 1 2 3
高中数学 第一章 三角函数 第四节 三角函数的图象与性质(第四课时)示范教案 新人教A版必修4
第一章第四节三角函数的图象与性质第四课时整体设计教学分析本节课的背景是:这之前我们已经用了三节课的时间学习了正弦函数和余弦函数的性质.函数的研究具有其本身固有的特征和特有的研究方式.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后再从代数的角度对性质作出严格表述.但对正切函数,教科书换了一个新的角度,采取了先根据已有的知识(如正切函数的定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.这样处理,主要是为了给学生提供研究数学问题更多的视角,在性质的指导下可以更加有效地作图、研究图象,加强了理性思考的成分,并使数形结合的思想体现得更加全面.教师要在学生探究活动过程中引导学生体会这种解决问题的方法.通过多媒体教学,让学生通过对图象的动态观察,对知识点的理解更加直观、形象.以提高学生的学习兴趣,提高课题教学质量.从学生的实际情况为教学出发点,通过各种数学思想的渗透,合理运用各种教学课件,逐步培养学生养成学会通过对图象的观察来整理相应的知识点的能力,学会运用数学思想解决实际问题的能力.这样既加强了类比这一重要数学思想的培养,也有利于学生综合运用能力的提高,有利于学生把新旧知识前后联系,融会贯通,提高教学效果.由于学生已经有了研究正弦函数、余弦函数的图象与性质的经验,这种经验完全可以迁移到对正切函数性质的研究中,因此,我们可以通过“探究”提出,引导学生根据前面的经验研究正切函数的性质,让学生深刻领悟这种迁移与类比的学习方法.三维目标1.通过对正切函数的性质的研究,注重培养学生类比思想的养成,以及培养学生综合运用新旧知识的能力.学会通过对图象的观察来整理相应的知识点,学会运用数学思想解决实际问题的能力.2.在学习了正弦函数、余弦函数的图象与性质的基础上,运用类比的方法,学习正切函数的图象与性质,从而培养学生的类比思维能力.3.通过正切函数图象的教学,培养学生欣赏(中心)对称美的能力,激发学生热爱科学、努力学好数学的信心.重点难点教学重点:正切函数的性质与图象的简单应用.教学难点:正切函数性质的深刻理解及其简单应用.课时安排1课时教学过程导入新课思路 1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路 2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课新知探究提出问题①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线,你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?你能类比“五点法”也用几个字总结出作正切简图的方法吗?活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性由诱导公式tan(x +π)=tan x ,x ∈R ,x ≠π2+k π,k ∈Z 可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性由诱导公式tan(-x )=-tan x ,x ∈R ,x ≠π2+k π,k ∈Z 可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(k π2,0)k ∈Z . (3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(-π2,π2)内是增函数,又由正切函数的周期性可知,正切函数在开区间(-π2+k π,π2+k π),k ∈Z 内都是增函数.(4)定义域根据正切函数的定义tan α=y x,显然,当角α的终边落在y 轴上任意一点时,都有x=0,这时正切函数是没有意义的;又因为终边落在y 轴上的所有角可表示为k π+π2,k ∈Z ,所以正切函数的定义域是{α|α≠k π+π2,k ∈Z },而不是{α≠π2+2k π,k ∈Z },这个问题不少初学者很不理解,在解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域由多媒体课件演示正切线的变化规律,从正切线知,当x 大于-π2且无限接近-π2时,正切线AT 向Oy 轴的负方向无限延伸;当x 小于π2且无限接近π2时,正切线AT 向Oy 轴的正方向无限延伸.因此,tan x 在(-π2,π2)内可以取任意实数,但没有最大值、最小值. 因此,正切函数的值域是实数集R .问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出(-π2,π2)内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-π2,π2)的图象为好.这时条件成熟,教师引导学生来作正切函数的图象,如图2. 根据正切函数的周期性,把图2向左、右扩展,得到正切函数y =tan x ,x ∈R ,且x ≠π2+k π(k ∈Z )的图象,我们称正切曲线,如图3.图2图3问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y =tan x ,x ∈(-π2,π2)的简图.学生可看出有三个点很关键:(-π4,-1),(0,0),(π4,1),还有两条竖线.因此,画正切函数简图的方法就是:先描三点(-π4,-1),(0,0),(π4,1),再画两条平行线x =-π2,x =π2,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.讨论结果:①略.②正切线是AT .③略.④能,“三点两线”法.提出问题①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质.②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x =π2+k π,k ∈Z 所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y 轴方向看,上下无限延伸,得到它的哪一性质——值域为R ;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是(-π2+k π,π2+k π),k ∈Z ,没有减区间.它的图象是关于原点对称的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(k π2,0),k ∈Z . 问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性.讨论结果:①略.②略.应用示例例1比较大小.(1)tan138°与tan143°;(2)tan(-13π4)与tan(-17π5). 活动:利用三角函数的单调性比较两个同名三角函数值的大小,可以先利用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.教师可放手让学生自己去探究完成,由学生类比正弦、余弦函数值的大小比较,学生不难解决,主要是训练学生巩固本节所学的基础知识,加强类比思想的运用.解:(1)∵y =tan x 在90°<x <180°上为增函数,∴由138°<143°,得tan138°<tan143°.(2)∵tan(-13π4)=-tan 13π4=-tan(3π+π4)=-tan π4, tan(-17π5)=-tan 17π5=-tan(3π+2π5)=-tan 2π5. 又0<π4<2π5<π2,而y =tan x 在(0,π2)上是增函数, ∴tan π4<tan 2π5. ∴-tan π4>-tan 2π5, 即tan(-13π4)>tan(-17π5). 点评:不要求学生强记正切函数的性质,只要记住正切函数的图象或正切线即可. 例2用图象求函数y =tan x -3的定义域.活动:如图4,本例的目的是让学生熟悉运用正切曲线来解题.不足之处在于本例可以通过三角函数线来解决,教师在引导学生探究活动中,也应以两种方法提出解决方案,但要有侧重点,应体现函数图象应用的重要性.图4 图5解:由tan x -3≥0,得tan x ≥3,利用图4知,所求定义域为[k π+π3,k π+π2)(k ∈Z ). 点评:先在一个周期内得出x 的取值范围,然后再加周期即可,亦可利用单位圆求解,例3求函数y =tan(2x +3)的定义域、周期和单调区间. 活动:类比正弦、余弦函数,本例应用的是换元法,由于在研究正弦、余弦函数的类似问题时已经用过换元法,所以这里也就不用再介绍换元法,可以直接将π2x +π3作为一个整体.教师可让学生自己类比地探究,只是提醒学生注意定义域.解:函数的自变量x 应满足π2x +π3≠k π+π2,k ∈Z , 即x ≠2k +13,k ∈Z . 所以函数的定义域是{x |x ≠2k +13,k ∈Z }. 由于f (x )=tan(π2x +π3)=tan(π2x +π3+π)=tan[π2(x +2)+π3]=f (x +2), 因此,函数的周期为2.由-π2+k π<π2x +π3<π2+k π,k ∈Z ,解得-53+2k <x <13+2k ,k ∈Z . 因此,函数的单调递增区间是(-53+2k ,13+2k ),k ∈Z . 点评:同y =A sin(ωx +φ)(ω>0)的周期性的研究一样,这里可引导学生探究y =A tan(ωx +φ)(ω>0)的周期T =π.活动:引导学生利用函数y =tan x 的单调性探究解题方法.也可利用单位圆中的正切线探究解题方法.