变频器日常故障判断及维修
变频器的常见故障及维修
变频器的常见故障及维修
变频器是一种能够在设定范围内自由调节电输入频率和电压的电器,是电器行业中的重要组成部分,但同时它也是导致电器故障的重要原因之一。
下面介绍几种常见变频器故障及其维修方法:
1、电源故障:这是变频器最常见的故障,可能是由于电线被断路或短路导致的,维修时应检查电源线是否有断开或短路的情况,如有的话应及时修复。
2、电子元件故障:电子元件故障是另一种常见的变频器故障,一般是由于元件电路路径积累的灰尘原因引起的,维修时应先检查一下有没有灰尘积聚,有的话应及时进行清理。
3、程序故障:如果当变频器在运行时出现不同的程序故障,可能是由于程序操作错误或设置不当造成的,应该及时重新编程进行配置,以恢复变频器的正常工作。
以上是变频器的三种常见故障,每种故障的维修方法不尽相同,应根据实际情况进行操作。
此外,为了防止出现以上故障,在安装完变频器后,应定期进行检查,把变频器保持在最佳状态,以避免出现故障现象。
变频器常见故障及判断
1 引言本人在几年前曾接触过大量富士G/P9、G/P11系列低压通用变频器,在故障判断与处理上略有心得:由于当时没有及时形成详细日志,许多心得已被时间冲刷得干净,故有必要及时记下此小札,以飨业界广大从事工控的朋友。
无论是G/P9系列还是G/P11系列的低压通用变频器在发生保护动作时,作为工程师或技术人员,首先要参照该变频器的说明手册进行判断和处理,在问题依然不能解决的情况下,参考此文章会对大家有所帮助。
2 常见故障及判断(1)OC报警键盘面板LCD显示:加、减、恒速时过电流。
对于短时间大电流的OC报警,一般情况下是驱动板的电流检测回路出了问题,模块也可能已受到冲击(损坏),有可能复位后继续出现故障,产生的原因基本是以下几种情况:电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。
小容量(7.5G11以下)变频器的24V风扇电源短路时也会造成OC3报警,此时主板上的24V风扇电源会损坏,主板其它功能正常。
若出现“1、OC2"报警且不能复位或一上电就显示“OC3"报警,则可能是主板出了问题;若一按RUN键就显示“OC3”报警,则是驱动板坏了。
(2)OLU报警键盘面板LCD显示:变频器过负载.当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升”、“加减速时间”和“节能运行”的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。
(3)OU1报警键盘面板LCD显示:加速时过电压.当通用变频器出现“OU”报警时,首先应考虑电缆是否太长、绝缘是否老化,直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定.另外在启动时用万用表测量一下中间直流环节电压,若测量仪表显示电压与操作面板LCD显示电压不同,则主板的检测电路有故障,需更换主板.当直流母线电压高压780VDC时,变频器做OU报警;当低于350VDC时,变频器做欠压LU报警。
变频器的常见故障原因及处理办法
变频器的常见故障原因及处理办法变频器(变频电器)是一种能够对电源电压和频率进行调节的设备,广泛应用于工业生产和家庭生活中。
然而,变频器在使用过程中可能会出现各种故障。
本文将介绍变频器的常见故障原因及处理办法。
首先,变频器故障原因及处理办法如下:1.电源故障:电源问题是变频器故障的常见原因之一、电源电压过低或过高可能导致变频器无法正常工作。
在这种情况下,需要检查电源供应是否稳定,修复电源问题或更换电源设备。
2.过载故障:过载是指变频器承受的负载超出其额定能力。
过载可能是由于外部负载过重或电机本身出现问题引起的。
解决过载故障的办法包括减少负载、更换电机或调整变频器的参数以提供更大的输出能力。
3.控制电路故障:控制电路故障可能是由于电路元件损坏或线路连接问题引起的。
在这种情况下,需要检查电路元件,更换损坏的元件或重新连接线路。
4.卡死故障:变频器的传动部分可能会由于过载或不良运行而卡住。
解决这个问题的方法是检查传动部分,清理或更换损坏的零件,确保其正常运行。
5.温度过高故障:变频器在运行过程中可能会产生过多的热量,导致温度过高故障。
这可能是由于环境温度过高、散热设备不良或负载过重引起的。
处理这个问题的方法包括增加散热设备、降低环境温度或减少负载。
6.通讯故障:变频器与其他设备进行通讯时可能会出现通讯故障。
这可能是由于通讯线路连接不良、通讯协议不匹配或故障设备引起的。
解决这个问题的方法包括检查通讯线路、更换不匹配的设备或重新设置通讯参数。
7.保护故障:保护功能是变频器的重要组成部分,可以保护其免受过载、短路和过热等问题的影响。
如果保护功能触发,需要进行故障分析并采取相应的措施来解决问题。
总结起来,变频器的常见故障原因包括电源故障、过载、控制电路故障、卡死、温度过高、通讯故障和保护故障。
解决这些故障的方法包括修复电源问题、减少负载、更换损坏的元件、清理传动部分、增加散热设备、检查通讯线路和重新设置保护参数等。
变频器常见故障及处理
