模块测试题(2)(人教选修1-1)

合集下载

数学选修1-1第二章测试卷(含答案)

数学选修1-1第二章测试卷(含答案)

第二章测试卷 (本栏目对应学生用书P81)一、选择题(每小题5分,共60分) 1.抛物线y =-2x 2的准线方程是( ) A .x =-12B .x =12C .y =18D .y =-18【答案】C【解析】化成标准方程为x 2=-12y ,所以准线方程为y =18.2.已知P ,Q 是椭圆9x 2+16y 2=1上的两个动点,O 为坐标原点,若OP ⊥OQ ,则点O 到弦PQ 的距离必等于( )A .1B .2C .15D .3 【答案】C【解析】选用特殊值法.选P ⎝⎛⎭⎫0,14,Q ⎝⎛⎭⎫13,0即可. 3.设抛物线y =ax 2(a >0)与直线y =kx +b (k ≠0)有两个公共点,其横坐标分别是x 1,x 2,而x 3是直线与x 轴交点的横坐标,则x 1,x 2,x 3关系是( )A .x 3=x 1+x 2B .x 3=1x 1+1x 2C .x 1x 2=x 2x 3+x 1x 3D .x 1x 3=x 2x 3+x 1x 2 【答案】C【解析】联立直线和抛物线的方程,得ax 2-kx -b =0,x 1x 2=-b a ,x 1+x 2=ka ,由直线方程x 3=-bk,结合得出答案. 4.若以x 2=-4y 上任一点P 为圆心作与直线y =1相切的圆,那么这些圆必定过平面内的点( ) A .(0,1) B .(-1,0) C .(0,-1) D .(-1,-1) 【答案】C【解析】由抛物线的定义可得.5.已知双曲线kx 2-y 2=1的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率是( )A .52B .2C .3D . 5【答案】A【解析】由于直线2x +y +1=0的斜率为-2,故k =14,∴x 24-y 2=1,由离心率e =1+b 2a 2=54=52. 6.若抛物线y 2=mx与椭圆x 29+y 25=1有一个共同的焦点,则m 的值为( )A .8B .-8C .±8D .±4【答案】C【解析】由已知椭圆的焦点为(2,0),(-2,0),∴m 4=2或m4=-2.∴m =8或m =-8.7.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝⎛⎭⎫b 2+c 2有四个交点.其中c 为椭圆的半焦距,则椭圆的离心率范围是( )A .55<e <35B .0<e <25C .25<e <35D .35<e <45【答案】A【解析】数形结合可知圆与椭圆有四个交点,则满足b <b2+c <a ,结合b =a 2-c 2可求得离心率的范围是55<e <35. 8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e ∈[2,2],令双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则此角的取值范围是( )A .⎣⎡⎦⎤π6,π2B .⎣⎡⎦⎤π3,π2C .⎣⎡⎦⎤π2,2π3D .⎣⎡⎦⎤2π3,5π6【答案】C 【解析】b a=e 2-1∈[1,3],∴θ2∈⎣⎡⎦⎤π4,π3.∴θ∈⎣⎡⎦⎤π2,2π3.9.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形【答案】C【解析】双曲线的离心率e 21=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a 2×m 2-b 2m 2=1,化简,得a 2+b 2=m 2.10.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且只有一条B .有且只有两条C .有无穷多条D .不存在【答案】B【解析】抛物线的焦点弦中最短的是通径,长为2p =4<5,所以这样的直线有两条.11.(2015年菏泽模拟)设双曲线x 2m +y 2n =1的离心率为2且一个焦点与抛物线x 2=8y 的焦点相同,则此双曲线的方程为( )A .x 23-y 2=1B .x 24-y 212=1C .y 2-x 23=1 D .x 212-y 24=1【答案】C【解析】抛物线x 2=8y 的焦点为(0,2),所以n >0>m ,n -m =4,2n=2.所以n =1,m =-3.故选C . 12.(2015年太原模拟)已知P 是抛物线y 2=2x 上动点,A ⎝⎛⎭⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( )A .4B .92C .5D .112【答案】B【解析】因为点P 在抛物线上,所以d 1=|PF |-12(其中点F 为抛物线的焦点),则d 1+d 2=|PF |+|P A |-12≥|AF |-12=⎝⎛⎭⎫72-122+42-12=5-12=92,当且仅当点P 是线段AF 与抛物线的交点时取等号,故选B.二、填空题(每小题5分,共20分)13.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =________. 【解析】抛物线y 2=2px (p >0)的焦点坐标是⎝⎛⎭⎫p 2,0,由两点间距离公式,得⎝⎛⎭⎫p 2+22+32=5,解得p =4.【答案】414.过(0,3)作直线l ,若l 和双曲线x 24-y 23=1只有一个公共点,则这样的直线l 共有________条.【解析】直线与双曲线有一个公共点时有两种情况,一是相交,此时与渐近线平行,一是相切,要考虑全面.【答案】415.过抛物线y 2=x 的焦点F 的直线l 的倾斜角θ≥π4,l 交抛物线于A ,B 两点且A 在x 轴上方,则|F A |的取值范围是____________.【解析】直线过焦点,AF 的长可转化为点A 到准线的距离,所以A 点的横坐标越大,AF 的长越大,最小在O 点时,|OF |=14.最大是AF 的倾斜角为π4时,设A (x 0,y 0),过A 作x 轴的垂线,垂足为C ,在△ACF 中,|AC |=y 0,|CF |=x 0-14.因为|AC |=|CF |,即y 0=x 0-14,结合y 20=x 0,得y 0=2+12,|AF |=2y 0=1+22. 【答案】⎝⎛⎦⎤14,1+2216.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.【解析】由题意知右焦点坐标为(1,0), 斜率为2的直线方程为 2x -y -2=0.则⎩⎪⎨⎪⎧2x -y -2=0,x 25+y 24=1,消去x ,得 3y 2+2y -8=0.解得y 1=-2,y 2=43.∴S △AOB =12×1×⎝⎛⎭⎫|-2|+43=53. 【答案】53三、解答题(共70分)17.(10分)指出方程(m -1)x 2+(3-m )y 2=(m -1)(3-m )所表示的曲线的形状. 【解析】当m ≠1,m ≠3时,把方程写成x 23-m +y 2m -1=1.当1<m <3,m ≠2时,方程表示椭圆; 当m =2时,方程表示圆;当m <1或m >3时,方程表示双曲线; 当m =1时,方程表示x 轴; 当m =3时,方程表示y 轴.18.(12分)已知圆(x +1)2+y 2=16的圆心为B 及点A (1,0),点C 为圆上任意一点,求线段AC 的垂直平分线l 与线段CB 的交点P 的轨迹方程.【解析】如图,因为P 在AC 的垂直平分线上,所以|P A |=|PC |,半径R =4=|BC |=|PC |+|PB |,所以|P A |+|PB |=|PC |+|PB |=4>|AB |=2.所以P 点轨迹是以A ,B 为焦点的椭圆,此椭圆中a =2,c =1,所以b 2=3,方程为x 24+y 23=1.19.(12分)已知顶点在原点,焦点在x 轴上的抛物线被直线y =2x -1截得的弦长为15,求抛物线方程.【解析】设抛物线方程为y 2=ax ,直线与抛物线的两交点为A (x 1,y 1),B (x 2y 2),联立方程得⎩⎪⎨⎪⎧y =2x -1,y 2=ax ,消去y 得4x 2-(4+a )x +1=0,x 1x 2=14,x 1+x 2=4+a 4,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2= 5 ×⎝⎛⎭⎫1+a 42-1=15, 解得a =-12或a =4,所以抛物线方程为y 2=-12x 或y 2=4x .20.(12分)设双曲线方程与椭圆x 227+y 236=1有共同焦点且与椭圆相交,在第一象限的交点为A 且A的纵坐标为4,求此双曲线的方程.【解析】由椭圆方程x 227+y 236=1得椭圆的两个焦点为F 1(0,-3),F 2(0,3). ∵椭圆与双曲线的交点A 的纵坐标为4, ∴这个交点为A (15,4).设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧42a2-(15)2b 2=1,a 2+b 2=32,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故所求双曲线方程为y 24-x 25=1.21.(12分)若抛物线y =-x 2-2x +m 和直线y =2x 相交于不同的两点A ,B . (1)求m 的取值范围; (2)求|AB |;(3)求线段AB 的中点坐标. 【解析】联立方程得⎩⎪⎨⎪⎧y =2x ,y =-x 2-2x +m ,消y 得x 2+4x -m =0. (1)∵直线与抛物线有两个相异交点, ∴Δ>0,即42-4(-m )>0. ∴m >-4.(2)当m >-4时,方程x 2+4x -m =0有两个相异实根,设为x 1,x 2,由根与系数的关系x 1+x 2=-4,x 1·x 2=-m ,∴|AB |=1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2=25m +20.(3)设线段AB 的中点坐标为(x ,y ),则x =x 1+x 22=-42=-2,y =y 1+y 22=2x 1+2x 22=-4,∴线段AB 的中点坐标为(-2,-4).22.(2014年新课标Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .【解析】(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a .由MN 的斜率为34,可得b 2a 2c =34,即2b 2=3aC .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4A .①由|MN |=5|F 1N |, 得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则 ⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②,得9(a2-4a)4a2+14a=1.解得a=7,b2=4a=28,故a=7,b=2 7.。

