07-08(2)工程数学A答案

合集下载

国家开放大学《工程数学》章节测试参考答案

国家开放大学《工程数学》章节测试参考答案

国家开放大学《工程数学》章节测试参考答案第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D ).A. 4B. -4C. 6D. -6⒉若,则(A ). A.B. -1C.D. 1⒊乘积矩阵中元素(C ). A. 1 B. 7 C. 10 D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B ). A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D ).A. B. C. D.⒍下列结论正确的是(A ). A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则a a ab b bc c c 1231231232=a a a a b a b a b c c c 123112233123232323---=000100002001001a a=a =12-121124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥c 23=A B ,n A BAB+=+---111()AB BA--=11()A B A B +=+---111()AB A B ---=111A B ,n k >0k ≠1A B A B +=+AB n A B =kA k A =-=-kA k A n ()A A -1A B ,n AB A B ,n AB A B ,n AB ≠0⒎矩阵的伴随矩阵为(C ).A. B. C. D. ⒏方阵可逆的充分必要条件是(B ).A.B.C.D.⒐设均为阶可逆矩阵,则(D ).A. B. C.D.⒑设均为阶可逆矩阵,则下列等式成立的是(A ). A. B.C.D.(二)填空题(每小题2分,共20分)⒈ 7 。

⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 。

⒊若为矩阵,为矩阵,切乘积有意义,则为 5×4 矩阵。

⒋二阶矩阵 [151]。

⒌设,则 [6―35―18]。

⒍设均为3阶矩阵,且,则 72 。

《工程数学(本)》期末综合练习

《工程数学(本)》期末综合练习

《工程数学(本)》期末综合练习一、单项选择题1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). A .()BAAB 11=- B .()111---+=+B A B A C .()111---=B A AB D .1111----+=+B A B A正确答案:A2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a 正确答案:B3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) .A .0,2B .0,6C .0,0D .2,6 正确答案:B4. 设A ,B 是两事件,则下列等式中( )是不正确的. A. )()()(B P A P AB P =,其中A ,B 相互独立 B. )()()(B A P B P AB P =,其中0)(≠B P C. )()()(B P A P AB P =,其中A ,B 互不相容 D. )()()(A B P A P AB P =,其中0)(≠A P 正确答案:C5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ). A .)(3)(2Y D X D - B .)(3)(2Y D X D + C .)(9)(4Y D X D - D .)(9)(4Y D X D + 正确答案:D6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( )矩阵.A .s n ⨯B .n s ⨯C .t m ⨯D .m t ⨯ 正确答案:B7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X + B .213231ηη+ C .21X X - D .21X X + 正确答案:A8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 正确答案:C9. 下列事件运算关系正确的是( ).A .AB BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 正确答案:A10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( ). A .)3,2(-N B .)3,4(-N C .)3,4(2-N D .)3,2(2-N 正确答案:D11.设321,,x x x 是来自正态总体),(2σμN 的样本,则( )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 正确答案:C12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).A .χ2分布 B .t 分布 C .指数分布 D .正态分布 正确答案:B二、填空题1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 .应该填写:2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 .应该填写:线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= . 应该填写:)()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k = .应该填写:π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .应该填写:)1,0(nN 6.行列式701215683的元素21a 的代数余子式21A 的值为= . 应该填写-567.设三阶矩阵A 的行列式21=A ,则1-A = . 应该填写:28.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .应该填写:2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 应该填写:310.设A B ,互不相容,且P A ()>0,则P B A ()= . 应该填写:011.若随机变量X ~ ]2,0[U ,则=)(X D . 应该填写:31 12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计. 应该填写:无偏三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为210110132-=--=A 12111210211110210211321-=-===B 所以2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A .2.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100001130012331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100000130001031 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.3.设随机变量)1,4(~N X .(1)求)24(>-X P ;(2)若9332.0)(=>k X P ,求k 的值. (已知9332.0)5.1(,8413.0)1(,9775.0)2(=Φ=Φ=Φ).解:(1))24(>-X P =1-)24(≤-X P= 1-)242(≤-≤-X P =1-()2()2(-Φ-Φ) = 2(1-)2(Φ)=0.045. (2))44()(->-=>k X P k X P =1-)44(-≤-k X P=1-)5.1(9332.0)4(Φ==-Φk )5.1()5.1(1)4(-Φ=Φ-=-Φk即 k -4 = -1.5, k =2.5.4.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm.从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(05.0=α, 96.1975.0=u )?解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N经计算得375.10=x ,075.0415.0==nσ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu,且2196.167.1αμσμ-=<=-nx故接受零假设,即该机工作正常.5.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→11100121010120001110100011110010101 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .6.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341 所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα).7.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解. 解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元.令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}. 通解为k 1X 1,其中k 1为任意常数.8.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C .9.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ). 解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = 0.9973 + 0.8413 – 1 = 0.8386 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以28.123=-a ,a = 3 + 28.12⨯ = 5.56 10.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u ) 解:已知3=σ,n = 64,且nx u σμ-= ~ )1,0(N因为 x = 21,96.121=-αu,且735.064396.121=⨯=-nuσα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---nux nux σσαα.四、证明题1.设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--2.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.证明: 因为 0))((2=-=+-I A I A I A ,即I A =2 所以,A 为可逆矩阵.3.设向量组321,,ααα线性无关,令2112ααβ+=,32223ααβ+=,1334ααβ-=,证明向量组321,,βββ线性无关。

