大数据培训课件
大数据培训课件ppt
欧盟《通用数据保护条例》(GDPR)
01
对个人数据的收集、存储和使用进行严格规定,违反者将面临
重罚。
中国《网络安全法》
02
强调保护个人信息安全,对网络运营者、用户等各方责任和义
务进行明确规定。
美国《加州消费者隐私法》(CCPA)
03
赋予消费者对个人信息的更多权利,对企业的数据收集和使用
进行限制。
隐私保护技术与实践案例分享
利用大数据技术对交易数据、客户行为等进行分析,以识别和预防 金融欺诈和洗钱行为。
医疗行业大数据应用实践案例分享
精准医疗与个性化治疗
通过对大量医疗数据的挖掘和分析,为患者提供更精准、个性化 的治疗方案。
疾病预测与预防
通过对历史病例、流行病学数据等进行分析,预测疾病的发生和传 播趋势,为预防措施提供科学依据。
大数据培训课件
汇报人:可编辑
2023-12-22
CATALOGUE
目 录
• 大数据概述 • 大数据处理技术 • 大数据挖掘与分析 • 大数据安全与隐私保护 • 大数据应用实践与案例分析
01
CATALOGUE
大数据概述
大数据的定义与特点
定义
大数据是指数据量巨大、复杂度 高、处理速度快的数据集合。
医疗健康
利用大数据进行疾病预防、诊 断和治疗方案的优化。
商业智能
通过大数据分析,提高企业决 策效率和准确性。
智慧城市
通过大数据实现城市资源优化 配置,提高城市管理效率。
科研领域
大数据在科研领域的应用包括 数据挖掘、知识发现和科研协 作等方面。
02
CATALOGUE
大数据处理技术
数据采集与清洗
数据采集
大数据培训讲义PPT(共 75张)
大数据生态:软件是引擎
大数据技术要解决的问题
企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意 味着企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各 个细节相融合。
大数据技术被设计用于在 成本可承受的条件下,通 过非常快速(velocity) 地采集、发现和分析,从 大量(volumes)、多 类别(variety)的数据 中提取价值(value), 将是IT 领域新一代的技 术与架构。
大数据
主讲人:刘永磊
大数据的定义理解
1
大数据时代的背景
什么是大数据 2
大数据的“4V”特征
3
大数据的构成
大数据时代的背景
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到 了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其 增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物 联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银 行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
• 统计和分析:A/B test; top N排行榜;地域占比; 海量数据的查询、统计、更新等操作效率低
文本情感分析
• 非结构化数据
• 数据挖掘:关联规则分析;分类;聚类
图片、视频、word、pdf、ppt等文件存储
• 模型预测:预测模型;机器学习;建模仿真
不利于检索、查询和存储
• 半结构化数据
• 非关系数据库
(NoSQL)
• 数据仓库
• 云计算和云存储
• 实时流处理
分布式文件系统
分布式文件系统(Distributed File System)是指文件系统管理 的物理存储资源不一定直接连接在本地节点上,而是通过计算机 网络与节点相连。
大数据BigData培训课件(PPT 101页)
MapReduce 技术框架
• 分布式文件系统 • 并行编程模型 • 并行执行引擎
27
分布式文件系统
(Google file system)
• 分布式文件系统运行于大规模集群之上,集 群使用廉价的机器构建.
• 数据采用键/值对(key/value)模式进行存储.
• 整个文件系统采用元数据集中管理、数据 块分散存储的模式,通过数据的复制(每份数 据至少3 个备份)实现高度容错.
4
大数据时代
大规模数据主要来源2: 网站点击流数据
为了进行有效的市场营销和推广,用户在网 上的每个点击及其时间都被记录下来;利用 这些数据,服务提供商可以对用户存取模式 进行仔细的分析,从而提供更加具有针对性 的服务
5
大数据时代
大规模数据主要来源3: 移动设备数据
通过移动电子设备包括移动电话和PDA、 导航设备等,我们可以获得设备和人员的位 置、移动、用户行为等信息,对这些信息进 行及时的分析,可以帮助我们进行有效的决 策,比如交通监控和疏导系统
12
时间序列分析
– 比如在金融服务行业,分析人员可以开发针对性 的分析软件,对时间序列数据进行分析,寻找有 利可图的交易模式(profitable trading pattern), 经过进一步验证之后,操作人员可以使用这些交 易模式进行实际的交易,获得利润
13
大规模图分析和网络分析
• 社会网络虚拟环境本质上是对实体连接性 的描述.在社会网络中,每个独立的实体表示 为图中的一个节点,实体之间的联系表示为 一条边.
