生物化学重点总结(15页)
生物化学期末复习重点总结
一.n解释1.氨基酸的等电点(pI):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。
2. .蛋白质的等电点(pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
蛋白质溶液的pH大于等电点时,该蛋白质颗粒带负电荷,反正则带正电荷。
3.蛋白质变性:在某些理化因素的作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。
4.核酸的变性:在某些理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,理化性质改变,失去原有的生物学活性。
5解链温度、溶解温度或Tm:在解链过程中,紫外吸光度的变化△A260达到最大变化值的一半时所对应的温度称为DNA的解链温度。
6.Km:等于酶促反应速度为最大速度一半时的底物浓度。
6.酶的活性中心或活性部位:这些必需基团在一级结构上可能相距很远,但在空间上彼此靠近,组成具有特定空间结构的区域,能和底物特异的结合并将底物转化为产物。
这一区域称为酶的活性中心或活性部位。
辅酶或辅基参与酶活性中心的组成。
7.同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
8.变构酶:变构效应的剂与酶分子活性中心以外的部位可逆的组合,使酶分子发生构象改变,从而改变了催化活性的酶称为变构酶。
9.酶原的激活:酶原向酶的转化过程称为酶原的激活,酶原的激活实际上是酶的活性中心形成或暴露的过程。
10.糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原成乳酸的过程称为糖酵解。
11.糖的有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化。
是体内糖代谢最主要途径。
12.糖异生:从非糖化合物(乳酸,甘油,生糖氨基酸,丙酮酸)转化为葡萄糖或糖原的过程称为糖异生。
生物化学考试重点总结
生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。
祝你考试顺利!。
生物化学知识点总结
生物化学知识点总结第一部分:名词解释1.蛋白质:是由许多氨基酸通过肽键相连形成的高分子含氮化合物。
2.氨基酸: 含有氨基和羧基的一类有机化合物的通称。
3.等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
4.肽键:一个氨基酸的a-羧酸与另一个氨基酸的a-氨基脱水缩和形成的化学键。
5.蛋白质的别构效应:又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
6.蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响寡聚体中另一个亚基与配体结合的现象。
7.蛋白质的变性:蛋白质在某些物理和化学因素作用下其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质的变性。
8.凝胶过滤:利用具有网状结构的凝胶的分子筛作用利用各蛋白质分子大小不同来进行分离9.层析:待分离的蛋白质溶液经过一个固定物质时,根据待分离的蛋白质颗粒的大小,电荷多少及亲和力使待分离的蛋白质在两相中反复分配,并以不同流速经固定相而达到分离蛋白质的目的。
10.胶原蛋白:胶原纤维经过部分降解后得到的具有较好水溶性的蛋白质。
P62 11.结构域:相对分子质量较大的蛋白质三级结构通常可分割成一个或数个球状或者纤维状的区域,折叠得较为紧密,各行期能,成为结构域。
12.免疫球蛋白:是一组具有抗体活性的蛋白质血清中含量最丰富的蛋白质之一 13.波尔效应:pH对血红蛋白氧亲和力的这种影响。
14.热休克蛋白:是在从细菌到哺乳动物中广泛存在一类热应急蛋白质。
当有机体暴露于高温的时候,就会由热激发合成此种蛋白,来保护有机体自身。
15.次级键:除了典型的强化学键(共价键、离子键和金属键)等依靠氢键、盐键以及弱的共价键和范德华作用力(即分子间作用力)相结合的各种化学键的总称。
16.肽平面:肽键具有一定程度的双键(C-N键)性质(参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面)。
《生物化学》分章重点总结
生物化学分章重点总结第一章蛋白质的结构与功能蛋白质的四级结构及维持的力(考到问答题)一级:多肽链中AA残基的排列顺序,维持的力为肽键,二硫键。
二级:Pr中某段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,不涉及AA碱基侧链的构象,维持的力为氢键。
三级:整条多肽链全部AA残基的相对空间位置,其形成和稳定主要靠次级键—疏水作用,离子键(盐键),氢键,范德华力。
四级:Pr中各亚基的空间排布及亚基接触部位的布局和相互作用,维持的力主要为疏水作用,氢键、离子键(盐键)也参与其中。
第二章核酸的结构与功能DNA一级结构:DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。
RNA的一级结构:RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式。
hnRNA:核内合成mRNA的初级产物,比成熟mRNA分子大得多,这种初级mRNA分子大小不一被称为核内不均一RNA。
基因:DNA分子中具有特定生物学功能的片段。
基因组:一个生物体的全部DNA序列称为基因组。
第三章酶酶抑制剂:使酶催化活性降低但不引起酶蛋白变性的物质。
酶激活剂:使酶从无活性到有活性或使酶活性增加的物质。
酶活性单位:衡量酶活力大小的尺度,反映在规定条件下酶促反应在单位时间内生成一定量产物或消耗一定底物所需的酶量。
变构酶:体内一些代谢产物可与某些酶分子活性中心以外部位可逆结合,使酶发生变构并改变其催化活性,这种调节方式为变构调节,受变构调节的酶为变构酶。
酶的共价修饰:酶蛋白肽链上一些基团可与某种化学基团发生可逆的共价结合从而改变酶活性的过程。
阻遏作用:转录水平上减少酶生物合成的物质称辅阻遏剂,辅阻遏剂与无活性的阻遏蛋白结合影响基因的转录的过程第四章糖代谢糖代谢的基本概况葡萄糖在体内的一系列复杂的化学反应,在不同类型细胞内的代谢途径有所不同,分解代谢方式还在很大程度上受氧供状况的影响:有氧氧化彻底氧化成CO2和水、糖酵解生成乳酸。
另外,G也可以进入磷酸戊糖途径等进行代谢。
生物化学考试复习要点总结
一、蛋白质的结构与功能1.蛋白质的含氮量平均为16%.2.氨基酸是蛋白质的基本组成单位,除甘氨酸外属L-α-氨基酸。
3.酸性氨基酸:天冬氨酸、谷氨酸;碱性氨基酸:赖氨酸、精氨酸、组氨酸。
4.半胱氨酸巯基是GSH的主要功能基团。
5.一级结构的主要化学键是肽键。
6.维系蛋白质二级结构的因素是氢键7.并不是所有的蛋白质都有四级结构。
8.溶液pH>pI时蛋白质带负电,溶液pH<pl时蛋白质带正电。
9.蛋白质变性的实质是空间结构的改变,并不涉及一级结构的改变。
二、核酸的结构和功能1. RNA和DNA水解后的产物。
2.核苷酸是核酸的基本单位。
3.核酸一级结构的化学键是3′,5′-磷酸二酯键。