变频器常见故障?(1)?变频器驱动电机抖动???在接修一台安川616PC5-5.5kW变频器时,客户送修时标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。
发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。
???(2)?变频器频率上不去???,由此??变频器??缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。
??????(5)?变频器小电容炸裂???在接修一台三肯SVF7.5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。
由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。
以提高其使用寿命,器件更换后,给变频器通电,上电一瞬间,只听“砰”的一声响动,并伴随飞出许多碎屑,断开电源,发现C14电解电容炸裂,此刻想到的是有可能电容装反,于是根据其标识再装一次,再次上电,电容又一次炸裂。
于是进一步检查其线路,发现线路与电容标识无法对上,于是将错就错,把电容装反,再次上电,运行正常。
这一点在后来送修的相同的机器得以证实。
变频器的参数设置变频器的参数设定在调试过程中是十分重要的。
由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT或整流桥等器件。
变频器的品种不同,参数量亦不同。
一般单一功能控制的变频器约50~60个参数值,多功能控制的变频器有200个以上的参数。
但不论参数多或少,在调试中是否要把全部的参数重新调正呢?不是的,大多数可不变动,只要按出厂值就可,只要把使用时原出厂值不合适的予以重新设定就可,制动时间(最大150,电动机堵转。
变频器的常见故障以及维修方法详解
变频器的常见故障以及维修方法详解1.维修变频器整流块损坏变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。
中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。
在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。
如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。
2.变频器充电电阻易损坏维修导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。
其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。
也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。
3.变频器逆变器模块烧坏维修中、小型变频器一般用三组IGTR(大功率晶体管模块);大容量的机种均采用多组IGTR并联,故测量检查时应分别逐一进行检测。
IGTR的损坏也可引起变频器OC(+pA或+pd或+pn)保护功能动作。
逆变器模块的损坏原因很多:如输出负载发生短路;负载过大,大电流持续运行;负载波动很大,导致浪涌电流过大;冷却风扇效果差;致使模块温度过高,导致模块烧坏、性能变差、参数变化等问题,引起逆变器输出异常。
一、维修变频器辅助控制电路常见故障变频器驱动电路、保护信号检测及处理电路、脉冲发生及信号处理电路等控制电路称为辅助电路。
辅助电路发生故障后,其故障原因较为复杂,除固化程序丢失或集成块损坏(这类故障处理方法一般只能采用控制板整块更换或集成块更换)外,其他故障较易判断和处理。
变频器的维护检查及故障处理
变频器的维护检查及故障处理变频器的维护检查一、综合检查1.周围环境:检查周围有无危险品,检测环境温度,湿度,空气清洁度。
2.电压:测量主回路、控制回路电压是否正常。
3.触摸面板:是否缺少字符,字符是否清楚。
4.框架、前面板:1)是否沾有灰尘污损;2)是否因过热变色;3)是否有异常声音、异常振动;4)螺栓是否松动。
二、主电路检查1.公用:1)是否附着灰尘污损;2)螺栓是否松动;3)是否有变形、裂纹、破损或过热老化变色。
2.导体、电线:1)导体是否变形或过热变色;2)导线皮是否破损、裂口、变色。
3.电阻:1)是否断线;2)是否有过热的怪味,绝缘体有无裂纹。
4.滤波电容器:1)是否漏液、变色、裂纹、外壳膨胀;2)阀体是否明显膨胀;安全阀是否出来。
5.变压器、电抗器:是否有异常的声音和怪味。
6.接触器、继电器:工作时是否振动、声音异常。
三、控制电路检查印刷电路板连接器:1.螺栓、螺钉是否松动;2.是否有裂纹、破损、变形;3.电容器是否漏液、变形;四、冷却系统检查1.冷却风扇:1)否有异常振动、异常声音;2)螺栓是否松动。
2.通风道:散热片给气排气口的间隙是否有堵塞和附着异物。
变频器的故障处理一、过流和过载故障过流和过载在变压器的应用中是经常出现的,此类故障首先要将负载断开,确定是由于负荷过载引起的故障,还是电气主回路、控制回路问题。
如果是电气方面的问题,再将变频器和电机电缆脱离开进行检查,进一步确认是哪个环节的故障。
1. 外部原因1)由于电动机负载突变,引起大的冲击电流使过电流保护动作。