高中数学人教A版选修1-1模块综合检测及答案

高中数学人教A版选修1-1模块综合检测及答案

高中数学人教A 版选修1-1模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=14.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π) 7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( ) A .1 B .3 C .9 D .不存在8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4B .f (x )=13x 2+4 C .f (x )=3x 3+4x +4 D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b 2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ) A .∀a ∈R ,f (x )在(0,+∞)上是增函数 B .∀a ∈R ,f (x )在(0,+∞)上是减函数 C .∃a ∈R ,f (x )是偶函数 D .∃a ∈R ,f (x )是奇函数 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范 围是 ________________________________________________________________.14.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b 2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP→|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1. (1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax -1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b 22a ,此时函数对应的图象开口向上,当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a ,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为焦点的椭圆.]6.D [∵y =4e x +1,∴y ′=-4e x (e x +1)2.令e x +1=t ,则e x =t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t .再令1t =m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1). 容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,所以有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,所以a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba ×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.] 10.D [因为f (x )=ax 3-bx +4, 所以f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如图所示,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2.在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|, ∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,ba = 2.∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax 2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B 不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba =3,∴b =3a . ∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b 2a 2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝⎛⎭⎫-b 2a 2x 20+b 2-⎝⎛⎭⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2. 16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2.又∵f (0)=a ,f (-3)=a , f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 需⎩⎪⎨⎪⎧ f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0. ∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn .由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3 =|F 1F 2|2,即m 2+n 2-mn =122. ②由①2-②,得mn =2563.∴S △F 1PF 2=643 3.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN →|=4,|MP →|=(x +2)2+y 2, MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0, 即(x +2)2+y 2=2-x , 化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎨⎧f ′(1)=2a -43a =1f (1)=a -43a +b =2,解得⎩⎨⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x -1, x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞), 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a -1. a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a -1>1, x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a -1<0. x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. 综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a -1上单调递增,在⎝⎛⎭⎫1a -1,+∞上单调递减.模块综合检测(B)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.已知命题“p :x ≥4或x ≤0”,命题“q :x ∈Z ”,如果“p 且q ”与“非q ”同时为假命题,则满足条件的x 为( )A .{x |x ≥3或x ≤-1,x ∉Z }B .{x |-1≤x ≤3,x ∉Z }C .{-1,0,1,2,3}D .{1,2,3}2.“a >0”是“|a |>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知2x +y =0是双曲线x 2-λy 2=1的一条渐近线,则双曲线的离心率是( ) A. 2 B. 3 C. 5 D .24.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=15.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .126.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D.y 22-x 24=17.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3 D .y =4x -5 8.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1]B .[1,+∞)C .(-∞,-1],(0,1)D .[-1,0),(0,1] 9.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3C.303D.32 610.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2 B.12 C .-12 D .-211.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )12.已知函数f (x )的导函数f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极小值-6时,x 的值应为( )A .0B .-1C .±1D .1题号1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线x 2-y 23=1,那么它的焦点到渐近线的距离为________.14.点P 是曲线y =x 2-ln x 上任意一点,则P 到直线y =x -2的距离的最小值是________. 15.给出如下三种说法:①四个实数a ,b ,c ,d 依次成等比数列的必要而不充分条件是ad =bc . ②命题“若x ≥3且y ≥2,则x -y ≥1”为假命题. ③若p ∧q 为假命题,则p ,q 均为假命题. 其中正确说法的序号为________.16.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个焦点F 1、F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)命题p :方程x 2+mx +1=0有两个不等的负实数根,命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.18.(12分)F 1,F 2是椭圆的两个焦点,Q 是椭圆上任意一点,从任一焦点向△F 1QF 2中的∠F 1QF 2的外角平分线引垂线,垂足为P ,求点P 的轨迹.19.(12分)若r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.已知∀x ∈R ,r (x )为假命题且s (x )为真命题,求实数m 的取值范围.20.(12分)已知椭圆x2a2+y2b2=1 (a>b>0)的一个顶点为A(0,1),离心率为22,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.21.(12分)已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.22.(12分)已知f(x)=23x3-2ax2-3x (a∈R),(1)若f(x)在区间(-1,1)上为减函数,求实数a的取值范围;(2)试讨论y=f(x)在(-1,1)内的极值点的个数.答案1.D2.A [因为|a |>0⇔a >0或a <0,所以a >0⇒|a |>0,但|a |>0 ⇒a >0,所以“a >0”是“|a |>0”的充分不必要条件.]3.C4.A [由题意知c =4,焦点在x 轴上,又e =c a =2,∴a =2,∴b 2=c 2-a 2=42-22=12,∴双曲线方程为x 24-y 212=1.]5.C [设椭圆的另一焦点为F ,由椭圆的定义知|BA |+|BF |=23,且|CF |+|AC |=23,所以△ABC 的周长=|BA |+|BC |+|AC |=|BA |+|BF |+|CF |+|AC |=4 3.]6.D [与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2.所以所求的双曲线方程为y 22-x 24=1.]7.B [y ′=3x 2-6x ,∴k =y ′|x =1=-3,∴切线方程为y +1=-3(x -1),∴y =-3x +2.]8.A [由题意知x >0,若f ′(x )=2x -2x =2(x 2-1)x ≤0,则0<x ≤1,即函数f (x )的递减区间是(0,1].]9.C [令直线l 与椭圆交于A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 21+2y 21=4 ①x 22+2y 22=4 ②①-②得:(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0,即2(x 1-x 2)+4(y 1-y 2)=0,∴k l =-12,∴l 的方程:x +2y -3=0,由⎩⎪⎨⎪⎧x +2y -3=0x 2+2y 2-4=0,得6y 2-12y +5=0. ∴y 1+y 2=2,y 1y 2=56.∴|AB |=⎝⎛⎭⎫1+1k 2(y 1-y 2)2=303.] 10.D [y =x +1x -1, ∴y ′|x =3=-2(x -1)2|x =3=-12. 又∵-a ×⎝⎛⎭⎫-12=-1,∴a =-2.] 11.A [依题意,f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项中的图象,只有A 满足.]12.C [f (x )=x 4-2x 2+c .因为过点(0,-5),所以c =-5.由f ′(x )=4x (x 2-1),得f (x )有三个极值点,列表判断±1均为极小值点,且f (1)=f (-1)=-6.] 13. 3 解析 焦点(±2,0),渐近线:y =±3x ,焦点到渐近线的距离为23(3)2+1= 3. 14. 2解析 先设出曲线上一点,求出过该点的切线的斜率,由已知直线,求出该点的坐标,再由点到直线的距离公式求距离.设曲线上一点的横坐标为x 0 (x 0>0),则经过该点的切线的斜率为k =2x 0-1x 0,根据题意得,2x 0-1x 0=1,∴x 0=1或x 0=-12,又∵x 0>0,∴x 0=1,此时y 0=1,∴切点的坐标为(1,1),最小距离为|1-1-2|2= 2. 15.①②解析 对①,a ,b ,c ,d 成等比数列,则ad =bc ,反之不一定,故①正确;对②,令x =5,y =6,则x -y =-1,所以该命题为假命题,故②正确;对③,p ∧q 假时,p ,q 至少有一个为假命题,故③错误.16.(1,3]解析 设|PF 2|=m ,则2a =||PF 1|-|PF 2||=m ,2c =|F 1F 2|≤|PF 1|+|PF 2|=3m .∴e =c a =2c 2a ≤3,又e >1,∴离心率的取值范围为(1,3].17.解 命题p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧ Δ=m 2-4>0m >0⇔m >2. 命题q :方程4x 2+4(m -2)x +1=0无实根⇔Δ′=16(m -2)2-16=16(m 2-4m +3)<0⇔1<m <3.∵“p 或q ”为真,“p 且q ”为假,∴p 为真、q 为假或p 为假、q 为真,则⎩⎪⎨⎪⎧ m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3, 解得m ≥3或1<m ≤2.18.解 设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),F 1,F 2是它的两个焦点,Q 为椭圆上任意一点,QP 是△F 1QF 2中的∠F 1QF 2的外角平分线(如图),连结PO ,过F 2作F 2P ⊥QP 于P 并延长交F 1Q 的延长线于H ,则P 是F 2H 的中点,且|F 2Q |=|QH |,因此|PO |=12|F 1H |=12(|F 1Q |+|QH |)=12(|F 1Q |+|F 2Q |)=a ,∴点P 的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x 轴的交点).19.解 由于sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2], ∀x ∈R ,r (x )为假命题即sin x +cos x >m 恒不成立.∴m ≥ 2. ①又对∀x ∈R ,s (x )为真命题.∴x 2+mx +1>0对x ∈R 恒成立.则Δ=m 2-4<0,即-2<m <2. ②故∀x ∈R ,r (x )为假命题,且s (x )为真命题, 应有2≤m <2.20.解 (1)由题意知b =1,e =c a =22,又∵a 2=b 2+c 2,∴a 2=2.∴椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎪⎨⎪⎧y =-2x -2x 22+y 2=1,得9x 2+16x +6=0. ∵Δ=162-4×9×6=40>0,∴直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2), 则⎩⎨⎧ x 1+x 2=-169x 1x 2=23,∴|CD |=1+(-2)2|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·⎝⎛⎭⎫-1692-4×23=1092, 又点F 2到直线BF 1的距离d =455,故S △CDF 2=12|CD |·d =4910.21.解 (1)由f (x )的图象经过P (0,2)知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程是6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧ b -c =0,2b -c =-3, 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3,令3x 2-6x -3=0,即x 2-2x -1=0.解得x 1=1-2,x 2=1+ 2.当x <1-2或x >1+2时,f ′(x )>0.当1-2<x <1+2时,f ′(x )<0.故f (x )=x 3-3x 2-3x +2在(-∞,1-2)和(1+2,+∞)内是增函数,在(1-2,1+2)内是减函数.22.解 (1)∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∵f (x )在区间(-1,1)上为减函数,∴f ′(x )≤0在(-1,1)上恒成立;∴⎩⎪⎨⎪⎧f ′(-1)≤0f ′(1)≤0 得-14≤a ≤14. 故a 的取值范围是⎣⎡⎦⎤-14,14. (2)当a >14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14>0f ′(1)=-4⎝⎛⎭⎫a +14<0,∴存在x 0∈(-1,1),使f ′(x 0)=0,∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内,f ′(x )>0,在(x 0,1)内,f ′(x )<0,即f (x )在(-1,x 0)内单调递增,在(x 0,1)内单调递减,∴f (x )在(-1,1)内有且仅有一个极值点,且为极大值点.当a <-14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14<0f ′(1)=-4⎝⎛⎭⎫a +14>0,∴存在x 0∈(-1,1)使f ′(x 0)=0.∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0.即f (x )在(-1,x 0)内单调递减,在(x 0,1)内单调递增,∴f (x )在(-1,1)内有且仅有一个极值点,且为极小值点.当-14≤a ≤14时,由(1)知f (x )在(-1,1)内递减,没有极值点.综上,当a >14或a <-14时,f (x )在(-1,1)内的极值点的个数为1,当-14≤a ≤14时,f (x )在(-1,1)内的极值点的个数为0.模块综合检测(C)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.方程x =1-4y 2所表示的曲线是( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分2.若抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .x 2=28yC .y 2=-28xD .y 2=28x3.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.324.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是( )A .①②B .②③C .①④D .③④5.已知a 、b 为不等于0的实数,则a b >1是a >b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.若抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,m )是抛物线上一点,则经过点F 、M 且与l 相切的圆一共有( )A .0个B .1个C .2个D .4个7.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2.线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此双曲线的离心率为( ) A. 3 B. 6 C.233 D.263 8.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为245,则此双曲线方程是( )A.x 212-y 24=1 B .-x 212+y 24=1C.x 24-y 212=1 D .-x 24+y 212=19.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”;②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题;③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”;④“x >2”是“x 2>4”的必要不充分条件.A .0个B .1个C .2个D .3个10.设f (x )=x (ax 2+bx +c ) (a ≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )11.函数y =ln x x 的最大值为( )A .e -1B .eC .e 2 D.10312.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x 是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥2二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.14.一动圆圆心在抛物线x 2=8y 上,且动圆恒与直线y +2=0相切,则动圆必过定点________.15.已知F 1、F 2是椭圆C x 2a 2+y 2b 2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________________________________________________________________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若綈q 是綈p 的充分条 件,求a 的取值范围.18.(12分)已知函数f (x )=x 3+bx 2+cx +d 在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f (x )=0的一个根为2.(1)求c 的值;(2)求证:f (1)≥2.19.(12分) 如图,M 是抛物线y 2=x 上的一个定点,动弦ME 、MF 分别与x 轴交于不同的点A 、B ,且|MA |=|MB |.证明:直线EF 的斜率为定值.20.(12分)命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,命题q :指数函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.21.(12分)已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,求实数a 的取值范围.22.(12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p>0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.答案1.B [x =1-4y 2,∴x 2+4y 2=1 (x ≥0).即x 2+y 214=1 (x ≥0).]2.D3.C [由已知,b 2a 2=1,∴a =b ,∴c 2=2a 2,∴e =c a =2a a = 2.]4.C5.D [如取a =-3,b =-2,满足a b >1,但不满足a >b .反过来取a =1,b =-5,满足a >b ,但不满足a b >1,故答案为D.]6.D [因为点M (4,m )在抛物线y 2=4x 上,所以可求得m =±4.由于圆经过焦点F 且和准线l 相切,由抛物线的定义知圆心在抛物线上.又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知对于点M (4,4)和(4,-4),都各有两个交点,因此一共有4个满足条件的圆.]7.C8.B [由已知得椭圆中a =5,b =3,∴c =4,且它的焦点在y 轴上,故双曲线的焦点也应在y 轴上且为(0,4)和(0,-4),又椭圆的离心率为e =c a =45,所以双曲线的离心率为2,即c a =2,又c =4,∴它的实半轴为2,虚半轴平方为b 2=c 2-a 2=16-4=12, 则双曲线方程为y 24-x 212=1.]9.B [只有③中结论正确.]10.A11.A [令y ′=(ln x )′x -ln x ·x ′x2=1-ln x x 2=0,x =e ,当x >e 时,y ′<0;当x <e 时,y ′>0,y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e .]12.C [先化简P 与Q ,建构关于a 的关系式;由函数y =log 0.5(x 2+2x +a )的值域为R 知:内层函数u (x )=x 2+2x +a 恰好取遍(0,+∞)内的所有实数⇔Δ=4-4a ≥0⇔a ≤1,即P ⇔a ≤1;同样由y =-(5-2a )x 是减函数⇔5-2a >1,即Q ⇔a <2;由P 或Q 为真,P 且Q 为假知,P 与Q 中必有一真一假.故答案为C.]13.⎣⎡⎭⎫13,+∞解析 f ′(x )=3x 2+2x +m ,依题意可知f (x )在R 上只能单调递增,所以Δ=4-12m ≤0,∴m ≥13.14.(0,2)解析 动圆一定过抛物线x 2=8y 的焦点.15.3解析 由已知,得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a |PF 1|·|PF 2|=18, ∴|PF 1|2+|PF 2|2+36=4a 2,又|PF 1|2+|PF 2|2=4c 2,∴4a 2-4c 2=36,∴b =3.16.(-∞,-3)∪(0,3)解析 设F (x )=f (x )g (x ),由已知得,F ′(x )=f ′(x )g (x )+f (x )g ′(x ).当x <0时,F ′(x )>0,∴F (x )在(-∞,0)上为增函数.又∵f (x )为奇函数,g (x )为偶函数.∴F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),∴F (x )为奇函数.∴F (x )在(0,+∞)上也为增函数.又g (-3)=0,∴F (-3)=0,F (3)=0.∴f (x )g (x )<0的解集为(-∞,-3)∪(0,3).17.解 p :{x |2<x <10},q :{x |x <1-a ,或x >1+a }.由綈q ⇒綈p ,得p ⇒q ,于是1+a <2,∴0<a <1.18.(1)解 ∵f (x )在(-∞,0)上是增函数,在[0,2]上是减函数,∴f ′(0)=0.∵f ′(x )=3x 2+2bx +c ,∴f ′(0)=c =0.∴c =0.(2)证明 ∵f (2)=0,∴8+4b +2c +d =0,而c =0,∴d =-4(b +2).∵方程f ′(x )=3x 2+2bx =0的两个根分别为x 1=0,x 2=-23b ,且f (x )在[0,2]上是减函数,∴x 2=-23b ≥2,∴b ≤-3.∴f (1)=b +d +1=b -4(b +2)+1=-7-3b ≥-7+9=2.故f (1)≥2.19.证明 设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k ,直线ME 的方程为y -y 0=k (x -y 20).由⎩⎪⎨⎪⎧ y -y 0=k (x -y 20)y 2=x 得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =y 0(1-ky 0)k. 所以y E =1-ky 0k .同理可得y F =1+ky 0-k. ∴k EF =y E -y F x E -x F =y E -y F y 2E -y 2F=1y E +y F =-12y 0(定值). 20.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.函数f (x )=(3-2a )x 是增函数,则有3-2a >1,即a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1, ∴1≤a <2.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <1, ∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}.21.解 由f (x )>1,得ax -ln x -1>0.即a >1+ln x x 在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln x x 2,∵x >1,∴g ′(x )<0.∴g (x )=1+ln x x 在区间(1,+∞)内单调递减.∴g (x )<g (1)=1,即1+ln x x <1在区间(1,+∞)内恒成立,∴a ≥1.22.解 (1)由⎩⎪⎨⎪⎧ y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为 OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12. 解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大, y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455, 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4×(-4)=410.∴△ABP 面积的最大值为410×4552=8 2.。

新课标人教版高二数学选修1-1综合测试卷(word文档有答案)

新课标人教版高二数学选修1-1综合测试卷(word文档有答案)

新课标人教版高二数学选修1-1综合测试卷一.选择题(本大题共12小题,每小题3分,共36分)1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 2. “0<mn ”是“方程122=+ny mx 表示焦点在y 轴上的双曲线”的( ) A .充分而不必要条件 B . 必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 4.双曲线121022=-y x 的焦距为( ) A .22 B .24 C .32 D .34 5. 设x x x f ln )(=,若2)(0='x f ,则=0x ( ) A . 2e B . e C . ln 22 D .ln 2 6. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .2B .3C .12D .138.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x 9.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.已知对任意实数x ,有()(),()()f x f x g x g x -=--=,且0>x 时'()0,'()0f x g x >>,则0<x 时( )A .'()0,'()0f x g x >>B .'()0,'()0f x g x ><C .'()0,'()0f x g x <>D .'()0,'()0f x g x <<二.填空题(本大题共4小题,每小题4分,共16分)13.函数1)(23+++=mx x x x f 是R 上的单调函数,则m 的取值范围为 .14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = _____________15.已知双曲线11222-=-+ny n x n = . 16.命题p :若10<<a ,则不等式0122>+-ax ax 在R 上恒成立,命题q :1≥a 是函数xax x f 1)(-=在),0(+∞上单调递增的充要条件;在命题①“p 且q ”、②“p 或q ”、③“非p ”、④“非q ”中,假命题是 ,真命题是 . 三.解答题(本大题共5小题,共40分)17(本小题满分8分)已知函数8332)(23+++=bx ax x x f 在1x =及2x =处取得极值.(1)求a 、b 的值;(2)求()f x 的单调区间.18(本小题满分10分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆;(2)抛物线的焦点是双曲线14491622=-y x 的左顶点.19(本小题满分10分) 已知椭圆193622=+y x ,求以点)2,4(P 为中点的弦所在的直线方程.20(本小题满分10分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:)1200(880312800013≤<+-=x x x y .已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?21(本小题满分10分)已知双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点为)0,2(1-F 、)0,2(2F 点)7,3(P 在双曲线C 上. (1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程.参考答案一.选择题(本大题共12小题,每小题3分,共36分)1-6 BBCDBD 7-12 ACABCB二.填空题(本大题共4小题,每小题4分,共16分)13. ),31[+∞ 14. 8 15. 12-或24 16. ①、③, ②、④. 三.解答题(本大题共5小题,共48分)17(本小题满分8分)解:(1)由已知b ax x x f 366)(2++='因为)(x f 在1=x 及2=x 处取得极值,所以1和2是方程0366)(2=++='b ax x x f 的两根 故3-=a 、4=b(2)由(1)可得81292)(23++-=x x x x f )2)(1(612186)(2--=+-='x x x x x f 当1<x 或2>x 时,0)(>'x f ,)(x f 是增加的;当21<<x 时,0)(<'x f ,)(x f 是减少的。