《工程数学》电大历年期末试题及答案 (2)

《工程数学》电大历年期末试题及答案 (2)

工程数学电大历年期末试题及答案第一章:复数及其运算1.1 复数的定义和性质试题:1.请简要叙述复数的定义和性质。

2.复数的共轭运算是指什么?给出其定义和性质。

3.试证明虚数单位i满足i2=−1。

答案:1.复数是由实数和虚数部分构成的数,通常表示为a+bi的形式,其中a是实数部分,b是虚数部分,i是虚数单位。

复数的性质有:–复数可以相加:(a+bi) + (c+di) = (a+c) + (b+d)i–复数可以相乘:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i–复数的加法和乘法满足交换律和结合律。

2.复数的共轭运算是指改变虚数部分的符号,即将a+bi变为a-bi。

共轭运算的定义和性质如下:–定义:对于任意复数z=a+bi,其共轭复数为z* = a-bi。

–性质:(a+bi) * (a-bi) = a^2 + b^2,即一个复数与其共轭的乘积等于实数部分的平方加虚数部分的平方。

3.可以通过计算i2来证明虚数单位i满足i2=−1:–i2=(0+1i)∗(0+1i)=−1。

1.2 复数的指数表示和三角函数形式试题:1.请简要叙述复数的指数表示形式和三角函数形式。

2.试证明对于任意复数z,有$e^{i\\theta} =\\cos\\theta + i\\sin\\theta$。

答案:1.复数的指数表示形式是通过欧拉公式来表达,即$z= r \\cdot e^{i\\theta}$,其中r是复数的模,$\\theta$是复数的辐角。

复数的三角函数形式是通过复数的实部和虚部来表示,即$z = a + bi = r\\cos\\theta + r\\sin\\theta i$,其中r是复数的模,$\\theta$是复数的辐角。

2.可以通过欧拉公式来证明对于任意复数z,有$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$:–欧拉公式表示为$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$。

工程数学复习题及答案

工程数学复习题及答案

试卷代号:1008中央广播电视大学2005~2006学年度第一学期“开放本科”期末考试水利水电、土木工程专业工程数学(本)试题2006年1月一、单项选择题(每小题3分,共21分)1。

设均为3阶可逆矩阵,且k〉0,则下式()成立.A。

B。

C. D。

2。

下列命题正确的是().A.个维向量组成的向量组一定线性相关;B.向量组是线性相关的充分必要条件是以为系数的齐次线性方程组有解C.向量组,,0的秩至多是D.设是矩阵,且,则的行向量线性相关3.设,则A的特征值为().A.1,1 B.5,5 C.1,5 D.—4,64.掷两颗均匀的股子,事件“点数之和为3”的概率是()。

A.B.C.D.5.若事件与互斥,则下列等式中正确的是( )。

A. B.C. D.6.设是来自正态总体的样本,其中已知,未知,则下列()不是统计量.A.B.C.;D.7。

对正态总体的假设检验问题中,检验解决的问题是( ).A。

已知方差,检验均值 B.未知方差,检验均值C。

已知均值,检验方差 D。

未知均值,检验方差二、填空题(每小题3分,共15分)1.已知矩阵A,B,C=满足AC = CB,则A与B分别是__________________矩阵。

2.线性方程组一般解的自由未知量的个数为__________________。

3.设A,B为两个事件,若P (AB)=P(A)P(B),。

则称A与B__________________。

4.设随机变量,则E(X)= __________________。

5.矿砂的5个样本中,经测得其铜含量为(百分数),设铜含量服从未知,检验,则区统计量__________________.三、计算题(每小题10分,共60分)1.设矩阵,求(1);(2)2.设齐次线性方程组的系数矩阵经过初等行变换,得求此齐次线性方程组的一个基础解系和通解.3.用配方法将二次型化为标准型,并求出所作的满秩变换。

4.假设是两个随机事件,已知,求⑴;⑵5。

工程数学试卷及标准答案

工程数学试卷及标准答案

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。

9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。

工程数学试题A及答案

工程数学试题A及答案

工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。

工程数学试卷及答案汇总(完整版)

工程数学试卷及答案汇总(完整版)

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。

9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。

工程数学本科试题及答案

工程数学本科试题及答案

工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。

工程数学(线性代数与概率统计)答案(2章)

工程数学(线性代数与概率统计)答案(2章)

