1.5.1《有理数的乘方(2)》导学案(人教版七年级数学上册)
辽宁省大连市第四十二中学七年级数学上册 1.5.1 有理数的乘方(第2课时)课件 新人教版
4
说明:主要从以下几个方面考虑:
①底数 ②指数
③读法 ④意义
⑤结果
(3) 310的意义是 10 个3
相乘。
(4)平方等于它本身的数
是 0 , 1 , 立方等于它 本身的数是 0, 1 , –1。
例1, 计算:
(1)-32 (2)3 ×23
(3)(3 ×2)3
(4)8 ÷(-2)3
对于乘除和乘方的混合运算,应先 算乘方,后算乘除;如果遇到括号,就 先进行括号里的运算.
1.5.1 有理数的乘方(2)
填空:
复习
1、在 中,a叫做_底__数_,n叫做_指_数__
乘方a的n 结果叫做_幂___。 2、式子 表示的意义是n__个__a__相__乘_。
an
(1) 23 和 3 2 有什么不同? 想
(2)(2) 4和 24 呢?
一 想
(3) ( 3 )5与 35 呢?
4
猜想:1 2 22 23 263
264 1
若n是正整数,那么1 2 22 2n
2n1 1
思考2:
a+3=0
b -2=0
若(a 3)2 b 2 0, Nhomakorabea则ab1 _-_27_
a=-3 b=2 =-27
ab1 (3)21
小结
1、复习乘方的有关概念;
2、乘方运算的规律等;
(1)第①行数按什么规律排列?
解:(1)第①行数是
2,(2)2,(2)3,(2)4, .
例3 观察下面三行数:
-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;② -1,2,-4, 8, -16,32,… ;③
(2)第②③行数与第①行数分别有什 么关系?
1.5.1有理数的乘方教学设计(2) 2022-2023学年人教版七年级上册数学
1.5.1 有理数的乘方教学设计(2) 2022-2023学年人教版七年级上册数学一、教学目标1.理解有理数的乘方概念;2.能够运用乘法法则计算有理数的乘方;3.能够解决与有理数乘方有关的实际问题。
二、教学内容1.有理数的乘方;2.与有理数乘方相关的实际问题。
三、教学重点1.理解有理数的乘方概念;2.运用乘法法则计算有理数的乘方。
四、教学难点1.解决与有理数乘方有关的实际问题。
五、教学准备1.教材《人教版七年级上册数学》;2.讲义、习题册;3.小黑板、彩色粉笔。
六、教学过程1. 导入与引入教师可以通过提问的方式来导入本节课的内容。
教师:同学们,上节课我们学习了有理数的乘法运算,你们还记得吗?学生:记得。
教师:在乘法中,我们已经知道了如何将两个有理数相乘,那么,如果我们要将一个有理数乘方,你们知道应该如何操作吗?学生:不太清楚。
教师:没关系,今天我们就来学习有理数的乘方。
首先,我们先来看一道例题。
2. 学习与实践例题:计算(-2)³。
教师:同学们,你们该如何计算这道题呢?学生:我们应该将-2连乘三次。
教师:很好,你们说得对。
那我们现在来求解这道题。
教师在黑板上写出计算过程:(-2)³ = -2 × -2 × -2 = -8。
教师:所以,(-2)³的结果是-8。
同学们明白了吗?学生:明白了。
教师:有理数的乘方运算实际上就是将这个有理数连乘若干次。
下面我们再来看一个例题。
例题:计算(-3)⁴。
教师请一名学生上黑板计算。
学生:(-3)⁴ = -3 × -3 × -3 × -3 = 81。
教师:非常好,计算正确。
所以,(-3)⁴的结果是81。
在这个例题中,我们可以看到,将负数连乘偶数次,结果为正数。
3. 深化与巩固教师:同学们,我们之前只学过整数的乘方运算,那么现在我们将有理数的乘方扩展到真分数上,你们知道如何计算吗?学生:不太清楚。
人教版七上:1.5《有理数的乘方》教案设计(1、2、3课时)
1.5.1 有理数的乘方1.5.2 科学记数法1.5.3近似数学习目标:1.能指明近似数的精确度及有效数字;2.能按要求写出近似值.学习重点:能给出由四舍五入得到的近似数及精确度学习难点:合理地对一个数四舍五入取近似值教学方法:合作交流、讨论教学过程一、学前准备1.填空(1)所在的班级的人数是,这个数是(精确数或近似数)(2)你出生的年月日是,那么你的年龄是岁,这个数字是(精确数或近似数)2.用你的刻度尺测量一下数学课本的长和宽,可以读出一些数据,它们是准确的还是近似的?二、交流反馈1. 同桌的小明和小颖用最小单位不同的刻度尺测量了同一片树叶的长度,如图所示:(1)根据小明的测量方法,你能知道他用的刻度尺最小刻度是什么吗?这片树叶的长度约为多少?根据小颖的测量呢?(2)谁的测量结果更精确一些?说说你的理由.2. 例1 按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001)(2)30 4.35(精确到个位)(3)1.804(精确到0.1)(4)1.804(精确到0.01)3. 