高中物理(人教版)选修1-1模块综合检测 含解析

高中物理(人教版)选修1-1模块综合检测 含解析

6.下列各图中已标出电流I、磁感应强度B的方向,其中符合安培定则的是( )答案:C7.1987年我国科学家制成了临界温度为90 K的高温超导材料.利用超导材料零电阻的性质,可实现无损耗输电.现在有一直流电路,输电线的总电阻为0.4 Ω,它提供给用电器的电功率是40 kW,电压为800 V,如果用临界温度以下的超导电缆替代原来的输电线,保持供给用电器的功率和电压不变,则节约的电功率为( )A.1.6 kWB.1.6×103 kWC.1 kWD.10 kW解析:节约的电功率即原来输电线上电阻消耗的热功率,ΔP=I2R=R=×0.4 W=1×103 W=1 kW.答案:C8.如图是某交流发电机产生的交变电流的图象,根据图象可以判定( )A.此交变电流的周期为0.1 sB.此交变电流的频率为5 HzC.将标有“12 V 3 W”的灯泡接在此交变电流上,灯泡可以正常发光D.与图象上a点对应的时刻发电机中的线圈刚好转至中性面解析:由正弦函数图像可以得知,线框是由中性面开始转动的,故选项D 错误.题图告诉我们,交变电流的周期是0.2 s,频率f= Hz=5 Hz,故选项A错误,选项B正确.“12 V 3 W”灯泡中12 V是有效值,如题图12 V 为最大值,U有效=,通过以上分析,只有选项B正确.答案:B二、填空题(每小题6分,共12分)9.把左边的人和右边与之相关的物理事件用线段连接起来.A.法拉第 a.磁场对通电导线的作用力B.安培 b.电流磁效应C.奥斯特 c.点电荷间的相互作用力D.库仑 d.电磁感应E.赫兹 e.用实验成功验证了电磁波的存在答案:10.如图为理想变压器,它的原线圈接在交流电源上,副线圈接在一个标有“12 V100 W”的灯泡上.已知变压器原、副线圈匝数之比为13.如图为一个按正弦规律变化的交变电流的图象.根据图象求出它的周期、频率、电流的峰值和有效值.解析:由题图知T=0.2 s,峰值Imax=10 A.f==5 Hz,有效值I==5 A.答案:T=0.2 s,f=5 Hz,Imax=10 A,I=5 A14.如图所示,悬挂在O点的一根不可伸长的绝缘细线下端有一个电荷量不变的小球A.在两次实验中,均缓慢移动另一带同种电荷的小球B.当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B的电荷量分别为Q1和Q2,θ分别为30°和45°,求Q2与Q1的比值.解析:球A受力情况如图所示,设球A电荷量为Q.由平衡条件得。

高中数学模块综合检测(二)(含解析)新人教A版选修1-1(2021学年)

高中数学模块综合检测(二)(含解析)新人教A版选修1-1(2021学年)

2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版选修1-1的全部内容。

模块综合检测(二)(时间120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.如果命题“(綈p)∨(綈q)”是假命题,则在下列各结论中:(1)命题“p∧q”是真命题;(2)命题“p∧q"是假命题;(3)命题“p∨q”是真命题;(4)命题“p∨q”是假命题.其中正确的为()A.(1)(3) B.(2)(4)C.(2)(3)D.(1)(4)解析:选A(綈p)∨(綈q)是假命题,则綈p与綈q均为假命题,所以p与q均为真命题,故p∧q为真命题,p∨q也为真命题.2.(北京高考)设a,b是实数,则“a〉b”是“a2>b2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D 可采用特殊值法进行判断,令a=1,b=-1,满足a>b,但不满足a2〉b2,即条件“a〉b”不能推出结论“a2>b2";再令a=-1,b=0,满足a2〉b2,但不满足a>b,即结论“a 2>b2"不能推出条件“a〉b".故选D。

3.已知函数f(x)的图象过点(0,-5),它的导数f′(x)=4x3-4x,则当f(x)取得极大值-5时,x的值应为( )A.-1 B.0C.1 D.±1解析:选B由题意易知f(x)=x4-2x2-5.令f′(x)=0得x=0或x=±1,只有f(0)=-5,故选B。

最新人教版高中数学选修1-2模块综合试题(共2个模块 附解析)

最新人教版高中数学选修1-2模块综合试题(共2个模块 附解析)

最新人教版高中数学选修1-2模块综合试题(共2个模块 附解析)模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若z =4+3i ,则z -|z |=( ) A .1B .-1 C.45+35i D.45-35i 解析:z -|z |=4-3i 42+32=45-35i. 答案:D2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查发现,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%解析:由(x -,7.765)在回归直线y ^=0.66x +1.562上.所以7.765=0.66x -+1.562,则x -≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.答案:A4.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内所有直线,已知直线b 在平面α外,直线a 在平面α内,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 解析:若直线平行平面α,则该直线与平面内的直线平行或异面,故大前提错误.答案:A5.执行如图所示的程序框图,如图输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7解析:x =2,t =2,M =1,S =3,k =1.k ≤t ,M =11×2=2,S =2+3=5,k =2; k ≤t ,M =22×2=2,S =2+5=7,k =3; 3>2,不满足条件,输出S =7.答案:D6.如图所示,在复平面内,OP →对应的复数是1-i ,将OP →向左平移一个单位后得到O 0P 0→,则P 0对应的复数为( )A .1-iB .1-2iC .-1-iD .-i解析:要求P 0对应的复数,根据题意,只需知道OP 0→,而OP 0→=。

高中数学(人教版选修1-2)模块综合检测模块综合检测(一~二) Word版含答案

高中数学(人教版选修1-2)模块综合检测模块综合检测(一~二) Word版含答案

模块综合检测(一)(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分).(新课标全国卷Ⅱ)设复数,在复平面内的对应点关于虚轴对称,=+,则=()..-.--.-+解析:选由题意可知=-+,所以=(+)·(-+)=-=-..下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是().梯形.三角形.平行四边形.矩形解析:选只有平行四边形与平行六面体较为接近..实数的结构图如图所示,其中三个方格中的内容分别为().有理数、零、整数.有理数、整数、零.零、有理数、整数.整数、有理数、零解析:选由实数的包含关系知正确..已知数列,+,++,+++,…,则数列的第项是().+++…+.-++…+-.-++…+.-++…+-解析:选利用归纳推理可知,第项中第一个数为-,且第项中有项,次数连续,故第项为-++…+-..下列推理正确的是().如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖.因为>,>,所以->-.若,均为正实数,则+≥· ).若为正实数,<,则+=-+≤-=-解析:选中推理形式错误,故错;中,关系不确定,故错;中,正负不确定,故错..已知复数=+,=-.若为实数,则实数的值为().-.-解析:选===.∵为实数,∴+=,∴=-..观察下列等式:(+)=×(+)(+)=××(+)(+)(+)=×××…照此规律,第个等式为().(+)(+)…(+)=×××…×(-).(+)(+)…(+++)=×××…×(-).(+)(+)…(+)=×××…×(+).(+)(+)…(++)=+×××…×(-)解析:选观察规律,等号左侧为(+)(+)…(+),等号右侧分两部分,一部分是,另一部分是××…×(-)..观察下列各式:===,…,则的末四位数字为()....解析:选∵===,===,…,∴(∈,且≥)的末四位数字呈周期性变化,且最小正周期为.记(∈,且≥)的末四位数为(),则( )=(×+)=(),∴与的末四位数相同,均为 ..(重庆高考)执行如图所示的程序框图,则输出的的值是()。

高中数学(人教A版)选修1-1全册综合测试题(含详解)

高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。

人教版数学高一A数学选修1-1测试卷(二)

人教版数学高一A数学选修1-1测试卷(二)

高中同步测试卷(二)单元检测 简单的逻辑联结词、全称量词与存在量词(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.特称命题“∃x 0∉M ,p (x 0)”的否定是( )A .∀x ∈M ,﹁p (x )B .∀x ∉M ,p (x )C .∀x ∉M ,﹁p (x )D .∀x ∈M ,p (x ) 2.“xy ≠0”是指( )A .x ≠0且y ≠0B .x ≠0或y ≠0C .x ,y 至少一个不为0D .不都是0 3.命题“∃x ∈R ,x 3-2x +1=0”的否定是( ) A .∃x ∈R ,x 3-2x +1≠0 B .不存在x ∈R ,x 3-2x +1≠0 C .∀x ∈R ,x 3-2x +1=0 D .∀x ∈R ,x 3-2x +1≠04.下列判断正确的是( )A .命题p 为真命题,命题“p 或q ”不一定是真命题B .命题“p 且q ”是真命题时,命题p 一定是真命题C .命题“p 且q ”是假命题,命题p 一定是假命题D .命题p 是假命题,命题“p 且q ”不一定是假命题5.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(﹁p )∨(﹁q )B .p ∨(﹁q )C .(﹁p )∧(﹁q )D .p ∨q6.若命题“p ∧(﹁q )”为真,在命题“p ∧q ”,“p ∨q ”,“q ”,“﹁p ”中,真命题有( )A .1个B .2个C .3个D .4个7.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题为真命题的是( )A .(﹁p )∨qB .p ∧qC .(﹁p )∧(﹁q )D .(﹁p )∨(﹁q )8.p :点P 在直线y =2x -3上,q :点P 在抛物线y =-x 2上,则使“p ∧q ”为真命题的点P (x ,y )可能是( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1)9.给出两个命题:p :函数y =x 2-x -1有两个不同的零点;q :若1x<1,则x >1,那么在下列四个命题中,真命题是()A.(﹁p)∨q B.p∧q C.(﹁p)∧(﹁q) D.(﹁p)∨(﹁q)10.已知命题p:|x2-x|≥6,q:x∈Z.若“p∧q”与“﹁q”同时为假命题,则x的值为()A.-1 B.0 C.1,2 D.-1,0,1,211.若存在x∈R,使ax2+2x+a<0,则实数a的取值范围是()A.a<1 B.a≤1 C.-1<a<1 D.-1<a≤112.下列结论正确的个数是()①“任意x∈M,p(x)”的否定是“存在x∈M,非p(x)”;②“存在x∈M,p(x)”的否定是“任意x∈M, 非p(x)”;③x=1或x=2是方程x2-3x+2=0的根是“p或q”形式的命题;④方程x2-3x+2=0的根是x=1或x=2是“p或q”的形式的命题.A.1 B.2 C.3 D.413.命题“∃x∈(-1,1),2x+a=0”是真命题,则a的取值范围是________.14.若命题p为假命题,p∨q为真命题,则命题(﹁p)∧q为________命题.15.四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为________.16.若命题“∀x∈R,sin x<a”的否定为真命题,则实数a能取到的最大值是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)指出下列命题是简单命题还是含逻辑联结词的命题,若是含逻辑联结词的命题,写出构成它的简单命题.(1)两个角是45°的三角形是等腰直角三角形;(2)若x∈{x|x<1或x>2},则x是不等式(x-1)(x-2)>0的解.18.(本小题满分12分)判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.(1)存在实数x 0,使得x 20+2x 0+3<0; (2)有的正整数是质数;(3)方程x 2-8x -10=0的每一个根都不是奇数.19.(本小题满分12分)命题p :“对f (x )的定义域内的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)成立,则函数f (x )是增函数”.(1)写出命题p 中的全称量词;(2)若f (x )=x +4x ,x ∈(-∞,0),试写出命题p ,并判断命题p 的真假.20.(本小题满分12分)已知a >0,且a ≠1,设命题p :函数y =log a (x +1)在(0,+∞)上单调递减,命题q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,若“(﹁p )∧q ”为真命题,求实数a 的取值范围.21.(本小题满分12分)已知c >0,设命题p :函数y =c x 在R 上为减函数;命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x ≥1c 恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2-2x +5.(1)是否存在实数m 0,使不等式m 0+f (x )>0对于任意x ∈R 恒成立,并说明理由; (2)若存在一个实数x 0,使不等式m -f (x 0)>0成立,求实数m 的取值范围.参考答案与解析1.[导学号68670007] 解析:选C.由特称命题的否定的定义可得. 2.解析:选A.xy ≠0当且仅当x ≠0且y ≠0.3.[导学号68670008] 解析:选D.量词“∃”改为“∀”,“=”改为“≠”,故D 正确.4.解析:选B.因为“p 且q ”为真命题时,p ,q 都为真命题,所以p 一定是真命题. 5.[导学号68670009] 解析:选A.﹁p 表示甲没有降落在指定范围,﹁q 表示乙没有降落在指定范围,命题“至少有一位学员没有降落在指定范围”,也就是“甲没有降落在指定范围”或“乙没有降落在指定范围”.故选A.6.解析:选A.命题“p ∧(﹁q )”为真,即命题p 为真,﹁q 为真,所以“﹁p ”为假,“q ”为假,从而“p ∧q ”为假,“p ∨q ”为真,故真命题有1个.7.[导学号68670010] 解析:选D.p 为真,q 为假,所以﹁q 为真,(﹁p )∨(﹁q )为真. 8.解析:选C.使“p ∧q ”为真命题的点P (x ,y ),即为直线y =2x -3与抛物线y =-x 2的交点,由⎩⎪⎨⎪⎧y =2x -3,y =-x 2,得⎩⎪⎨⎪⎧x =1y =-1或⎩⎪⎨⎪⎧x =-3,y =-9. 9.[导学号68670011] 解析:选D.对于p ,函数对应的方程x 2-x -1=0的判别式Δ=(-1)2-4×(-1)=5>0.可知函数有两个不同的零点,故p 为真.当x <0时,不等式1x <1恒成立;当x >0时,不等式的解集为{x |x >1}.故不等式1x <1的解集为{x |x <0或x >1}.故命题q 为假命题.所以只有(﹁p )∨(﹁q )为真.故选D.10.解析:选D.∵p ∧q 为假,∴p ,q 至少有一个为假. 又“﹁q ”为假,∴q 为真,从而可知p 为假. 由p 假q 真,可得|x 2-x |<6且x ∈Z , 即⎩⎪⎨⎪⎧x 2-x <6,x 2-x >-6,x ∈Z ,∴⎩⎪⎨⎪⎧x 2-x -6<0,x 2-x +6>0,x ∈Z . ∴⎩⎪⎨⎪⎧-2<x <3,x ∈R ,x ∈Z .故x 的值为-1,0,1,2.11.[导学号68670012] 解析:选A.当a ≤0时,显然存在x ∈R ,使ax 2+2x +a <0. 当a >0时,需满足Δ=4-4a 2>0,得-1<a <1,故 0<a <1,综上所述,实数a 的取值范围是a <1.12.解析:选C.对全称命题、特称命题的否定一要改变量词,二要否定结论,①②正确;对③,记p :x =1是方程x 2-3x +2=0的根,q :x =2是方程x 2-3x +2=0的根,p ,q 为真,p 或q 为真,③正确;对④,记p :方程x 2-3x +2=0的根为x =1, q :方程x 2-3x +2=0的根为x =2, 由于p 、q 为假,而p 或q 为真. 所以④不正确.13.解析:即a =-2x 在(-1,1)内有解.而当x ∈(-1,1)时,-2x ∈(-2,2).故a 的取值范围为(-2,2). 答案:(-2,2)14.解析:由于p 为假命题,p ∨q 为真命题,所以q 为真命题,﹁p 为真命题.故(﹁p )∧q 为真命题.答案:真15.解析:x 2-3x +2>0,Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题.当且仅当x =±2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题. 对∀x ∈R ,x 2+1≠0,∴③为假命题.4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0,即当x =1时,4x 2=2x -1+3x 2成立,∴④为假命题.∴①②③④均为假命题. 答案:016.解析:因为命题“∀x ∈R ,sin x <a ”的否定为“存在x 0∈R ,sin x 0≥a ”,为真命题,又因为-1≤sin x ≤1,所以a ≤1,即a 的最大值为1.答案:117.解:(1)“p 且q ”形式的命题,其中p :两个角是45°的三角形是等腰三角形,q :两个角是45°的三角形是直角三角形.(2)“p 或q ”形式的命题,其中p :若x ∈{x |x <1},则x 是不等式(x -1)·(x -2)>0的解,q :若x ∈{x |x >2},则x 是不等式(x -1)(x -2)>0的解.18.解:(1)该命题是特称命题,该命题的否定是:对任意一个实数x ,都有x 2+2x +3≥0. 该命题的否定是真命题.(2)该命题是特称命题,该命题的否定是:所有正整数都不是质数. 该命题的否定是假命题.(3)该命题是全称命题,该命题的否定是:方程x 2-8x -10=0至少有一个奇数根(或:方程x 2-8x -10=0至少有一个根是奇数).该命题的否定是假命题.19.解:(1)命题p 中的全称量词是:“任意”“都”.(2)命题p :“对f (x )=x +4x 在(-∞,0)内的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)成立,则函数f (x )=x +4x,x ∈(-∞,0)是增函数”.举反例法:取x 1=-2,x 2=-13,则f (x 1)=-4,f (x 2)=-1213,由x 1<x 2,-4>-1213,得f (x 1)<f (x 2)不成立,所以命题p 为假命题.20.解:命题p :由函数y =log a (x +1)在(0,+∞)上单调递减,知0<a <1. 命题q :若曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点, 则Δ=(2a -3)2-4>0,即a <12或a >52.又“(﹁p )∧q ”为真命题,∴p 为假命题,且q 为真命题,于是有⎩⎪⎨⎪⎧a >1,a <12或a >52,a >0,且a ≠1,∴a >52.因此,所求实数a 的取值范围是⎝⎛⎭⎫52,+∞. 21.解:设命题p :c ∈A ,命题q :c ∈B . 由题意可知A ={c |0<c <1}.又∵当x ∈⎣⎡⎦⎤12,2时,1c ≤x +1x 恒成立, 而x +1x≥2x ·1x =2,当且仅当x =1x,即x =1时取等号, ∴1c ≤2,即c ≥12, ∴B =⎩⎨⎧⎭⎬⎫c ⎪⎪c ≥12. 又∵“p ∨q ”为真命题,“p ∧q ”为假命题, ∴p 真q 假,或p 假q 真.∴⎩⎪⎨⎪⎧0<c <1,0<c <12,或⎩⎪⎨⎪⎧c ≥1,c ≥12,∴0<c <12或c ≥1. ∴c 的取值范围为⎝⎛⎭⎫0,12∪[1,+∞). 22.解:(1)不等式m 0+f (x )>0可化为m 0>-f (x ), 即m 0>-x 2+2x -5=-(x -1)2-4.要使m 0>-(x -1)2-4对于任意x ∈R 恒成立,只需m 0>-4即可. 故存在实数m 0使不等式m 0+f (x )>0对于任意x ∈R 恒成立,此时需m 0>-4. (2)不等式m -f (x )>0可化为m >f (x ),若存在一个实数x 0,使不等式m >f (x 0)成立,只需m >f (x 0)min .又f (x 0)=(x 0-1)2+4,所以f(x0)min=4,所以m>4.所以所求实数m的取值范围是(4,+∞).。