但要提醒学生注意本节中活动的结论:正切函数在定义域内的每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.学生可能的错解有:错解1:∵函数y =tan x 是增函数,又1<2<3<4,∴tan1<tan2<tan3<tan4.错解2:∵2和3的终边在第二象限,∴tan2,tan3都是负数.∵1和4的终边分别在第一象限和第三象限,∴tan1,tan4都是正数.又∵函数y =tan x 是增函数,且2<3,1<4,∴tan2<tan3<tan1<tan4.教师可放手让学生自己探究问题的解法.发现错解后不要直接纠正,立即给出正确解法,可再让学生讨论分析找出错的原因.解法一:∵函数y =tan x 在区间(π2,3π2)上是单调递增函数, 且tan1=tan(π+1),又π2<2<3<4<π+1<3π2, ∴tan2<tan3<tan4<tan1.解法二:如图6,1,2,3,4的正切函数线分别是AT 1,AT 2,AT 3,AT 4,图6 ∴tan2<tan3<tan4<tan1.点评:本例重在让学生澄清正切函数单调性问题,这属于学生易错点.把正切函数y =tan x 的单调性简单地说成“在定义域内是增函数”是不对的.知能训练课本本节练习1~5.解答:1.在x 轴上任取一点O 1,以O 1为圆心,单位长为半径作圆,作垂直于x 轴的直径,将⊙O 1分成左右两个半圆,过右半圆与x 轴的交点作⊙O 1的切线,然后从圆心O 1引7条射线把右半圆分成8等份,并与切线相交,得到对应于-3π8,-π4,-π8,0,π8,π4,3π8等角的正切线.相应地,再把x 轴上从-π2到π2这一段分成8等份.把角x 的正切线向右平行移动,使它的起点与x 轴上的点x 重合,再把这些正切线的终点用光滑的曲线连接起来,就得到函数y =tan x ,x ∈(-π2,π2)的图象. 点评:可类比正弦函数图象的作法.2.(1){x |k π<x <π2+k π,k ∈Z };(2){x |x =k π,k ∈Z };(3){x |-π2+k π<x <k π,k ∈Z }. 点评:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.3.x ≠π6+k π3,k ∈Z . 点评:可用换元法.4.(1)π2;(2)2π. 点评:可根据函数图象得解,也可直接由函数y =A tan(ωx +φ),x ∈R 的周期T =πω得解.5.(1)不是.例如0<π,但tan0=tan π=0.(2)不会.因为对于任何区间A 来说,如果A 不含有π2+k π(k ∈Z )这样的数,那么函数y =tan x ,x ∈A 是增函数;如果A 至少含有一个π2+k π(k ∈Z )这样的数,那么在直线x =π2+k π两侧的图象都是上升的(随自变量由小到大).点评:理解正切函数的单调性.课堂小结1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义?作业课本习题1.4 A 组6、8、9.设计感想1.本教案的设计背景刚刚学完正弦函数、余弦函数的图象与性质.因此教案的设计主线是始终抓住类比思想这条主线,让学生在巩固原有知识的基础上,通过类比,由学生自己来对新知识进行分析、探究、猜想、证明,使新旧知识点有机地结合在一起,学生对新知识也较易接受.2.本教案设计的学习程序是:温故(相关知识准备)→新的学习对象与旧知识的联系→类比探究→解决问题→应用成果→归纳总结→进一步的发散思考→探索提高.备课资料函数f (x )±g (x )最小正周期的求法若f (x )和g (x )是三角函数,求f (x )±g (x )的最小正周期没有统一的方法,往往因题而异,现介绍几种方法:(一)定义法例1求函数y =|sin x |+|cos x |的最小正周期.解:∵y =|sin x |+|cos x |=|-sin x |+|cos x |=|cos(x +π2)|+|sin(x +π2)| =|sin(x +π2)|+|cos(x +π2)|, 对定义域内的每一个x ,当x 增加到x +π2时,函数值重复出现,因此函数的最小正周期是π2. (二)公式法这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正、余弦函数求最小正周期的公式为T =2π|ω|,正、余切函数T =π|ω|. 例2求函数y =1tan x-tan x 的最小正周期. 解:y =1tan x -tan x =1-tan 2x tan x =2·1-tan 2x 2tan x =2tan2x ,∴T =π2. (三)最小公倍数法设f (x )与g (x )是定义在公共集合上的两个三角周期函数,T 1、T 2分别是它们的周期,且T 1≠T 2,则f (x )±g (x )的最小正周期是T 1、T 2的最小公倍数,分数的最小公倍数=分子的最小公倍数分母的最大公约数. 例3求函数y =sin3x +cos5x 的最小正周期.解:设sin3x 、cos5x 的最小正周期分别为T 1、T 2,则T 1=2π3,T 2=2π5,所以y =sin3x +cos5x 的最小正周期T =2π1=2π. (四)图象法例4求y =|cos x |的最小正周期.解:由y =|cos x |的图象,可知y =|cos x |的周期T =π.图7。
高中数学第一章三角函数1.4.3正切函数的性质与图象(5)教学教案新人教A版必修
1.4.3《正切函数的性质与图象》一、三维目标知识目标:1.能用单位圆中的正切线画出正切函数的图象;2.熟练根据正切函数的图象推导出正切函数的性质;3.掌握利用数形结合思想分析问题、解决问题的技能。
能力目标:1.通过类比,联系正弦函数图象的作法作出正切函数的图象;2.能学以致用,结合图象分析得到正切函数的性质。
德育目标:会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力。
二、重点难点重点:正切函数的图象及其主要性质。
难点:熟练运用诱导公式和性质分析问题、解决问题。
三、教学方法启发、探究式发现教学四、教学过程(一)复习引入:问题:正切函数的定义、诱导公式、三角函数线(二)讲授新课:探究1:如何利用前面学过的知识来研究正切函数tan y x =的性质?(定义域、周期、奇偶性、值域、单调性)探究2:利用正切线画出正切函数x y tan =在一个周期⎪⎭⎫ ⎝⎛-2,2ππ内的图象:π-O 0 π23-π2π-2ππ23yx x正切曲线是由被相互平行的直线()2x k k Z ππ=+∈所隔开的无穷多支曲线组成的。
正切函数的性质:(引导学生观察,共同获得)(1)定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ (2)值域:R(3)周期性:π=T(4)奇偶性:由()x x tan tan -=-知,正切函数是奇函数 (5)单调性:在每个开区间z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2内单调递增 思考:正切函数是整个定义域上的增函数吗?(三)例题讲解:例1 求函数⎪⎭⎫ ⎝⎛+=32tan ππx y 的定义域、周期性和单调区间。
例2 比较大小:(1)tan1670与tan1730 (2)⎪⎭⎫ ⎝⎛-413tan π与⎪⎭⎫ ⎝⎛-517tan π例3 解不等式:tan x ≥(四)课堂小结:正切函数tan y x =的图象及其性质。
(五)课后作业:见课本。
高中数学 第一章 三角函数 第四节 三角函数的图象与性质(第三课时)示范教案 新人教A版必修4
第一章第四节三角函数的图象与性质第三课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y =sin x ,y =cos x 是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么?③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么?由值域又能得到什么?④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思路的学生,教师可参与到他们中去,并适时的给予点拨、指导.在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势. 对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R 〔或(-∞,+∞)〕.对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sin x |≤1,|cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y =sin x (x ∈R ),(1)当且仅当x =π2+2k π,k ∈Z 时,取得最大值1.(2)当且仅当x =-π2+2k π,k ∈Z 时,取得最小值-1. 对于余弦函数y =cos x (x ∈R ),(1)当且仅当x =2k π,k ∈Z 时,取得最大值1.(2)当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-π2,3π2](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4就是说,函数y =sin x ,x ∈[-2,2]. 当x ∈[-π2,π2]时,曲线逐渐上升,是增函数,sin x 的值由-1增大到1; 当x ∈[π2,3π2]时,曲线逐渐下降,是减函数,sin x 的值由1减小到-1. 