40
MapReduce应用领域的扩展
• 若干开发者发起了Apache Mahout 项目的 研究,该项目是基于Hadoop 平台的大规模 数据集上的机器学习和数据挖掘开源程序 库,为应用开发者提供了丰富的数据分析功 能
大数据培训课件
通过大数据分析市场趋势、投资风险和信用状况,为银行、证券和保险等金 融机构提供精准的决策支持和风控手段,提高收益和降低风险。
医疗与教育行业
医疗行业
通过大数据分析疾病趋势、医疗资源分布和医疗质量,为医疗机构提供全面的数 据分析支持,提高医疗效率和医疗服务质量。
教育行业
通过大数据分析学生学习情况、兴趣爱好和职业规划,为学校提供个性化的教育 方案和教学资源,提高教育质量和学生学习效果。
MapReduce
YARN
分布式计算模型,将大数据集拆分成小数据 集,并利用集群进行并行处理和计算。
资源管理系统,负责分配和管理集群中的计 算资源。
Spark生态系统
Spark
MLlib
Spark SQL
Spark Streaming
分布式计算框架,提供快速、通 用、分布式计算能力,支持 Scala、Java、Python等编程语 言。
大数据算法与应用
推荐算法
介绍协同过滤、基于内容的推荐等推荐 算法原理及实现。
聚类算法
介绍K-means、DBSCAN等聚类算法原 理及实现。
分类算法
介绍决策树、朴素贝叶斯等分类算法原 理及实现。
回归算法
介绍线性回归、岭回归等回归算法原理 及实现。
大数据安全与隐私保护
1 2
数据加密
介绍对称加密、非对称加密等加密技术,保障 数据安全传输和存储。
Samza
分布式流处理框架,提供可扩展、高可靠性的数据处理能力。
Apache Beam
统一的编程模型和API,用于构建包括批处理和流处理在内的通用数据处理管道。
05
大数据开发实践
大数据开发平台介绍
01
大数据培训课件(PPT 27页)
– 举例:商超的促销定价怎么做
处理大数据需要专门的技术方案
传统数据
• 数据库 • OLTP系统 • 中心式架构
大数据
• 数据仓库 • OLAP • 数据挖掘 • 云计算架构 • Hadoop
所以,马云说…
• “我们正从IT(信息技术)时代走向DT(数 据技术)时代”、“IT时代是制造,DT时 代是创造”。
理性面对 厘清思路
• 大数据来了?还是狼来了?大数据的本质 是“基于数据的决策”,摒弃“基于经验 的决策”,传统企业应当从客户端、产品 端、管理端寻找介入机会,切不可陷入技 术端陷阱。
– 举例:谷歌流感趋势预测饱受质疑
设立机构 转换职能
• 企业应当设立信息化部门,甚至设立大数 据开发管理部门,该部门不再是后勤支撑 角色,而是要总领性规划企业的数据战略。 支持通过数据整合颠覆公司低效的流程和 业务,信息化部门的职能从软硬件日常维 护转向助推商业逻辑重构。
我对大数据的理解
• 大数据是指超大规模的数据集合,往往还 具有类型多样、快速流转、和价值密度低 等特点,人们无法通过传统数据技术,以 可接受的代价来驾驭处理它。
两点认识
• 大数据的“大”不只是“数量大”,类型 多样、快速流转和价值密度低才是其有别 于传统“数据”概念的关键所在。
– 举例:NEC用脸部识别技术提升销售
• 2015.7 《国务院关于积极推进“互联网+”行动的指导意见》 • 2015.9 《国务院关于促进大数据发展行动纲要》 • 2015.5《安徽省人民政府办公厅关于促进电子政务协调发
展的实施意见》 • 2015.9 《安徽省委省政府关于加快调结构转方式促升级
大数据技术培训课件
数据集成与融合技术
数据集成方法
数据融合技术
将来自不同数据源的数据进行整合,形成 一个统一的数据视图,如数据联邦、数据 仓库等。
将多个数据源的数据进行融合,提取出更 有价值的信息,如基于规则的数据融合、 基于统计的数据融合等。
数据质量评估
数据可视化
对数据集成和融合后的数据进行质量评估 ,确保数据的准确性、完整性和一致性。
企业如何保障大数据安全与用户隐私
制定完善的数据安全管理 制度
明确数据安全责任、规范数据 处理流程、建立数据分类分级 保护机制。
加强网络安全防护
采用先进的网络安全技术和设 备,提高网络防御能力,防范 网络攻击和数据泄露。