高中数学选修1-1课时作业9:模块综合试卷(二)

高中数学选修1-1课时作业9:模块综合试卷(二)

模块综合试卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0 [[答案]] C[[解析]] ∵命题“∀x ∈[0,+∞),x 3+x ≥0”, ∴命题的否定∃x 0∈[0,+∞),x 30+x 0<0,故选C. 2.x =1是x 2-3x +2=0的( ) A .充分不必要条件 B .既不充分也不必要条件 C .必要不充分条件 D .充要条件 [[答案]] A[[解析]] 若x =1,则x 2-3x +2=1-3+2=0成立,即充分性成立, 若x 2-3x +2=0,则x =1或x =2,此时x =1不一定成立,即必要性不成立, 故x =1是x 2-3x +2=0的充分不必要条件. 3.函数f (x )=e x ln x 在点(1,f (1))处的切线方程是( ) A .y =2e(x -1) B .y =e x -1 C .y =x -e D .y =e(x -1)[[答案]] D[[解析]] 因为f ′(x )=e x ⎝⎛⎭⎫ln x +1x ,所以f ′(1)=e.又f (1)=0,所以所求的切线方程为y =e(x -1). 4.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m >1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④ D .①④[[答案]] C[[解析]] ①的逆命题“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m >1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.5.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x[[答案]] A[[解析]] 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,所以b a =12,故双曲线x 2a 2-y 2b2=1的渐近线方程为y =±12x .6.设函数f (x )在R 上可导,f (x )=x 2f ′(2)-3x ,则f (-1)与f (1)的大小关系是( ) A .f (-1)=f (1) B .f (-1)>f (1) C .f (-1)<f (1)D .不确定[[答案]] B[[解析]]因为f(x)=x2f′(2)-3x,所以f′(x)=2xf′(2)-3,则f′(2)=4f′(2)-3,解得f′(2)=1,所以f(x)=x2-3x,所以f(1)=-2,f(-1)=4,故f(-1)>f(1).7.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()[[答案]] D[[解析]]由y=f′(x)的图象知,y=f′(x)在(0,+∞)上单调递减,说明函数y=f(x)的切线的斜率在(0,+∞)上也单调递减,故可排除A,C.又由图象知y=f′(x)与y=g′(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图象在x=x0处的切线的斜率相同,故可排除B.故选D.8.点F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点,过点F1的直线l与C的左、右两支分别交于A,B两点,若△ABF2为等边三角形,则双曲线C的离心率为() A.3B.2C.7D.3[[答案]] C[[解析]]∵△ABF2是等边三角形,∴|BF2|=|AB|,根据双曲线的定义,可得|BF1|-|BF2|=2a,∴|BF1|-|AB|=|AF1|=2a,又∵|AF2|-|AF1|=2a,∴|AF2|=|AF1|+2a=4a.∵在△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|·cos120°, 即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2, 解得c =7a ,由此可得双曲线C 的离心率e =ca=7.9.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( ) A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1 [[答案]] D[[解析]] 不妨设B (0,b ),由BA →=2AF →,F (c,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,即49·a 2+b 2a 2=109, ∴b 2a 2=32.① 又|BF →|=b 2+c 2=4,c 2=a 2+b 2,∴a 2+2b 2=16,②由①②可得,a 2=4,b 2=6,∴双曲线C 的方程为x 24-y 26=1,故选D.10.已知定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )<0,其中f ′(x )是函数f (x )的导函数.若2f (m -2019)>(m -2019)f (2),则实数m 的取值范围为( ) A .(0,2019) B .(2019,+∞) C .(2021,+∞) D .(2019,2021)[[答案]] D[[解析]] 令h (x )=f (x )x ,x ∈(0,+∞),则h ′(x )=xf ′(x )-f (x )x 2.∵xf ′(x )-f (x )<0,∴h ′(x )<0, ∴函数h (x )在(0,+∞)上单调递减,∵2f (m -2 019)>(m -2 019)f (2),m -2 019>0, ∴f (m -2 019)m -2 019>f (2)2,即h (m -2 019)>h (2). ∴m -2 019<2且m -2 019>0,解得2 019<m <2 021. ∴实数m 的取值范围为(2 019,2 021).11.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)[[答案]] C[[解析]] 由题意,得f ′(x )=x 2+2x =x (x +2), 故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23,得 x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0). 12.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B 交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( )A .5B .6C.163D.203[[答案]] C[[解析]] 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AF |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,解得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得,3x 2-10x +3=0,所以x 1+x 2=103,|AB |=x 1+x 2+p =163.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________.[[答案]] (-∞,-2)∪(2,+∞)[[解析]] 由题意知原命题为真,∴Δ=a 2-4>0, ∴a >2或a <-2.14.在平面直角坐标系xOy 中,抛物线x 2=2py (p >0)上纵坐标为1的点到其焦点的距离为2,则p =________. [[答案]] 2[[解析]] 由抛物线上一点到其焦点的距离等于该点到准线的距离,得1+p2=2,即p =2.15.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值范围是________. [[答案]] ⎝⎛⎦⎤-∞,13 [[解析]] f ′(x )=3kx 2+6(k -1)x .当k <0时,f ′(x )<0在区间(0,4)上恒成立, 即f (x )在区间(0,4)上是减函数,故k <0满足题意.当k ≥0时,则由题意,知⎩⎪⎨⎪⎧k ≥0,f ′(4)≤0,解得0≤k ≤13.综上,k 的取值范围是⎝⎛⎦⎤-∞,13. 16.若点O 和点F 分别为椭圆x 29+y 28=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最小值为__________. [[答案]] 6[[解析]] 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22), 由题意得左焦点F (-1,0), ∴OP →=(x ,y ),FP →=(x +1,y ), ∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝⎛⎭⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝⎛⎭⎫x +922≤2254, ∴14≤19⎝⎛⎭⎫x +922≤254, ∴6≤19·⎝⎛⎭⎫x +922+234≤12, 即6≤OP →·FP →≤12.故最小值为6. 三、解答题(本大题共6小题,共70分)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数.(2)至少有一个整数,它既能被11整除,又能被9整除. (3)∀x ∈{x |x >0},x +1x ≥2.(4)∃x 0∈Z ,log 2x 0>2.考点 全称量词及全称命题的真假判断 题点 识别全称命题解 (1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题. (3)命题中含有全称量词“∀”,是全称命题,真命题. (4)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)已知p :∀x ∈⎣⎡⎦⎤14,12,2x >m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点.若“p ∨q ”为真命题,“p ∧q ”为假命题,求实数m 的取值范围.解 ∀x ∈⎣⎡⎦⎤14,12,2x >m (x 2+1),即m <2x x 2+1=2x +1x 在⎣⎡⎦⎤14,12上恒成立,当x =14时,⎝⎛⎭⎫x +1x max=174,∴⎝ ⎛⎭⎪⎫2x x 2+1min =817, ∴由p 真得m <817.设t =2x ,则t ∈(0,+∞),则函数f (x )化为g (t )=t 2+2t +m -1,由题意知g (t )在(0,+∞)上存在零点,令g (t )=0,得m =-(t +1)2+2,又t >0,所以由q 真得m <1. 又“p ∨q ”为真,“p ∧q ”为假,∴p ,q 一真一假, 则⎩⎪⎨⎪⎧m ≥817,m <1或⎩⎪⎨⎪⎧m <817,m ≥1,解得817≤m <1.故所求实数m 的取值范围是⎣⎡⎭⎫817,1. 19.(12分)已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.解 f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a >1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a.②当a =1时,f ′(x )≥0在(0,+∞)上恒成立. ③当a >1时,0<1a<1,由f ′(x )>0,解得x >1或0<x <1a, 由f ′(x )<0,解得1a<x <1. 综上,当0<a <1时,f (x )在⎝⎛⎭⎫1a ,+∞和(0,1)上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(1,+∞)和⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 20.(12分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且|AB |=52|BF |.(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知|AB |=52|BF |, 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2,∴e =c a =32. (2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1. 设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0,即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717. x 1+x 2=-3217,x 1x 2=16-4b 217. ∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0.从而5(16-4b 2)17-12817+4=0, 解得b =1,满足b >21717. ∴椭圆C 的方程为x 24+y 2=1. 21.(12分)已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42. 当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2, 所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0. 设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减. 又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2. 22.(12分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB→+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.解 (1)过焦点且垂直于长轴的直线被椭圆截得的线段长为433, 所以2b 2a =433. 因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,可解得b =2,c =1,a = 3.所以椭圆的方程为x 23+y 22=1. (2)由(1)可知F (-1,0),则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1, 消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0.设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2. 又A (-3,0),B (3,0),所以AC →·DB →+AD →·CB → =(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2=8, 解得k =±2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0. 所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =⎝⎛⎭⎫-322-4×0=32, |CD |=1+k 2|x 1-x 2| =1+2×32=332. 而原点O 到直线CD 的距离为 d =|k |1+k 2=21+2=63, 所以△OCD 的面积为S =12|CD |×d =12×332×63=324.。