类似地,同样可得y =cos x ,x ∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5正弦函数在每一个闭区间[-π2+2k π,π2+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[π2+2k π,3π2+2k π](k ∈Z )上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y =sin x 为奇函数,y =cos x 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x )=-sin x ,cos(-x )=cos x ,∴y =sin x 为奇函数,y =cos x 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x =π2对称,余弦曲线还关于点(π2,0)对称等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习埋下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x 轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y =cos x +1,x ∈R ;(2)y =-3sin2x ,x ∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z };使函数y =cos x +1,x ∈R 取得最小值的x 的集合,就是使函数y =cos x ,x ∈R 取得最小值的x 的集合{x |x =(2k +1)π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令z =2x ,使函数y =-3sin z ,z ∈R 取得最大值的z 的集合是{z |z =-π2+2k π,k ∈Z },由2x =z =-π2+2k π,得x =-π4+k π. 因此使函数y =-3sin2x ,x ∈R 取得最大值的x 的集合是{x |x =-π4+k π,k ∈Z }. 同理,使函数y =-3sin2x ,x ∈R 取得最小值的x 的集合是{x |x =π4+k π,k ∈Z }.函数y =-3sin2x ,x ∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y =A sin(ωx +φ)+B 的函数,一般通过变量代换(如设z =ωx +φ化归为y =A sin z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2利用三角函数的单调性,比较下列各组数的大小:(1)sin(-π18)与sin(-π10);(2)cos(-23π5)与cos(-17π4). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为-π2<-π10<-π18<0,正弦函数y =sin x 在区间[-π2,0]上是增函数, 所以sin(-π18)>sin(-π10). (2)cos(-23π5)=cos 23π5=cos 3π5,cos(-17π4)=cos 17π4=cos π4. 因为0<π4<3π5<π,且函数y =cos x ,x ∈[0,π]是减函数, 所以cos π4>cos 3π5,即cos(-23π5)<cos(-17π4). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题,如本例中,cos π4>0,cos 3π5<0,显然大小立判. 例3求函数y =sin(12x +π3),x ∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向:把12x +π3看成z ,这样问题就转化为求y =sin z 的单调区间问题,而这就简单多了. 解:令z =12x +π3.函数y =sin z 的单调递增区间是[-π2+2k π,π2+2k π]. 由-π2+2k π≤12x +π3≤π2+2k π,得-5π3+4k π≤x ≤π3+4k π,k ∈Z . 由x ∈[-2π,2π]可知,-2π≤-5π3+4k π且π3+4k π≤2π,于是-112≤k ≤512,由于k ∈Z ,所以k =0,即-5π3≤x ≤π3.而[-5π3,π3]⊂[-2π,2π], 因此,函数y =sin(x 2+π3),x ∈[-2π,2π]的单调递增区间是[-5π3,π3]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1求下列函数的定义域:(1)y =11+sin x;(2)y =cos x .活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sin x ≠0,得sin x ≠-1,即x ≠3π2+2k π(k ∈Z ). ∴原函数的定义域为{x |x ≠3π2+2k π,k ∈Z }. (2)由cos x ≥0,得-π2+2k π≤x ≤π2+2k π(k ∈Z ). ∴原函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2在下列区间中,函数y =sin(x +π4)的单调增区间是( ) A .[π2,π] B .[0,π4] C .[-π,0] D .[π4,π2] 活动:函数y =sin(x +π4)是一个复合函数,即y =sin[φ(x )],φ(x )=x +π4,欲求y =sin(x +π4)的单调增区间,因φ(x )=x +π4在实数集上恒递增,故应求使y 随φ(x )递增而递增的区间.也可从转化与化归思想的角度考虑,即把x +π4看成一个整体,其道理是一样的.解析:∵φ(x )=x +π4在实数集上恒递增,又y =sin x 在[2k π-π2,2k π+π2](k ∈Z )上是递增的,故令2k π-π2≤x +π4≤2k π+π2. ∴2k π-3π4≤x ≤2k π+π4. ∴y =sin(x +π4)的递增区间是[2k π-3π4,2k π+π4]. 取k =-1、0、1分别得[-11π4,7π4]、[-3π4,π4]、[5π4,9π4], 故选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y =A sin(ωx +φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y =f (t ),t =φ(x );(3)根据函数f (t )的单调性确定φ(x )的单调性;(4)写出满足φ(x )的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.知能训练课本本节练习解答:1.(1)(2k π,(2k +1)π),k ∈Z ;(2)((2k -1)π,2k π),k ∈Z ;(3)(-π2+2k π,π2+2k π),k ∈Z ;(4)(π2+2k π,3π2+2k π),k ∈Z . 点评:只需根据正弦曲线、余弦曲线写出结果,不要求解三角不等式,要注意结果的规范及体会数形结合思想方法的灵活运用.2.(1)不成立.因为余弦函数的最大值是1,而cos x =32>1. (2)成立.因为sin 2x =0.5,即sin x =±22,而正弦函数的值域是[-1,1],±22∈[-1,1].点评:比较是学习的关键,反例能加深概念的深刻理解.通过本题准确理解正弦、余弦函数的最大值、最小值性质.3.(1)当x ∈{x |x =π2+2k π,k ∈Z }时,函数取得最大值2;当x ∈{x |x =-π2+2k π,k ∈Z }时,函数取得最小值-2.(2)当x ∈{x |x =6k π+3π,k ∈Z }时,函数取得最大值3;当x ∈{x |x =6k π,k ∈Z }时,函数取得最小值1.点评:利用正弦、余弦函数的最大值、最小值性质,结合本节例题巩固正弦、余弦函数的性质,快速写出所给函数的最大值、最小值.4.B点评:利用数形结合思想认识函数的单调性.这是一道选择题,要求快速准确地选出正确答案.数形结合是实现这一目标的最佳方法.5.(1)sin250°>sin260°;(2)cos 15π8>cos 14π9;(3)cos515°>cos530°;(4)sin(-54π7)>sin(-63π8). 点评:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.6.[k π+π8,k π+5π8],k ∈Z . 点评:关键是利用转化与化归的思想将问题转化为正弦函数的单调性问题,得到关于x 的不等式,通过解不等式求得答案.课堂小结1.由学生回顾归纳并说出本节学习了哪些数学知识,学习了哪些数学思想方法.这节课我们研究了正弦函数、余弦函数的性质.重点是掌握正弦函数的性质,通过对两个函数从定义域、值域、最值、奇偶性、周期性、增减性、对称性等几方面的研究,更加深了我们对这两个函数的理解.同时也巩固了上节课所学的正弦函数,余弦函数的图象的画法.2.进一步熟悉了数形结合的思想方法,转化与化归的思想方法,类比思想的方法及观察、归纳、特殊到一般的辩证统一的观点.作业判断下列函数的奇偶性:(1)f (x )=x sin(π+x );(2)f (x )=-1+sin x +cos 2x 1-sin x. 解答:(1)函数的定义域为R ,它关于原点对称.∵f (x )=x sin(π+x )=-x sin x ,f (-x )=-(-x )sin(-x )=-x sin x =f (x ), ∴函数为偶函数.