例2 下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万4. 思考:近似数1.8和1.80一样吗?为什么?三、巩固练习教科书第47页练习四、当堂清1.由四舍五入得到的近似数0.600精确到位2.近似数4.10×105精确到位;3.对于由四舍五入得到的近似数3.02×106,下列说法正确的是()A.精确到百分位;B.精确到个位;C.精确到万位;D.精确到千位;三、用四舍五入法,按括号里的要求对下列各数取近似数(1)0.058998(精确到千分位);(2)549.49(精确到个位);(3)0.099(精确到0.01);(4)354600(精确到千位)(5)254680(精确到万位);(6)3.6698×104(精确到十位);参考答案:1. 千分2. 千3. C4. (1)5.90 (2)549 (3)0.10 (4)3.55×105(5) 2.5×105吨(6)36700六、学习反思。
1.5.1有理数的乘方(2)(导学案)
.
4 、 若 a,b 互 为 相 反 数 , c,d 互 为 倒 数 , 且 a 0 , 则
(a b)
2007
ቤተ መጻሕፍቲ ባይዱ
( cd )
2008
(
a b
)
2009
.
2009
5、 x 1 6 的最小值是 ●体验中招
,此时 x
=
。
2
6、 已知有理数 x , y , z , x 3 2 y 1 7 ( 2 z 1) =0, x y z 且 求
3
当 堂 测 试
;
2、对任意实数 a,下列各式一定不成立的是( A 、 a ( a )
2
2
) D、 a
2
3、 ( 2 )
2003
(2)
2002
2
B、 a ( a )
3
3
C、 a a
3
0
3、 x 9 , x 得值是 若 则
; a 8 , a 得值是 若 则
分析:在有关乘方的计算中,最易出现错误的是“符号问题” ,解决问 题的关键是准确理解幂的概念,头脑时刻保持清醒,不要随意的增减 和变换符号,更不要“ 跳步” ,严格按照运算法则进行。 解: 2 ( 2 ) 2 ( 2 ) 2
2 2 3 3
(2 ) ___________________________________________________________; (3) _________________________________________________________
2
5 ] 3 9 2
(3) ( 10 ) [( 4 ) ( 3 3 ) 2 ] ;
《有理数的乘方》导学案
有理数的乘方学习目标:1、知识目标:能让学生在一定的现实背景中理解有理数乘方的意义;会熟练地进行有理数的乘方运算;感受当底数大于1时,乘方运算的结果增长的很快。
2、能力目标:在解决问题的过程中注重与他人的合作,培养观察、分析、对比、归纳、概括能力,初步渗透转化思想。
3、情感目标:培养学生勤思、认真、勇于探索的精神。
学习过程:一、知识回顾:1、计算22222时有简便运算。
2、一个正方体边长为5,求它的体积可列式为。
3、某中细胞每经过30分钟便由一个分裂成2个,经过5个小时,这种细胞由1个能分裂成多少个列式为。
4、回想一下两个相同因数的积叫什么如3×3=___其中___叫___,___叫___二、自主学习,探究新知1、1个细胞30分钟后变成____个,1小时后变成____个(即___×___),小时后分裂成____个(即___×___×___),5小时后一共分裂了_____次,表示结果的式子__________=____,这是一种_____运算。
2、刚才的式子中所有因数_____,这种具有相同因数积的运算有一个名称叫_____,这也是我们这节课的课题。
3、为了简便一般地,n 个相同因数a 相乘,记作a n即a×a×a×…×a=a n 这种运算就是刚才说的乘方,它的 运算结果叫_____,a 叫_____,n 叫_____a n 读作_____(或______)三、合作交流1、试一下能否指出以下几个式子中的底数和指数 74,(43)2,234,(-5)4,-542、。
3、试计算53,(-3)4,312⎛⎫- ⎪⎝⎭, 53=__________=____(-3)4=__________=____312⎛⎫- ⎪⎝⎭=__________=____计算方法总结:计算a n 就是把n 个a_______4、小试牛刀:(1)-(-2)3(2)-24(3)432-5、计算下列各题,你能发现什么规律(1)210,310,410。
人教版数学七年级上册1.5.1《乘方(2)》教学设计
人教版数学七年级上册1.5.1《乘方(2)》教学设计一. 教材分析人教版数学七年级上册1.5.1《乘方(2)》是学生在掌握了有理数乘法、平方根等知识的基础上,进一步学习乘方的知识。