工程数学(线性代数与概率统计)习题二1、设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,有⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-2294201722213222222222209265085031111111112150421321111111111323A AB⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T2、求下列矩阵的乘积AB(1)()()7201321=⎪⎪⎪⎭⎫⎝⎛(2)⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--121125147103121012132 (3)⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-119912943110231101420121301 (4)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--000021211111 (5)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---0000002412122412(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛n n n nnc b c b c b c b a c b a c b a 2020202000100002211222111 3、求下列矩阵的乘积(1)()⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛∑=ni i i n n b a b b b a a a 12121(2)()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a 22122212121112121(3)())222(322331132112233322222111321332313232212131211321x x a x x a x x a x a x a x a x x x a a a a a a a a a x x x +++++=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛6、设⎪⎪⎪⎭⎫ ⎝⎛=100110011A ,求与A 可交换的矩阵⎪⎪⎪⎭⎫⎝⎛=333231232221131211b b b b b b b b b B ;即BA AB = BA b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b AB =⎪⎪⎪⎭⎫⎝⎛++++++=⎪⎪⎪⎭⎫⎝⎛++++++=333232313123222221211312121111333231332332223121231322122111 得 为任意数13121133223221312312221121,,00b b b b b b b b b b b b b ====== ⎪⎪⎪⎭⎫⎝⎛=111211131211000b b b b b b B 7、略8、计算矩阵幂(1)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--2221141343214321432143213(2)⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛-2cos2sin2sin2cos 1401104410013401102410010110ππππn n n n k n k n k n k n n(3)n⎪⎪⎭⎫ ⎝⎛--2312,2,1,0122312210012312231223121001100123122312=⎪⎪⎩⎪⎪⎨⎧+=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--k k n kn n ==因(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛k n k k kn λλλλλλ2121(5)⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+1000101011000101011000101011000101011000100110001010110001030110001010110001020110001010110001020110001010110001010113k k kk k(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---kk kk k k kk k k k λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ0002)1(00100100303300100100201200100100201200100100100100100112132323222322229、设()4321=α,()4/13/12/11=β,()()⎪⎪⎪⎪⎪⎭⎫⎝⎛====⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==--13/4244/312/332/13/2124/13/12/114)()()4(43214/13/12/1113/4244/312/332/13/2124/13/12/114/13/12/11432111n n T T n T n T T A A ββααβαβαβα10、分块计算(略),11、12、13、14(略)15、求逆矩阵(1)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛-a c b d bc ad d c b a 11(2)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--θθθθθθθθcos sin sin cos cos sin sin cos 1(3)02145243121≠=---,32,13,4131211-=-=-=A A A ,2,1,0,14,6,2333231232221-=-=====A A A A A A⎪⎪⎪⎭⎫ ⎝⎛-----==*-2143216130242111A A A(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛=----112111n a a a A16.解矩阵方程(1)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-321195532/12/312955343211X (2)⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--861222215768211091614351211187651091614251311X (3)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---=-98765432112523113501520950381X (4)B A E X B X A E B AX X 1)()(--=⇒=-⇒+=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-1102133502113/13/103/13/213/13/203502112011010111X17、1111)(66)(6-----=⇒=-⇒+=E A B A BA E A BA A BA A⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-=⎪⎪⎪⎭⎫⎝⎛=-⎪⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎪⎭⎫ ⎝⎛=------1236/13/12/16)(66/13/12/1)(,632,743111111E A B E A E A A18、⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=--=⇒=-⇒+=---9122692683321011324461351341321011324121011322)2()2()2(2111A E A A E A B A B E A B A AB19、A 为3阶方阵,a A =0≠m ,有a m mA 3-=-;20、A 为3阶方阵,2,2/11=⇒=-A A ;1-*⋅=A A A ,41311112222323===-=-----*-A A A A A A A21、略22、112)(212)(02---=⇒=-⇒=--E A AE E A A E A A A A E E A A E E A A 21)(2)(0212-=-⇒-=-⇒=---因020))(2(=+-⇒=+-E A E A E A E A 23、)2(51)4(05)2)(4(03212E A E A E E A E A E A A --=+⇒=+-+⇒=-+- 24、因0=mA 有1221)((----++++-=-==m m m m m m m A EA A E E A E A E EE所以121)(--++++=-m A A A E A E25、 C A C AC C B m mm11)(--==26、199991--=⇒=⇒=P PB A PBP A PB AP27、28、略29、⎪⎪⎭⎫⎝⎛=⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=22112121,B A O O B A AB B O O B B A OO A A ; 30、(1)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛214321E OO E A A A A O C B O有⎪⎪⎩⎪⎪⎨⎧====⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛--1214132121430C A A A B A E OO E CA CA BA BA 即逆矩阵为⎪⎪⎭⎫⎝⎛--O B C O11 (2)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛214231214321E OO E CA AA CA AA BA BA A A A A C A O B 得逆阵为⎪⎪⎭⎫⎝⎛-----1111C AB C O B31、32、略33、求迭(1)200001140432122801140432121101542143211312=⇒⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛---r r r r r (2)4211103000044000100112111011110022201001110011111100222021110=⇒⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----r34、求逆阵(用软件算的与书后答案有些不同,请大家验证) (1)A =3 2 1 3 1 5 3 2 3det(A)= -6 >> inv(A) ans =1.1667 0.6667 -1.5000 -1.0000 -1.00002.0000 -0.5000 0 0.5000(2)B =2 3 11 2 0-1 2 -2det(B)=2>> inv(B)ans =-2.0000 4.0000 -1.00001.0000 -1.5000 0.50002.0000 -3.5000 0.5000(3)C =3 -2 0 -10 2 2 11 -2 -3 -20 1 2 1det(C)=1>> inv(C)ans =1.0000 1.0000 -2.0000 -4.00000 1.0000 0 -1.0000-1.0000 -1.0000 3.0000 6.00002.0000 1.0000 -6.0000 -10.0000(4)D =2 1 0 03 2 0 05 7 1 8-1 -3 -1 -1det(D)=7>> inv(D)ans =2.0000 -1.0000 0.0000 0-3.0000 2.0000 0 -0.00006.4286 -4.4286 -0.1429 -1.14290.5714 -0.5714 0.1429 0.1429。