(2)函数应满足1-sin x ≠0,∴函数的定义域为{x |x ∈R 且x ≠2k π+π2,k ∈Z }. ∵函数的定义域关于原点不对称,∴函数既不是奇函数也不是偶函数.设计感想1.本节是三角函数的重点内容,设计的容量较大,指导思想是让学生在课堂上充分探究、大量活动.作为函数的性质,从初中就开始学习,到高中学习了幂函数、指数、对数函数后有了较深的认识,这是高中所学的最后一个基本初等函数.但由于以前所学的函数不是周期函数,所以理解较为容易,而正弦函数、余弦函数除具有以前所学函数的共性外,又有其特殊性,共性中包含特性,特性又离不开共性,这种普通性与特殊性的关系通过教学应让学生有所领悟.2.在讲完正弦函数性质的基础上,应着重引导学生用类比的方法写出余弦函数的性质,以加深他们对两个函数的区别与联系的认识,并在解题中突出数形结合思想,在训练中降低变化技巧的难度,提高应用图象与性质解题的力度.较好地利用图象解决问题,这也是本节课主要强调的数学思想方法.3.学习三角函数性质后,引导学生对过去所学的知识重新认识,例如sin(α+2π)=sin α这个公式,以前我们只简单地把它看成一个诱导公式,现在我们认识到了,它表明正弦函数的周期性,以提升学生的思维层次.备课资料一、近几年三角函数知识的变动情况三角函数一直是高中固定的传统内容,但近几年对这部分内容的具体要求变化较大.1998年4月21日,国家教育部专门调整了高中数学的部分教学内容,其中的调整意见第(7)条为:“对三角函数中的和差化积、积化和差的8个公式,不要求记忆”.1998年全国高考数学卷中,已尽可能减少了这8个公式的出现次数,在仅有的一次应用中,还将公式印在试卷上,以供查阅.而当时调整意见尚未生效(应在1999年生效),这不能不说对和积互化的8个公式的要求是大大降低了.但是,如果认为这次调整的仅仅是8个公式,仅仅是降低了对8公式的要求,那就太表面、太肤浅了.我们知道,三角中的和积互化历来是三角部分的重点内容之一,相当部分的三角题都是围绕它们而设计的,它们也确实在很大程度上体现了公式变形的技巧和魅力.现在要求降低了,有关的题目已不再适合作为例(习)题选用了.这样一来,三角部分还要我们教些什么呢?又该怎样教?立刻成了部分教师心头的一大困惑.有鉴于此,我们认为很有必要重新审视这部分的知识体系,理清新的教学思路,以便真正落实这次调整的意见,实现“三个有利于(有利于减轻学生过重的课业负担,有利于深化普通高中的课程改革,有利于稳定普通高中的教育教学秩序)”的既定目标.1.是“三角”还是“函数”应当说,三角函数是由“三角”和“函数”两部分知识构成的.三角本是几何学的衍生物,起始于古希腊的希帕克,经由托勒玫、利提克思等至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科,历史上的很长一段时期,只有《三角学》盛行于世,却无“三角函数”之名.“三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年.但是,此概念一经引入,立刻极大地改变了三角学的面貌,特别是经过罗巴切夫斯基的开拓性工作,致使三角函数可以完全独立于三角形之外,而成为分析学的一个分支,其中的角也不限于正角,而是任意实数了.有的学者甚至认为可将它更名为角函数,这是有见地的,所以,作为一门学科的《三角学》已经不再独立存在.现行中学教材也取消了原来的《代数》《三角》《几何》的格局,将三角并入了代数内容.这本身即足以说明“函数”在“三角”中应占有的比重.从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的,所以,书中的分式变形、根式变形、指数式变形和对数式变形可谓连篇累牍,所在皆是.这是由当时的数学认知水平决定的.而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值.1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”.现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图象和性质及应用,对这三种代数式的变形却轻描淡写.所以,三角函数部分应重在“函数的图象和性质”是无疑的,这也是国际上普遍认可的观点.2.是“图象”还是“变换”现行高中三角函数部分,单列了一章专讲三角函数,这是与数学发展的潮流相一致的.大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图象和性质”倒是在其次的,这一点,与前面所述的“幂、指、对”函数有着极大的反差.调整以后,降低这部分的要求,大面积地减少了题量.把“函数”作为关键词,将目光放在“图象和性质”上,应当是正确的选择,负担轻了,障碍小了,这更方便于我们将注意力转移到对函数图象和性质的关注上,这才是“三个有利于”得以贯彻的根本.3.国外的观点及启示下面来看一下美国和德国的观点:美国没有全国统一的教材和《考试说明》,只有一个《课程标准》,在《课程标准》中,他们对三角函数提出了下面的要求:“会用三角学的知识解三角形;会用正弦、余弦函数研究客观实际中的周期现象;掌握三角函数图象;会解三角函数方程;会证基本的和简单的三角恒等式;懂得三角函数同极坐标、复数等之间的联系”.他们还特别指出,不要在推导三角恒等式上花费过多的时间,只要掌握一些简单的恒等式推导就可以了,比较复杂的恒等式就应该完全避免了.德国在10到12年级(相当于中国的高一到高三)每年都有三角内容,10年级要求如下:(1)一个角的弧度;(2)三角函数sin x、cos x、tan x和它们的图象周期性;(3)三角形中角和边的计算;(4)重要关系(特指同角三角函数的平方关系、商数关系和倒数关系).另外,在11年级和12年级的“无穷小分析”中,继续研究三角函数的图象变换、求导、求积分、求极限.从以上罗列,我们可以看出下面的共同点:第一,突出强调三角函数的图象和性质;第二,淡化三角式的变形,仅涉及同角变换,而且要求较低,8个公式根本不予介绍;第三,明确变换的目的是为了三角形中的实际计算;第四,注意三角函数和其他知识的联系.这带给我们的启示还是很强烈的,美国和德国的中学教育以实用为主,并不太在乎教材体系是否严谨,知识系统是否完整;我国的教材虽作调整,怎样实施且不去细说,有一个意图是可猜到的,那就是要让学生知道教材是严谨与完整的.现在看来严谨的东西,在更高的观点下是否还严谨?在圈内看是完整的,跳出圈子看,是否还完整?在一个小地方钻得太深,在另外更大的地方就可能无暇顾及.人家能在中学学到向量、行列式、微分、积分,我们却热衷于在个别地方穷追不舍,这早已引起行家的注意,从这个意义上说,此次调整应当只是第一步.在中学阶段即试图严谨与完整,其实是受前苏联教育家赞可夫的三高(高速度、高难度、高理论)影响太深的缘故.二、备用习题1.函数y =sin(π3-2x )的单调减区间是( ) A .[2k π-π12,2k π+5π12](k ∈Z ) B .[4k π-5π3,4k π+11π3](k ∈Z ) C .[k π-5π12,k π+11π12](k ∈Z ) D .[k π-π12,k π+5π12](k ∈Z ) 答案:D2.满足sin(x -π4)≥12的x 的集合是( ) A .{x |2k π+5π12≤x ≤2k π+13π12,k ∈Z } B .{x |2k π-π12≤x ≤2k π+7π12,k ∈Z } C .{x |2k π+π6≤x ≤2k π+5π6,k ∈Z } D .{x |2k π≤x ≤2k π+π6,k ∈Z }∪{x |2k π+5π6≤x ≤(2k +1)π,k ∈Z } 答案:A3.求下列函数的定义域和值域:(1)y =lgsin x ;(2)y =2cos3x .答案:解:(1)由题意得sin x >0,∴2k π<x <(2k +1)π,k ∈Z .又∵0<sin x ≤1,∴lgsin x ≤0.故函数的定义域为[2k π,(2k +1)π],k ∈Z ,值域为(-∞,0].(2)由题意得cos3x ≥0,∴2k π-π2≤3x ≤2k π+π2,k ∈Z . ∴2k π3-π6≤x ≤2k π3+π6,k ∈Z . 又∵0≤cos x ≤1,∴0≤2cos3x ≤2.故函数的定义域为[2k π3-π6,2k π3+π6],k ∈Z ,值域为[0,2].。
高中数学 第1章 三角函数 1.4.3 正切函数的性质与图象教案(含解析)高一数学教案
(2)y=3tan =-3tan ,
由- +kπ<2x- < +kπ,k∈Z得,
- + π<x< + π,k∈Z,
所以y=3tan 的减区间为 ,k∈Z.
1.将本例(2)中的函数改为“y=3tan ”,结果又如何?
[解]由kπ- < x- <kπ+ (k∈Z),
得2kπ- <x<2kπ+ π(k∈Z),
2.在下列函数中同时满足:①在 上递增;②以2π为周期;③是奇函数的是( )
A.y=tanxB.y=cosx
C.y=tan D.y=-tanx
C[A,D的周期为π,B中函数在 上递减,故选C.]
3.函数y=|tanx|在 上的单调减区间为________.
和 [如图,观察图象可知,y=|tanx|在 上的单调减区间为 和 .
]
4.求函数y=tan 的定义域、最小正周期、单调区间及其图象的对称中心.
[解]①由 - ≠kπ+ ,k∈Z,得x≠2kπ+ ,k∈Z,
∴函数的定义域为 .
②T= =2π,∴函数的最小正周期为2π.
③由kπ- < - <kπ+ ,k∈Z,得2kπ- <x<2kπ+ ,k∈Z,∴函数的单调递增区间为 ,k∈Z.
3.函数y=tan 3x的最小正周期是________.
[函数y=tan 3x的最小正周期是 .]
4.函数y=tan 的对称中心是________.
(k∈Z)[令x- = (k∈Z)得x= + (k∈Z),
∴对称中心为 (k∈Z).]