本节内容主要让学生理解乘方的概念,掌握有理数的乘方运算法则,并能运用乘方解决实际问题。
教材通过例题和练习题的形式,帮助学生巩固乘方的运算方法,培养学生的运算能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘法、平方根等知识,具备一定的数学基础。
但部分学生对乘方的概念和运算法则可能理解不够深入,需要在教学中加以引导和讲解。
此外,学生对于运用乘方解决实际问题的能力还需加强。
三. 教学目标1.理解乘方的概念,掌握有理数的乘方运算法则。
2.能够运用乘方解决实际问题。
3.培养学生的运算能力,提高学生的数学思维能力。
四. 教学重难点1.乘方的概念和运算法则。
2.运用乘方解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和运算法则。
2.用实例讲解法,让学生通过具体例子理解乘方的意义。
3.运用练习法,加强学生对乘方运算法则的掌握。
4.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关课件,展示乘方的概念和运算法则。
2.准备实例和练习题,用于讲解和巩固乘方知识。
3.准备小组合作学习的任务,激发学生的学习兴趣。
七. 教学过程1.导入(5分钟)利用实例引入乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。
引导学生思考乘方的意义。
2.呈现(15分钟)讲解乘方的运算法则,如:a的m次方乘以a的n次方等于a的m+n次方;a的m次方除以a的n次方等于a的m-n次方等。
通过PPT展示相关知识点,让学生理解和掌握。
3.操练(15分钟)让学生进行乘方运算练习,选取一些简单的题目,如:计算2的3次方、3的4次方等。
同时,让学生尝试运用乘方解决实际问题,如:计算长方形的面积,已知长和宽的关系等。
都江堰市第四中学七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方(二)导学案新版新人教版
1.5.1 乘方(二)1.能确定有理数加、减、乘、除、乘方混合运算的顺序; 2.会进行有理数的混合运算;3.培养并提高正确迅速的运算能力.重点:运算顺序的确定和符号的处理; 难点:有理数的混合运算.一、温故知新1.在2+32×(-6)这个式子中,存在着__三__种运算.2.以4人一个小组讨论、交流,上面这个式子应该先算乘方,再算乘除,最后算加减.二、自主学习1.由上可以知道,在有理数的混合运算中,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 2.P43例题3,学生试练,教师指导. 3.师生共同探讨P43例题4.1.P44练习. 2.计算:(1)(-1)10×2+(-2)3÷4; 解:原式=2-8÷4 =2-2 =0;(2)(-5)3-3×(-12)4;解:原式=-125-3×116=-125316;(3)115×(13-12)×311÷45;解:原式=115×(-16)×311×54=-115×16×311×45=-225;(4)(-10)4+[(-4)2-(3+32)×2]. 解:原式=10000+[16-(3+9)×2] =10000+(16-12×2) =10000+(16-24)=10000-8 =9992.有理数的混合运算顺序.1.计算:(1)(-3)2×[-23+(-59)];解:原式=9×(-23-59)=9×(-23)-9×59=-6-5=-11;(2)-23÷49÷(-23)3;解:原式=-8×94×(-278)=2434;(3)(0.25)29×430. 解:原式=0.2529×429×4 =1×4 =4.2.观察下面三行数:①-3,9,-27,81,-243,729,…; ②0,12,-24,84,-240,732,…; ③-1,3,-9,27,-81,243,…. (1)第①行数有什么规律?第①行是(-3)1,(-3)2,(-3)3,(-3)4,…(-3)n. (2)第②行数与第①行数有什么关系? 第②行数是第①行相应的数加3.(3)第③行数与第①行数有什么关系? 第③行数是第①行相应数乘以13.(4)取每行数的第10个数,计算这三个数的和. (-3)10+[(-3)10+3]+(-3)10×13=59049+59049+3+59049×13=59049+59049+19683+3 =137784.3.x ,y 为有理数,且|x -1|+2(y +3)2=0,求x 2-3xy +2y 2的值. 解:由题意知x -1=0,y +3=0. ∴x =1,y =-3. ∴x 2-3xy +2y 2=28.4.一根1米长的绳子,第一次剪去12,第二次剪去剩下的12,如此剪下去,第六次后剩下的绳子还有1厘米长吗?为什么?解:(12)6=164≈0.016(米)∵0.016米>1厘米∴第六次后剩下的绳子还有1厘米长.《由立体图形到视图》一、教材分析1.教材所处的地位与作用《由立体图形到视图》是华师大版七年级数学教材第四章第二节第一课时。