4. DNA的二级结构的特点。
主要化学键为氢键。
碱基互补配对原则。
A与T, c 与G.5. Tm为熔点,与碱基组成有关6. tRNA二级结构为三叶草型、三级结构为倒L型。
7.ATP是体内能量的直接供应者。
cAMP、cGMP为细胞间信息传递的第二信使。
三酶1.酶蛋白决定酶特异性,辅助因子决定反应的种类与性质。
2.酶有三种特异性:绝对特异性、相对特异性、立体异构特异性酶活性中心概念:必须基因集中存在,并构成一定的空间结构,直接参与酶促反应的区域叫酶的活性中心3.B族维生素与辅酶对应关系。
4. Km含义;Km值一般由一个数乘以测量单位所表示的特定量的大小. 对于不能由一个数乘以测量单位所表示的量,可参照约定参考标尺,或参照测量程序,或两者都参照的方式表示。
5.竞争性抑制特点。
某些与酶作用底物相识的物质,能与底物分子共同竞争酶的活性中心。
酶与这种物质结合后,就不能再与底物相结合,这种作用称酶的竞争性抑制作用。
抑制是可逆的,抑制作用的大小与抑制剂和底物之间的相对浓度有关。
四糖代谢1.糖酵解限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成ATP:2分子ATP;产物:乳酸2.糖原合成的关键酶是糖原合成酶。
糖原分解的关键酶是磷酸化酶。
生物化学重点总结归纳
第一章蛋白质的结构与功能一、名词解释肽键:一个氨基酸的a--羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键。
等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
蛋白质的一级结构:是指多肽链中氨基酸的排列顺序。
三、填空题1,组成体内蛋白质的氨基酸有20种,根据氨基酸侧链(R)的结构和理化性质可分为①非极性侧链氨基酸;②极性中性侧链氨基酸:;③碱性氨基酸:赖氨酸、精氨酸、组氨酸;④酸性氨基酸:天冬氨酸、谷氨酸。
3,紫外吸收法(280 nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子含有色氨酸,苯丙氨酸,或酪氨酸。
5,蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键第二章核酸的结构与功能一、名词解释DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构。
DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构。
三、填空题1,核酸可分为 DNA 和 RNA 两大类,前者主要存在于真核细胞的细胞核和原核细胞拟核部位,后者主要存在于细胞的细胞质部位2,构成核酸的基本单位是核苷酸,由戊糖、含氮碱基和磷酸 3个部分组成6,RNA中常见的碱基有腺嘌呤、鸟嘌呤,尿嘧啶和胞嘧啶7,DNA常见的碱基有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶四、简答题1,DNA与RNA 一级结构和二级结构有何异同?4,叙述DNA双螺旋结构模式的要点。
DNA双螺旋结构模型的要点是:1,DNA是一平行反向的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相交接触。
腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C),碱基平面与线性分子的长轴相垂直。
一条链的走向是5’→3’,另一条链的走向就一定是3’→5’;2,DNA是一右手螺旋结构;3,DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
生物化学必看知识点总结优秀
引言概述:生物化学是研究生物体内化学成分的组成、结构、功能以及各种生物化学过程的机理的学科。
掌握生物化学的基本知识是理解生物体内各种生命现象的基础,也是进一步研究生物医学、生物工程等领域的必备知识。
本文将从分子生物学、酶学、代谢、蛋白质和核酸等五个方面,总结生物化学中必看的知识点。
正文内容:1.分子生物学1.1DNA的结构和功能1.1.1DNA的碱基组成1.1.2DNA的双螺旋结构1.1.3DNA的复制和转录过程1.2RNA的结构和功能1.2.1RNA的种类和功能区别1.2.2RNA的结构和特点1.2.3RNA的转录和翻译过程1.3蛋白质的结构和功能1.3.1氨基酸的结构和分类1.3.2蛋白质的三级结构和四级结构1.3.3蛋白质的功能和种类1.4基因调控1.4.1转录调控和翻译调控1.4.2基因的启动子和转录因子1.4.3RNA的剪接和编辑1.5遗传密码1.5.1遗传密码的组成和特点1.5.2密码子的解读和起始密码子1.5.3用户密码监测2.酶学2.1酶的分类和特点2.1.1酶的命名规则和酶的活性2.1.2酶的结构和功能2.1.3酶的催化机制2.2酶促反应动力学2.2.1酶反应速率和反应速率常数2.2.2酶的最适温度和最适pH值2.2.3酶的抑制和激活调节2.3酶的应用2.3.1酶工程和酶的改造2.3.2酶在医学和工业上的应用2.3.3酶和药物相互作用3.代谢3.1糖代谢3.1.1糖的分类和代谢路径3.1.2糖酵解和糖异生3.1.3糖的调节和糖尿病3.2脂代谢3.2.1脂的分类和代谢途径3.2.2脂肪酸的合成和分解3.2.3脂的调节和脂代谢疾病3.3氮代谢3.3.1氨基酸的合成和降解3.3.2尿素循环和氨的排出3.3.3蛋白质的降解和合成3.4核酸代谢3.4.1核酸的合成和降解途径3.4.2核酸的功能和结构特点3.4.3DNA修复和基因突变3.5能量代谢调节3.5.1ATP的合成和利用3.5.2代谢途径的调节和平衡3.5.3能量代谢和细胞呼吸4.蛋白质4.1蛋白质的结构和维持4.1.1蛋白质结构的层次和稳定性4.1.2蛋白质质量控制和折叠4.2蛋白质表达和合成4.2.1蛋白质的翻译和翻译后修饰4.2.2蛋白质的定位和运输4.2.3蛋白质合成的调节和失调4.3蛋白质与疾病4.3.1蛋白质异常与疾病的关系4.3.2蛋白质药物和治疗策略4.3.3蛋白质组学在疾病研究中的应用5.核酸5.1DNA的复制和修复5.1.1DNA复制的机制和控制5.1.2DNA损伤修复和维持稳定性5.1.3DNA重组和基因转座5.2RNA的合成和调控5.2.1RNA转录的调节和翻译5.2.2RNA剪接和编辑5.2.3RNA和疾病的关系5.3RNA干扰和基因沉默5.3.1RNA干扰机制和调控5.3.2RNA干扰在基因治疗中的应用5.3.3RNA沉默和抗病毒防御总结:生物化学是研究生物体内化学成分和生物化学过程的重要学科,掌握其中的关键知识点对于理解生命的本质和生物体的正常功能至关重要。
(完整版)生物化学知识点总结
生物化学知识点总结一、蛋白质蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。
6.25称作蛋白质系数。
样品中蛋白质含量=样品中含氮量×6.25蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。
脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。
氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。
肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。
生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。
1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。
由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。
寡肽:10个以下氨基酸脱水缩合形成的肽多肽:10个以上氨基酸脱水缩合形成的肽蛋白质与多肽的区别:蛋白质:空间构象相对稳定,氨基酸残基数较多多肽:空间构象不稳定,氨基酸残基数较少蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。
??-螺旋的结构特点:1)以肽键平面为单位,以α-碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。
2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。
3)每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,氢键的方向与中心轴大致平行,是稳定螺旋的主要作用力4)肽链中的氨基酸R基侧链分布在螺旋的外侧,R基团的大小、性状及带电荷情况都对螺旋的形成与稳定起作用。
生化生物化学重点知识总结
人体机能学生化部分重点整理一、选择*SAM是活性甲基供体;PAPS是活性硫酸根供体;UDPG是活性葡萄糖供体蛋白质1.100克样品中蛋白质的含量 ( g % )= 每克样品含氮克数× 6.25×100 (凯式定氮法)2.20种编码氨基酸:蛋白质由20种L-α-氨基酸组成3.氨基酸的分类:非极性脂肪族氨基酸;酸性氨基酸;芳香族氨基酸;极性中性氨基酸;碱性氨基酸(p10-11)4.营养必需氨基酸:体内需要但不能自身合成,必须由食物供给的氨基酸甲硫氨酸;色氨酸;赖氨酸;缬氨酸;异亮氨酸;亮氨酸;苯丙氨酸;苏氨酸(假设来写一两本书)5.紫外吸收最大吸收峰在280 nm 附近6.肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键7.蛋白质变性的应用:高温、高压灭菌、低温保存酶、疫苗等,防止蛋白质变性8.谷胱甘肽:GSH 缺少GSH可致“蚕豆病”功能:①体内重要的还原剂,保护蛋白质和酶分子中的巯基免遭氧化,使蛋白质处于活性状态。
②谷胱甘肽的巯基作用,可以与致癌剂或药物等结合,从而阻断这些化合物与DNA、RNA或蛋白质结合,保护机体免遭毒性损害。
酶1.酶促反应的特点:(1)极高的催化效率;(2)高度的特异性;(3)酶活性的可调节性2.酶原激活的生理意义:1)避免细胞产生的酶对细胞进行自身消化;2)保证酶在特定的部位和环境中发挥作用;3)酶原可以视为酶的储存形式3.酶的抑制作用:⑴不可逆性抑制作用:以共价键与酶活性中心上的必需基团相结合,使酶失活①抑制剂和底物的结构相似,能和酶的底物分子竞争与酶的活性中心相结合,从而阻碍酶与底物结合形成中间产物②抑制程度取决于抑制剂与底物浓度比,如加大底物浓度可减弱或解除抑制作用氨基酸代谢⒈氨基酸的脱氨基作用:①转氨基作用;②氧化脱氨基作用;③联合脱氨基作用:是体内氨基酸脱氨基的主要方式;④非氧化脱氨基作用⒉血氨的去路:在肝内合成尿素,这是最主要的去路⒊尿素循环:⑴部位:肝细胞线粒体、胞液⑵关键酶:精氨酸代琥珀酸裂解酶,氨基甲酰磷酸合成酶⑶与三羧酸循环的联系物质:延胡索酸⒋⑴高血氨症:肝功能严重损伤,尿素合成障碍,血氨浓度升高⑵肝昏迷:脑内α—酮戊二酸减少导致脑供养不足⒌牛磺酸是结合胆汁酸的组成成分⒍苯丙氨酸转变为酪氨酸:苯丙氨酸羟化酶先天性缺乏----苯丙酮酸尿症蛋白质内质网定位合成核蛋白体RNA 信使RNA转运RNA核内不均一RNA核内小RNA胞浆小RNA 细胞核和胞液线粒体功能rRNA mRNA mt rRNA tRNA mt mRNA mt tRNA HnRNA SnRNA SnoRNA scRNA/7SL-RNA核蛋白体组分蛋白质合成模板转运氨基酸成熟mRNA 的前体参与hnRNA 的剪接、转运rRNA 的加工、修饰的信号识别体的组分核仁小RNA核酸⒈核苷酸是核酸的基本组成单位。
生物化学重点知识点总结
生物化学重点知识点总结生物化学是研究生物体及其组成部分的化学性质和化学过程的科学,它主要关注生物大分子的组成、结构和功能以及生物体内的各种化学反应。
以下是生物化学的重点知识点总结:1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它是组成细胞和组织的基本结构单元,参与几乎所有的生物功能。
核酸是存储和传递遗传信息的重要分子,包括DNA和RNA。
多糖是由单糖分子组成的长链聚合物,如淀粉和纤维素。
脂类是由甘油和脂肪酸组成的生物大分子,它们在细胞膜的构建和能量的储存中起重要作用。
2.生物大分子的结构和功能:生物大分子的结构决定了它们的功能。
蛋白质的结构包括四个层次:一级结构是由氨基酸的线性序列决定的,二级结构是由氢键形成的α螺旋和β折叠,三级结构是蛋白质的立体构象,四级结构是由多个蛋白质亚基组成的复合物的空间结构。
核酸的结构包括双螺旋的DNA和单链的RNA。
多糖的结构包括淀粉的分支链和纤维素的线性链。
脂类的结构包括单酰甘油、双酰甘油和磷脂。
3.生物体内的化学反应:生物体内的化学反应包括代谢途径和信号传导。
代谢途径包括蛋白质、核酸、多糖和脂类的合成和降解过程。
信号传导是细胞内外信息传递的过程,包括细胞膜受体介导的信号转导、细胞内信号分子的产生和调控。
4.酶和酶动力学:酶是催化生物体内化学反应的蛋白质,它们可以提高反应速率。
酶的催化机理包括亲和性和瞬态稳定性理论。
酶动力学研究酶的催化速率和底物浓度的关系,包括酶的速率方程、酶的底物浓度和酶的浓度对速率的影响。
5.代谢途径和调控:代谢途径是生物体内化学反应的网络,包括能量代谢途径和物质代谢途径。
能量代谢途径包括糖酵解、细胞呼吸和光合作用。
物质代谢途径包括核酸合成、脂类合成和蛋白质合成。
代谢途径的调控通过正反馈和负反馈机制来维持生物体内化学平衡,包括酶的合成和降解、调控基因表达和细胞信号传导。
6. 遗传信息的传递和表达:遗传信息通过DNA的复制和转录转化为RNA,再经过翻译转化为蛋白质。
生物化学重点知识点归纳总结
生物化学重点知识点归纳总结生物化学是研究生物体内生物分子的组成、结构、功能和相互作用的科学,这里给出一些生物化学的重点知识点的归纳总结。
1.氨基酸和蛋白质:氨基酸是构成蛋白质的基本单位,共有20种常见的氨基酸。
氨基酸之间通过肽键连接形成多肽链,进一步折叠形成蛋白质。
蛋白质的结构包括一级、二级、三级和四级结构,这些结构决定了蛋白质的功能。
2.核酸:核酸是遗传物质的基本单位,包括DNA和RNA。
DNA负责储存遗传信息,RNA负责转录和转译遗传信息。
核酸由核苷酸组成,包括碱基、磷酸和核糖(RNA)或脱氧核糖(DNA)。
3.酶和酶促反应:酶是生物体内催化化学反应的蛋白质,具有高度特异性和高效催化作用。
酶促反应是通过降低活化能来加速化学反应速率。
酶的催化作用受到温度、pH值、底物浓度等因素的影响。
4.代谢途径:代谢是生物体内发生的各种化学反应的综合体。
常见的代谢途径包括糖酵解、脂肪酸合成和分解、蛋白质合成和降解等。
这些途径通过一系列的酶促反应来完成能量的转化和物质的合成。