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

模块综合检测(一)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.(新课标全国卷Ⅱ)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.-5 B.5C.-4+i D.-4-i解析:选A由题意可知z2=-2+i,所以z1z2=(2+i)·(-2+i)=i2-4=-5.2.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是()A.三角形B.梯形C.平行四边形D.矩形解析:选C只有平行四边形与平行六面体较为接近.3.实数的结构图如图所示,其中1,2,3三个方格中的内容分别为()A.有理数、零、整数B.有理数、整数、零C.零、有理数、整数D.整数、有理数、零解析:选B由实数的包含关系知B正确.4.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是()A.a k+a k+1+…+a2kB.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2kD.a k-1+a k+…+a2k-2解析:选D利用归纳推理可知,第k项中第一个数为a k-1,且第k项中有k项,次数连续,故第k项为a k-1+a k+…+a2k-2.5.下列推理正确的是()A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥lg a ·lg bD .若a 为正实数,ab <0,则a b +ba =--ab +-b a≤-2⎝⎛⎭⎫-a b ·⎝⎛⎭⎫-b a =-2解析:选D A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.6.已知复数z 1=m +2i ,z 2=3-4i.若z 1z 2为实数,则实数m 的值为( )A.83B.32 C .-83D .-32解析:选D z 1z 2=m +2i 3-4i =(m +2i )(3+4i )(3-4i )(3+4i )=(3m -8)+(6+4m )i32+42.∵z 1z 2为实数, ∴6+4m =0, ∴m =-32.7.观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式为( )A .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)B .(n +1)(n +2)…(n +1+n +1)=2n ×1×3×…×(2n -1)C .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n +1)D .(n +1)(n +2)…(n +1+n )=2n +1×1×3×…×(2n -1)解析:选A 观察规律,等号左侧为(n +1)(n +2)…(n +n ),等号右侧分两部分,一部分是2n ,另一部分是1×3×…×(2n -1).8.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 125解析:选D ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n(n∈Z,且n≥5)的末四位数字呈周期性变化,且最小正周期为4.记5n(n∈Z,且n≥5)的末四位数为f(n),则f(2 015)=f(502×4+7)=f(7),∴52 015与57的末四位数相同,均为8 125.9.(重庆高考)执行如图所示的程序框图,则输出的k的值是()A.3 B.4C.5 D.6解析:选C第一次运行得s=1+(1-1)2=1,k=2;第二次运行得s=1+(2-1)2=2,k=3;第三次运行得s=2+(3-1)2=6,k=4;第四次运行得s=6+(4-1)2=15,k=5;第五次运行得s=15+(5-1)2=31,满足条件,跳出循环,所以输出的k的值是5,故选C.10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程为=0.67x+54.9.现发现表中有一个数据模糊不清,经推断可知该数据为()零件数x/个1020304050加工时间y/min62758189A.70 B.解析:选B依题意得,=15×(10+20+30+40+50)=30.由于直线=0.67x+54.9必过点(,),于是有=0.67×30+54.9=75,因此表中的模糊数据是75×5-(62+75+81+89)=68.二、填空题(本大题共4小题,每小题5分,共20分)11.复数z=-3+i2+i的共轭复数为________.解析:z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i ,所以=-1-i.答案:-1-i12.“一群小兔一群鸡,两群合到一群里,数腿共40,数脑袋共15,多少小兔多少鸡?”其解答流程图如图所示,空白部分应为________.设有x 只鸡,y 只小兔→列方程组→ →得到x ,y 的值 答案:解方程组13.图1有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图2有体积关系:V PA ′B ′C ′V PABC=________.解析:把平面中三角形的知识类比到空间三棱锥中,得V PA ′B ′C ′V PABC =PA ′·PB ′·PC ′PA ·PB ·PC .答案:PA ′·PB ′·PC ′PA ·PB ·PC14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.解析:由于f (2)-f (1)=7-1=6, f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. 答案:3n 2-3n +1三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知复数ω满足ω-4=(3-2ω)i(i 为虚数单位),z =5ω+|ω-2|,求.解:由ω-4=(3-2ω)i ,得8ω(1+2i)=4+3i , ∴ω=4+3i1+2i=2-i.∴z =52-i+|-i|=3+i. 则z =3+i 的共轭复数=3-i.于是=3+i 3-i =(3+i )2(3-i )(3+i )=8+6i 10=45+35i.16.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程=x +; (2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解:(1)由题意知, n =10,=1n ∑i =1n x i =8010=8,=1n ∑i =1n y i =2010=2,==184-10×8×2720-10×82=2480=0.3,=-b =2-0.3×8=-0.4, 故所求回归方程为y =0.3x -0.4.(2)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 17.(本小题满分12分)先解答(1),再通过结构类比解答(2). (1)求证:tan ⎝⎛⎭⎫x +π4=1+tan x1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f (x )1-f (x ),试问:f (x )是周期函数吗?证明你的结论.解:(1)根据两角和的正切公式得 tan ⎝⎛⎭⎫x +π4=tan x +tanπ41-tan x tanπ4 =tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想:f (x )是以4a 为周期的周期函数.证明:因为f (x +2a )=f ((x +a )+a ) =1+f (x +a )1-f (x +a )=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ),所以f (x +4a )=f ((x +2a )+2a ) =-1f (x +2a )=f (x ).所以f (x )是以4a 为周期的周期函数.18.(本小题满分14分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)上的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表所示:甲厂:(2)由以上统计数据填下面2×2列联表,问:能否在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”?解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%.乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)优质品360320680非优质品140180320总计500500 1 000K2的观测值k=500×500×680×320≈7.35>6.635,所以在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”.模块综合检测(二)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.设z=10i3+i,则z的共轭复数为()A.-1+3i B.-1-3i C.1+3i D.1-3i解析:选D∵z=10i3+i=10i(3-i)(3+i)(3-i)=1+3i,∴=1-3i.2.以下说法,正确的个数为()①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.②农谚“瑞雪兆丰年”是通过归纳推理得到的.③由平面几何中圆的一些性质,推测出球的某些性质,这是运用的类比推理.④个位是5的整数是5的倍数,2 375的个位是5,因此2 375是5的倍数,这是运用的演绎推理.A.0 B.2 C.3 D.4解析:选C①人的身高与脚长的关系:身高=脚印长×6.876(中国人),是通过统计数据用线性回归的思想方法得到的,故不是类比推理,所以错误.②农谚“瑞雪兆丰年”是人们在长期的生产生活实践中提炼出来的,所以是用的归纳推理,故正确.③由球的定义可知,球与圆具有很多类似的性质,故由平面几何中圆的一些性质,推测出球的某些性质是运用的类比推理是正确的.④这是运用的演绎推理的三段论.大前提是“个位是5的整数是5的倍数”,小前提是“2 375的个位是5”,结论为“2 375是5的倍数”,所以正确.故选C.3.观察下图中图形的规律,在其右下角的空格内画上合适的图形为()解析:选A表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形.4.三段论:“①所有的中国人都坚强不屈;②雅安人是中国人;③雅安人一定坚强不屈”,其中“大前提”和“小前提”分别是()A.①②B.①③C.②③D.②①解析:选A解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①所有的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②雅安人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③雅安人一定坚强不屈).故选A.5.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.6.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出:“a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出:“若a,b,c,d ∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出:“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出:“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数是()A.1 B.2 C.3 D.4解析:选B①②正确,③④错误,因为③④中虚数不能比较大小.7.执行如图所示的程序框图,则输出s的值为()A.10 B.17C.19 D.36解析:选C执行程序:k=2,s=0;s=2,k=3;s=5,k=5;s=10,k=9;s=19,k=17,此时不满足条件k<10,终止循环,输出结果为s=19.选C.8.p=ab+cd,q=ma+nc·bm+dn(m,n,a,b,c,d均为正数),则p,q的大小为()A.p≥q B.p≤qC.p>q D.不确定解析:选B q=ab+madn+nbcm+cd≥ab+2abcd+cd=ab+cd=p.9.下图所示的是“概率”知识的()A.流程图B.结构图C.程序框图D.直方图解析:选B这是关于“概率”知识的结构图.10.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表:喜爱打篮球不喜爱打篮球总计男生20525女生101525总计302050.()附参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K2>k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.78910.828C.0.005 D.0.001解析:选C由2×2列联表可得,K2的估计值k=50×(20×15-10×5)230×20×25×25=253≈8.333>7.789,所以在犯错误的概率不超过0.005的前提下,认为“喜爱打篮球与性别有关”.二、填空题(本大题共4小题,每小题5分,共20分)11.设a=3+22,b=2+7,则a,b的大小关系为________________.解析:a=3+22,b=2+7两式的两边分别平方,可得a2=11+46,b2=11+47,显然,6<7.∴a<b.答案:a<b12.复数z=i1+i(其中i为虚数单位)的虚部是________.解析:化简得z=i1+i=i(1-i)(1+i)(1-i)=12+12i,则虚部为12.答案:1 213.根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是________(填序号).①a n=2n②a n=2(n-1)③a n=2n④a n=2n-1解析:由程序框图可知:a1=2×1=2,a2=2×2=4,a3=2×4=8,a4=2×8=16,归纳可得:a n=2n.答案:③14.(福建高考)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0 有且只有一个正确,则100a+10b+c等于________.解析:可分下列三种情形:(1)若只有①正确,则a≠2,b≠2,c=0,所以a=b=1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b=2,a=2,c=0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c≠0,a=2,b≠2,所以b=0,c=1,所以100a+10b+c=100×2+10×0+1=201.答案:201三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.解:(z1-2)(1+i)=1-i⇒z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.16.(本小题满分12分)某大学远程教育学院网上学习流程如下:(1)学生凭录取通知书到当地远程教育中心报到,交费注册,领取网上学习注册码.(2)网上选课,课程学习,完成网上平时作业,获得平时作业成绩.(3)预约考试,参加期末考试获得期末考试成绩,获得综合成绩,成绩合格获得学分,否则重修.试画出该远程教育学院网上学习流程图.解:某大学远程教育学院网上学习流程如下:17.(本小题满分12分)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下面的2×2列联表:主食蔬菜主食肉类总计 50岁以下 50岁以上 总计(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)2×2列联表如下: (2)因为K 2的观测值 30×(8-128)212×18×20×10=k=10>6.635,所以在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”.18.(本小题满分14分)为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?解:根据题目所给的数据得到如下列联表:理科 文科 总计 有兴趣 138 73 211 无兴趣 98 52 150 总计236125361k =361×(138×52-73×98)2236×125×211×150≈1.871×10-4.因为1.871×10-4<2.706,所以据目前的数据不能认为学生选报文、理科与对外语的兴趣有主食蔬菜主食肉类总计 50岁以下 4 8 12 50岁以上 16 2 18 总计201030关,即可以认为学生选报文、理科与对外语的兴趣无关.。

高中数学人教A版选修1-1一二章测试题及答案

高中数学人教A版选修1-1一二章测试题及答案

高中数学人教A 版选修1-1学业水平测试试题全卷满分150分,用时120分钟。

一、选择题:(本大题共10小题,每小题5分,共50分)在每小题给出的选项中只有一项符合题目要求。

1.下列命题是真命题的为( )A.若yx 11=,则x =y B.若12=x ,则x =1 C.若x =y ,则y x = D.若x <y ,则22y x <2. 使不等式x 2-3x <0成立的必要不充分条件是( )A.0<x <3B. 0<x <4C. 0<x <2D. x <0或x >33.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.设命题P:x >2是x 2>4的充要条件,命题q:若22cb c a >,则a >b ,那么( ) A.“p 或q”为真 B.“p 且q”为真C.p 真q 假D.p 、q 均为假命题5.已知焦点在x 轴上的椭圆的离心率为21,它的长轴长等于圆x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( ) A.1121622=+y x B. 1422=+y x C. 141622=+y x D.13422=+y x 6.抛物线y =ax 2的准线方程是y=1,则a 的值为( ) A.41 B. 41- C.4 D.-4 7.设△ABC 是正三角形,则以A 、B 为焦点且过BC 的中点的双曲线的离心率为( ) A.1+2 B.1+3 C.221+ D. 231+ 8.过抛物线y 2=2px (p >0)的焦点F 作一条直线e 交抛物线于A 、B 两点,以AB 为直径的圆和该抛物线的准线l 的位置关系是( )A.相交B.相离C.相切D.不能确定9.已知定点A (1,1)和直线l :x +y -2=0,那么到定点A 的距离和到定直线l 的距离相等的点的轨迹( )A.椭圆B.双曲线C.抛物线D.直线10.已知P 是椭圆192522=+y x 上一点,F 为椭圆左焦点,2=,若)(21+=,则为( ) A.2 B.3C.4D.5二、填空题:(本大题共5小题,每小题5分,共25分)11.已知P :x +y =2010;Q:x =2000且y =10,则P 是Q 的_____________条件。

数学:第二章《圆锥曲线与方程》测试(2)(新人教A版选修1-1)

数学:第二章《圆锥曲线与方程》测试(2)(新人教A版选修1-1)

圆锥曲线与方程 单元测试时间:90分钟 分数:120分一、选择题(每小题5分,共60分)1.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .41 B .21C .2D .4 2.过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( )A .10B .8C .6D .43.若直线y =kx +2与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315 C .315(-,)0 D .315(-,)1-4.(理)已知抛物线x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( )A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)(文)过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于( )A .4pB .5pC .6pD .8p5.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x ;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④6.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( )A .1351222=-y xB .1312522=-y xC .1512322=-y x D .1125322=-y x 7.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .041222=+--+y x y x8.双曲线的虚轴长为4,离心率26=e ,1F 、2F 分别是它的左、右焦点,若过1F 的直线与双曲线的右支交于A 、B 两点,且||AB 是||2AF 的等差中项,则||AB 等于( ) A .28 B .24 C .22 D .8. 9.(理)已知椭圆22221a y x =+(a >0)与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( ) A .2230<<a B .2230<<a 或282>a C .223<a 或 282>a D .282223<<a(文)抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为( ) A .0 B .23C .2D .3 10.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点,MN 中点横坐标为32-,则此双曲线的方程是( ) (A) 14322=-y x (B) 13422=-y x (C) 12522=-y x (D) 15222=-y x 11.将抛物线342+-=x x y 绕其顶点顺时针旋转090,则抛物线方程为( )(A )x y -=+2)1(2(B )2)1(2-=+x y (C )x y -=-2)1(2(D )2)1(2-=-x y12.若直线4=+ny mx 和⊙O ∶422=+y x 没有交点,则过),(n m 的直线与椭圆14922=+y x 的交点个数( )A .至多一个B .2个C .1个D .0个 二、填空题(每小题4分,共16分)13.椭圆198log 22=+y x a 的离心率为21,则a =________.14.已知直线1+=x y 与椭圆122=+ny mx )0(>>n m 相交于A ,B 两点,若弦AB 的中点的横坐标等于31-,则双曲线12222=-n y m x 的两条渐近线的夹角的正切值等于________.15.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.16.某宇宙飞船的运行轨道是以地球中心F 为焦点的椭圆,测得近地点A 距离地面)km (m ,远地点B 距离地面)km (n ,地球半径为)km (R ,关于这个椭圆有以下四种说法: ①焦距长为m n -;②短轴长为))((R n R m ++;③离心率Rn m mn e 2++-=;④若以AB 方向为x 轴正方向,F 为坐标原点,则与F 对应的准线方程为)())((m n R n R m x -++2-=,其中正确的序号为________. 三、解答题(共44分) 17.(本小题10分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点到直线022=+-y x 的距离为3.(1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点M 、N.当AN AM =时,求m 的取值范围.18.(本小题10分)双曲线)0,0(12222>>=-b a by a x 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.19.(本小题12分)如图,直线l 与抛物线x y =2交于),(,),(2211y x B y x A 两点,与x 轴相交于点M ,且121-=y y . (1)求证:M 点的坐标为)0,1(;(2)求证:OB OA ⊥;(3)求AOB ∆的面积的最小值.20.(本小题12分)已知椭圆方程为1822=+y x ,射线x y 22=(x ≥0)与椭圆的交点为M ,yx过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).(1)求证直线AB的斜率为定值;(2)求△AMB面积的最大值.圆锥曲线单元检测答案1. A2.B 3 D 4 理C 文A 5 D 6 A 7 D 8A 9 理B 文B 10 D 11 B 12 B13.24或69 14.3415.42l 16.①③④17.(1)依题意可设椭圆方程为 1222=+y ax ,则右焦点F (0,12-a )由题设322212=+-a 解得32=a 故所求椭圆的方程为1322=+y x . 1322=+y x ………………………………………………4分. (2)设P 为弦MN 的中点,由⎪⎩⎪⎨⎧=++=1322y x mkx y 得 0)1(36)13(222=-+++m mkx x k 由于直线与椭圆有两个交点,,0>∆∴即 1322+<k m ①………………6分13322+-=+=∴k mkx x x N M p 从而132+=+=k m m kx y p p mkk m x y k pp Ap 31312++-=+=∴ 又MN AP AN AM ⊥∴=,,则 kmk k m 13132-=++- 即 1322+=k m ②…………………………8分把②代入①得 22m m > 解得 20<<m 由②得 03122>-=m k 解得21>m .故所求m 的取范围是(2,21)……………………………………10分 18.设M )(0,0y x 是双曲线右支上满足条件的点,且它到右焦点F 2的距离等于它到左准线的距离2MN ,即MN MF =2,由双曲线定义可知e MF MF eMNMF =∴=211……5分由焦点半径公式得000x eaex aex ∴=-+ee e a -+=2)1(…………………………7分 而a ee e a ax ≥-+∴≥20)1( 即 0122≤--e e 解得1221+≤≤-e 但 1211+≤<∴>e e ……………………………………10分19. (1 ) 设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=, 代入x y =2得002=--x my y ① 21,y y 是此方程的两根,∴1210=-=y y x ,即M 点的坐标为(1, 0). (2 ) ∵ 121-=y y∴ 0)1(21212122212121=+=+=+y y y y y y y y y y x x∴ OB OA ⊥.(3)由方程①,m y y =+21, 121-=y y , 且 1||0==x OM ,于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴ 当0=m 时,AOB ∆的面积取最小值1.20.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线AB 方程为)22(2--=-x k y . 分别与椭圆方程联立,可解出2284222-+-=k k k x A ,2284222-++=k k k x B . ∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴ 22=AB k (定值). (2)设直线AB 方程为m x y +=22,与1822=+y x 联立,消去y 得mx x 24162+ 0)8(2=-+m .由0>∆得44<<-m ,且0≠m ,点M 到AB 的距离为3||m d =. 设AMB ∆的面积为S .∴ 2)216(321)16(321||41222222=≤-==⋅m m d AB S . 当22±=m 时,得2max =S .圆锥曲线课堂小测时间:45分钟 分数:60分 命题人:郑玉亮一、选择题(每小题4分共24分)1.0≠c 是方程 c y ax =+22表示椭圆或双曲线的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件2.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为 ( )A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x3.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为( )A .))((2R n R m ++B .))((R n R m ++C .mnD .2mn4.若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是 ( ) A .4B .2C .1D .215.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y xC .01222=+--+y x y xD .041222=+--+y x y x6.已知双曲线12222=-by a x 的离心率2[∈e ,]2.双曲线的两条渐近线构成的角中,以实轴为角平分线的角记为θ,则θ的取值范围是( ). A .6π[,]2π B .3π[,]2π C .2π[,]32π D .32π[,π]二、填空题(每小题4分共16分)7.若圆锥曲线15222=++-k y k x 的焦距与k 无关,则它的焦点坐标是__________. 8.过抛物线x y 42=的焦点作直线与此抛物线交于P ,Q 两点,那么线段PQ 中点的轨迹方 程是 .9.连结双曲线12222=-b y a x 与12222=-ax b y (a >0,b >0)的四个顶点的四边形面积为1S ,连结四个焦点的四边形的面积为2S ,则21S S的最大值是________.10.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 . 三、解答题(20分)11.(本小题满分10分)已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.12.(10分)已知椭圆2222by a x +(a >b >0)的离心率36=e ,过点),0(b A -和)0,(a B 的直线与原点的距离为23. (1)求椭圆的方程.(2)已知定点)0,1(-E ,若直线)0(2≠+=k kx y 与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由.参考答案1 B2 A3 A4 C5 D6 C 7.(0,7±)8.222-=x y 9.2110.①② 11.解:直线l 与x 轴不平行,设l 的方程为 a ky x += 代入双曲线方程 整理得012)1(222=-++-a kay y k ……………………3分 而012≠-k ,于是122--=+=k aky y y B A T 从而12--=+=k a a ky x T T 即 )1,1(22k a k ak T --……5分点T 在圆上 012)1()1(22222=-+-+-∴ka k a k ak 即22+=a k ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=k 或 122+=a k当0=k 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a k 时,由①得 1=a l K ∴±=,3的方程为13+±=y x .故所求直线l 的方程为2-=x 或 13+±=y x …………………………10分 12.解:(1)直线AB 方程为:0=--ab ay bx .依题意⎪⎪⎩⎪⎪⎨⎧=+=233622ba ab ac , 解得 ⎩⎨⎧==13b a ,∴ 椭圆方程为 1322=+y x . (2)假若存在这样的k 值,由⎩⎨⎧=-++=033222y x kx y ,得)31(2k +09122=++kx x . ∴ 0)31(36)12(22>+-=∆k k . ①设1(x C ,)1y 、2(x D ,)2y ,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x , ②而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx y y .要使以CD 为直径的圆过点E (-1,0),当且仅当C E ⊥DE 时,则1112211-=++⋅x y x y ,即0)1)(1(2121=+++x x y y .∴ 05))(1(2)1(21212=+++++x x k x x k . ③ 将②式代入③整理解得67=k .经验证,67=k ,使①成立. 综上可知,存在67=k ,使得以CD 为直径的圆过点E .。