数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an
有理数的乘方的导入
课题: 1.5.1有理数的乘方(2) 序号:15学习目标:1、知识和技能:掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.2、过程和方法:通过例题学习,发展学生观察、归纳猜想、推理等能力.3、情感、态度、价值观:体验获得成功的感受、增加学习自信心学习重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算学习难点:灵活应用运算律,使计算简单、准确.导学方法:课时:1个课时导学过程一、课前预习:阅读教材,完成下列问题:《导学案》教材导读、自主测评二、课堂导学:1、导入1)我们已经学习了哪几种有理数的运算?2)有理数的乘方法则是什么?2、出示任务自主学习阅读教材,完成下列问题:计算(1)-8-3×(-1)7-(-1)8 (2)3 +50÷22×(-)-1(3)-32-(-2)3 ×(-4)÷(4)(-2)2 +(-9)÷(-1)(5)-0.52+4-(6)(-1.25)××8-9÷(1)÷23、合作探究《导学案》难点探究三、展示与反馈:学生展示答案,教师点评指导四、学习小结:在进行有理数混合运算时,一般按运算顺序进行,但有时根据运算律会使运算更简便,因此要在遵守运算顺序外,还要注意灵活运用运算律,使运算快捷、准确.五、达标检测1、课本练习2、《导学案》展题设计课后作业:1、《导学案》深化拓展2、习题1.5第3题板书设计:课后反思:一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n 叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3;(2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.?(2)在-26中,指数为,底数为.?(3)若a2=16,则a=.?(4)平方等于本身的数是,立方等于本身的数是.?(5)下列说法中正确的是()A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是()A.(-1)2003=-1B.-12002=1C.(-1)2n=1(n为正整数)D.(-1)2n+1=-1(n为正整数)(8)下列各数表示正数的是()A.|a+1|B.(a-1)2C.-(-a)D.||第2课时有理数的混合运算教学目标:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.教学难点:有理数的混合运算.教学过程:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习1.计算:(1)|-|2+(-1)101-×(0.5-)÷;(2)1÷(1)×(-)÷(-12);(3)(-2)3+3×(-1)2-(-1)4;(4)[2-(-)3]-(-)+(-)×(-1)2;(5)5÷[-(2-2)]×6.2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.《小数乘整数教学设计人教版》:小数乘整数教学设计人教版第1篇教学内容:人教版第九册第一单元《小数乘整数》第一课时,做一做。
人教版七年级数学上册教案《1.5.1乘方》第二课时(人教)
《1.5.1乘方》第二课时有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第二课时,是在学生学习了有理数的加、减、乘、除以及乘方运算的基础上来学习的,。
在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。
【知识与能力目标】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。
【过程与方法目标】通过例题学习,发展学生观察、归纳、猜想、推理等能力。
【情感态度价值观目标】体验获得成功的感受、增加学习自信心。
【教学重点】能正确地进行有理数的加、减、乘、除、乘方的混合运算。
【教学难点】灵活应用运算律,使计算简单、准确,明确题目中各个符号的意义,正确运用运算法则。
收集相关文本资料,相关图片,相关动画等碎片化资源。
一、复习引入1、我们已经学习了哪几种有理数的运算?2、有理数的乘方法则是什么?(朗读)3、练习:(1)23中底数是 ,指数是 ,幂是 。