5.能量转化:细胞内能量的转化主要通过三个主要过程进行,即酵解、有氧呼吸和光合作用。
酵解是无需氧气的糖代谢过程,有氧呼吸是需要氧气的糖代谢过程,光合作用则是通过光能转化为化学能。
6.细胞膜:细胞膜是包裹细胞的薄膜,具有选择性通透性。
细胞膜由脂质双层构成,这些脂质双层中嵌入了多种蛋白质。
细胞膜还具有糖脂、胆固醇等成分,这些成分在细胞膜的结构和功能中起着重要作用。
7.生物催化:生物体内许多化学反应都需要催化剂来加速反应速率,这些催化剂主要是酶。
酶对于反应底物的选择性较高,催化速率也很快,并且能够通过调整活性来适应细胞内不同环境。
8.免疫系统:免疫系统是人体内对抗病原体的防御系统,包括先天免疫和获得性免疫。
免疫系统主要通过抗体和免疫细胞来识别和清除病原体。
9.信号转导:细胞内外的信号物质通过特定的受体与细胞膜上的受体结合,从而启动细胞内的信号转导路径。
生物化学最核心的知识点总结
生物化学最核心的知识点总结1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。
抑制作用大小与抑制剂和底物的浓度比以及酶对它们的亲和力有关。
此类抑制作用最大速度Vmax不变,表观Km值升高。
2)非竞争性抑制:抑制剂与底物结构不相似或完全不同,只与酶的活性中心以外的必需基团结合。
不影响酶在结合抑制剂后与底物的结合。
该抑制作用的强弱只与抑制剂的浓度有关。
此类抑制作用最大速度Vmax下降,表观Km值不变。
3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物。
此类抑制作用最大速度Vmax和表观Km值均下降。
2.线粒体内生成的NADPH可直接参加氧化磷酸化过程,但在胞浆中生成的NADPH不能自由透过线粒体内膜,故线粒体外NADPH所带的氢必须通过某种转运机制才能进入线粒体,然后再经呼吸链进行氧化磷酸化过程。
这种转运机制主要有α-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭两种机制。
(1)α-磷酸甘油穿梭:这种穿梭途径主要存在于脑和骨骼肌中,胞浆中的NADH在磷酸甘油脱氢酶催化下,使磷酸二羟丙酮还原成α-磷酸甘油,后者通过线粒体外膜,再经位于线粒体内膜近胞浆侧的磷酸甘油脱氢酶催化下氧化生成磷酸二羟丙酮和FADH2,磷酸二羟丙酮可穿出线粒体外膜至胞浆,参与下一轮穿梭,而FADH2则进入琥珀酸氧化呼吸链,生成2分子ATP(2)苹果酸-天冬氨酸穿梭:这种穿梭途径主要存在于肝和心肌中,胞浆中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原为苹果酸,后者通过线粒体外膜上的α-酮戊二酸转运蛋白进入线粒体,又在线粒体内苹果酸脱氢酶的作用下重新生成草酰乙酸和NADH。
NADH进入NADH氧化呼吸链,生成3分子ATP。
可见,在不同组织,通过不同穿梭机制,胞浆中的NADH进入线粒体的过程不一样,参与氧化呼吸链的途径不一样,生成的ATP数目不一样。
3.1)作为酶活性中心的催化基团参加反应;2)作为连接酶与底物的桥梁,便于酶对底物起作用;3)为稳定酶的空间构象所必需;4)中和阴离子,降低反应的静电斥力。
生物化学基础重点总结
第一篇生命的分子基础第一章糖的化学1.糖类:多羟基醛或多羟基酮及其聚合物和衍生物的总称2.鼠李糖(C6H12O5)和脱氧核糖(C5H10O4)3.几乎所有动物,植物,微生物体内都含有糖,其中植物界最多4.糖类作用:通过氧化而放出大量能量,以保证机体的一切活动5.糖的分类:单糖:不能被水解成更小分子的糖丙糖,丁糖戊糖(核糖,脱氧核糖)己糖(葡萄糖,果糖,半乳糖)寡糖:由单糖缩合而成的短链结构(单糖寡糖能溶于水,多有甜味)二糖:两分子单糖以糖苷键连接而成三糖:半乳糖,葡萄糖和果糖以糖苷键连接多糖:许多单糖分子缩合而成的长链结构,几乎不溶于水,无甜味,无还原性,有旋光性,无变旋光现象(淀粉,糖原,纤维素)复合糖:多糖与非糖物质结合的糖6.多糖的分类按来源分植物多糖:中药材中提取的水溶性多糖,(水不溶性多糖:淀粉。
纤维素)动物多糖:水溶性的粘多糖微生物多糖:(香菇多糖,银耳多糖)对肿瘤治疗及调节机体免疫效果显著增强海洋生物多糖:螺旋藻多糖,从海洋生物体内分离纯化得到的按其在生物体内的生理功能分贮存多糖:以固定形式存在,淀粉和糖原分别是植物动物最主要的贮存多糖结构多糖:水不溶性多糖(几丁质,纤维素)按组成成分分同聚多糖:由一种单糖缩合而成(淀粉,几丁质等)杂聚多糖:不同类型蛋汤缩合而成(肝素,许多植物中多糖)结合糖:(复合糖)糖和糖蛋白,脂质等非糖物质结合的复分子糖蛋白O连接:和含羟基的氨基酸以糖苷形式结合N连接:糖和天冬酰胺的酰胺基连接蛋白聚糖,糖脂,脂多糖7.淀粉直链淀粉:a-1,4糖苷键连接,长而紧密的螺旋管型,遇碘显蓝色天然淀粉支链淀粉:由多个短a-1,4糖苷键直链结合,之间以a-1,6糖苷键连接,遇碘显紫红色淀粉水解—淀粉糊精(蓝)—红糊精(红)—无色糊精(不显色)以及麦芽糖—葡萄糖8.糖原:主要存在于肝及肌肉中,a-1,6和a-1,4连接,分支比支链淀粉多,遇碘变红,彻底水解后产生D—葡萄糖9.葡聚糖:几乎由a-1,6连接,偶尔由a-1,2 a-1,3 a-1,4连接形成分枝状10.纤维素:ᵝ-D-葡萄糖苷键-1,4-糖苷键连接,不溶于水,稀酸稀碱11.多糖的提取与分离第一类:难溶于水,可溶于稀碱液(木聚糖,半乳糖),用稀NaOH水溶液提取第二类:易溶于温水,难溶于冷水的多糖,用70~80°C热水提取第三类:黏多糖的提取,用蛋白酶提取蛋白部分,或用碱处理,使黏多糖与蛋白质之间结合键断裂12.多糖的降解化学降解法:亚硝酸控制降解法酶降解法:肝素酶法降解辐射讲解法:用Co 60 辐射能源降解壳聚糖13.多糖的含量测定:硫酸-蒽铜法(快速简便,反应溶液呈蓝绿色,620nm处有最大吸收=A/OD值)或硫酸-萘酚法 AC多糖含量14.多糖的纯度分析:判断根据,糖基的摩尔比是否恒定,电泳是否呈现一条带,柱层析是否成一个峰15.多糖的分子量测定:凝胶柱层析法,特性黏度法(η=KM2)16.多糖结构的甲基化分析:可确定组成多糖链的单糖种类和比例,各部分甲基化单糖衍生物的归属(糖苷键的位置)17.过碘酸氧化:判断糖苷键的位置,直链多糖的缔合度,支链多糖的分支数目等18.酶降解测定法:作用域不同性质的糖苷键,通过顺序降解,阐明多糖链的一级结构第二章脂类的化学1.脂肪酸命名:ω/n法,从脂肪甲基碳开始标记,第一个双键位置数写在字母右上角Δ法,从靠近羧基碳开始……..2.磷脂甘油磷脂:体内含量最高,由一分子的甘油,脂酸,磷酸,含氮化合物构成卵磷脂:含胆碱的磷脂脑磷脂,磷脂酰丝氨酸,磷脂酰肌醇二磷脂酰甘油(心磷脂):大量存在于心肌鞘磷脂:由一分子(神经)鞘胺醇,脂肪酸,磷酸,胆碱(少数是磷酰乙醇胺)3.胆固醇:是环戊烷多氢菲的衍生物第三章蛋白质的化学1.蛋白质:分布广含量高,许多氨基酸通过肽键相连形成的高分子含氮化合物作用生物催化:酶决定生物代谢类型代谢调节,转运贮存,运动和支持,控制生长和分化,接受和传递信息,生物膜功能2.蛋白质的元素组成:C,H,O,N(接近于恒定,平均16%),S ,有些含有P,Fe,I,Zn,Cu,Mn等蛋白质的含量=蛋白质含氮量X100/16=蛋白质含氮量X6.25(1/16%=6.25)3.天然蛋白质中基本都是左旋,除了甘氨酸4.氨基酸的分类:非极性R基氨基酸:脂肪族:丙,缬,亮,异亮,蛋芳香族:苯丙氨酸杂环氨基酸:脯,色氨酸极性不带电荷氨基酸:(易溶于水)含羟基:丝,苏,酪酰胺类:天胺,谷胺含巯基:半胱,甘氨酸带负电荷的R基氨基酸:(酸性)谷氨酸,天冬氨酸带正电荷的R基氨基酸:(碱性)赖氨酸,精氨酸,组氨酸含苯环的:苯丙氨酸,色氨酸,酪氨酸含支链的:缬氨酸,亮氨酸,异亮氨酸修饰氨基酸:加工修饰形成的,经脯氨酸,经赖氨酸,,胱氨酸四碘甲腺原氨酸5.三字符号:亮氨酸Leu 异亮氨酸Ile 组氨酸His 天冬氨酸Asp 酪氨酸Tyr 甘氨酸Gly 脯氨酸Pro 精氨酸Arg 天冬酰胺Asn 半胱氨酸Cys 谷氨酸Gln 苏氨酸Ser 苯丙氨酸Phe 丙氨酸Ala 缬氨酸Val赖氨酸Lys 丝氨酸Thr 蛋氨酸Met口诀:碱性赖精组,酸性天和谷,含硫半甲硫,分支缬亮异芳香酪苯色,羟基酪苏丝,天氨和谷氨,还有甘丙脯6.残基:参与肽键形成的非原来完整的氨基酸7.多肽链的结构具有方向性,N(含自由α氨基端,氨基酸末端,头)C(含自由α羧基端,羧基末端,尾),肽的命名也是从N到C端8.。