工程数学基础(新版教材)习题解答

工程数学基础(新版教材)习题解答

, 即
E11
a
0c
0 T,
E12
a c
b 0 d 0
1 0
0 0
a
c
0E11
aE12
0E21
cE22
, 即
E12
0
a
0 c T,
E21
a c
b 0 d 1
0 0
b d
0
0
bE11
0E12
dE21
0E22
, 即
E21
b
0d
0 T,
3
E22
a c
b 0 d 0
0 1
d1() d2 () d3 () 1 , d 4 ( ) ( 1)4 .
00 1
2. 解 (1)∵ det A() ( 2)4 ,∴ D4 () ( 2)4 ,又∵ 0 1
1 2
2 1 0 , 0
∴ D3 () 1 ,从而 D1() D2 () 1 .于是不变因子为 d1() d 2 () d3 () 1 ,
3.满; 4. sup E 2 , inf E 3; 5. 0 ; 6.0; 7. n ; 8.Y .
B
1. 证 y f (A B) , x A B 使 得 y f (x) . 由 x A B , 得 x A , 且 x B 故 y f (x) f (A) 且 y f (B) ,即 y f (A) f (B) ,因此 f (A B) f (A) f (B) .
1
∴ A~ J i .
i
3 1 0 0 1 3 0 0
(3)∵ E A
4 7
1 0
0
1
1 2 1 1,2 1
4 7
0

工程数学2021参考答案

工程数学2021参考答案

工程数学2021参考答案工程数学2021参考答案工程数学作为一门应用数学学科,广泛应用于工程领域中的问题求解和数据分析。

在2021年的考试中,工程数学的内容涵盖了多个方面,包括微积分、线性代数、概率统计等。

下面将为大家提供一份参考答案,希望能够对同学们的复习和学习有所帮助。

第一部分:微积分1. 求函数f(x) = x^3 - 3x^2 + 2x - 1的极值点和极值。

解:首先,求函数的导数f'(x) = 3x^2 - 6x + 2。

令f'(x) = 0,解得x = 1和x = 2。

然后,求二阶导数f''(x) = 6x - 6。

将x = 1和x = 2代入f''(x),得到f''(1) = 0和f''(2) = 6。

由于f''(1) = 0,说明x = 1处可能是极值点。

由f''(2) = 6 > 0,说明x = 2处是极小值点。

综上所述,函数f(x) = x^3 - 3x^2 + 2x - 1的极值点为x = 1和x = 2,其中x = 1是极值点,为极大值。

2. 求函数f(x) = e^x * sinx的不定积分。

解:根据乘积的积分法则,可以将f(x)拆分为两个函数的乘积:f(x) = e^x * sinx = u * v,其中u = e^x,v = sinx。

然后,对u和v分别求导,得到u' = e^x,v' = cosx。

根据乘积的积分法则,不定积分f(x)的结果可以表示为:∫f(x)dx = u * v - ∫v * u'dx。

将u、v、u'和v'代入上述公式,得到:∫f(x)dx = e^x * sinx - ∫sinx * e^xdx。

对于∫sinx * e^xdx,可以再次使用乘积的积分法则进行求解。

重复上述过程,直到得到不定积分的结果。

2007-2008a(参考答案)

2007-2008a(参考答案)

华东政法大学2007-2008学年第一学期期末考试商学院07级各专业《高等数学》A 卷参考答案一、填空题(每题2分,共20分)(1) e(2) 0(3) -2(4) 0(5) 3(6) C x F +-)(c o s(7) xdy x dx yxy y ln 1+- (8) ⎰⎰ee y dx y xf dy ),(10(9 ) 1/2 (10) 222-。