有关正切函数的定义域、值域问题
【例1】 (1)函数y= 的值域是( )
→
(2) →
[解](1)①因为tan =tan ,tan =tan ,
高中数学 第一章 三角函数 第四节 三角函数的图象与性质(第二课时)示范教案数学教案
第一章第四节三角函数的图象与性质第二课时整体设计教学分析对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦、余弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.单调性只要求由图象观察,不要求证明,而正弦、余弦函数的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.课时安排2课时教学过程第1课时导入新课思路 1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路 2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sin x又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生建立在比较牢固的理解周期性的认知基础上,来理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究提出问题问题①正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的?问题②阅读教材并思考:怎样从代数的角度定义周期函数?活动:教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对问题①,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1问题②,从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考查结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映.讨论结果:①正弦函数、余弦函数是周期函数,每隔2π就重复一次.②略.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数.非零常数T 叫做这个函数的周期.如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.正弦函数是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.提出问题①怎样正确理解三角函数是周期函数的定义?并举例说明. ②通过探求思考怎样求一些简单三角函数的周期?活动:对问题①,学生一时可能难以理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f (x )=c (c 为常数,x ∈R )是周期函数,所有非零实数T 都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x 取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f (x +T )=f (x ),那么T 就不是f (x )的周期.例如,分别取x 1=2k π+π4(k ∈Z ),x 2=π6,则由sin(2k π+π4+π2)≠sin(2k π+π4),sin(π6+π2)≠sin π6,可知π2不是正弦函数的周期.又如sin(30°+120°)=s in30°,但不是对所有x 都有f (x +120°)=f (x ),所以120°不是f (x )的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2kπ(k∈Z,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T是函数f(x)的周期,那么对于任意的k∈Z,k≠0,kT也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c为常数,x∈R),所有非零实数T都是它的周期,由于T可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T是f(x)的周期,那么2T、3T、…呢?怎样求?实际上,由于T是f(x)的周期,那么2T、3T、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.讨论结果:①略.②定义法、公式法和图象法.应用示例思路1例1求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin(x 2-π6),x ∈R . 活动:教师引导学生紧扣定义,一切从定义出发来求.(1)因为3cos(x +2π)=3cos x ,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x +π)=-3cos x ≠3cos x ,所以π不是周期.(2)教师引导学生观察2x ,可把2x 看成一个新的变量u ,那么cos u 的最小正周期是2π,就是说,当u 增加到u +2π时,函数cos u 的值重复出现,而u +2π=2x +2π=2(x +π),所以当自变量x 增加到x +π且必须增加到x +π时函数值重复出现.因为sin2(x +π)=sin(2x +2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin[12(x +4π)-π6]=2sin[(x 2-π6)+2π]=2sin(x 2-π6). 所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π;(2)周期为π;(3)周期为4π.点评:通过本例我们看到函数周期的变化仅与自变量的系数有关,关键是让学生认识到,f (x +T )=f (x )中,T 是相对于自变量x而言的,让学生总结归纳一下这些函数的周期与解析式中哪些量有关.一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期为T =2πω.可以按照如下的方法求它的周期: y =A sin(ωx +φ+2π)=A sin[ω(x +2πω)+φ]=A sin(ωx +φ).于是有f (x +2πω)=f (x ), 所以其周期为2πω.由上述解法可以看到,思考的基本依据还是y =sin x 的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例1中的第(3)小题:T =2πω=4π.这是求简单三角函数周期的最基本方法,即公式法.思路2例1判断函数f (x )=2sin 2x +|cos x |,x ∈R 的周期性.如果是周期函数,最小正周期是多少?活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f (x +T )=f (x )成立的T 的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决.解:因为f (x +π)=2sin 2(x +π)+|cos(x +π)|=2sin 2x +|cos x |=f (x ).所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f (x )中的x 以x +π代替后看看函数值变不变.为此需将π,π2等都代入试一试.实际上,在f (x )=2sin 2x +|cos x |,x ∈R 中,学生应看到平方与绝对值的作用是一样的,与负号没有关系.因而π肯定是原函数的一个周期.知能训练课本本节练习解答:1.成立.但不能说12°是正弦函数的一个周期,因为此等式不是对x的一切值都成立.例如sin(20°+120°)≠sin20°.点评:理解周期函数概念中“当x 取定义域内每一个值时”的“每一个值”的含义.2.(1)8π3;(2)π2;(3)2π;(4)6π. 点评:利用周期函数的图象和定义求周期,体会周期与自变量x 的系数有关.3.可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域.点评:了解如何利用函数的周期性来认识周期函数的其他性质.可让学生课堂讨论,然后归纳总结.课堂小结由学生回顾本节所学的数学知识有哪些?〔周期函数的概念,最小正周期的定义,正弦、余弦函数的周期性,y =A sin(ωx +φ)(ω>0)的周期〕.并思考总结本节都用了哪些数学方法?(观察与归纳,特殊到一般,定义法,数形结合,辩证的观点) 作业1.课本习题 A 组3,B 组3.2.预习正弦函数、余弦函数的奇偶性.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么,以后有些题就会很难做.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形到数、由特殊到一般、由易到难,这符合学生的认知规律.让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.。
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(一)学案 苏教版必修4-
1.3.3 函数y =Asin(ωx+φ)的图象(一)[学习目标] 1.理解y =A sin(ωx +φ)中ω、φ、A 对图象的影响.2.掌握y =sin x 与y =A sin(ωx +φ)图象间的变换关系,并能正确地指出其变换步骤.[知识链接] 1.“五点法”作图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).2.交流电电流随时间变化的图象与正弦曲线有何关系? 答 交流电电流随时间变化的图象与正弦曲线很相似,从解析式来看,函数y =sin x 就是函数y =A sin(ωx +φ)在A =1,ω=1,φ=0时的情况. [预习导引]1.函数s =A sin(ωx +φ)的振幅、周期、频率等在s =A sin(ωx +φ)(A >0,ω>0)中,其中A 为物体振动时离开平衡位置的最大距离,称为振动的振幅;往复振动一次所需的时间T =2πω,称为这个振动的周期;单位时间内往复振动的次数f =1T =ω2π,称为振动的频率;ωx +φ称为相位,x =0时的相位φ称为初相.2.φ、ω、A 对y =A sin(ωx +φ)图象的影响(1)函数y =sin(x +φ)(其中φ≠0)的图象,可以看做是将函数y =sin x 上所有点向左(当φ>0时)或向右(当φ<0时)平移|φ|个单位而得到的.(2)函数y =sin(ωx +φ)的图象,可以看做是把y =sin(x +φ)的图象上的所有点的横坐标变为原来的1ω倍(纵坐标不变)而得到的.(3)函数y =A sin(ωx +φ)的图象,可以看做是把y =sin(ωx +φ)的图象上所有点的纵坐标变为原来的A 倍(横坐标不变)而得到的.3.函数y =sin x 与y =A sin(ωx +φ)图象间的变换函数y =A sin(ωx +φ)(其中A >0,ω>0)的图象可以看做是由下面的方法得到:先画出函数y =sin x 的图象;再把正弦曲线向左(当φ>0时)或右(当φ<0时)平移|φ|个单位长度,得到函数y =sin(x +φ)的图象;然后使曲线上各点的横坐标变为原来的1ω倍(纵坐标不变),得到函数y =sin(ωx +φ)的图象;最后把曲线上各点的纵坐标变为原来的A 倍(横坐标不变),这时的曲线就是函数y =A sin(ωx +φ)的图象.要点一 三角函数图象的平移变换例1 要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只要将y =sin 2x 的图象________. ①向左平移π3个单位;②向右平移π3个单位;③向左平移π6个单位;④向右平移π6个单位.答案 ③解析 因为y =sin ⎝ ⎛⎭⎪⎫2x +π3=sin 2⎝⎛⎭⎪⎫x +π6, 所以把y =sin 2x 的图象上所有点向左平移π6个单位,就得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象.规律方法 已知两个函数的解析式,判断其图象间的平移关系的步骤:①将两个函数解析式化简成y =A sin ωx 与y =A sin(ωx +φ),即A 、ω及名称相同的结构. ②找到ωx →ωx +φ,变量x “加”或“减”的量,即平移的单位为⎪⎪⎪⎪⎪⎪φω. ③明确平移的方向.跟踪演练1 要得到y =cos ⎝ ⎛⎭⎪⎫2x -π4的图象,只要将y =sin 2x 的图象________.①向左平移π8个单位;②向右平移π8个单位;③向左平移π4个单位;④向右平移π4个单位.答案 ①解析 y =sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎝⎛⎭⎪⎫2x -π2 =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4若设f (x )=sin 2x =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4,则f ⎝ ⎛⎭⎪⎫x +π8=cos ⎝ ⎛⎭⎪⎫2x -π4,所以向左平移π8个单位.要点二 三角函数图象的伸缩变换例2 把函数y =sin x (x ∈R )的图象上所有的点向左平行移动π3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是__________________. 答案 y =sin ⎝⎛⎭⎪⎫2x +π3,x ∈R 解析 把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度后得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,再把所得图象上所有的点的横坐标缩短到原来的12倍,得到函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象. 