生物化学知识点总结
生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。
蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、结构蛋白、免疫蛋白等。
在生物体内,蛋白质不断地受到合成和降解的调控。
2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。
DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。
核酸的功能包括遗传信息的传递、蛋白质的合成控制等。
3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。
生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。
在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。
4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。
脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。
二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。
酶的结构包括活性位、辅基和蛋白质结构。
酶的功能包括催化特定的反应、特异性和高效性等。
2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。
酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。
酶动力学研究为理解生物化学反应提供了重要的信息。
三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。
2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。
3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。
生物化学笔记
生物化学笔记(汇总)(总15页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章蛋白质的结构与功能蛋白质的分子组成构成人体的20种氨基酸均属于L-α-氨基酸(除甘氨酸)【氨基酸的分类、结构式、中文名和英文缩写】含硫氨基酸:半胱氨酸、胱氨酸、甲硫氨酸(蛋氨酸)脯氨酸和赖氨酸可被羟化为羟脯氨酸、羟赖氨酸20种氨基酸的理化性质:等电点、紫外吸收(Tyr、Trp含共轭双键,A280)、茚三酮反应【谷胱甘肽的组成、结构特点、主要活性基团、作用】蛋白质的分子结构一级结构:氨基酸从N端到C端的排列顺序肽键、二硫键二级结构:局部主链骨架原子(Cα、N、Co)构象氢键{α−螺旋(3.6个残基上升一圈,螺距0.54nm),β−折叠(平行和反平行,5~8个残基)β−转角(转角处常有Pro),无规卷曲超二级结构(αα、βαβ、ββ)模体三级结构:全部氨基酸残基相对空间位置次级键四级结构:亚基相对空间位置和连接处布局次级键肽单元(Cα1、C、O、N、H、Cα2)蛋白质结构与功能的关系尿素、β-巯基乙醇分别可以破坏肽链中的次级键、二硫键【肌红蛋白与血红蛋白】肌红蛋白(Mb)为单一肽链蛋白质,含有一个血红素辅基;血红蛋白(Hb)四个亚基(2α、2β),每个亚基都有一个血红素辅基;肌红蛋白与血红蛋白亚基的三级结构相似;肌红蛋白的氧解离曲线为直角双曲线、血红蛋白为S形曲线;血红蛋白有紧张态(T)和松弛态(R),R态为结合氧的状态。
蛋白质构想改变引起疾病:疯牛病、阿尔兹海默症、亨廷顿舞蹈病蛋白质的理化性质两性电离、胶体性质(水化膜和电荷效应维持稳定)、双缩脲反应(检测蛋白质水解程度)蛋白质的分离、纯化与结构分析透析、超滤法可去除蛋白质溶液中的小分子化合物。
丙酮沉淀、盐析、免疫沉淀是常用的蛋白质浓缩方法既可以分离蛋白质又可以测定其分子量的方法是超速离心*简答题或论述题:1、简述α-螺旋结构的主要特征要点:右手螺旋、螺距和上升一圈的残基数、侧链位于外侧、氢键维持稳定2、简述谷胱甘肽的结构特点和生物学功能?要点:非α肽键、巯基、体内重要还原剂3、蛋白质变性后有什么改变?(1)生物活性丧失(2)空间结构被破坏、肽键完好(3)溶解度降低(4)黏度增加(5)不易结晶、易沉淀(6)易被蛋白酶水解第二章核酸的结构与功能核算的化学组成和一级结构糖苷键:核糖的C-1’原子和嘌呤的N-9原子或嘧啶的N-1原子形成的共价键。
生化知识点总结
生化知识点总结生物化学(Biochemistry)是研究生命体内的各种化学物质和化学反应的科学。
它主要研究生命体内分子之间的相互作用、分子结构和功能、代谢途径、遗传信息的传递等。
1. 生物大分子:生物化学主要研究四种生物大分子,分别是蛋白质、核酸、多糖和脂质。
蛋白质是构成生物体的主要结构组分,也是生物体内许多生物化学反应的催化剂。
核酸是存储和传递遗传信息的分子。
多糖主要包括多糖、寡糖和单糖,是生物体内能量和结构材料的重要来源。
脂质是生物体内重要的能量储备和细胞膜的主要组成物质。
2. 酶:酶是生物体内催化化学反应的蛋白质,它能够加速生物体内各种化学反应的速率。
酶可通过调整反应底物的空间构型、降低反应的活化能和提供催化媒介等方式来促进反应。
生物体内有数千种不同的酶,它们通常都高度选择性地催化某一类反应。
3. 代谢途径:代谢是指生物体内各种化学反应的总称。
代谢途径包括有氧呼吸、无氧呼吸、光合作用等。
有氧呼吸是指在氧气存在下,有机物进一步氧化产生二氧化碳和能量。
无氧呼吸是指在缺氧的条件下,有机物的分解产生能量。
光合作用是指将光能转化为化学能,通过合成有机物来储存能量。
4. DNA和RNA:DNA(脱氧核糖核酸)和RNA(核糖核酸)是两种重要的核酸。
DNA是存储和传递遗传信息的分子,它由四种不同的碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳟嘌呤)组成,通过它们的不同排列形成基因序列。
RNA参与了蛋白质的合成过程,通过与DNA相互配对来复制并传递遗传信息。
5. 蛋白质结构:蛋白质的结构可以分为四个层次:一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列。