这类故障一般是暂时的,重新启动后会恢复正常。
如果经常有负载突变的情况,则应采取限制负载突变或更换较大容量的变频器。
2)电动机和电缆相间或相对地绝缘破坏,造成匝间或相间对地短路,因而导致过电流,一般遇到此类故障是先将电机不带负载单试,如果仍出现过流则将出线电缆解开,对电机和电缆单独进行检查。
3)在电动机绕组和外壳之间,电动机电缆和大地之间存在着较大的寄生电容,通过寄生电容会有高频漏电电流流向大地,引起过电流和过电压故障。
变频器常见故障及修理
变频器常见故障(1) 变频器驱动电机抖动在接修一台安川变频器时,客户送修時标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。
发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。
(2) 变频器频率上不去在接修一台普传220V,单相,变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不是参数问题,又怀疑是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此看来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。
(3) 变频器跳过流在接修一台台安N2系列,400V,变频器时,客户标明在起动时显示过电流。
在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。
于是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。
(4) 变频器整流桥二次损坏在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。
不到一个月,客户再次拿来。
检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。
单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。
(5) 变频器小电容炸裂在接修一台三肯变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。
变频器故障判断和处理
变频器故障判断及处理1 .1.1判断逆变功率模块主要有IGBT、IPM等,检查外观是否已炸开,端子与相连印制板是否有烧蚀痕迹。
用万用表查C-E、G-C、G-E是否已通,或用万用表测P对U、V、W和N对U、V、W 电阻是否有不一致,以及各驱动功率器件控制极对U、V、W、P、N的电阻是否有不一致,以此判断是哪一功率器件损坏。
1.1.2损坏的原因查找(1)器件本身质量不好。
(2)外部负载有严重过电流、不平衡,电动机某相绕阻对地短路,有一相绕阻内部短路,负载机械卡住,相间击穿,输出电线有短路或对地短路。
(3)负载上接了电容,或因布线不当对地电容太大,使功率管有冲击电流。
(4)用户电网电压太高,或有较强的瞬间过电压,造成过电压损坏。
(5)机内功率开关管的过电压吸收电路有损坏,造成不能有效吸收过电压而使IGBT损坏,如图1所示。
(6)滤波电容因日久老化,容量减少或内部电感变大,对母线的过压吸收能力下降,造成母线上过电压太高而损坏IGBT。
正常运行时母线上的过电压是逆变开关器件脉冲关断时,母线回路的电感储能转变而来的。
(7)IGBT或IPM功率器件的前级光电隔离器件因击穿导致功率器件也击穿,或因在印制板隔离器件部位有尘埃、潮湿造成打火击穿,导致IGBT、IPM损坏。
(8)不适当的操作,或产品设计软件中有缺陷,在干扰和开机、关机等不稳定情况下引起上下两功率开关器件瞬间同时导通。
(9)雷击、房屋漏水入侵,异物进入、检查人员误碰等意外。
(10)经维修更换了滤波电容器,因该电容质量不好,或接到电容的线比原来长了,使电感量增加,造成母线过电压幅度明显升高。
(11)前级整流桥损坏,由于主电源前级进入了交流电,造成IGBT、IPM损坏。
(12)修理更换功率模块,因没有静电防护措施,在焊接操作时损坏了IGBT。
或因修理中散热、紧固、绝缘等处理不好,导致短时使用而损坏。
(13)并联使用IGBT,在更换时没有考虑型号、批号的一致性,导致各并联元件电流不均而损坏。
变频器的常见故障分析及维修
变频器的常见故障分析及维修变频器是一种电力电子设备,用于控制电动机的转速和扭矩。
由于其复杂的电路结构和高频高压的工作环境,变频器常常会出现各种故障。
本文将对变频器的常见故障进行分析,并提出相应的维修方法。
一、电源故障电源故障是变频器最常见的故障之一、其主要表现为功率模块跳闸、电压失稳等。
可能的原因包括输入电压过高或过低、相序错误、电源输出短路等。
处理方法如下:1.检查输入电压,确保在变频器的额定电压范围内。
2.检查电源相序是否正确连接,必要时更换相序线。
3.排除电源输出短路的可能性,检查电路是否有明显的高温、烧焦等现象。
二、散热故障变频器在工作过程中产生大量的热量,如果散热不良会导致高温故障。
其表现为变频器壳体过热、风扇不转等。
可能的原因包括风扇故障、风道堵塞、散热片腐蚀等。