规律方法 三角函数图象变换容易出错,尤其是既涉及平移变换又涉及伸缩变换.平移时,若x 的系数不是1,需把x 的系数先提出,提出后括号中的x 加或减的那个数才是平移的量,即x 的净增量.方向的规律是“左加右减”.伸缩时,只改变x 的系数ω,其余的量不变化,伸长时系数|ω|减小,缩短时|ω|增大.跟踪演练2 把函数y =sin x (x ∈R )的图象上所有的点向左平移π3个单位长度,再把所得图象上所有点的横坐标扩大到原来的2倍(纵坐标不变),得到的图象所表示的函数解析式是__________________.答案 y =sin ⎝ ⎛⎭⎪⎫x 2+π3,x ∈R 解析 将y =sin x 图象上的所有的点向左平移π3个单位长度得到y =sin ⎝⎛⎭⎪⎫x +π3.再将图象上所有点的横坐标扩大到原来的2倍,得y =sin ⎝ ⎛⎭⎪⎫x 2+π3.要点三 三角函数图象的综合变换例3 把函数y =f (x )的图象上各点向右平移π6个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23倍,所得图象的解析式是y =2sin ⎝ ⎛⎭⎪⎫12x +π3,求f (x )的解析式.解 y =2sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的32倍y =3sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的12倍y =3sin ⎝⎛⎭⎪⎫x +π3――――――――→向左平移π6个单位y =3sin ⎝⎛⎭⎪⎫x +π6+π3=3sin ⎝ ⎛⎭⎪⎫x +π2=3cos x .∴f (x )=3cos x .规律方法 (1)本例已知变换途径及变换后的函数解析式,求变换前函数图象的解析式,宜采用逆变换的方法.(2)已知函数f (x )图象的伸缩变换情况,求变换前后图象的解析式.要明确伸缩的方向及量,然后确定出A 或ω即可.跟踪演练3 将y =f (x )的图象上所有点的横坐标缩短到原来的12倍,然后再将整个图象沿x轴向右平移π2个单位,得到的曲线与y =12sin x 图象相同,则y =f (x )的函数解析式为________.答案 y =12sin ⎝ ⎛⎭⎪⎫12x +π2⎝ ⎛⎭⎪⎫或y =12cos x 21.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________________________. 答案 向左平行移动12个单位长度解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +12)的图象,即函数y =sin(2x +1)的图象.2.由y =3sin x 的图象变换到y =3sin ⎝ ⎛⎭⎪⎫12x +π3的图象主要有两个过程:先平移后伸缩和先伸缩后平移,前者需向左平移________个单位,后者需向左平移________个单位. 答案π3 23π 3.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为________. 答案 ±124.将函数y =sin(-2x )的图象向左平移π4个单位,所得函数图象的解析式为__________________. 答案 y =-cos 2x解析 y =sin(-2x )――――――――→左移π4个单位y =sin ⎣⎢⎡⎦⎥⎤-2⎝ ⎛⎭⎪⎫x +π4,即y =sin ⎝ ⎛⎭⎪⎫-2x -π2=-sin ⎝⎛⎭⎪⎫2x +π2=-cos 2x .1.由y =sin x 的图象,通过变换可得到函数y =A sin(ωx +φ)(A >0,ω>0)的图象,其变化途径有两条:(1)y =sin x ――→相位变换y =sin(x +φ)――→周期变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――→周期变换y =sin ωx ――→相位变换y =sin[ω(x +φω)]=sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).注意:两种途径的变换顺序不同,其中变换的量也有所不同: (1)先相位变换后周期变换,平移|φ|个单位. (2)先周期变换后相位变换,平移|φ|ω个单位.2.类似地,y =A cos(ωx +φ) (A >0,ω>0)的图象也可由y =cos x 的图象变换得到.一、基础达标1.函数y =sin 2x 图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象的函数解析式为f (x )=________. 答案 sin x2.要得到y =sin ⎝⎛⎭⎪⎫x -π3的图象,只要将y =sin x 的图象________.①向左平移π3个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向右平移π6个单位长度.答案 ②3.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是__________________. 答案 y =1+cos 2x解析 将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin 2(x +π4),即y =sin(2x+π2)=cos 2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos 2x . 4.将函数y =3sin(2x +π3)的图象向右平移π2个单位长度,所得图象对应的函数________.①在区间[π12,7π12]上单调递减;②在区间[π12,7π12]上单调递增;③在区间[-π6,π3]上单调递减;④在区间[-π6,π3]上单调递增.答案 ②解析 y =3sin(2x +π3)的图象向右平移π2个单位长度得到y =3sin[2(x -π2)+π3]=3sin(2x -23π).令2k π-π2≤2x -23π≤2k π+π2得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin(2x -23π)的增区间为[k π+π12,k π+712π],k ∈Z .令k =0得其中一个增区间为[π12,712π],故②正确.画出y =3sin(2x -23π)在[-π6,π3]上的简图,如图,可知y =3sin(2x -23π)在[-π6,π3]上不具有单调性,故③④错误.5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是________. ①y =f (x )是奇函数; ②y =f (x )的周期为π;③y =f (x )的图象关于直线x =π2对称;④y =f (x )的图象关于点(-π2,0)对称. 答案 ④解析 由题意知,f (x )=cos x ,所以它是偶函数,①错;它的周期为2π,②错;它的对称轴是直线x =k π,k ∈Z ,③错;它的对称中心是点⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,④对.6.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象________.①向右平移π6个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向左平移π3个单位长度.答案 ②解析 y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π6=cos ⎝⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos 2⎝⎛⎭⎪⎫x -π3.7.怎样由函数y =sin x 的图象变换得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,试叙述这一过程.解 方法一 y =sin x ――→向右平移π3个单位y =sin ⎝ ⎛⎭⎪⎫x -π3――→纵坐标不变横坐标缩短为原来的12y =sin ⎝ ⎛⎭⎪⎫2x -π3. 方法二 y =sin x ――→纵坐标不变横坐标缩短为原来的12y =sin 2x ――→向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3. 二、能力提升8.要得到函数y =2cos x 的图象,只需将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4图象上的所有点的________.①横坐标缩短到原来的12(纵坐标不变),再向左平行移动π8个单位长度;②横坐标缩短到原来的12(纵坐标不变),再向右平行移动π4个单位长度;③横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动π4个单位长度;④横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动π8个单位长度.答案 ③解析 ∵y =2cos x =2sin ⎝⎛⎭⎪⎫x +π2,∴y =2sin ⎝ ⎛⎭⎪⎫2x +π4――→纵坐标不变横坐标伸长到原来的2倍 y =2sin ⎝⎛⎭⎪⎫x +π4―――――――――――→向左平移π4个单位长度 y =2sin ⎝⎛⎭⎪⎫x +π2. 9.某同学给出了以下论断:①将y =cos x 的图象向右平移π2个单位,得到y =sin x 的图象;②将y =sin x 的图象向右平移2个单位,可得到y =sin(x +2)的图象; ③将y =sin(-x )的图象向左平移2个单位,得到y =sin(-x -2)的图象; ④函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象是由y =sin 2x 的图象向左平移π3个单位而得到的. 其中正确的结论是______(将所有正确结论的序号都填上). 答案 ①③10.将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.答案22解析 将y =sin x 的图象向左平移π6个单位长度可得y =sin(x +π6)的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin(12x +π6)的图象,故f (x )=sin(12x +π6),所以f (π6)=sin(12×π6+π6)=sin π4=22.11.已知函数f (x )=sin ⎝⎛⎭⎪⎫π3-2x (x ∈R ).经过怎样的图象变换使f (x )的图象关于y 轴对称?(仅叙述一种方案即可).解 f (x )=sin ⎝ ⎛⎭⎪⎫π3-2x =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-2x=cos ⎝ ⎛⎭⎪⎫2x +π6=cos 2⎝ ⎛⎭⎪⎫x +π12.∵y =cos 2x 是偶函数,图象关于y 轴对称, ∴只需把y =f (x )的图象向右平移π12个单位即可.12.使函数y =f (x )图象上每一点的纵坐标保持不变,横坐标缩小到原来的12倍,然后再将其图象沿x 轴向左平移π6个单位得到的曲线与y =sin 2x 的图象相同,求f (x )的表达式.解 方法一 正向变换y =f (x )――→横坐标缩小到原来的12y =f (2x )――→沿x 轴向左平移π6个单位y =f ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6,即y =f ⎝⎛⎭⎪⎫2x +π3, ∴f ⎝ ⎛⎭⎪⎫2x +π3=sin 2x . 令2x +π3=t ,则2x =t -π3,∴f (t )=sin ⎝ ⎛⎭⎪⎫t -π3,即f (x )=sin ⎝⎛⎭⎪⎫x -π3.方法二 逆向变换据题意,y =sin 2x ――→沿x 轴向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3――→横坐标伸长到原来的2倍纵坐标不变 y =sin ⎝⎛⎭⎪⎫x -π3.三、探究与创新13.已知函数f (x )=2sin ωx ,其中常数ω>0;(1)若y =f (x )在⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,求ω的取值范围;(2)令ω=2,将函数y =f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,区间[a ,b ](a ,b ∈R 且a <b )满足:y =g (x )在[a ,b ]上至少含有30个零点,在所有满足上述条件的[a ,b ]中,求b -a 的最小值.解 (1)因为ω>0,根据题意有⎩⎪⎨⎪⎧-π4ω≥-π2,2π3ω≤π2,解得0<ω≤34. (2)f (x )=2sin 2x , g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1 g (x )=0⇒sin ⎝ ⎛⎭⎪⎫2x +π3=-12⇒x =k π-π4或x =k π-712π,k ∈Z ,即g (x )的零点相离间隔依次为π3和2π3, 故若y =g (x )在[a ,b ]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.。
高中数学 第一章 三角函数 1.3 三角函数的图象和性质 1.3.2 三角函数的图象与性质教案 苏
高中数学第一章三角函数1.3 三角函数的图象和性质1.3.2 三角函数的图象与性质教案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.3 三角函数的图象和性质1.3.2 三角函数的图象与性质教案苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.3 三角函数的图象和性质1.3.2 三角函数的图象与性质教案苏教版必修4的全部内容。