二、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题2分,共20分)(1) C (2) B (3) D (4) A (5) A (6) B (7) C (8)A (9)C (10)A三、计算题(每小题6分,共30分)1、解:x x xf x x dt t tf x x x x F 2)(0)(00lim lim )(lim 20→→→=⎰= (3分)2/)(lim 0x f x →= 02/)0(==f (5分)所以当0=x 时,F (x )在x=0处连续。

(6分)2、解:)111111(1lim )21111(lim 1nn n n n n n n n +++++=++++∞→∞→ n n i n i n 111lim 1∑=∞→+= (2分) ⎰+=1011dx x (4分)2ln |)1ln(10=+=x (6分)3、解:323552x x y -= 0)'52(332351310'=令x x x x y -=-=,所以x=1是函数的稳定点。

X=0是函数的不可导的点,这两点是可能的极值点。

在0)('),0,(>-∞x f ,0)('),1,0(<x f ,0)('),,1(>∞x f所以函数的单调区间增区间为)0,(-∞),1(∞,单调递减区间为)1,0(在点x=0处,函数取得极大值0; 在点x=1处,函数取得极小值-3。

(3分))12()'(''3239101310+==--x x y x x 令,0''=y 则x=-1/2,则在0)(''),,(21<--∞x y ,0)(''),,(21>+∞-x y ,因此,函数在区间),(21--∞内凸,在),(21+∞-内凹。

大学工程数学试题及答案

大学工程数学试题及答案

大学工程数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是微分方程的解?A. \( y = e^x \)B. \( y = e^{-x} \)C. \( y = x^2 \)D. \( y = \ln(x) \)答案:A2. 矩阵的行列式值表示了什么?A. 矩阵的面积B. 矩阵的体积C. 矩阵的旋转角度D. 矩阵的缩放因子答案:D3. 以下哪个是线性代数中的基本概念?A. 微分B. 积分C. 向量空间D. 极限答案:C4. 傅里叶变换用于解决什么问题?A. 微分方程B. 积分方程C. 信号处理D. 线性代数答案:C5. 欧拉公式 \( e^{ix} = \cos(x) + i\sin(x) \) 中,\( i \) 代表什么?A. 虚数单位B. 矩阵C. 行列式D. 向量答案:A6. 以下哪一项是拉普拉斯变换的基本性质?A. 线性性质B. 微分性质C. 积分性质D. 反演性质答案:A7. 泰勒级数展开是用于什么目的?A. 近似计算B. 精确计算C. 矩阵计算D. 向量计算答案:A8. 以下哪个函数是周期函数?A. \( y = x^2 \)B. \( y = e^x \)C. \( y = \sin(x) \)D. \( y = \ln(x) \)答案:C9. 以下哪一项是偏微分方程的解?A. \( u(x, y) = x^2 + y^2 \)B. \( u(x, y) = e^{x+y} \)C. \( u(x, y) = \ln(x+y) \)D. \( u(x, y) = \sin(x)\cos(y) \)答案:D10. 以下哪个选项是复数的性质?A. 可加性B. 可乘性C. 可除性D. 所有选项答案:D二、填空题(每题4分,共20分)1. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),则 \( f'(x) \) 等于 _______。

答案:\( 3x^2 - 12x + 11 \)2. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det(A) \) 等于 _______。

工程数学习题答案

工程数学习题答案

f ( x ) = ∑ a k cos kx
k =0

由正交性得
a0 =
1 2π
∫ π f ( x )dx = π ∫

π
1
π
0
(π − x )dx =
2
π
0
π 1 π [−(π − x ) 2 ] 0 = 2π 2
ak =
f ( x ) cos kxdx = ∫ π ∫π π

1
π
(π − x ) cos kxdx
u( x , t ) = [cos
πa
l
t+
πa π l sin t ] sin x πa l l
⎧ utt = a 2 u xx , (0 < x < l , t > 0) ⎪ ⎪ u x = 0 = u x x = l = 0, 4.求波动方程解 ⎨ ⎪ u t = 0 = 3 sin 3πx / 2l + 6 sin 5πx / 2l , ⎪u ⎩ t t =0 = 0
方程组有非零解的条件为系数矩阵行列式为零,即
[cos 2π λ − 1]2 + sin 2 2π λ = 0
整理得
cos 2π λ = 1
由余弦函数的最大值点得
2π λ = 2nπ
所以特征值和特征函数分别为 (A 和 B 不全为零) λ n = n 2 , X n = A cos nx + B sin nx ,
《工程数学》习题一
y ⎧ dy ⎪ = ry (1 − ), x > 0 1.用分离变量法解常微分方程初值问题 ⎨ dx K ⎪ y ( 0) = y 0 ⎩
解:用常微分方程分离变量法

工程数学A卷答案及评分标准

工程数学A卷答案及评分标准

临沂大学2011—2012学年度第二学期《工程数学》A 卷答案及评分标准(适用于2009级机械设计制造及其自动化专业2+2、2011 级3+2专升本学生,开卷考试,时间120分钟)一、选择题:(共10小题,每小题2分,共20分)请将下列各题正确的答案填入下表中。