二级结构是指通过氢键和静电作用形成的局部折叠,常见的二级结构有α-螺旋和β-折叠。
三级结构是指蛋白质的全局折叠形态。
四级结构是多个蛋白质亚基的组合形成的复合物。
6. 遗传密码:遗传密码是DNA上的碱基序列与蛋白质合成之间的翻译体系。
DNA上的三个碱基(核苷酸)形成一个密码子,每个密码子对应一个特定的氨基酸。
(完整版)生物化学知识点总结
生物化学知识点总结一、蛋白质蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。
6.25称作蛋白质系数。
样品中蛋白质含量=样品中含氮量×6.25蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。
脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。
氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。
肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。
生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。
1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。
由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。
寡肽:10个以下氨基酸脱水缩合形成的肽多肽:10个以上氨基酸脱水缩合形成的肽蛋白质与多肽的区别:蛋白质:空间构象相对稳定,氨基酸残基数较多多肽:空间构象不稳定,氨基酸残基数较少蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。
??-螺旋的结构特点:1)以肽键平面为单位,以α-碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。
2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。
3)每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,氢键的方向与中心轴大致平行,是稳定螺旋的主要作用力4)肽链中的氨基酸R基侧链分布在螺旋的外侧,R基团的大小、性状及带电荷情况都对螺旋的形成与稳定起作用。
生物化学知识点总结完整版
生物化学知识点总结完整版生物化学是研究生物体在细胞、组织和器官水平上的化学过程的一门学科。
它涉及了生命体内物质的合成、降解和转化过程,以及这些过程对生命活动的调控和影响。
生物化学知识点包括了生物分子的结构及功能、生物体内的代谢过程、遗传信息的传递及表达等内容。
下面就对生物化学的一些重要知识点进行总结:一、生物分子的结构和功能1. 蛋白质:蛋白质是生物体内最丰富的一类生物大分子,由氨基酸通过肽键连接而成。
蛋白质在生物体内起着结构支持、酶催化、运输、信号传导等重要功能。
2. 碳水化合物:碳水化合物是生物体内最基本的能量来源,也是构成细胞壁、核酸、多糖等物质的重要成分。
3. 脂类:脂类是生物体内主要的能量储存物质,同时也是细胞膜的主要构成成分。
4. 核酸:核酸是生物体内的遗传物质,包括DNA和RNA两类,它们负责存储遗传信息和传递遗传信息。
二、生物体内的代谢过程1. 糖代谢:糖代谢是生物体内重要的能量来源,包括糖原合成、糖原降解、糖酵解等过程。
2. 脂质代谢:脂质代谢包括脂肪酸的合成、分解和氧化,以及胆固醇的合成和降解。
3. 蛋白质代谢:蛋白质代谢包括蛋白质合成、降解和氨基酸的代谢。
4. 核酸代谢:核酸代谢包括核苷酸的合成和降解过程。
5. 能量代谢:生物体内能量的产生主要依靠有机物的氧化和磷酸化过程。
这些过程包括糖酵解、三羧酸循环和氧化磷酸化等。
三、遗传信息的传递和表达1. DNA的结构和功能:DNA是双螺旋结构,由脱氧核苷酸通过磷酸二酯键连接而成。
DNA负责存储遗传信息,并通过转录和翻译的过程进行表达。
2. RNA的结构和功能:RNA是单链结构,由核糖核苷酸通过磷酸二酯键连接而成。
RNA包括mRNA、tRNA和rRNA等,它们分别参与遗传信息的转录、转运和翻译。
3. 蛋白质合成的过程:蛋白质合成包括转录和翻译两个过程。
转录是指DNA的信息转录成RNA的过程,而翻译是指mRNA上的密码子与tRNA上的反密码子匹配,从而在核糖体上合成蛋白质的过程。
医学生物化学重点知识总结
医学生物化学重点知识总结医学生物化学是医学专业的重要基础学科之一,掌握其中的重点知识对于医学生的研究和临床工作至关重要。
以下是医学生物化学的重点知识总结:1. 生物大分子- 生物大分子包括蛋白质、核酸、糖类和脂类。
- 蛋白质是生物体内功能最为复杂和多样的大分子,参与了生命活动的方方面面。
- 核酸是遗传物质的基本组成部分,包括DNA和RNA。
- 糖类是细胞内外的重要能源,也参与了调节生命活动的过程。
- 脂类是构成细胞膜的重要组分,具有能量储存和保护器官的功能。
2. 酶的机制- 酶是生物体内催化化学反应的蛋白质。
- 酶可以提高反应速率,但不参与反应本身。
- 酶的活性受到温度、pH值和底物浓度的影响。
- 酶的机制包括底物结合、反应过渡态形成和产物释放等步骤。
3. 能量代谢- 能量代谢是生物体维持生命活动所必需的过程。
- 能量代谢包括糖酵解、三羧酸循环和氧化磷酸化等步骤。
- 糖酵解将葡萄糖分解为乳酸或乙醛、丙酮酸等产物。
- 三羧酸循环将乙酰辅酶A氧化成二氧化碳和水,并产生ATP能量。
- 氧化磷酸化是最主要的能量产生过程,通过氧化底物产生大量ATP能量。
4. 遗传信息传递- 遗传信息在细胞内通过DNA和RNA传递。
- DNA包含遗传信息的编码,RNA参与转录和翻译过程。
- 转录是将DNA编码转换为RNA信息的过程。
- 翻译是将RNA信息转换为蛋白质的过程。
5. 蛋白质合成和降解- 蛋白质合成是细胞内将氨基酸通过肽键连接成多肽链的过程。
- 蛋白质降解是细胞内将蛋白质分解为氨基酸的过程。
- 蛋白质的合成和降解在细胞内保持动态平衡。
以上是医学生物化学的重点知识总结,希望对你的学习有所帮助。
请在确认过内容后使用该文档,如有疑问,请咨询专业教师或查阅相关资料。
生物化学重点及难点归纳总结