1.3.2 三角函数的图象与性质错误!教学分析研究函数的性质常常以直观图象为基础,这点学生已经有些经验,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.正弦函数、余弦函数的教学也是如此.先研究它们的图象,在此基础上再利用图象来研究它们的性质.显然,加强数形结合是深入研究函数性质的基本要求.由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此,教科书把对周期性的研究放在了首位.这是对数学思考方向的一种引导.由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法"画正弦函数、余弦函数的简图.三维目标1.通过实验演示,让学生经历图象画法的过程及方法,通过对图象的感知,形成对正弦、余弦以及正切函数的初步认识,了解这三种曲线的准确作法.经历正弦、余弦、正切函数的性质的探索过程,熟练掌握这三种函数的性质.在探索学习的过程中,使学生养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.2.通过学习本节,理解正弦、余弦、正切函数图象的画法.借助图象变换,了解函数之间的内在联系,加深学生对数形结合这一数学思想的认识.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.3.组织学生通过观察这三种函数的图象归纳出三种函数的性质,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣.通过学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦,树立科学的辩证唯物主义观.重点难点教学重点:1.会画正弦、余弦、正切函数的图象.2.掌握正弦、余弦、正切函数的性质及应用.教学难点:1.利用正弦线、正切线画正弦、正切函数的图象;由诱导公式和正弦曲线画余弦函数的图象.2.正弦、余弦、正切函数性质的应用.课时安排3课时错误!第1课时导入新课思路1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们的图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x∈[0,2π]时y=sinx的图象.思路2。
高中数学 第一章 三角函数 1.3 三角函数的图象和性质 1.3.2 三角函数的图象和性质导学案
高中数学第一章三角函数1.3 三角函数的图象和性质1.3.2 三角函数的图象和性质导学案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.3 三角函数的图象和性质1.3.2 三角函数的图象和性质导学案苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.3 三角函数的图象和性质1.3.2 三角函数的图象和性质导学案苏教版必修4的全部内容。
1.3。
2 三角函数的图象与性质课堂导学三点剖析1.正弦函数、余弦函数的主要性质 【例1】求下列函数的定义域: (1)y=236x-+lgcosx;(2)y=log sinx (cosx+21).思路分析:利用三角函数单调性求解。
解:(1)由⎩⎨⎧>≥-0cos ,0362x x 得⎪⎩⎪⎨⎧∈+<<-≤≤-.,2222,66Z k k x k x ππππ由上图可知不等式组的解集为[—6,—π23)∪(—2π,2π)∪(π23,6].故原函数的定义域为[—6,—π23)∪(—2π,2π)∪(π23,6].(2)由⎪⎪⎩⎪⎪⎨⎧->≠>,21cos ,1sin ,0sin x x x得⎪⎪⎪⎩⎪⎪⎪⎨⎧+<<-+≠+<<,322322,22,22πππππππππk x k k x k x k (k∈Z ).∴原函数的定义域为(2kπ,2kπ+2π)∪(2kπ+2π,2kπ+23π)k∈Z .温馨提示求函数的定义域,就是求使函数式有意义的x 值集合。
三角不等式常借助图象或三角函数线求解.若不等式组由三角不等式和普通不等式组成,不等式组的解集可由数轴找出.若不等式组只由三角不等式组成,不等式组的解集可借助象限或单位圆求出. 【例2】 比较下列各组中四个值的大小: (1)sin1,sin2,sin3,sin4; (2)cos1,cos2,cos3,cos4.思路分析:转化到同一单调区间再比较. 解析:(1)∵0<1<2π<2<3<π<4<π23,∴sin4<0,sin2=sin (π—2),sin3=sin (π-3)。
第一章三角函数教案
第一章三角函数1.1 任意角和弧度制1.1.1 任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360 角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4) 掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣. (7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720 ,逆(顺)时针旋转”,角有大于360 角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分. 角的概念推广以后,知道角之间的关系. 理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角, 最小的角是零角. 通过回忆和观察日常生活中实际例子, 把对角的理解进行了推广. 把角放入坐标系环境中以后, 了解象限角的概念. 通过角终边的旋转掌握终边相同角的表示方法. 我们在学习这部分内容时, 首先要弄清楚角的表示符号, 以及正负角的表示. 另外还有相同终边角的集合的表示等.教学用具: 电脑、投影机、三角板四、教学设想【创设情境】思考: 你的手表慢了 5 分钟,你是怎样将它校准的?假如你的手表快了 1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[ 取出一个钟表, 实际操作] 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上, 这就是说角已不仅仅局限于0 360 之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0 360 角的概念,它是如何定义的呢?[ 展示投影] 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 如图 1.1-1 ,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角. 旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫的顶点.2. 如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转1体720 ”(即转体 2 周),“转体1080 ”(即转体 3 周)等, 都是遇到大于360 的角以及按不同方向旋转而成的角. 同学们思考一下: 能否再举出几个现实生活中“大于360 的角或按不同方向旋转而成的角”的例子, 这些说明了什么问题?又该如何区分和表示这些角呢?[ 展示课件] 如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角(positive angle), 按顺时针方向旋转所形成的角叫负角(negative angle). 如果一条射线没有做任何旋转, 我们称它形成了一个零角(zero angle).[ 展示课件] 如教材图 1.1.3(1) 中的角是一个正角, 它等于750 ;图 1.1.3(2) 中,正角210 ,负角150 , 660 ;这样,我们就把角的概念推广到了任意角(anyangle ), 包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3. 在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x轴的非负半轴重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.4 三角函数的应用整体设计教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节通过例题,循序渐进地从四个层次来介绍三角函数模型的应用,本节在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等.三维目标1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.2.通过函数拟合得到具体的函数模型,提高数学建模能力,并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.3.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.重点难点教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题,是本节的难点,主要原因是背景陌生,数据处理较复杂,学习起来感到难以切入.课时安排2课时教学过程第1课时导入新课思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课.思路2.(直接导入)我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.推进新课新知探究用三角函数的图象和性质解决一些简单的生活实际问题.活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助其回忆并快速激起相应的知识方法.在教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题.这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知.简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.解决问题的一般程序是:(1)审题:逐字逐句地阅读题意,审清楚题目条件、要求、理解数学关系;(2)建模:分析题目变化趋势,选择适当函数模型;(3)求解:对所建立的数学模型进行分析研究得到数学结论;(4)还原:把数学结论还原为实际问题的解答.应用示例思路1例1见课本本节例1.变式训练如图1,某地一天从6~14时的温度变化曲线近似满足函数y =sin(ωx +φ)+b.图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道题目是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本题是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本题给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决. 题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6时到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小 题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解.解:(1)由图可知,这段时间的最大温差是20 ℃.(2)从图中可以看出,从6~14时的图象是函数y =Asin(ωx +φ)+b 的半个周期的图象,∴A=12(30-10)=10,b =12(30+10)=20. ∵12·2πω=14-6,∴ω=π8.将x =6,y =10代入上式,解得φ=3π4. 综上,所求解析式为y =10sin(π8x +3π4)+20,x∈[6,14]. 点评:本题中所给出的一段图象恰好是半个周期的图象,提醒学生注意抓关键.本题所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.例2见课本本节例2.例3如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.如果在北京地区(纬度数约为北纬40°)的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?图2活动:本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系.首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系:h0=htanθ.由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意,两楼的间距应不小于MC.图3根据太阳高度角的定义,有∠C=90°-|40°-(-23°26′)|=26°34′,所以MC=h0tanC=h0tan26°34′≈2.000h0,即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.图4知,北楼被南楼遮挡的高度为h=15tan[90°-(23°+23°26′)]知能训练 课本本节练习1、2.课堂小结1.本节课我们学习了三个层次的三角函数模型的应用,即根据图象建立解析式,根据解析式作出图象,将实际问题抽象为与三角函数有关的简单函数模型.你能概括出建立三角函数模型解决实际问题的基本步骤吗?2.实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.作业1.图5表示的是电流I 与时间t 的函数关系I =Asin(ωx +φ)(ω>0,|φ|<π2)在一个周期内的图象.