二、填空题:(共10空,每空2分,共20分)1、-125 2、-2 3、2 4、4 5、13a =,0b =6、0.187、0.18、67\49、 8 三、计算题:(共5小题,第1题8分,第2、3、4题各10分,第5题12分,共50分)1、解:对系数矩阵作初等行变换,有:110011*********~001010011100010⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭得:1253540x x x x x x =--⎧⎪=-⎨⎪=⎩ 4分 令251,0x x == 得:()11,1,0,0,0Tη=- 1分 令250,1x x == 得:()11,0,1,0,1Tη=-- 1分 基础解系为12,ηη 1分 通解为1122k k ηη+ k 1,k 2为任意常数 1分2、解:(1)()1f x dx +∞-∞=⎰所以2221cx dx +-=⎰则316c =2分 (2)()()22323016E X x f x dx x dx +∞+-∞-===⎰⎰2分()()22242312165E X x f x dx x dx +∞+-∞-===⎰⎰()()()22125D XE X E X =-=⎡⎤⎣⎦ (3)()(){}12||||15P X E X D X P X ⎧⎫-<=<=⎨⎬⎩⎭ 2分3、解:()12341122112202150215~203100111104000r A αααα⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭4分一个最大无关组为:123,,ααα 2分41233αααα=+- 2分4、(1) 由()F x 右连续性得()()00F F +=,即0A B +=, 又由()1F +∞=得,1A =,解得1,1A B ==- 5分(2) ()22,0()0,xxe x f x F x -⎧⎪>'==⎨⎪⎩其它, 3分 (3) )2PX <<()2F F=-12ee --=- 2分5、解:(1)因为A~B ,故其特征多项式相同。