处理方法如下:1.检查风扇是否正常工作,如有异常应及时更换。
2.清理散热风道,确保风道畅通。
3.检查散热片是否腐蚀,如有必要可进行清洗或更换。
三、电机故障变频器控制电机的运行,电机故障会导致变频器无法正常工作。
其主要表现为电机运转不稳、电机振动等。
可能的原因包括电机接线松动、电机参数设置错误等。
处理方法如下:1.检查电机的接线情况,确保接触良好。
2.检查变频器的电机参数设置,确保与实际情况相符。
四、通信故障变频器常用于自动化控制系统中,与上位机进行通信。
通信故障会导致上位机无法控制变频器,影响整个系统的正常运行。
其主要表现为通信断开、数据交互异常等。
可能的原因包括通信线路故障、通信协议不兼容等。
处理方法如下:1.检查通信线路是否正常连接,如有断线或短路应及时修复。
2.检查通信协议设置,确保与上位机设置一致。
3.如有需要,可以进行软件升级或更换通信模块。
五、保护功能故障变频器通常配备多种保护功能,如过流保护、过热保护等。
这些保护功能的故障会导致变频器停机保护或频繁报警。
可能的原因包括保护参数设置错误、保护装置故障等。
处理方法如下:1.检查保护参数设置,确保与实际需求相符。
变频器常见故障及排除方法
变频器常见故障及排除方法变频器保护比较齐全,有些故障用户是可以自己解决的,下面介绍几种常见的变频器故障及排除方法:1、变频器无输出电压。
故障原因为:A、主回路不通。
重点检查主回路通道中所有开关、熔断器、接触器及电力电子元件是否完好,导线接头有无接触不良或松脱。
B、控制回路接线错误,变频器未正常启动。
以说明书为依据,认真核对控制回路接线,找出错误并加以纠正。
2、电动机不能升速。
主要原因:A、交流电源或变频器输出缺相。
电源缺相使变频器输出电压降低,变频器输出缺相造成三相电压不对称而产生负序转矩,都使电动机电磁转矩变小,不能驱动负载加速。
应检查熔丝有无熔断,导线接头有无松脱断路,逆变桥开关管是否损坏和有无触发脉冲等。
B、频率或电流设定值偏小。
频率设定在低值点上使频率受到限制无法升高而不能加速。
电流值设定偏小,则产生最大转矩的能力被限制,使电动机剩余转矩过小而不能加速。
因此,应检查频率和电流设定值是否适当。
看电流设定值已达到变频器的最大值,则说明变频器容量偏小,应换较大容量的变频器。
C、调速电位器接触不良或相关元件损坏,使频率给定值不能升高。
3、转速不稳或不能平滑调节A、电源电压不稳定;B、负载有较大波动;C、外界噪声干扰使设定频率发生变化。
4、过电流故障A、电源电压超限或缺相。
电压超限而过高或过低,应按说明书规定的范围进行调整,无论电源缺相或变频器输出缺相,都导致电动机转矩减小而过流。
B、负载过重或负载侧短路;C、变频器设定值不适当。
一是电压频率特性曲线中电压提升大于频率提升,破坏了U/F的比例关系,造成低频高压而过流;二是加速时间设定过短,需要加速转矩过大而过流;三是减速制动时间设定过短,机组迅速再生发电励磁给中间回路,造成中间回路电压过高而制动回路过流。
D、震荡过流。
一般只在某转速下运行时发生。
主要原因有两个:一是电气频率与机械频率发生共振;二是纯电气回路所引起,如功率开关管的死区控制时间,中间直流回路电容电压的波动,电动机滞后电流的影响及外界干扰源的干扰等。
变频器的常见故障以及维修方法详解
变频器的常见故障以及维修方法详解变频器是一种电气设备,被广泛应用于工业生产中,用来调节电动机的转速和转矩。
然而,由于长时间的工作和外部环境影响,变频器也会出现一些常见的故障。
本文将详细介绍变频器的常见故障以及相应的维修方法。
1.过热故障:变频器内部温度过高,超出正常范围。
可能的原因包括风扇故障、散热器堵塞、环境温度过高等。
维修方法包括清理散热器、更换风扇、调整环境温度等。
2.过载故障:变频器输出电流超过了额定值,导致设备停机保护。
可能的原因包括负载过大、电网电压不稳定等。
首先检查负载是否过大,然后调整负载大小或安装稳压器进行调节。
3.电网故障:电网故障包括电源电压波动、电压不平衡等。
变频器对电网异常非常敏感,可能会导致电机无法正常工作。
检查电网电压、电源线路,调整电压或更换电源线。
4.过电压/欠电压故障:电压超出或低于变频器的额定范围。
可能的原因包括供电电压不稳定、线路老化等。
检查供电电压,调整电压范围或更换线路。
5.电机故障:包括电机起动困难、转速不稳定、转矩输出不足等。
可能的原因包括电机本身故障、转子不对称、轴承磨损等。
检查电机状态,修复或更换电机部件。
6.控制板故障:包括芯片损坏、电路板接触不良等。
可能的原因包括长时间工作、电磁干扰等。
检查控制板,更换有问题的部件。
7.缺相故障:即电机无法正常引起转动。
可能的原因包括电机接线错误、电源线路故障等。
检查电机接线,修复或更换电源线。
维修变频器时需要遵循的基本步骤包括:1.对故障进行仔细的排查和判断,确定故障原因。
2.关闭电源,并确保设备处于安全状态。
3.根据故障原因进行相应的修复和更换零部件。
4.在维修完成后,对设备进行全面检查和测试,确保故障已经解决。
5.启动设备,观察其运行情况,确保一切正常。
综上所述,变频器的常见故障包括过热、过载、电网异常、电压问题、电机故障、控制板故障和缺相等。
维修方法包括清理散热器、更换零部件、调整电压范围等。