实施隐私保护措施
采用匿名化、去标识化等技术 手段处理用户数据,确保用户 隐私不被泄露。同时,建立用 户隐私投诉处理机制,及时响 应用户投诉并采取措施予以解 决。
培养大数据人才
加强大数据人才的培养和引进,打造一支具 备专业技能和创新能力的大数据团队。
构建大数据平台
选择合适的大数据技术和工具,构建高效、 稳定、安全的大数据平台。
推动数据驱动决策
将大数据分析结果应用于企业决策,提高决 策的科学性和准确性。
未来大数据产业前景展望
大数据产业规模持续扩大
随着大数据技术的不断发展和应用,大数据产业规模将持续扩大,成 为经济增长的重要引擎。
等。
数据清洗与转换技术
数据去重
消除数据集中的重复记录,保 证数据的唯一性。
数据填充
对缺失值进行填充,如使用均 值、中位数、众数等统计量进 行填充。
数据转换
将数据从一种格式或结构转换 为另一种格式或结构,如数据 归一化、标准化等。
2024版大数据培训课件pptx
大数据培训课件pptx $number{01}目录•大数据概述•大数据技术基础•大数据平台与工具•大数据挖掘与分析方法•大数据在各行各业应用实践•大数据挑战与未来发展趋势01大数据概述大数据定义与特点定义大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
特点大数据具有Volume(数据体量巨大)、Velocity(处理速度快)、Variety(数据类型繁多)、Value(价值密度低)的4V特点。
123大数据发展历程成熟期2013年至今,大数据技术逐渐成熟,应用领域不断拓展,成为推动社会进步和发展的重要力量。
萌芽期20世纪90年代至2008年,大数据概念开始萌芽,主要关注于数据存储和计算能力的提升。
发展期2009年至2012年,大数据逐渐受到关注,Hadoop 等开源技术不断涌现,数据处理和分析能力得到进一步提升。
金融大数据在金融领域的应用包括风险管理、客户分析、精准营销等方面。
医疗大数据在医疗领域的应用包括疾病预测、个性化治疗、医疗资源优化等方面。
教育大数据在教育领域的应用包括个性化教学、教育资源共享、教育评估等方面。
政府大数据在政府领域的应用包括智慧城市、公共安全、政策制定等方面。
大数据应用领域02大数据技术基础分布式计算架构Master/Slave 架构、MapReduce 架构等分布式计算概述定义、特点、优势等分布式计算编程模型MapReduce 编程模型、BSP 编程模型等分布式计算框架Hadoop 、Spark 等分布式计算原理存储技术02030104HBase 、Cassandra 等MySQL Cluster 、Oracle RAC 等HDFS 、GFS 等Amazon S3、Google Cloud Storage 等分布式文件系统NoSQL 数据库云存储技术分布式数据库大数据分析技术数据挖掘技术数据预处理数据处理与分析技术数据清洗、数据转换、数据规约等统计分析、机器学习、深度学习等分类、聚类、关联规则挖掘等03大数据平台与工具Hadoop生态系统介绍Hadoop概述Hadoop的起源、发展历程、核心组件及架构Spark 的起源、发展历程、核心组件及架构Spark 生态系统介绍Spark 概述弹性分布式数据集,实现容错和高效计算RDD处理结构化数据的模块,提供SQL查询功能Spark SQL处理实时数据流的模块,支持实时分析和处理Spark Streaming机器学习库,提供常见的机器学习算法和工具MLlib图计算库,支持图形处理和并行计算GraphXFlinkKafkaStormCassandraRedis其他大数据平台与工具流处理框架,支持实时数据流处理和批处理分布式流处理平台,实现实时数据流传输和处理实时计算系统,支持分布式实时计算和处理分布式NoSQL 数据库,支持高可用性和可扩展性内存数据库,支持高速读写和持久化存储04大数据挖掘与分析方法数据挖掘基本概念及过程数据挖掘定义从大量数据中提取出有用的信息和知识的过程。
大数据培训课件
智能交通
运用大数据技术对交通流量、路 况、交通事故等多源数据进行挖 掘和分析,实现交通拥堵的预测 和疏导,提高交通运行效率和安 全性。
环境保护