电大《工程数学》期末考试答案小抄考试必过

电大《工程数学》期末考试答案小抄考试必过

1.设BA ,都是n 阶方阵,则下列命题正确的是(A )AB A B =2.向量组的 秩是(B ).B . 33.n 元线性方程组AX b =有解的充分必要条件是(A ).A . )()(b A r A r =4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D ).D . 9/255.设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(C )是μ无偏估计. C . 32153515x x x ++6.若A 是对称矩阵,则等式(B )成立. B .A A ='7.=⎥⎦⎤⎢⎣⎡-15473( D ).D . 7543-⎡⎤⎢⎥-⎣⎦8.若(A )成立,则n 元线性方程组AX O =有唯一解.A . r A n ()=9. 若条件(C )成立,则随机事件A ,B 互为对立事件. C .∅=AB 且A B U +=10.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,记∑==3131i i X X ,则下列各式中(C)不是统计量. C . ∑=-312)(31i i X μ11. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(B )矩阵时,乘积B C A ''有意义.B . 42⨯12. 向量组[][][][]αααα1234000*********====,,,,,,,,,,, 的极大线性无关组是( A ).A .ααα234,,13. 若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=(D )时线性方程组有无穷多解. D .1/214. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(C ). C .1/12⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,00115. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是(B ).B . 未知方差,检验均值16. 若A B ,都是n 阶矩阵,则等式(BAB BA = 17. 向量组[][][][]3,2,1,3,0,0,0,2,1,0,0,14321====αααα的秩是(C ).C . 318. 设线性方程组b AX =有惟一解,则相应的齐次方程组O AX =(A ).A. 只有0解 19. 设A B ,为随机事件,下列等式成立的是(D ).D . )()()(AB P A P B A P -=- 1.设B A ,为三阶可逆矩阵,且0>k ,则下式(B )成立.B A AB '=2.下列命题正确的是(C3.设⎥⎦⎤⎢⎣⎡=1551A ,那么A 的特征值是(D ) D .-4,64.矩阵A 适合条件( D )时,它的秩为r . D .A 中线性无关的列有且最多达r 列 5.下列命题中不正确的是( D ).D .A 的特征向量的线性组合仍为A 的特征向量 6. 掷两颗均匀的骰子,事件“点数之和为3”的概率是( B ). B .1/17.若事件A 与B 互斥,则下列等式中正确的是.A .P A B P A P B ()()()+=+8. 若事件A ,B 满足1)()(>+B P A P ,则A 与B 一定(A). A .不互斥9.设A ,B 是两个相互独立的事件,已知则=+)(B A P (B )B .2/310.设n x x x ,,,21 是来自正态总体),(2σμN 的样本,则(B )是统计量. B .∑=ni i x n 11 1. 若0351021011=---x ,则=x (A).A .32. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是(B ).B 23. 设B A ,为n 阶矩阵,则下列等式成立的是(C ). C . B A B A '+'='+)(4. 若A B ,满足(B ),则A 与B 是相互独立. B . )()()(B P A P AB P =5. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式(D )成立. D . 22)]([)()(X EX E X D -=1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ))BAAB 11=-,31)(,21)(==B P A P2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x x a x x a x x 相容的充分必要条件是(),其中0≠i a ,)3,2,1(=i . B .0321=-+a a a3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) . B .0,6 4. 设A ,B 是两事件,其中A ,B 互不相容,则下列等式中( )是不正确的. C . )()()(B P A P AB P =5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ).D .)(9)(4Y D X D +6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是(B .n s ⨯ )矩阵.7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X +8.设矩阵,则A 的对应于特征值2=λ的一个特征向量α=()C .1,1,0 9. 下列事件运算关系正确的是( ).A .A B BA B +=10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( N2.,3) ).D .11.设321,,x x x 是来自正态总体),(2σμN 的样本,则()是μ C .32153511x x ++12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).B .t 分布 ⒈设a a a b b b c c c 1231231232=,则a a a ab a b a bc c c 123112233123232323---=(D ).D. -6⒉若,则a =(A ). A. 1/2⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=C. 10⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D =-kA k A n ()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为().C. 5321--⎡⎣⎢⎤⎦⎥⒏方阵A 可逆的充分必要条件是(B A ≠0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).D. ()B C A ---'111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A 1100200001000=a a⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是 A. ()A B A AB B +=++2222 ⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).C. [,,]--'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).B. 有唯一解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ).A. 3⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.B.ααα123,,⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ).D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).可能无解⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论()成立.D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1 ⒈A B ,为两个事件,则( B )成立. B. ()A B B A +-⊂⒉如果( C )成立,则事件A 与B C. AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). D.307032⨯⨯..4. 对于事件A B ,,命题(C )是正确的. C. 如果A B ,对立,则A B ,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). D.)1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.87.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A).A.xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ). B.9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X aP (D ).D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. C. Y X =-μσ⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计D.x x x 123--二、填空题(每小题3分,共15分) 1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-=-18 .2.设A 为n 阶方阵,若存在数?和非零n 维向量X ,使得AX X λ= ,则称?为A 的特征值. 3设随机变量12~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = 0.3.4.设X 为随机变量,已知3)(=X D ,此时D X ()32-= 27 . 5.设θˆ是未知参数θ的一个无偏估计量,则有 ˆ()E θθ=. 6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-=8.7.设A 为n 阶方阵,若存在数?和非零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值?的特征向量. 8.若5.0)(,8.0)(==B A P A P ,则=)(AB P0.3 .9.如果随机变量X 的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20.10.不含未知参数的样本函数称为 统计量 . 11. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB -8 .12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,_________________)(=A r .213. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为 )(C B A +.14. 设随机变量)15.0,100(~B X ,则=)(X E15.15. 设n x x x ,,,21 是来自正态总体N (,)μσ2的一个样本,∑==ni i x nx 11,则=)(x D16. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12. 17. 当λ=1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解..18. 若5.0)(,6.0)(,9.0)(===+B P A P B A P ,则=)(AB P 0.2.19. 若连续型随机变量X 的密度函数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则=)(X E 2/3.20. 若参数θ的估计量 θ满足E ( )θθ=,则称 θ为θ的无偏估计2σ.1.行列式701215683的元素21a 的代数余子式21A 的值为= -56.2.已知矩阵n s ij c C B A ⨯=)(,,满足CB AC =,则A 与B 分别是n n s s ⨯⨯, 阶矩阵.3.设B A ,均为二阶可逆矩阵,则=⎥⎦⎤⎢⎣⎡---111O BA O⎥⎦⎤⎢⎣⎡O A B O .4.线性方程组⎪⎩⎪⎨⎧=-+=+++=+++326423343143214321x x x x x x x x x x x 一般解的自由未知量的个数为 2.5.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量. 6. 设A ,B 为两个事件,若P (AB )= P (A )P (B ),则称A 与B 相互独立 .8.设随机变量⎪⎪⎭⎫ ⎝⎛3.03.04.0210~X,则E X ()=0.9. 9.设X 为随机变量,已知2)(=X D ,那么=-)72(X D 8.10.矿砂的5个样本中,经测得其铜含量为1x ,2x ,3x ,4x ,5x (百分数),设铜含量服从N (μ,2σ),2σ未知,在01.0=α下,检验0μμ=,则取统计量 x t =1. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-.2. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则_____=k .1-3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 6.0 .4. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E 4.2.5. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i ix )104,(μN . 1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 . 线性无关 3.若事件A ,B 满足B A ⊃,则 P (A - B )= )()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k =π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x )1,0(nN7.设三阶矩阵A 的行列式21=A ,则1-A =2 8.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量. 10.设A B ,互不相容,且P A ()>0,则P B A ()=0 . 11.若随机变量X ~ ]2,0[U ,则=)(X D 1/3.12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的无偏估计. ⒈21140001---=7 .⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 .⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a= 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 .⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A .⒈当λ=1时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 . ⒊向量组[][][][]123120100000,,,,,,,,,,,的秩3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα.⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵.⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2/5. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 . 9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . 1.统计量就是不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和最大似然估 两种方法. 3.比较估计量好坏的两个重要标准是无偏性,有效性 . 4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显着性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显着性水平α为事件u x >-||0μ(u 为临界值)发生的概率.三、(每小题16分,共64分) A1.设矩阵A B =---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎤⎦⎥112235324215011,,且有AX B =',求X .解:利用初等行变换得 即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1201721511 由矩阵乘法和转置运算得 2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求B A 1-.解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得3.已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X .解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1211002550103640211121100013210001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A由矩阵乘法运算得4.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=031052,843722310B A ,I 是3阶单位矩阵,且有B X A I =-)(,求X .1. 解:由矩阵减法运算得 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即 由矩阵乘法运算得 5.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=21101211,1341102041121021B A ,求(1)A ;(2)B A I )(-. (1)13171020411*******41102041121021----=----=A =2513171200011317120121-=--=--(2)因为 )(A I-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------0341112041221020所以 B A I)(-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------⋅0341112041221020=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--21101211⎪⎪⎪⎪⎪⎭⎫⎝⎛----09355245. 6.设矩阵⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=653312,112411210B A ,解矩阵方程B AX '=.解:因为 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-12073000121001041110011201041100121⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---→123100247010235001123100001210011201,得 ⎪⎪⎪⎭⎫⎝⎛----=-1232472351A 所以='=-B A X 1⎪⎪⎪⎭⎫⎝⎛----123247235⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-13729161813635132. 7设矩阵⎥⎦⎢⎢⎢⎣⎡---=423532211A1)1111021121110211423532211=---=---=---=A(2)利用初等行变换得 即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12017215118 .,3221,5231X B ,XA B A 求且=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=X..,B A B ,AX .BA X,A AI 求且己知例于是得出⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡---→⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡=--18305210738525312341112353221123513251001132510011021130110015321)(11 9.设矩阵⎥⎦⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A 解:(1)因为21110132-=--=A所以2==B A AB .(2)因为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A .10.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X .解:因为B X A I =-)(,且 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--11121120)(1A I所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X 11.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→11770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→00200011002341 所以,r (4321,,,αααα) = 3. 它的一个极大线性无关组是 431,,ααα(或432,,ααα).1⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC 13写出4阶行列式:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a14求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R15.用消元法解线性方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x xA2.求线性方程组 的全部解.解: 将方程组的增广矩阵化为阶梯形方程组的一般解为x x x x x x14243415=+==-⎧⎨⎪⎩⎪ (其中x 4为自由未知量) 令x 4=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为⎪⎩⎪⎨⎧-===4342415xx x x x x (其中x 4为自由未知量)令x 4=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为 10kX X X +=(其中k 为任意常数)2.当λ取何值时,线性方程组有解,在有解的情况下求方程组的全部解. 解:将方程组的增广矩阵化为阶梯形由此可知当1≠λ时,方程组无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乌 海 职 业 技 术 学 院
2007/2008学年第二学期
《工程数学》期末考试试卷答案(A 卷)
命题: 审核: 考试时间: 说明: 1. 用于2007级电类专业学生使用。