生物化学重点及难点归纳总结生物化学重点及难点归纳总结生物化学重点及难点归纳总结武汉大学生命科学学院生化的内容很多,而且小的知识点也很多很杂,要求记忆的内容也很多.在某些知识点上即使反复阅读课本,听过课后还是难于理解.二则由于内容多,便难于突出重点,因此在反复阅读课本后找出并总结重点难点便非常重要,区分出需要熟练掌握和只需了解的内容.第一章:氨基酸和蛋白质重点:1.氨基酸的种类和侧链,缩写符号(单字母和三字母的),能够熟练默写,并能记忆在生化反应中比较重要的氨基酸的性质和原理2.区分极性与非极性氨基酸,侧链解离带电荷氨基酸,R基的亲水性和疏水性,会通过利用pK值求pI值,及其缓冲范围.3.氨基酸和蛋白质的分离方法(实质上还是利用蛋白质的特性将其分离开来,溶解性,带电荷,荷质比,疏水性和亲水性,分子大小(也即分子质量),抗原-抗体特异性结合.4.蛋白质的一级结构,连接方式,生物学意义,肽链的水解.第二章:蛋白质的空间结构和功能重点:1.研究蛋白质的空间结构的方法(X射线晶体衍射,核磁共振光谱)2.构筑蛋白质结构的基本要素(肽基,主链构象,拉氏图预测可能的构造,螺旋,转角,片层结构,环形构象,无序结构)3.纤维状蛋白:角蛋白,丝心蛋白,胶原蛋白,与之相关的生化反应,特殊性质,,及其功能的原理.4.球状蛋白和三级结构(特征及其原理,基元及结构域,三级结构揭示进化上的相互关系.蛋白质的折叠及其原理,推动蛋白质特定构象的的形成与稳定的作用力,疏水作用,氢键,静电相互作用,二硫键.5.寡聚体蛋白及四级结构(测定蛋白质的亚基组成.,寡聚体蛋白存在的意义及其作用原理)6.蛋白质的构象与功能的关系(以血红蛋白和肌红蛋白作为例子进行说明,氧合曲线,协同效应,玻尔效应)第三章:酶重点:1.酶的定义及性质,辅助因子.活性部位2.酶的比活力,米氏方程,Vmax,Km,转换数,Kcat/Km确定催化效率,双底物酶促反应动力学.对酶催化效率有影响的因素,及其作用机理.3.酶的抑制作用,竞争性抑制剂,非竞争性抑制剂,反竞争性抑制剂,不可逆抑制剂,及其应用.4.酶的作用机制:转换态,结合能,邻近效应,酸碱催化,共价催化及其原理,会举例.溶菌酶的作用机制,丝氨酸蛋白酶类及天冬氨酸蛋白酶类的结构特点及作用机制.5.酶活性调节,酶原激活,同工酶,别构酶,多功能酶和多酶复合物.及其与代谢调节的关系及原理.扩展阅读:生化重难点归纳总结生化重难点归纳总结经过六章的生化学习,一则觉得生化的内容很多,而且小的知识点也很多很杂,要求记忆的内容也很多.在某些知识点上即使反复阅读课本,听过课后还是难于理解.二则由于内容多,便难于突出重点,因此在反复阅读课本后找出并总结重点难点便非常重要,区分出需要熟练掌握和只需了解的内容.第一章:氨基酸和蛋白质重点:1.氨基酸的种类和侧链,缩写符号(单字母和三字母的),能够熟练默写,并能记忆在生化反应中比较重要的氨基酸的性质和原理2.区分极性与非极性氨基酸,侧链解离带电荷氨基酸,R基的亲水性和疏水性,会通过利用pK值求pI值,及其缓冲范围.3.氨基酸和蛋白质的分离方法(实质上还是利用蛋白质的特性将其分离开来,溶解性,带电荷,荷质比,疏水性和亲水性,分子大小(也即分子质量),抗原-抗体特异性结合.4.蛋白质的一级结构,连接方式,生物学意义,肽链的水解.第二章:蛋白质的空间结构和功能重点:1.研究蛋白质的空间结构的方法(X射线晶体衍射,核磁共振光谱)2.构筑蛋白质结构的基本要素(肽基,主链构象,拉氏图预测可能的构造,螺旋,转角,片层结构,环形构象,无序结构)3.纤维状蛋白:角蛋白,丝心蛋白,胶原蛋白,与之相关的生化反应,特殊性质,,及其功能的原理.4.球状蛋白和三级结构(特征及其原理,基元及结构域,三级结构揭示进化上的相互关系.蛋白质的折叠及其原理,推动蛋白质特定构象的的形成与稳定的作用力,疏水作用,氢键,静电相互作用,二硫键.5.寡聚体蛋白及四级结构(测定蛋白质的亚基组成.,寡聚体蛋白存在的意义及其作用原理)6.蛋白质的构象与功能的关系(以血红蛋白和肌红蛋白作为例子进行说明,氧合曲线,协同效应,玻尔效应)第三章:酶重点:1.酶的定义及性质,辅助因子.活性部位2.酶的比活力,米氏方程,Vmax,Km,转换数,Kcat/Km确定催化效率,双底物酶促反应动力学.对酶催化效率有影响的因素,及其作用机理.3.酶的抑制作用,竞争性抑制剂,非竞争性抑制剂,反竞争性抑制剂,不可逆抑制剂,及其应用.4.酶的作用机制:转换态,结合能,邻近效应,酸碱催化,共价催化及其原理,会举例.溶菌酶的作用机制,丝氨酸蛋白酶类及天冬氨酸蛋白酶类的结构特点及作用机制.5.酶活性调节,酶原激活,同工酶,别构酶,多功能酶和多酶复合物.及其与代谢调节的关系及原理.友情提示:本文中关于《生物化学重点及难点归纳总结》给出的范例仅供您参考拓展思维使用,生物化学重点及难点归纳总结:该篇文章建议您自主创作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学重点总结酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
蛋白质变性,变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。
蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。
核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。
DNA双螺旋结构是核酸的二级结构。
DNA是一反向平行的互补双链结构DNA的变性在某些理化因素作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为变性。
解链过程中,吸光值增加,并与解链程度有一定的比例关系,称为DNA的增色效应。
紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm),G+C比例越高,Tm值越高。
DNA的复性和杂交:变性DNA在适当条件下,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,其过程为退火,产生减色效应。
不同来源的核酸变性后,合并一起复性,只要这些核苷酸序列可以形成碱基互补配对,就会形成杂化双链,这一过程为杂交。
杂交可发生于DNA-DNA之间,RNA-RNA之间以及RNA-DNA之间。
辅助因子:决定反应的种类与性质;可以为金属离子或小分子有机化合物。
米氏方程式V=Vmax[S]/(Km+[S])a.米氏常数Km值等于酶促反应速度为最大速度一半时的底物浓度。
b.Km值愈小,酶与底物的亲和力愈大。
c.Km值是酶的特征性常数之一,只与酶的结构、酶所催化的底物和反应环境如温度、PH、离子强度有关,与酶的浓度无关。
d.Vmax是酶完全被底物饱和时的反应速度,与酶浓度呈正比。
竞争性抑制剂:与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。
如丙二酸对琥珀酸脱氢酶的抑制作用;磺胺类药物由于化学结构与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争抑制剂,抑制二氢叶酸的合成;Vmax不变,Km值增大非竞争性抑制剂:与酶活性中心外的必需基团结合,不影响酶与底物的结合,酶和底物的结合也不影响与抑制剂的结合。
Vmax降低,Km值不变反竞争性抑制剂:仅与酶和底物形成的中间产物结合,使中间产物的量下降。
Vmax、Km 均降低一、糖酵解糖酵解过程中包含两个底物水平磷酸化:一为1,3-二磷酸甘油酸转变为3-磷酸甘油酸;二为磷酸烯醇式丙酮酸转变为丙酮酸。
2、限制酶1)6-磷酸果糖激酶-1变构抑制剂:ATP、柠檬酸变构激活剂:AMP、ADP、1,6-双磷酸果糖(产物反馈激,比较少见)和2,6-双磷酸果糖(最强的激活剂)。
2)丙酮酸激酶变构抑制剂:ATP 、肝内的丙氨酸变构激活剂:1,6-双磷酸果糖3)葡萄糖激酶变构抑制剂:长链脂酰辅酶A3、生理意义1)迅速提供能量,尤其对肌肉收缩更为重要。
2)成熟红细胞完全依赖糖酵解供能,神经、白细胞、骨髓等代谢极为活跃,即使不缺氧也常由糖酵解提供部分能量。
3)红细胞内1,3-二磷酸甘油酸转变成的2,3-二磷酸甘油酸可与血红蛋白结合,使氧气与血红蛋白结合力下降,释放氧气。
4)肌肉中产生的乳酸、丙氨酸(由丙酮酸转变)在肝脏中能作为糖异生的原料,生成葡萄糖。