利用大数据技术对环境监测数据 进行实时分析和预测,及时发现 和解决环境问题,为环境保护和 可持续发展提供有力支持。
THANKS
感谢观看
数据传输安全
分析数据传输过程中可能面临的安全威胁,探讨 如何通过SSL/TLS等协议来确保数据传输的安全 性。
密钥管理
阐述密钥管理的重要性和挑战,介绍常见的密钥 管理技术(如密钥交换、密钥存储等)及其最佳 实践。
数据脱敏与匿名化处理
数据脱敏技术
01
探讨数据脱敏的原理和方法,包括静态数据脱敏和动态数据脱
化规律。
社区发现
识别社交网络中的社区结构,分 析社区内的交互行为和信息传播
机制。
网络传播分析
研究信息在社交网络中的传播路 径、速度和影响范围,为舆情监
控和营销策略提供支持。
06
大数据安全与隐私保护
数据加密与传输安全
1 2 3
数据加密技术
介绍常见的加密算法(如AES、RSA等)及其原 理,探讨如何在实际应用中选择合适的加密算法 来保护数据的机密性。
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
大数据技术架构
分布式存储技术
Hadoop的HDFS、HBase、 Cassandra等,用于存储海量
数据。
分布式计算技术
MapReduce、Spark、Flink等 ,用于处理和分析大数据。
文本挖掘与情感分析
大数据培训课件pptx
将处理后的数据以易于理解的方式呈 现给用户,如仪表板、报告等。
Part
03
大数据工具与平台
Hadoop生态系统
Hadoop分布式文件系统(HDFS)
提供高可靠性的数据存储,支持大规模数据集。
MapReduce编程模型
用于处理和生成大数据集,通过映射和规约操作实现。
Hive数据仓库工具
提供数据汇总、查询和分析功能。
大数据的来源与类型
总结词
大数据的来源和类型
详细描述
大数据的来源主要包括互联网、物联网、社交媒体、企业数据库等。根据不同的 分类标准,大数据可以分为结构化数据、非结构化数据、时序数据、地理空间数 据等类型。
大数据的应用场景
总结词
大数据的应用场景
详细描述
大数据在各个领域都有广泛的应用,如商业智能、金融风控、医疗健康、智慧城市、科研等。通过大 数据分析,可以挖掘出海量数据中的有价值信息,为决策提供科学依据,提高企业的竞争力和创新能 力。
01
大数据可以帮助企业实时监测设备运行状态,预测设备维护需
求。
智能物流与供应链管理
02
大数据可以提高物流和供应链管理的智能化程度,优化资源配
置。
智能家居与智慧城市
03
大数据可以为智能家居和智慧城市建设提供数据支持和分析服
务。
大数据面临的挑战与解决方案
1 2
数据安全与隐私保护
加强数据安全和隐私保护技术的研究和应用,如 加密技术、匿名化处理等。
在数据丢失或损坏时,通过备份数据快速恢复数据,确保业务的连续性。
隐私保护法律法规与标准
法律法规
了解和遵守相关法律法规,如《个人信息保 护法》等,确保大数据处理合法合规。
大数据基础知识培训PPT课件
数据驱动决策
大数据将为企业和政府提供更加精准、科学 的决策支持。
数据治理法规完善
随着大数据应用的深入,数据治理法规将不 断完善,保障数据安全和隐私。
企业如何应对大数据挑战
制定大数据战略
构建大数据平台
明确企业大数据发展目标、路径和重点任 务。
建立统一的大数据平台,整合企业内部和 外部数据资源。
培养大数据人才
数据清洗与预处理
数据清洗定义
01
对数据进行检查、纠正和删除重复等处理,以提高数据质量的
过程。
数据预处理步骤
02
包括数据抽取、转换、加载(ETL)等,为后续分析提供干净、
整齐的数据。
数据清洗技术
03
如Python的Pandas库、SQL的数据清洗函数等,可高效地进行
数据清洗操作。
数据安全与隐私保护
金融行业应用案例
风险控制
利用大数据分析技术评估借款人信用等级、还款 能力等,降低信贷风险。
欺诈检测
通过分析交易数据、用户行为等,发现异常模式 和可疑行为,预防金融欺诈。
客户关系管理
整合客户多渠道交易和行为数据,提供个性化服 务和营销方案,提高客户满意度和忠诚度。
制造业应用案例
智能制造
通过收集和分析生产线上的各种数据,实现自动化、智能 化生产,提高生产效率和产品质量。