在维修时需要注意用电安全,对故障进行仔细判断,并进行全面的检查和测试。
变频器修理
变频器修理变频器修理变频器是电力电子设备中的一种重要设备,被广泛应用于工业生产中。
它能将交流电源转换成可调的交流电源,以供给给各种电动机使用。
然而,由于长期使用或不合适的操作,变频器可能出现故障或损坏。
本文将介绍变频器的常见故障及修理方法。
一、常见故障1. 电源故障:变频器的电源系统包括输入电源和输出电源。
输入电源故障常见的有过压、欠压和电源不稳定等问题。
输出电源故障常见的有电压不稳定、电流异常等问题。
2. 控制电路故障:控制电路是变频器的核心部分,其主要功能是接收信号并控制输出。
常见的控制电路故障有控制芯片损坏、电容漏电、晶体管开路等问题。
3. 散热器故障:散热器故障会导致变频器过热,影响其正常工作。
散热器故障的原因可能是风扇损坏、散热片堵塞等。
二、修理方法1. 检查电源系统:对于电源故障,首先需要检查变频器的输入电源和输出电源是否正常。
可以通过测量电压、电流等参数来判断。
如果发现异常,可以检查电源连接是否松动、检修电源线路等。
2. 检修控制电路:对于控制电路故障,可以先检查控制芯片是否损坏。
如果损坏,需要更换新的芯片。
同时,还应注意检查电容、晶体管等元件是否损坏,进行更换或焊接修复。
3. 清洁散热器:对于散热器故障,可以先清洁散热器的风扇和散热片,确保散热器正常运转。
如果风扇损坏,需要更换新的风扇。
4. 使用专业设备:修理变频器需要使用专业的维修设备和工具。
为了保证安全和修理效果,应选择有资质的维修专业人员进行修理。
5. 注意防护措施:修理变频器时,需要戴好绝缘手套,确保人身安全。
同时,遵循操作规程,防止电击和其他意外事故。
总结:变频器是工业生产中常用的电力电子设备,其故障修理需要专业的知识和技能。
掌握常见的故障现象和修理方法,对于及时维修变频器、恢复正常生产具有重要意义。
然而,在修理过程中,需要注意安全和防护措施,以避免可能的危险。
变频器常见故障及处理
变频器常见故障(1) 变频器驱动电机抖动在接修一台安川616PC5-5.5kW变频器时,客户送修時标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。
发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。
(2) 变频器频率上不去在接修一台普传220V,单相,1.5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不是参数问题,又怀疑是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此看来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。
(3) 变频器跳过流在接修一台台安N2系列,400V,3.7kW变频器时,客户标明在起动时显示过电流。
在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。
于是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。
(4) 变频器整流桥二次损坏在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。
不到一个月,客户再次拿来。
检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。
单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。
变频器常见故障及解决方案
1 变频器故障判断及处理1.1 逆变功率模块的损坏1.1.1 判断逆变功率模块主要有IGBT、IPM 等,检查外观是否已炸开,端子与相连印制板是否有烧蚀痕迹。
用万用表查C-E、G-C、G-E 是否已通,或用万用表测P 对U、V、W 和N 对U、V、W 电阻是否有不一致,以及各驱动功率器件控制极对U、V、W、P、N 的电阻是否有不一致,以此判断是哪一功率器件损坏。
1.1.2 损坏的原因查找(1)器件本身质量不好。
(2)外部负载有严重过电流、不平衡,电动机某相绕阻对地短路,有一相绕阻内部短路,负载机械卡住,相间击穿,输出电线有短路或对地短路。
(3)负载上接了电容,或因布线不当对地电容太大,使功率管有冲击电流。
(4)用户电网电压太高,或有较强的瞬间过电压,造成过电压损坏。
(5)机内功率开关管的过电压吸收电路有损坏,造成不能有效吸收过电压而使IGBT 损坏,如图1所示。
(6)滤波电容因日久老化,容量减少或内部电感变大,对母线的过压吸收能力下降,造成母线上过电压太高而损坏IGBT。
正常运行时母线上的过电压是逆变开关器件脉冲关断时,母线回路的电感储能转变而来的。
(7)IGBT或IPM功率器件的前级光电隔离器件因击穿导致功率器件也击穿,或因在印制板隔离器件部位有尘埃、潮湿造成打火击穿,导致IGBT、IPM损坏。
(8)不适当的操作,或产品设计软件中有缺陷,在干扰和开机、关机等不稳定情况下引起上下两功率开关器件瞬间同时导通。
(9)雷击、房屋漏水入侵,异物进入、检查人员误碰等意外。