(2) 中底数是 ,指数是 ,幂是 。
(3)(-5)4中底数是 ,指数是 ,幂是___。
2、计算:(-5)4 -54 43 -(-2)3 2)54( 二、探索新知在2 +32×6这个式子中,包含 种运算,它可以读作2加上这个算式里,按怎样的顺序进行运算?有理数的混合运算,应按以下运算顺序进行:1、先乘方,再乘除,最后加减;2、同级运算,从左往右进行;3、如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例如式子: 3+50÷22×(-15)-1 =3+50÷4×(-15)-1 =3+50×14×(-15)-1 =3-52-1 =-12 例3:计算:(1)2×(-3)3-4×(-3)+15; 243((2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2)。
七年级(人教版)集体备课导学案:1.5有理数的乘方2
1 .5 有理数的乘方第17学时班级 小组 姓名 小组评价_________教师评价_______ 使用说明及方法指导:先回顾有理数的加、减、乘、除及乘方的运算法则,自学教材有理数混合运算部分,独立完成自主学习部分,然后小组内交流讨论,预习时间20分学习目标:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度重难点:有理数的四则混合运算一、自主学习:(一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何?(二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。
方法规律:(1)有理数运算分三级运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第 级运算。
运算顺序是:先算高级运算,再算 运算;同级运算,再按从左至右的顺序运算。
(2)在运算过程中注意运算律的运用二、合作探究1、计算:(1)3114(2)11(2)425⎡⎤-----⎢⎥⎣⎦×÷÷(2)2233311(12)674⎡⎤--+-⎢⎥⎣⎦÷×(-)(3)3232333519143(2(1)()(251949252⨯--⨯⨯-+⨯-(-)2、观察下面行数:① -3,9,-27,81,-243,729,…② 0,12,-24,84,-240,732,…③ -1,3,-9,27,-81,243,…(1)第①行数有什么规律?(2)第②行数与第①行数有什么关系?(3)第③行数与第①行数有什么关系?(3)取每行数的第10个数,计算这三个数的和三、学习致用:1、计算: 223311233(3)3()2⎡⎤-----⎣⎦×÷÷2、x 、y 为有理数,且212(3)0x y -++=,求2232x xy y -+的值;3、20092010(0.25)4×4、一根1米长的绳子,第一次剪去12,第二次剪去剩下的12,如此剪下去,第六次后剩下的绳子还有1厘米长吗?为什么?四、能力提升 已知22(1)0-+-=ab b 试求1111(1)(1)(2)(2)(3)(3)+++++++++ab a b a b a b 的值。
1.5 有理数的混合运算2(加减乘除乘方)学案2022-2023学年七年级数学人教版上册
1.5 有理数的混合运算2(加减乘除乘方)学案学案背景本学案是为了帮助七年级学生巩固和提高有理数的混合运算能力而设计的。
通过加减乘除和乘方的混合运算练习,学生将能够更好地理解和应用有理数的概念和运算规则。
学习目标1.能够熟练进行有理数的加减乘除和乘方运算;2.能够正确应用运算法则解决实际问题;3.能够灵活运用有理数的混合运算进行解题。
学习重点1.有理数的混合运算法则及应用;2.复杂问题的变量分析和求解过程。
学习内容本学案内容主要包括以下几个部分:一、复习与导入(10分钟)通过简单的问题复习上节课所学的有理数加减乘除运算,引出本节课的学习内容。
二、知识点讲解(20分钟)1.有理数的乘方运算法则;2.有理数的混合运算规则;3.实际问题的建模和解决。
三、例题演练(30分钟)通过几个例题的演练,帮助学生掌握有理数的混合运算方法。
四、综合应用(30分钟)设计一些综合应用题,让学生灵活运用有理数的混合运算求解实际问题。
五、小结与作业布置(10分钟)对本节课所学内容进行小结,并布置相应的作业,巩固所学知识。
学习方法与策略1.理解运算规则:掌握有理数的各种运算法则,注重操作过程的理解和记忆。
2.进行变量分析:对于复杂问题,先进行变量的定义和分析,再根据情境和条件构建数学模型。
学习延伸1.阅读教材相关章节,对比书本上的例题和练习题,加深理解;2.利用在线学习资源,进行相关的习题练习和巩固训练;3.创设实际情境,设计有理数混合运算的问题,培养学生应用所学知识解决实际问题的能力。