人教版高二数学选修1-1第二章测试题

人教版高二数学选修1-1第二章测试题

F1, F2 两点的距离之和等于 4,求:①写出椭圆 C 的方程和焦点坐标②过 F1 且倾斜角为 30°的直线,
交椭圆于 A,B 两点,求△AB F2 的周长
24.已知抛物线顶点在原点,焦点在 y 轴上,抛物线上一点 M(a , 4)到焦点的距离等于 5,求抛物 线的方程和 a 值。
20.已知定点 A(1,0),定直线 l: x=5,动点 M(x,y)
为双曲线
x2 4
y2
1的两个焦点,点
A.1
B. 2
P
4a
B.
在双曲线上,且满足 PF1 PF2
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

人教A版高中数学(选修1-1)单元测试-第二章

人教A版高中数学(选修1-1)单元测试-第二章

2—=1上的一点M 到焦点F 1的距离为2, N 是MF 1的中点,O 为原点,则|0N|等于二•填空题:本大题共 4小题,每小题6分,共24分。

2 26•椭圆5x ky -5的一个焦点是(0,2),那么k 二 7.椭圆的焦点在y 轴上,一个焦点到长轴的两端点的距离之比是 1 : 4,短轴长为8,则椭圆的标准方程是 __________________ .2 2 &已知点(0, 1)在椭圆5 + m = 1内,贝y m 的取值范围是 ______________________________________________ .W I I I2 29 •椭圆 + 2m = 1的准线平行于x 轴,则m 的取值范围是 __________________寸3m + 1 2m第二章圆锥曲线与方程单元测试A 组题(共100分) 一•选择题:本大题共 5题,每小题7分,共35分。

在每小题给出的四个选项中, 项是符合题目要求的。

1已知坐标满足方程 F(x,y)=O 的点都在曲线C 上,那么 (A )(B ) (C ) (D ) 只有曲线C 上的点的坐标都适合方程 凡坐标不适合 F(x,y)=O 的点都不在 在曲线C 上的点的坐标不一定都适合 不在曲线C 上的点的坐标有些适合F(x,y)=0 C 上 F(x,y ) =0 F(x,y ) =0,有些不合适 F(x,y ) =0 2•至俩坐标轴的距离相等的点的轨迹方程是 (A ) x - y= 0 3•已知椭圆方程为 (B) x + y=0 2m ^= 1,焦点在 (C ) |x|=|y| (D) y=|x|x 轴上,则其焦距等于 (A) 2 8- m 2(B) 2 2 2 - | m|(C ) 2 ,m 2- 8( D ) 2 | m| - 2 22x4.已知椭圆 -25(A) 2(B)4(C ) 8(D) 325.已知F 是椭 2x ~2 a= 1(a>b>0)的左焦点,P 是椭圆上的一点,PF 丄x 轴,OP // AB(O 为原点), 则该椭圆的离(A)■- 2 2(B)(C )(D)三•解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。

人教版物理选修1-1同步练习及单元检测及答案(9份)

人教版物理选修1-1同步练习及单元检测及答案(9份)

人教版物理选修1-1同步练习及单元检测及答案(9份)第一章 电场 电流电荷 库伦定律【典型例题】【例1】关于点电荷的说法,正确的是 ( )A 、只有体积很小的带电体,才能作为点电荷B 、体积很大的带电体一定不能看作点电荷C 、点电荷一定是电量很小的电荷D 、体积很大的带电体只要距离满足一定条件也可以看成点电荷【解析】库伦定律中所要求的点电荷,并非是指带电体的本身的大小,而是指带电体之间的距离比带电体自身的线度的大小大的多,以至电体的形状和大小对相互作用力影响可以忽略。

所以本题答案:D【例2】两个点电荷相距为r ,相互作用力为F ,则( )A 、电荷量不变,距离加倍时,作用力变为F/4B 、其中一个点电荷的电荷量和两点电荷之间的距离都减半时,作用力不变C 、每个点电荷的电荷量和两个点电荷间的距离都增加相同的倍数时,作用力不变D 、将其中一个点电荷的电荷量取走一部分给另一个点电荷,两者的距离不变,作用力可能不变 【解析】根据库伦定律的计算公式221rQQ k F =,可知本题的答案为ACD 【例3】真空中有三个同种的点电荷,它们固定在一条直线上,如图所示,它们的电荷量均为4.0×10-12C ,求Q 2受到静电力的大小和方向。

【解析】由库仑定律可知Q 2受到Q 1的静电力为斥力,方向水平向右,受到Q 3的库伦斥力方向向左。

它受到的静电力是这两个力的合力,设向右为正方向()()N r r kQ r Q Q k r Q Q k F 1122212922212222322121101.1)2.0(11.01100.4100.911--⨯=⎥⎥⎦⎤⎢⎢⎣⎡-=⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=-= 方向向右。

【基础练习】一、选择题1、A 、B 、C 三个塑料小球,A 和B ,B 和C ,C 和A 间都是相互吸引,如果A 带正电则( C)A 、.B 、C 球均带负电B 、B 球带负电,C 球带正电C 、B 、C 球中必有一个带负电,而另一个不带电D 、B 、C 球都不带电2、库仑定律的适用范围是 ( CD )A 、真空中两个带电球体间的相互作用B 、真空中任意带电体间的相互作用C 、真空中两个点电荷间的相互作用D 、真空中两个带电体的大小远小于它们之间的距离,则可应用库仑定律3、下述说法正确的是( BC )A.元电荷就是质子B.物体所带的电量只能是某些值。

人教版数学选修1-2人教版数学选修1-2模块综合检测

人教版数学选修1-2人教版数学选修1-2模块综合检测

得 z = = =3-4i.4.如图,在复平面内,OP 对应的复数是 1-i ,将OP 向左平移一个单位后得到O 0P 0,则⎪ ⎪ ⎩⎩解析:选 D.要求 P 0 对应的复数,根据题意,只需知道OP 0,而OP 0=OO 0+O 0P 0,从而 因为O 0P 0=OP ,OO 0对应的复数是-1,即OP0对应的复数是-1+(1-i)=-i.5.设 a ,b ,c ∈(-∞,0),则 a + ,b + ,c + ()模块综合检测(时间:120 分钟,满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1.已知复数 z 满足(3+4i)z =25,则 z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i 解析:选 D.法一:由(3+4i)z =25,25 25(3-4i )3+4i (3+4i )(3-4i )法二:设 z =a +b i(a ,b ∈R ),则(3+4i )(a +b i )=25, 即 3a -4b +(4a +3b )i =25,⎧3a -4b =25, ⎧a =3, 所以⎨ 解得⎨ 故 z =3-4i.⎪4a +3b =0, ⎪b =-4, 2.根据给出的数塔猜测 123 456×9+7 等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111…A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析:选 B.根据数塔知结果为各位数为 1 的七位数,故选 B.3.利用独立性检验来考察两个分类变量 X ,Y 是否有关系,当随机变量 K 2 的值( ) A .越大,“X 与 Y 有关系”成立的可能性越大 B .越大,“X 与 Y 有关系”成立的可能性越小 C .越小,“X 与 Y 有关系”成立的可能性越大 D .与“X 与 Y 有关系”成立的可能性无关解析:选 A.由 K 2 的意义可知,K 2 越大,说明 X 与 Y 有关系的可能性越大.→ → →P 0 对应的复数为()A .1-i C .-1-iB .1-2i D .-i→ → → →可求 P 0 对应的复数.→ → →所以 P 0 对应的复数,→ 1 1 1b c a A .都不大于-2B .都不小于-2C .至少有一个不大于-2解析:选 C.假设 a + ,b + ,c + 都大于-2, 则 a + +b + +c + >-6,①所以 a + ≤-2,b + ≤-2,c + ≤-2,a + +b + +c + ≤(-2)+(-2)+(-2)=-6,与①矛所以 a + +b + +c + = a ⎭ ⎝ b ⎭ ⎝ c ⎭⎝②设有一个回归方程y =6-4x ,变量 x 增加一个单位时,y 平均增加 4 个单位;程y =6-4x ,当 x 增加一个单位时,y 平均减少 4 个单位,②错误;由线性回归方程的定义解析:选 A.因为 x = (0+1+3+4)=2,y = (2.2+4.3+4.8+6.7)=4.5.^ ^ ^ - -^ ^ ^ -- 若从散点图分析,y 与 x 线性相关,且y =0.95x +a ,则a 的值等于( )^ - -D .至少有一个不小于-21 1 1b c a1 1 1b c a由于 a ,b ,c ∈(-∞,0),1 1 1abc1 1 1 ⎛ 1⎫ ⎛ 1⎫ ⎛1⎫ b c a 盾,故选 C.6.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;^③回归方程y =bx +a 必过( x , y );④在一个 2×2 列联表中,由计算得 K 2=13.079,则有 99.9%的把握确认这两个变量间有 关系.其中错误的个数是( ) A .0 B .1 C .2 D .3解析:选 B.一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是 反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方^知,线性回归方程y =bx +a 必过点( x , y ),③正确;因为 K 2=13.079>10.828,故有 99.9% 的把握确认这两个变量间有关系,④正确.故选 B.7.若 P = a + a +7,Q = a +3+ a +4(a ≥0),则 P ,Q 的大小关系为( ) A .P >Q B .P =Q C .P <Q D .由 a 的取值确定解析:选 C.要比较 P 与 Q 的大小,只需比较 P 2 与 Q 2 的大小,只需比较 2a +7+ 2 a (a +7)与 2a +7+2 (a +3)(a +4)的大小,只需比较 a 2+7a 与 a 2+7a +12 的大 小,即比较 0 与 12 的大小,而 0<12,故 P <Q .8.已知 x ,y 的取值如表所示:x0 1 3 4y 2.24.3 4.8 6.7 ^ ^ ^A .2.6B .6.3C .2D .4.5- 14- 1 4而回归直线方程过样本点的中心(2,4.5),所以a = y -0.95 x =4.5-0.95×2=2.6.A .若|z 1-z 2|=0,则 z 1= z 2B .若 z 1= z 2,则 z 1=z 2C .若|z 1|=|z 2|,则 z 1· z 1=z 2· z 2 解析:选 D.A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒ z 1= z 2,真命题;B ,z 1= z 2⇒ z 1= z 2=z 2,真命题; C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1· z 1=z 2· z 2,真命题;210.执行如图所示的程序框图,则输出 s 的值为()A .10B .17C .19D .36解析:选 C.k =2 时执行第一次循环:s =2,k =3; k =3 时,执行第二次循环:s =5,k =5; k =5 时,执行第三次循环:s =10,k =9; k =9 时,执行第四次循环:s =19,k =17; k =17 时不满足条件,结束循环, 输出的 s 的值为 19.11.设 z 1,z 2 是复数,则下列命题中的假命题是( )- -- -- - D .若|z 1|=|z 2|,则 z 21=z 2- -- - = - -D ,当|z 1|=|z 2|时,可取 z 1=1,z 2=i ,显然 z 1=1,z 2=-1,即 z 21≠z 2,假命题.12.某班主任对全班 50 名学生进行了认为作业量多少的调查,数据如下表:认为作业多 认为作业不多 总计喜欢玩电脑游戏不喜欢玩电脑游戏 总计 18 9 278 15 2326 24 50则可以判断“喜欢玩电脑游戏与认为作业多有关系”的把握大约为( ) A .99% B .95%2 的观测值为 k = ≈5.059>5.024.所以约有 97.5%的把 13.已知回归直线方程是y =a +bx ,如果当 x =3 时,y 的估计值是 17,x =8 时,y 的估 所以回归直线方程是y =x +14.答案:y =x +14则 =2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体 A -BCD 中,若△BCD的中心为 M ,四面体内部一点 O 到四面体各面的距离都相等,则 等于________.解析:面的重心类比几何体重心,平面类比空间, =2 类比得 =3.^ ^ ^ ^ ^ ^ 16.设 z 是虚数,ω=z + 是实数,且-1<ω<2,则 z 的实部的取值范围是________.⎛ ⎫ ⎛ ⎫x +y i <x <1,C .90%解析:选 D.KD .97.5%50(18×15-9×8)2 27×23×26×24握认为“喜欢玩电脑游戏与认为作业多有关系”.二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.请把正确答案填在题中横线上)^ ^ ^计值是 22,那么回归直线方程为________________.解析:首先把两组值代入回归直线方程得⎧⎪3b+a =17, ⎨⎪⎩8b+a =22, ⎧⎪b =1, 解得⎨⎪⎩a=14. ^^14.已知结论:“在正三角形ABC 中,若 D 是边 BC 的中点,G 是三角形 ABC 的重心,AGGDAOOMAG AOGD OM答案:315.现有爬行、哺乳、飞行三类动物,其中蛇、地龟属于爬行动物,狼、狗属于哺乳动 物,鹰、长尾雀属于飞行动物,请你把下列结构图补充完整:①为______,②为________, ③为________.解析:根据题意,动物分成三大类:爬行动物、哺乳动物和飞行动物,故可填上②,然 后细分每一种动物包括的种类,填上①③.答案:地龟 哺乳动物 长尾雀1z解析:因为 z 是虚数, 所以可设 z =x +y i(x ,y ∈R ,且 y ≠0),1 1 x -y i 则 ω=z +z =(x +y i)+ =x +y i +x 2+y2 x y =⎝x +x 2+y 2⎭+⎝y -x 2+y 2⎭i.因为 ω 是实数,且 y ≠0,所以 y -x2+y 2y=0,即 x 2+y 2=1. 此时 ω=2x . 又-1<ω<2, 所以-1<2x <2,1 2即 z 的实部的取值范围是⎝-2,1⎭.答案:⎝-2,1⎭ 17.(本小题满分 10 分)已知 z = .解:z = = = = =1-i ,(2)用最小二乘法求出 y 关于 x 的线性回归方程y =bx +a ;⎪ ⎪ ⎩ ⎩ b a +b +c⎛ 1 ⎫⎛ 1 ⎫三、解答题(本大题共 6 小题,共 70 分.解答时应写出必要的文字说明、证明过程或演 算步骤)(1+i )2+3(1-i )2+i(1)求|z |;(2)若 z 2+az +b =1+i ,求实数 a ,b 的值.(1+i )2+3(1-i ) 2i +3-3i (3-i )(2-i ) 6-3i -2i -12+i 2+i (2+i )(2-i ) 5 所以(1)|z |=|1-i|= 2.(2)由 z 2+az +b =1+i 得(1-i)2+a (1-i)+b =1+i , 即 a +b +(-2-a )i =1+i ,⎧a +b =1, ⎧a =-3, 所以⎨ 所以⎨⎪-2-a =1, ⎪b =4.18.(本小题满分 12 分)2015 年某品牌汽车的广告费支出 x (单位:百万元)与销售额 y (单 位:百万元)之间有如下的对应数据:x 2 4 5 6 8 y 3040 50 60 70(1)请画出上表数据的散点图;^ ^ ^(3)若使该品牌汽车的销售额突破 1 亿元(含 1 亿元),广告费支出至少为多少?(结果精确 到 0.1)解:(1)散点图如图所示:a a +b19.(本小题满分 12 分△)已知 ABC 中,A ∶B ∶C =1∶2∶6.求证: = .b a +b +c 所以 A = ,B = π,C = π ,即 sin ·2sin cos =sin 2 π ,即 2sin cos =sin π ,显然成立,b a +b +c 所以( 1+a + 1+b )即证 ab ≤ ,因为 ab ≤⎝ 2 ⎭ =,a a +b证明:要证 = ,只需证 a 2+ab +ac =ab +b 2, 即证:a (a +c )=b 2.由正弦定理,只需证 sin A (sin A +sin C )=sin 2B . 因为 A ∶B ∶C =1∶2∶6,π 2 69 9 9 π ⎛ π 6 ⎫2 即 sin 9 ⎝sin 9 +sin 9π ⎭=sin 29π ,π ⎛ π 3 ⎫2 即 sin 9 ⎝sin 9 +sin 9π ⎭=sin 29π ,π 2π π 29 9 9 9 π π 29 9 9 a a +b 所以 = 成立.20.(本小题满分 12 分)设 a ,b ∈(0,+∞)且 a +b =3,求证: 1+a + 1+b ≤ 10. 证明:法一:(综合法)因为 a ,b ∈(0,+∞)且 a +b =3,2=2+(a +b )+2 (1+a )(1+b ) =5+2 (1+a )(1+b ) ≤5+(1+a +1+b )=10, 所以 1+a + 1+b ≤ 10. 法二:(分析法)因为 a >0,b >0 且 a +b =3,所以要证 1+a + 1+b ≤ 10, 只需证( 1+a + 1+b )2≤10,即证 2+a +b +2 (1+a )(1+b )≤10, 即证 2 (1+a )(1+b )≤5, 只需证 4(1+a )(1+b )≤25, 即证 4(1+a +b +ab )≤25, 只需证 4ab ≤9,94⎛a +b ⎫2 9 4所以 1+a + 1+b ≤ 10, 当且仅当 a =b 时等号成立.21.(本小题满分 12 分)下表是某地区的一种传染病与饮用水的调查表:得病 不得病 总计干净水 不干净水 总计 52 466 518 94 218 312146 684 830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;k = ≈54.21,2 的观测值 k = ≈5.785. 22.(本小题满分 12 分)设 f (x )= ,g (x )= (其中 a >0 且 a ≠1). 解:(1)证明:因为 f (x )= ,g (x )= ,2 2 2 2 4 4 = =g (2 017),2 2 2 2 = =g (x +y ).(2)若饮用干净水得病 5 人,不得病 50 人,饮用不干净水得病 9 人,不得病 22 人.按此 样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.解:(1)假设 H 0:传染病与饮用水的卫生程度无关,把表中数据代入公式得 K 2 的观测值830×(52×218-466×94)2 146×684×518×312因为 54.21>10.828,所以拒绝 H 0.因此我们有 99.9%的把握认为该地区这种传染病与饮用不干净水有关. (2)依题意得 2×2 列联表:得病 不得病 总计干净水 不干净水 总计 5 50 55 9 22 3114 72 86此时,K86×(5×22-50×9)2 14×72×55×31由于 5.785>5.024,所以我们有 97.5%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有 99.9% 的把握肯定结论的正确性,(2)中我们只有 97.5%的把握肯定.a x +a -x a x -a -x2 2 (1)求证:g (2 017)=f (1 008)g (1 009)+f (1 009)· g (1 008); (2)根据(1)猜想一般结论,并证明.a x +a -x a x -a -x2 2所以 f (1 008)g (1 009)+f (1 009)g (1 008)a 1 008+a -1 008 a 1 009-a -1 009 a 1 009+a -1 009 a 1 008-a -1 008 = · + ·a 2 017+a -a -1-a -2 017 a 2 017-a +a -1-a -2 017 = +a 2 017-a -2 017 2所以 g (2 017)=f (1 008)g (1 009)+f (1 009)g (1 008). (2)由(1)猜想:g (x +y )=f (x )g (y )+f (y )g (x ). 因为 f (x )g (y )+f (y )g (x )a x +a -x a y -a -y a y +a -y a x -a -x = · + ·=+a x +y +a -x +y -a x -y -a -x -y 4 a x +y +a x -y -a -x +y -a -x -y 4a x +y -a -(x +y ) 2 所以 g (x +y )=f (x )g (y )+f (y )g (x ).。