Hadoop生态系统
详细阐述Hadoop的核心组件,如HDFS、YARN 等,及其在大数据处理中的应用。
3
Spark批处理框架
讲解Spark的核心概念、编程模型及优化技术, 以及其在批处理领域的应用案例。
流处理技术
流处理基本概念
介绍流处理的定义、应用场景及挑战。
大数据培训课件ppt
详细描述
总结词:城市管理、政策制定、社会治理
详细描述
政府机构利用大数据分析城市运行状况、交通流量和环境质量,提高城市管理的科学性和精细化水平。
大数据可以为政策制定提供实证依据,评估政策实施效果,优化资源配置和提高公共服务的效率。
通过大数据分析社会舆情、犯罪率和公共安全事件等,有助于提高社会治理的针对性和有效性。
数据存储
去除重复、无效、错误数据,对缺失数据进行填充或删除,确保数据质量。
将不同来源的数据进行整合,形成统一的数据视图,便于后续的数据分析和挖掘。
数据整合
数据清洗
利用机器学习、统计学等方法,从大量数据中发现隐藏的模式和规律。
数据挖掘
运用可视化工具和统计分析方法,对数据进行深入分析,揭示数据背后的意义和趋势。
大数据可以帮助企业实时监控库存情况,预测未来需求,优化库存管理,避免缺货或积压现象。
总结词:提升营销效果、优化库存管理、个性化推荐
通过大数据分析疾病流行趋势和药物疗效,有助于药物研发和临床试验,加速新药上市进程。
大数据可以实时监测患者的生理指标和健康状况,实现远程监控和预警,提高医疗服务质量。
医疗机构通过大数据分析患者的症状、病史和治疗反应,为医生提供辅助诊断依据。
大数据培训课件
目录
contents
大数据概述大数据处理技术大数据应用案例大数据安全与隐私保护大数据未来发展展望
大数据概述
CATALOGUE
01
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合,具有4V(体量、速度、多样性和价值)的特点。
要点一
要点二
详细描述
大数据通常指数据量达到TB级别以上的数据集合,这些数据可能来自各种不同的源,包括社交媒体、企业数据库、物联网设备等。大数据的特点可以概括为4V,即体量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的庞大数量,速度指数据处理的速度快,多样指数据的种类繁多,价值指从大数据中挖掘出的有用信息。
大数据培训课件
MLlib
MLlib是Spark的机器学习库,提供了多 种机器学习算法和工具,方便用户进行数 据挖掘和分析。
RDD
弹性分布式数据集(RDD)是Spark的基 本数据结构,提供了丰富的操作来支持各 种数据处理需求。
Spark Streaming
Spark Streaming是Spark提供的实时数 据流处理模块,可以处理来自各种数据源 的数据流。
分类与预测
利用已知类别的样本建立分类模型,对未知类别的样本进 行类别预测,或者根据历史数据预测未来趋势。
关联规则挖掘
通过寻找数据项之间的有趣关联和相关关系,发现隐藏在 数据中的模式和规律。
聚类分析
将数据对象分组成为多个类或簇,使得同一个簇中的对象 彼此相似,而不同簇中的对象尽可能相异。
机器学习算法
数据处理技术:数据处理技术是指对 数据进行采集、清洗、转换、分析等 处理的技术。常见的数据处理技术包 括批处理、流处理、图处理等。在大 数据领域,通常采用分布式计算框架 来进行大规模数据处理,如Hadoop 的MapReduce、Spark等。
数据存储与处理技术的发展趋势:随 着大数据技术的不断发展,数据存储 与处理技术也在不断演进。未来,数 据存储技术将更加注重数据的安全性 、可靠性和可扩展性;数据处理技术 将更加注重实时性、智能化和自动化 。同时,随着人工智能、机器学习等 技术的不断发展,数据存储与处理技 术也将与之深度融合,实现更加智能 化、自动化的数据处理和分析。
Spark SQL
Spark SQL是Spark用来处理结构化数据 的模块,提供了SQL查询和DataFrame API两种方式来处理数据。
其他大数据平台与工具
Flink
Flink是一个开源的流处理框架,提供 了高性能、低延迟的数据处理能力, 适用于实时数据流处理场景。