(10)经维修更换了滤波电容器,因该电容质量不好,或接到电容的线比原来长了,使电感量增加,造成母线过电压幅度明显升高。
(11)前级整流桥损坏,由于主电源前级进入了交流电,造成IGBT、IPM损坏。
(12)修理更换功率模块,因没有静电防护措施,在焊接操作时损坏了IGBT。
或因修理中散热、紧固、绝缘等处理不好,导致短时使用而损坏。
(13)并联使用IGBT,在更换时没有考虑型号、批号的一致性,导致各并联元件电流不均而损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器日常故障判断及维修1 前言自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。
目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。
随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面:①谐波问题②变频器负载匹配问题③发热问题以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。
如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。
针对上述问题,本文进行了分析并提出了解决方案及对策。
2 谐波问题及其对策通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。
整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。
对于双极性调制的变频器,其输出电压波形展开式为: (1)式中:n—谐波的次数n=1,3,5……;a1—开关角,i=1,2,3……N/2;Ed—变频器直流侧电压;N—载波比。
由(1)式可见,各项谐波的幅值为(2)令n=1,则得出变频器输出电压的基波幅值为:(3)从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。
较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。
如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。
为了消除谐波,可采用以下对策:①增加变频器供电电源内阻抗通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。
这种内阻抗就是变压器的短路阻抗。
当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。
对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。
所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。
②安装电抗器安装电抗器实际上从外部增加变频器供电电源的内阻抗。
在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。
表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。
③变压器多相运行通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。
如果应用变压器的多相运行,使相位角互差30°如Y-△、△-△组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。
④调节变频器的载波比从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。
⑤专用滤波器该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。
3 负载匹配问题及其对策生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。
针对不同的负载类型,应选择不同类型的变频器。
①恒转矩负载恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。
恒转矩负载又分为摩擦类负载和位能式负载。
摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。
如三菱变频器FR-A540系列。
位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。
如三菱变频器FR-A241系列。
②风机泵类负载风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。
风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:(4)这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。
如三菱变频器FR-F540(L)系列。