人教版高中物理选修1-1测试题全套带答案解析.doc

人教版高中物理选修1-1测试题全套带答案解析.doc

最新人教版高中物理选修测试题全套及答案解析第一章过关检测(时间:45分钟满分:100分)—、选择题(本题共8小题,每小题6分,共48分•每小题给出的四个选项中,1〜5题只有一个选项符合题目要求,6〜8题有两项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1•“顿牟”指玳瑁的甲壳广掇芥”的意思是吸引芥子之类的轻小物体.不考虑万有引力的作用,发生“顿牟掇芥” 吋,两者可能的带电情况是()A.玳瑁壳带正电,芥子带正电B.玳瑁壳带负电,芥子带负电C.玳瑁壳带正电,芥子不带电D.玳瑁壳不带电,芥子不带电解析:两者相互吸引时,可能带异种电荷,也可能一个带电,另一个不带电,坎选项C正确.答案:C2.电场强度的定义式氐,点电荷的电场强度公式为关于这两个公式,下列说法正确的是()A.E=中的电场强度E是电荷q产生的B.E=k中的电场强度E是电荷Q产生的C.E二中的F是表示单位正电荷的受力°.£=和E=k都只对点电荷适用解析:£=是定义式,适用于任何情况,而E=R只适用于点电荷,其中F为q受到的电场力,不一定是单位正电荷受到的力,g只是试探电荷.答案:B3.在一个等边三角形ABC顶点B、C处各放一个点电荷时,测得A处的电场强度大小为E,方向与BC边平行沿B指向C,如图所示,拿走C处的点电荷后”处电场强度的情况将是()A.大小仍为E,方向由力指向BB.大小变为,方向不变C.大小仍为E,方向沿血向外D.无法确定解析:在B、C两处同时存在场源电荷时,合电场强度方向平行于BC,说明B、C两处电荷在/处独立产生的电场强度大小相等,方向均与合电场强度方向成60°角,当撤去C处电荷时,只剩下3处电荷,此时力处电场强度大小为E,方向沿BA方向向外.答案:C4•静电在我们生活中应用很广泛,下列不属于静电应用的是()A.利用静电把空气电离,除去烟气中的粉尘B.利用静电吸附,将涂料微粒均匀地喷涂在接地金属物体上C.利用静电放电产生的臭氧,进行杀菌D.利用运油车尾部的铁链将油与油罐摩擦产生的静电导走解析:选项A、B、C都属于对静电的应用,选项D属于对静电的防止.答案:D5•下面是对点电荷电场强度公式E缺的儿种不同理解,其中正确的是()A.当r->0 时,E PB.当厂foc 时,E->0C.某点电场强度大小与距离厂成反比D.以点电荷Q为屮心、厂为半径的球面上各处的电场强度相同解析:本题考查的内容是对点电荷电场强度公式E=k的理解.当r^O时就不能将电荷视为点电荷了,因此厂—0时E栽不再适用,故选项A错误;在点电荷形成的电场中,某点的电场强度大小与距离厂的二次方成反比, 当->x,E->0,故选项B正确,选项C错误;电场强度是矢量,有犬小,有方向,故以点电荷Q为中心、厂为半径的球r面上各点电场强度大小相等,但方向不同,故选项D错误.答案:B6. 关于库仑定律的公式尸=広下列说法中正确的是()A.当真空中的两个点电荷间的距离厂-8时,它们之间的静电力F->0B.当真空中的两个点电荷间的距离―>0时,它们之间的静电力F YC.当两个点电荷之间的距离厂-co时,库仑定律的公式就不适用了D.当两个点电荷之|'可的距离—0盯,电荷不能看成是点电荷,库仑定律的公式就不适用了解析:―>oo时,由F=k F->O,A正确;尸—0时,电荷不能看成点电荷,库仑定律已不成立,D正确.答案:AD7•下列关于电容器的叙述中正确的是()A.电容器是储存电荷和电能的容器,只有带电的容器才称为电容器B.任何两个彼此绝缘而又相互靠近的导体,都能组成电容器,而且跟这两个导体是否带电无关C.电容器所带的电荷量是指两个极板所带的电荷量的绝对值和D.电容器充电过程是将其他形式的能转变成电容器的电能并储存起来;电容器放电过程是将电容器储存的电能转化为其他形式的能解析:电容器是任何两个彼此绝缘而又互相靠近的导体组成的能够储存电荷和电能的装置,与是否带电无关, 故A项错,B项正确.电容器充电时,将其他形式的能转化为电能储存起来;反之,放电过程是将它储存的电能转化为其他形式的能,故D项正确.由电容器的性质知C项错误.答案:BD8•关于电源,下列说法正确的是()A.电源是将电能转化为其他形式能的装置B.电源是将其他形式能转化为电能的装置C.电源是把自由电子从正极搬迁到负极的装置D.电源是把自由电子从负极搬迁到正极的装置解析:电源的作用就是维持导体两端的电压,使电路中有持续的电流,从其实质来说,电源是通过非静电力做功,把自由电子从电源正极搬迁到电源的负极;从能量角度来说,电源是把其他形式的能转化为电能的装置, 电源为整个电路提供能量,故选项B、C正确.答案:BC二、填空题(每小题8分,共16分•把答案填在题中的横线上或按题目要求作答)9•如图所示,电源电压恒定,则接通开关S的瞬间,通过电阻人的电流方向为从______ 到 ________ .S闭合一段时间后,再断开S的瞬间,通过电阻R的电流方向为从________ 到 _______ •解析:S接通的瞬间,电源要给电容器充电,使其上极板带正电,下极板带负电,则通过R的电流方向为从A到B;S 闭合后,再断开的瞬间,电容器要通过R、局放电,此时通过人的电流方向为从〃到4答案切B B A10. 有两个完全相同的带电绝缘金属小球力、5电荷量&4=6.4X10'9 C,&=-3.2X109 C.让两球接触一下再分开,这时0'= ___________ ©'= ________ ,并且接触过程中有_______ 个电子从________ 移到________ 上.解析:力、B接触,所带电荷先中和后平分,即2j r=^r=C=1.6xlO-9 C.电子从带负电的B转移到A上,转移个数77 =个=3><10"个.答案:1.6X10_9C 1.6x10-9 C 3xlO10B A三、计算题(本题共2小题,每小题18分,共36分.解答应写出必要的文字说明、方程式和重要的演算步骤, 只写出最后答案的不得分.有数值计算的题,答案中必须明确写出数值和单位)11. 在示波器的示波管中,当电子枪射出的电流达到5.6 P A时,每秒内从电子枪发射的电子数目有多少?电流的方向如何?(已知e=1.60xl049 C)解析:由于电流/=5.6|iA=5.6xlO'6A,所以电子枪每秒内发射出的电荷量Q=It=5.6x\0 6 C;因为每个电子的电荷量为0,所以每秒发射的电子数目为3.5xlO13(个).由于规定正电荷定向移动的方向是电流的方向,所以示波管内电流的方向与电子运动的方向相反.答案:见解析12.竖直放置的两块足够长的平行金属板间有匀强电场,其电场强度为E•在该匀强电场中,用丝线悬挂质量为加的带电小球,丝线跟竖直方向成e角时小球恰好平衡,此时,小球与右侧金属板的距离为如图所示.(1)小球带的电荷量是多少?⑵若剪断丝线,小球打到金属板需要多长时间?解析:mg(1)由于小球处于平衡状态,对小球受力分析如图所示.根据受力平衡可得解得tan 0=故q=.(2)由第(1)问中第二个方程知幵二,剪断丝线后小球受电场力和重力的合力与未剪断丝线时丝线的拉力大小相等、方向相反,故剪断丝线后小球所受重力、电场力的合力F等于,小球的加速度^=,小球由静止开始沿着丝线拉力的反方向做匀加速直线运动,当碰到金属板时,它走的位移为x= 51由兀=亦得戶.答案:(1)(2)第二章过关检测(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分.每小题给出的四个选项中,1〜5题只有一个选项符合题目要求,6〜8题有两项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列四图为电流产生磁场的分布图,其屮正确的是()A.①③B.②③C.①④D.②④解析:由安培定则可以判断出直线电流产生的磁场方向,①正确,②错误;③和④为环形电流,注意让弯曲的四指指向电流的方向,可判斷出④正确,③错误.故正确选项为C.答案:C在磁场中某区域的磁感线如图所示,则()A.Q、b两处的磁感应强度的大小不等,乩>5,B.G、b两处的磁感应强度的大小不等,3“<血C.同一通电导线放在Q处受力一定比放在b处受力大D.同一通电导线放在a处受力一定比放在b处受力小解析:因为磁场中磁感线的疏密表示磁场的强弱,所以正确,A错误;由于通电导线的方向与礒场的方向的关系未知,因此同一通电导线放在Q、b两处受力大小无法判断,C、D均错误.答案:B3•在地球表而的某位置,发现能自由转动的小磁针静止时S极指向地面,则该位置是()A.地磁北极附近B.地磁南极附近C.赤道附近D.无法确定解析:根据同名磁极相互排斥、异名磁极相互吸引可知,小磁针的S极指向的位置应是地磁场的北极,故选项A 正确.答案:AAhLh在同一平血内有四根彼此绝缘的通电直导线,如图所示,四根导线屮电流厶=厶>/2>厶,‘要使0点磁场最强,则应切断哪一根导线中的电流()A.切断AB.切断厶C.切断厶D.切断厶解析:根据磁场的叠加原理,0点的磁场由四根导线中的电流共同产生•由安培定则可知,直线电流人、厶、厶在0点产生的磁感应强度的方向都是垂直纸面向里,电流厶在0点产生的磁感应强度方向垂直纸面向外. 因此,为了使0点的磁场增强,应切断厶中的电流.答案:D5•家用照明电路中的火线和零线是相互平行的,当用电器工作,火线和零线都有电流时,它们将()A. 相互吸引B. 相互排斥C・一会儿吸引,一会儿排斥D.彼此不发生相互作用解析:火线与零线虽然都连接用电器,且相互平行,但是当用电器正常工作时,流过它们的电流方向相反,并且时刻相反•再根据电流产生磁场,磁场对电流的作用来判斷.因通过火线和零线的电流方向总是相反的,根据平行导线中同向电流相互吸引,反向电流相互排斥的结论可以得出选项B正确.答案:B6如图所示,用丝线吊一个质量为m的带电(绝缘)小球处于匀强磁场屮,空气阻力不计•,当小球分别从力点和B 点向最低点0运动且两次经过0点吋()A.小球的动能相同B.丝线所受的拉力相同C.小球所受的洛伦兹力相同D.小球的向心加速度相同解析:带电小球受到洛伦兹力和绳的拉力与速度方向时刻垂直,对小球不做功只改变速度方向,不改变速度大小,只有重力做功,故两次经过。