4、乳酸循环乳酸循环是由于肝内糖异生活跃,又有葡萄糖-6-磷酸酶可水解6-磷酸葡萄糖,释出葡萄糖。
肌肉除糖异生活性低外,又没有葡萄糖-6-磷酸酶。
生理意义:避免损失乳酸以及防止因乳酸堆积引起酸中毒。
二、糖有氧氧化三羧酸循环中限速酶α-酮戊二酸脱氢酶复合体的辅酶与丙酮酸脱氢酶复合体的辅酶同。
三羧酸循环中有一个底物水平磷酸化,即琥珀酰COA转变成琥珀酸,生成GTP;加上糖酵解过程中的两个,本书中共三个底物水平磷酸化。
2、调节1)丙酮酸脱氢酶复合体抑制:乙酰辅酶A、NADH、ATP激活:AMP、钙离子2)异柠檬酸脱氢酶和α-酮戊二酸脱氢酶NADH、ATP反馈抑制3、生理意义1)基本生理功能是氧化供能。
2)三羧酸循环是体内糖、脂肪和蛋白质三大营养物质代谢的最终共同途径。
3)三羧酸循环也是三大代谢联系的枢纽。
三、磷酸戊糖途径生理意义1)为核酸的生物合成提供5-磷酸核糖,肌组织内缺乏6-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物3- 磷酸甘油醛和6-磷酸果糖经基团转移反应生成。
2)提供NADPHa.NADPH是供氢体,参加各种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;α-酮戊二酸与NADPH及氨生成谷氨酸,谷氨酸可与其他α-酮酸进行转氨基反应而生成相应的氨基酸。
b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。
c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。
四、糖原合成与分解1、合成调节:糖原合成酶的共价修饰调节。
2、分解调节:磷酸化酶受共价修饰调节,葡萄糖起变构抑制作用。
五、糖异生途径1)糖异生过程中丙酮酸不能直接转变为磷酸烯醇式丙酮酸,需经过草酰乙酸的中间步骤,由于草酰乙酸羧化酶仅存在于线粒体内,故胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸。
但是,草酰乙酸不能直接透过线粒体膜,需借助两种方式将其转运入胞液:一是经苹果酸途径,多数为以丙酮酸或生糖氨基酸为原料异生成糖时;另一种是经天冬氨酸途径,多数为乳酸为原料异生成糖时。
2)在糖异生过程中,1,3-二磷酸甘油酸还原成3-磷酸甘油醛时,需NADH,当以乳酸为原料异生成糖时,其脱氢生成丙酮酸时已在胞液中产生了NADH以供利用;而以生糖氨基酸为原料进行糖异生时,NADH则必须由线粒体内提供,可来自脂酸β-氧化或三羧酸循环。
3)甘油异生成糖耗一个ATP,同时也生成一个NADH调节2,6-双磷酸果糖的水平是肝内调节糖的分解或糖异生反应方向的主要信号,糖酵解加强,则糖异生减弱;反之亦然。
生理意义1)空腹或饥饿时依赖氨基酸、甘油等异生成糖,以维持血糖水平恒定。
2)补充肝糖原,摄入的相当一部分葡萄糖先分解成丙酮酸、乳酸等三碳化合物,后者再异生成糖原。
合成糖原的这条途径称三碳途径。
3)调节酸碱平衡,长期饥饿进,肾糖异生增强,有利于维持酸碱平衡。
一、甘油三酯的合成代谢合成部位:肝、脂肪组织、小肠,其中肝的合成能力最强。
合成原料:甘油、脂肪酸二、甘油三酯的分解代谢1、脂肪的动员储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸(FFA)及甘油并释放入血以供其它组织氧化利用的过程。
2、脂肪酸的β-氧化1)脂肪酸活化(胞液中)2)脂酰CoA进入线粒体3)脂肪酸β-氧化脂酰CoA进入线粒体基质后,进行脱氢、加水、再脱氢及硫解等四步连续反应,生成1分子比原来少2个碳原子的脂酰CoA、1分子乙酰CoA、1分子FADH2和1分子NADH。
以上生成的比原来少2个碳原子的脂酰CoA,可再进行脱氢、加水、再脱氢及硫解反应。
如此反复进行,以至彻底。
4)能量生成以软脂酸为例,共进行7次β-氧化,生成7分子FADH2、7分子NADH及8分子乙酰CoA,即共生成(7*2)+(7*3)+(8*12)-2=1295)过氧化酶体脂酸氧化主要是使不能进入线粒体的廿碳,廿二碳脂酸先氧化成较短链脂酸,以便进入线粒体内分解氧化,对较短链脂酸无效。
三、酮体的生成和利用组织特点:肝内生成肝外用。
合成部位:肝细胞的线粒体中。
酮体组成:乙酰乙酸、β-羟丁酸、丙酮。
软脂酸的合成合成部位:线粒体外胞液中,肝是体体合成脂酸的主要场所。
合成原料:乙酰CoA、ATP﹑NADPH﹑HCO3-﹑Mn++等。
合成过程:1)线粒体内的乙酰CoA不能自由透过线粒体内膜,主要通过柠檬酸-丙酮酸循环转移至胞液中。
3)丙二酰CoA重复通过酰基转移、缩合、还原、脱水、再还原等步骤,碳原子由2增加至4个。
七、胆固醇代谢合成部位:肝是主要场所,合成酶系存在于胞液及光面内质网中。
合成原料:乙酰CoA(经柠檬酸-丙酮酸循环由线粒体转移至胞液中)、ATP、NADPH等。
饥饿与饱食饥饿可抑制肝合成胆固醇,相反,摄取高糖、高饱和脂肪膳食后,肝HMGCoA 还原酶活性增加,胆固醇合成增加。
胆固醇可反馈抑制肝胆固醇的合成。
主要抑制HMGCoA还原酶活性。
岛素及甲状腺素能诱导肝HMGCoA还原酶的合成,增加胆固醇的合成。
胰高血糖素及皮质醇则能抑制并降低HMGCoA还原酶的活性,因而减少胆固醇的合成;甲状腺素除能促进合成外,又促进胆固醇在肝转变为胆汁酸,且后一作用较强,因而甲亢时患者血清胆固醇含量反而下降。
1)胆固醇在肝中转化成胆汁酸是胆固醇在体内代谢的主要去路,2)转化为类固醇激素3)转化为7-脱氢胆固醇在皮肤,胆固醇可氧化为7-脱氢胆固醇,后者经紫外光照射转变为维生素D。
3、胆固醇酯的合成血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。
乳糜微粒含甘油三酯最多,蛋白质最少,故密度最小;VLDL含甘油三酯亦多,但其蛋白质含量高于CM;LDL含胆固醇及胆固醇酯最多;含蛋白质最多,故密度最高。
3、生理功用及代谢1)CM运输外源性甘油三酯及胆固醇的主要形式。
2)VLDL运输内源性甘油三酯的主要形式。
3)LDL转运肝合成的内源性胆固醇的主要形式。
游离胆固醇在调节细胞胆固醇代谢上具有重要作用:①抑制内质网HMGCoA还原酶;②在转录水平上阴抑细胞LDL 受体蛋白质的合成,减少对LDL的摄取;③激活ACAT的活性,使游离胆固醇酯化成胆固醇酯在胞液中储存。
4)HDL逆向转运胆固醇。
一、营养必需氨基酸简记为:缬、异、亮、苏、蛋、赖、苯、色二、体内氨的来源和转运来源1)氨基酸经脱氨基作用产生的氨是体内氨的主要来源;2)由肠道吸收的氨;即肠内氨基酸在肠道细菌作用下产生的氨和肠道尿素经细菌尿素3)肾小管上皮细胞分泌的氨主要来自谷氨酰胺在谷氨酰胺酶的催化下水解生成的氨。
2)谷氨酰胺的运氨作用谷氨酰胺主要从脑、肌肉等组织向肝或肾运氨。
氨与谷氨酰胺在谷氨酰胺合成酶催化下生成谷氨酰胺,由血液输送到肝或肾,经谷氨酰胺酶水解成谷氨酸和氨。
谷氨酰胺既是氨的解毒产物,也是氨的储存及运输形式。
三、氨基酸的脱氨基作用1、转氨基作用转氨酶催化某一氨基酸的α-氨基转移到另一种α-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成α-酮酸。
既是氨基酸的分解代谢过程,也是体内某些氨基酸合成的重要途径。
除赖氨酸、脯氨酸及羟脯氨酸外,体内大多数氨基酸可以参与转氨基作用。