2.卷共4页,满分100分。

答题时间120分钟。

3.本试卷共4大题。

一.填空题:
1.-2 2。

-27 3。

-1 无穷多 4。

3 5。

2
6。

X=X K X K X 22110++ K K 21,为任意常数 7。

10, 3arctan -π
8.1, 9。

3
i - 10。

-2i 二.单项选择题:
1 D
2 D
3 C
4 A
5 C
6 B
7 B
8 A
9 A 10 B
三.判断题:
1 ×
2 √
3 ×
4 ×
5 ×
四、
1、h g f
e d c b a 0000000
0=00000000g
f e d c b h f e d c a - .....................(5分) =f e d c ah -f
e d c bg .........................(2分) =))((de c
f b
g a
h -- .........................(3分)
2、线性议程组的系数行列式为
3
11111
1---a a .............................................(2分)
=)
1(2+-a ...........................................(4分) 10-==a A .
..........................................(2分) 当1-=a 时齐次线性议程组有非零解 ............................(2分)
3、解:ln(-1)=ln1+πi ....................................(3分) =πi ..........................................(2分) Lni=ln1+i 2
π ............................................(3分) =i 2
π .............................................(2分) 4、解:系数矩阵
A=⎪⎪⎪⎪⎪⎭
⎫ ⎝
⎛-----−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------300030007314021311031401031407314021314053521113215213122分分 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000010007314021312分 ∴通⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+-=021143211454432431x x x x x x x 即⎪⎪⎪⎩⎪⎪⎪⎨⎧===-=01
1431454
33231x x x x x x 3x 为自由未知量…………2分 令3x =1得基础解系所含解向量为⎪⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛-=011431451X 即:齐次线性方程组的一个基础解系为⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=01143145X ……………………2分。

相关文档
最新文档