人教版高中物理选修1-1高二年级期模块测试.docx

人教版高中物理选修1-1高二年级期模块测试.docx

高中物理学习材料桑水制作武汉市2010~2011学年度高二年级期模块测试物理选修1-1试卷武汉市教育科学研究院2011.01.19第一部分(共100分)一、单项选择题(本题共10小题,每题5分,共50分。

在每小题给出的四个选项中,只有一个选项正确)1.在物理学史上,最先建立完整的电磁场理论并预言电磁波存在的科学家是:CA.赫兹B.法拉第C.麦克斯韦D.爱因斯坦2.传播电视信号的电磁波是:AA.无线电波B.X射线C.紫外线D. 射线3.满足下列哪个条件时,闭合回路中就会产生感应电流:DA.回路中有磁通量B.有磁感线穿过回路C.穿过回路的磁通量较大D .穿过回路的磁通量发生变化4.某电场的电场线分布如图所示, a 、b 两点电场强度的大小关系是:AA .b a E E >B .b a E E =C .b a E E <D .无法确定5.电阻器、电容器和电感器是电子设备中常用的电子元件。

如图所示电路图中,符号“C ”表示的元件是:BA .电阻器B .电容器C .电感器D .电源6.如图所示,在匀强磁场中有一通电直导线,电流方向垂直纸面向里,则直导线受到安培力的方向是:CA .向上B .向下C .向左D .向右7.如图所示,重力不计的带正电粒子水平向右进入匀强磁场,对该带电粒子进入磁场后的运动情况,下列判断正确的是:AA .粒子向上偏转B .粒子向下偏转C .粒子不偏转D .粒子很快停止运动8.一交流电压随时间变化的规律如图所示,该交流电压的有效值和周期分别是:DA .14.14 V ,0.0l sB .l0 V ,0.0l sC .14.14 V ,0.02 sD.l0 V,0.02 s9.如图所示是静电除尘的示意图。

关于静电除尘的原理,下列说法不正确...的是:CA.除尘器圆筒的外壁A接高压电源的正极,中间的金属丝B接负极B.B附近的空气分子被强电场电离为电子和正离子C.正离子向A运动过程中被烟气中的煤粉俘获,使煤粉带正电,吸附到A上,排出的烟就清洁了D.电子向A极运动过程中,遇到烟气中的煤粉,使煤粉带负电,吸附到A上,排出的烟就清洁了10.下列单位换算,关系不.正确..的是:BA.1 A=1 V/ΩB.1 pF=1012 FC.1 T=1 N/(A·m)D.1 µF=10-6 F二、实验与探究(本题共3小题,每小题6分,共18分)11.如图所示为探究产生感应电流的条件的实验装置,下列情况下能引起电流计指针偏转的是:ABCA.闭合电键瞬间B.断开电键瞬间C.闭合电键后拔出铁芯瞬间D.闭合电键后保持变阻器的滑动头位置不变12.如图所示是测试热敏电阻R的性质的电路图,当保持滑动变阻器阻值不变,环境温度升高时,灯泡L变亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理选修1-1模块试题(基础卷 共100分)一、本题共10小题,在每个小题给出的四个选项中,只有一个选项......是符合题意的.(每个小题5分,共50分)1.在国际单位制中,磁感应强度的单位是A .焦耳B .库仑C .安培D .特斯拉2.把一条导线平行地放在如图1所示的磁针的上方附近,当导线中有电流时,磁针会发生偏转.首先观察到这个实验现象的物理学家是A .奥斯特B .爱因斯坦C .牛顿D .伽利略3.通过电阻R 的电流强度为I 时,在t 时间内产生的热量为Q ,若电阻为2R ,电流强度为I /2,则在时间t 内产生的热量为A .4QB .2QC .Q /2D .Q /44.关于电路中感应电动势的大小,下列说法中正确的是 A .跟穿过电路的磁通量成正比 B .跟穿过电路的磁通量的变化量成正比 C .跟穿过电路的磁通量的变化率成正比 D .跟电路的总电阻成正比5.在图2所示的四个图中,标出了匀强磁场的磁感应强度B 的方向、带正电的粒子在磁场中速度v 的方向和其所受洛伦兹力f 的方向,其中正确表示这三个方向关系的图是6.图3是一正弦式交变电流的电流图象. 此正弦交变电流的周期和电流的最大值分别为A .0.01s ,102AB .0.02s ,10AC .0.02s ,102AD .0.01s ,10A图1图3图2 vCBvD +qv+qBA BB7.如图4,可以将电压升高后供给家用电灯的变压器是A 、甲图B 、乙图C 、丙图D 、丁图8.真空中有两个静止的点电荷q 1、q 2. 若保持它们之间的距离不变,而把它们的电荷量都变为原来的2倍,则两电荷间的静电力将变为原来的 A .2倍 B .4倍 C .8倍 D .16倍9.如图5所示,在垂直于纸面的范围足够大的匀强磁场中,有一个矩形闭合线框abcd ,线框平面与磁场垂直. 在下列情况中,线框中能产生感应电流的是A .线框沿纸面向左运动B .线框垂直纸面向外运动C .线框绕过d 点垂直于纸面的轴转动D .线框绕ad 边转动10.图6是阴极射线管的示意图. 接通电源后,会有电子从阴极K 射向阳极A ,并在荧光屏上形成一条亮线. 要使荧光屏上的亮线向下偏转,下列措施中可行的是A .加一方向平行纸面向上的磁场B .加一方向平行纸面向下的磁场C .加一方向垂直纸面向里的磁场D .加一方向垂直纸面向外的磁场图6KAa b cd图5图4二、填空题(每空3分,共18分)11.图7是电场中某区域的电场线分布图,A 、B 是电场中的两点,可以判断________点场强较大(选填“A ”或“B ”);一正点电荷在B 点受到电场力的方向是________(选填“向左”或“向右”).12.远距离输电时,为了减少输送过程中的热损耗,常采用________输电(选填“高压”或“低压”). 在输电线路上若有一个如图8所示的理想变压器,其原线圈匝数n 1小于副线圈匝数n 2,则原线圈两端的电压U 1________副线圈两端的电压U 2(选填“大于”或“小于”).13.将长0.5m 通过4A 电流的通电导线放在匀强磁场中,当导线和磁场方向垂直时,通电导线所受磁场力为0.3N,则匀强磁场的磁感应强度B 大小为 T,若将通电导线中的电流减为2A,则导线受安培力为 ______N.三、论述、计算题(共32分)解题要求:写出必要的文字说明、方程式、演算步骤和答案. 有数值计算的题,答案必须明确写出数值和单位.14.(8分)有一个1000匝的线圈,在4s 内穿过它的磁通量从0均匀增加到0.1Wb ,(1)求线圈中的感应电动势;(2)若线圈的总电阻是 100,通过线圈的电流是多大?15.(8分)下表为某电热水壶铭牌上的一部分内容. 若电热水壶正常工作时,根据表中的信息,求:图7E图8(1)通过电热水壶的电流; (2)电热水壶工作120s 产生的热量.16.(8分)如图9,把q 1=+1.0×10-9C 的检验电荷放入点电荷Q 产生的电场中的P 点,测得q 1所受电场力大小为1.0×10-6N ,方向水平向右。

(1)Q 在P 激发的电场强度为多大?方向如何?(2)若移走q 1,而在P 点放置一个q 2= -2.0×10-8C 的负点电荷,则q 2所受的电场力大小和方向如何?17.(8分)如图10所示,在一个范围足够大、垂直纸面向里的匀强磁场中,用绝缘细线将金属棒吊起,使其呈水平状态. 已知金属棒长L =0.1m ,质量m =0.05kg ,棒中通有I =10A 的向右的电流,取g =10m/s 2.(1)若磁场的磁感应强度B =0.2T ,求此时金属棒受到的安培力F 的大小; (2)若细线拉力恰好为零,求磁场的磁感应强度B 的大小.Q P图9(附加卷 共50分)三、本题共6小题,在每个小题给出的四个选项中,只有一个选项......是符合题意的.(每个小题3分,共18分)18、白炽灯是最普通的电灯,它是美国发明家爱迪生发明的。

当电流通过灯丝时,灯丝热到白炽状态(2000 C 以上)就发出很亮的光,可以供我们照明。

一个普通的家用照明白炽灯正常发光时,通过它的电流强度与下列哪一个值较接近?A 、20 AB 、2 AC 、0 .2 AD 、0.02 A19、设想在地球的赤道附近有一束带正电的质子沿水平方向由西向东运动,在地磁场的作用下,这束质子发生偏转的方向是A .向上B .向下C .向北D .向南20、质量为m 的导体杆ab 水平地放在倾角为θ、相距为d 的两根彼此平行的固定光滑导轨上,如图11所示通以电流I .可用加磁场的办法使导体杆ab 保持静止.侧视图中标出四种匀强磁场的方向,其中正确可行的是21、如图12所示,矩形线圈 abcd 置于匀强磁场中,线圈平面跟磁感线平行,在下列运动过程中,线圈中能产生感应电流的是A .线圈以ad 边为轴转动;B .线圈以ab 边为轴转动;C .线圈平行于磁感线向右平动;D .线圈垂直于磁感线向纸外平动.22、如图13所示,一束电子平行纸面沿水平向右的方向射入磁场区域,当该区域内的磁场分别沿如下所给的方向,其中能使这束电子在纸面内向上偏转的是A .竖直向上B .竖直向下C .垂直纸面向里D .垂直纸面向外23、如图14所示的电路中,D 1 和 D 2 是完全相同的灯泡,线θ θ a(b) a(b) A B C D图11 图13e v图12圈 L 的自感系数很大,电阻可以忽略。

下列说法中正确的是 A. 闭合开关 S 接通电路瞬间,D 1 和 D 2 始终一样亮B .断开开关 S 切断电路瞬间,D 2 立刻熄灭,D 1 过一会儿才熄灭 C. 闭合开关 S 接通电路瞬间,D 2 先亮,D 1 后亮,最后一样亮 D .断开开关 S 切断电路瞬间,D 1 和 D 2 都会立即熄灭四、填空题(每空2分,共18分)24、已知元电荷19106.1-⨯=e C ,某金属导线中的电流是16mA ,2s 内通过导线的横截面的电子个数为_______________个。

25、如图15所示,将电性不同的三束射线射入垂直纸面向外的匀强磁场中,根据偏转情况可知,图中带正电的射线的是_______,带负电的射线的是___________,不带电的射线的是_________。

26、如图16所示,一理想变压器的原线圈接到U 1=220V 的交流电源上,此时与副线圈连接的“110V 40W”的灯泡恰能正常工作.由此可知,原、副线圈的匝数比n 1:n 2= ;原线圈的输入功率P 1= W.27、我国照明用的交流电压是220V ,频率是50Hz .它的电压的有效值是_________V ,峰值是_________V ,周期是__________s .五、论述、计算题(共14分) 28、(5分)电学中的库仑定律、欧姆定律、法拉第电磁感应定律(有关感应电动势大小的规律)、安培定律(磁场对电流作用的规律)都是一些重要的规律,下图17为远距离输电系统的示意图(为了简单,设用户的电器是电动机),试用你所学的知识, 从上述规律找出下列五个过程中所遵循的物理规律,填入下表中.图15I 2 n 2图1629、(5分)一电动机线圈的电阻为R ,当电动机工作时通过的电流强度是I ,加在线圈两端电压是U ,求:(1)该电动机的输出功率?(2)该电动机的效率?30、(4分)如图18所示,在真空中有A 、B 两个带电小球,A 被固定,B 被一绝缘轻线悬挂于O 点. 当B 静止时,A 、B 在同一水平线上,轻线与竖直方向的夹角为θ. 已知B 球质量为m ,电荷量为q ,A 、B 球均可视为质点.(1)试说明小球B 带正电还是带负电;(2)计算小球A 在小球B 处所激发的电场强度的大小; (3)要使θ角变大,可以采用什么方法?答案及评分参考(机读卷 每小题5分,共50分)一、选择题题号12345678910元器件 对应的物理规律发电机 升压变压器 高压输电导线 降压变压器 电动机图18答案DACCBBCBDC(非机读卷 共50分)二、填空题(每空3分,共18分)11. B ;向左 12.高压;小于 13.0.15 ;0.15三、论述、计算题(共32分) 14.(8分)(1)=-⨯=∆∆=41.01000t nφε25V .…….……5分 (2)I =E/R =0.25A .…….……3分15.(8分)(1)I =2201500=U P A=6.82A .…….……5分 (2)Q =W =Pt =1500⨯120J=1.80⨯105J .…….……3分16.(8分)(1)39610101101=⨯⨯==--q F E N/C ,方向水平向右。

.…….……4分 (2)5832210210210--⨯=⨯⨯==Eq F N ,方向水平向左。

.…….……4分17.(8分)(1)F=BIL =0.2⨯10⨯0.1N=0.2N ………. ………… .…….……3分(2)悬线拉力恰好为零,金属棒受重力和安培力,由金属棒静止可得 F=mg …………………………………………………2分ILmgB ==0.5T …………………………………………3分附加卷(50分)四、选择题(每题3分,共18分)题号18 19 20 21 22 23 答案CAAADC五、填空题(每空2分,共18分)24、2×1017 25、C 、B 、A 26、2:1;4027、220;2202或311;0.02六、计算题(14 分) 28、每空1分,共5分29、(1)消耗总功率:UI P =0 …. …1分 发热功率:R I P 21= …. …1分输出功率:R I UI P P P 2102-=-= …. …1分(2)输出效率:UIRU UI R I UI P P -=-==202η…. …2分 30、(1)(1)因为小球B 被小球A 排斥,已知小球A 带正电,所以B 球带正电..…….1分 (2)以小球B 为分析对象,它受到重力mg 、电场力F 1和拉力F 2,这三个力平衡,可得F 1=mg tan θ………………………………..…1分球A 在球B 处所激发的电场强度为E ,由电场强度定义qmg q F E θtan 1==………………..……. …1分(3)可以采用如下的一些方法:① 增加小球A 所带正电荷. ② 增加小球B 所带正电荷. ③ 使A 球与B 球靠得近些……(本题的答案不唯一,只要学生答对一种方法,即可得1分)元器件 对应的物理规律发电机 法拉第电磁感应定律 升压变压器 法拉第电磁感应定律 高压输电导线 欧姆定律降压变压器 法拉第电磁感应定律 电动机安培定律。

相关文档
最新文档