风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:(5)(6)式中:tACC—加速时间(s);tDEC—减速时间(s);GD2—折算到电机轴上的转动惯量(N·m2);g—重力加速度,g=9.81(m/s2);TM—电动机的电磁转矩(N.m);TL—负载转矩(N.m);nAS—系统加速时的初始速度(r/min);nAE—系统加速时的终止速度(r/min);nDS—系统减速时的初始速度(r/min);nDE—系统减速时的终止速度(r/min)。
从上式可以看出,风机负载的系统转动惯量计算是非常重要的。
变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。
泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定:喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。
憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。
在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。
水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。
若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。
在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。
③恒功率负载恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。
利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。
我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。
从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。
4 发热问题及其对策变频器的发热是由内部的损耗产生的。
在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。
为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法:①采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。
②降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。
通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。
我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。
另一种方法是变频器的安装空间要满足变频器使用说明书的要求。
以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。
当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。
对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。
当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。
不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示:对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。
长期工作制的电机可以按其名牌规定的数据长期运行。
针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW 时,可选择FR-F540-22k变频器即可。
重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。
重复短时工作制电机允许其过载且有一定的温升。
此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。
针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。
如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。
5 结论本文通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。
随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。
6 参考文献(1) 韩安荣.通用变频器及其应用.北京:机械工业出版社,2000(2) 三菱变频调速器FR-A500使用手册.(3) 三菱变频调速器FR-F500使用手册.。