图5(1)根据图象写出I =Asin(ωx +φ)的解析式.(2)为了使I =Asin(ωx +φ)中的t 在任意一段1100s 的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值为多少?解:(1)由图知A =300,第一个零点为(-1300,0),第二个零点为(1150,0), ∴ω·(-1300)+φ=0,ω·1150+φ=π. 解得ω=100π,φ=π3.∴I=300sin(100πt +π3). (2)依题意有T≤1100,即2πω≤1100, ∴ω≥200π,故ωmin =629.2.搜集、归纳、分类现实生活中周期变化的情境模型.解:如以下两例:①人体内部的周期性节律变化和个人的习惯性的生理变化,如人体脉搏、呼吸、排泄、体温、睡眠节奏、饥饿程度等;②蜕皮(tuipi)昆虫纲和甲壳纲等节肢动物,以及线形动物等的体表具有坚硬的几丁质层,虽有保护身体的作用,但限制动物的生长、发育.因此,在胚后发育过程中,必须进行1次或数次脱去旧表皮,再长出宽大的新表皮后,才变成成虫,这种现象称为蜕皮;蜕下的“旧表皮”称为“蜕”,只有这样,虫体才能得以继续充分生长、发育.蜕皮现象的发生具有周期性,但蜕皮的准备和蜕皮过程是连续进行的.此外,脊椎动物爬行类的蜕皮现象尤为明显,如蜥蜴和蛇具有双层角质层,其外层在定期蜕皮时脱掉,蛇的外层角质层连同眼球外面透明的皮肤,约每2个月为一个周期可完整地脱落1次,称为蛇蜕.设计感想1.本教案设计指导思想是:充分唤起学生已有的知识方法,调动起相关学科的知识,尽量降低实例背景的相对难度,加大实际问题的鲜明、活跃程度,以引发学生探求问题的兴趣.2.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,确定它的周期,从而建立起适当的三角函数模型.如果学生选择了不同的函数模型,教师应组织学生进行交流,或让学生根据自己选择的模型进行求解,然后再根据所求结果与实际情况的差异进行评价.3.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,有条件的要用多媒体进行动态演示,以使学生有更多的时间用于对问题本质的理解.备课资料一、备选习题1.下列函数中,图象的一部分如图6所示的是( )图6A .y =sin(x +π6)B .y =sin(2x -π6) C .y =cos(4x -π3) D .y =cos(2x -π6) 2.已知函数y =Asin(ωx +φ)(A >0,|φ|<π)的一段图象如图7所示,求函数的解析式.图73.已知函数y =Atan(ωx +φ)(其中A>0,ω>0,|φ|<π2)的图象与x 轴相交的两相邻点的坐标为(π6,0)和(5π6,0),且过点(0,-3),求此函数的解析式. 4.单摆从某点开始来回摆动,离开平衡位置的距离s(厘米)和时间t(秒)的函数关系为s =6sin(2πt +π6). (1)单摆开始摆动(t =0)时,离开平衡位置多少厘米?(2)单摆摆动到最右边时,离开平衡位置多少厘米?(3)单摆来回摆动一次需要多少时间?5.函数f(x)=sinx +2|sinx|,x∈[0,2π]的图象与直线y =kx 有且仅有两个不同的交点,求k 的取值范围.参考答案:1.D2.由图7,得A =2,T 2=3π8-(-π8)=π2, ∴T=π.∴ω=2.∴y=2sin(2x +φ).又∵图象经过点(-π8,2),∴2=2sin(-π4+φ).∴φ-π4=2k π+π2(k∈Z ). ∴φ=2k π+3π4.∴函数解析式为y =2sin(2x +3π4). 3.∵T=πω=5π6-π6,∴ω=32. ∵32×π6+φ=0,且-3=Atan(32×0+φ),∴A=3,φ=-π4. 故y =3tan(32x -π4). 4.(1)t =0时,s =3,即离开平衡位置3厘米;(2)振幅为6,所以最右边离平衡位置6厘米;(3)T =1,即来回一次需要1秒钟.5.将原函数化简为f(x)=sinx +2|sinx|=⎩⎪⎨⎪⎧ 3sinx ,x∈[0,π],-sinx ,x∈ π,2π],由此可画出图8,图8由数形结合可知,k 的取值范围为1<k <3.二、数学与音乐若干世纪以来,音乐和数学一直被联系在一起.在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中.今天的新式计算机正在使这条纽带绵延不断.乐谱的书写是表现数学对音乐的影响的第一个显著的领域.在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等.书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应.作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的.如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数.除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系.毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的.他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系.他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比.按整数比增加弦的长度,能产生整个音阶.例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C.不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状.19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点.他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和.每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来.傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来.音高与曲线的频率有关,音量和音质分别与周期函数的振幅和形状有关.如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展.数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的.许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较.电子音乐复制的保真度也与周期曲线密切相关.音乐家和数学家将继续在音乐的产生和复制方面发挥着同等重要的作用.(设计者:郑吉星)第2课时导入新课思路1.(作业导入)学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.推进新课新知探究三角函数性质在生活中的应用.本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,调动学生的学习气氛.应用示例例1货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生仔细、准确地观察散点图,如图9.图9教师引导学生根据散点的位置排列,思考可以用怎样的函数模型来刻画其中的规律.根据散点图中的最高点、最低点和平衡点,学生很容易确定选择三角函数模型.港口的水深与时间的关系可以用形如y =Asin(ωx +φ)+h 的函数来刻画.其中x 是时间,y 是水深,我们可以根据数据确定相应的A ,ω,φ,h 的值.这时注意引导学生与“五点法”相联系.要求学生独立操作完成,教师指导点拨,并纠正可能出现的错误,直至无误地求出解析式,进而根据所得的函数模型,求出整点时的水深.根据学生所求得的函数模型,指导学生利用计算器进行计算求解.注意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思考:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?让学生养成检验的良好习惯.在本例的(3)中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢?引导学生思考,怎样把此问题翻译成函数模型?求货船停止卸货、将船驶向深水域的含义又是什么?教师引导学生将实际问题的意义转化为数学解释,同时提醒学生注意货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候.进一步引导学生思考:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思考、讨论后再由教师组织学生进行评价.通过讨论或争论,最后得出一致结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨.解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图9). 根据图象,可以考虑用函数y =Asin(ωx +φ)+h 刻画水深与时间之间的对应关系.从数据和图象可以得出:A =2.5,h =5,T =12,φ=0,由T =2πω=12,得ω=π6.所以这个港口的水深与时间的关系可用y =2.5sin(π6x)+5近似描述.由上述关系式易得港口在整点时水深的近似值:(2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港. 令2.5sin(π6x)+5≥5.5,得sin π6x≥0.2.画出y =sin(π6x)的图象,由图象可得0.4≤x≤5.6或12.4≤x≤17.6.故该船在0:24至5:36和12:24至17:36期间可以进港.图10(3)设在时刻x 货船的安全水深为y ,那么y =5.5-0.3(x -2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6~7时之间两个函数图象有一个交点(如图11).图11通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.因此为了安全,货船最好在6.7时之前停止卸货,将船驶向较深的水域.点评:本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第(2)问的解答,教师需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释.例2已知函数f(x)=sin(ωx +φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为4+π2.(1)求函数f(x)的解析式;(2)若sinx +f(x)=23,求sinxcosx 的值.解:(1)∵f(x)为偶函数,∴f(-x)=f(x),即sin(-ωx +φ)=sin(ωx +φ). ∴φ=π2.∴f(x)=sin(ωx +π2)=cos ωx.相邻两点P(x 0,1),Q(x 0+πω,-1).由题意,|PQ|= πω2+4=π2+4,解得ω=1. ∴f(x)=cosx.(2)由sinx +f(x)=23,得sinx +cosx =23.两边平方,得sinxcosx =-518. 例3小明在直角坐标系中,用1 cm 代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2 cm 代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2 cm 代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?解:小明原作的曲线为y =sinx ,x∈R ,由于纵坐标改用了2 cm 代表一个单位长度,与原来1 cm 代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1 cm 只能代表12个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y =12sinx ,x∈R .同理,若纵坐标保持不变,横坐标改用2 cm 代表一个单位长度,则横坐标被压缩到原来的12,原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为y =sin2x ,x∈R .例4求方程lgx =sinx 实根的个数.解:由方程式模型构建图象模型.在同一坐标系内作出函数y=lgx和y=sinx的图象,如图12.可知原方程的解的个数为3.图12点评:单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法.知能训练课本习题1.3 14.课堂小结1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用.2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活地运用三角函数的图象和性质解决现实问题.作业课本习题1.3 13.设计感想1.本节是三角函数内容中新增加的一节,目的是加强学生的应用意识,本节教案设计的指导思想,是让学生围绕着采集到的数据展开讨论,在学生思考探究的过程中,学会积极冷静地对待陌生背景,正确处理复杂数据以及准确分析问题中的数量关系,这很符合新课改理念.2.现实生活中的问题是多变的,学生的思维是发散的,观察的视角又是多样的,因此课题教学中,教师要善于挖掘并发现学生思维的闪光点,通过讨论例题这个载体,充分激发学生的潜能,让学生从观察走向发现,从发现走向创造,走向创新.3.学生面对枯燥的数据,潜意识里是讨厌的,因此教师要在有限的课堂时间里,着重解决物理背景下、地理背景下的三角函数的函数模型的选定,不要把时间浪费在一些计算上.。