学习评价1.参与课堂讨论和演练的积极性;2.完成课堂练习的准确性;3.解决实际问题的能力。
学习过程中,老师将通过观察学生的学习情况、听取学生的回答、检查学生的练习结果等方式来进行评价。
同时,鼓励学生互相讨论和合作,相互学习,共同进步。
以上是本学案的设计内容,希望能帮助学生们更好地掌握有理数的混合运算方法。
学生们在学习过程中,应该充分发挥自己的主动性和创造性,积极思考和探索,提高数学思维和解决问题的能力。
人教版初中七年级上册数学《有理数的乘方》导学案
1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方一、新课导入1.课题导入:大家都见过拉面师傅拉面,一次小明看到拉面师傅拉了6次,一碗面就拉好了,你能列出算式,帮他算算这碗面共有多少根吗?这个问题就是这节课我们要学习的乘方(板书课题).2.三维目标:(1)知识与技能正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.(2)过程与方法①通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.②已知一个数,会求出它的正整数指数幂,渗透转化思想.(3)情感态度培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.3.学习重、难点:重点:知道有理数乘方的意义.难点:能合理地进行乘方运算.二、分层学习1.自学指导:(1)自学内容:教材第41页的内容.(2)自学时间:5分钟.(3)自学要求:注意积中各因数的特点,结合乘法算式,找出相同因数的个数与指数的关系.理解乘方、幂、底数、指数的意义.(4)自学参考提纲:①2×2×2×2×2应记作25,读作2的五次方;12×12×12×12×12应记作125,读作12的5次方;(-3)×(-3)×(-3)×(-3)应记作(-3)4,读作-3的4次方;(-0.3)×(-0.3)×(-0.3)应记作(-0.3)3,读作-0.3的3次方;猜想:a·a·a…a的结果?n个a②一般地,n个相同因数a相乘,即a·a·a…a,记作a n,读作a的n 次方.求n个相同因数的积的运算,叫作乘方,乘方的结果叫做幂.在a n中,a做底数,n叫作指数.当a n看作a的n次方的结果时,也可读作a的n 次幂.特别地,一个数也可以看作这个数本身的一次方,如5就是5的一次方,即5=51,指数为1,通常省略不写.③-24与(-2)4相等吗?为什么?不相等,虽然绝对值相等,但符号不同.④你能解决之前的“拉面问题”吗?其结果是多少?26=642.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题和疑点.a.负数和分数的乘方的记法;b.-24与(-2)4的区别.②差异指导:对学习有困难的学生进行学法指导.(2)生助生:学生相互交流帮助解决一些自学中的疑难问题.4.强化:(1)有理数乘方意义的理解:①乘方是一种运算(乘法运算的特例),即求n个相同因数的积的简便算式;②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;③乘方具有双重含义:既表示一种乘法运算,又表示乘方运算的结果;④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用括号把底数括起来,以体现底数的整体性.(2)在-(-2)5中,底数是-2 ,指数是5,计算的结果是32.1.自学指导:(1)自学内容:教材第42页的例1、例2.(2)自学时间:5分钟.(3)自学要求:观察例1的计算过程和结果,相互交流自己的收获.(4)自学参考提纲:①例1的计算依据是什么?乘方的定义②完成思考并填空.③底数为-1,0,1,10,0.1的幂的特性:0n=0(n为正整数);1n=1(n为整数);10n=100……0(1后面有n个0);0.1n=0.00…01(小数部分1前面有n-1个0)④由②、③可得乘方的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.⑤试确定下列算式的结果是正还是负?a.(-3)×(-3)×…×(-3)共100个(-3)b.(-2)11 c.-(-1)153正;负;正.⑥仿例2用计算器作乘方运算:a.(-11)3 b.(-0.52)4-1331;0.07311616.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题.②差异指导:指导学生的自学方法,帮助学困生解决学习中的疑难问题.(2)生助生:学生通过交流探讨相互帮助解决一些自学疑难问题.4.强化:(1)乘方的符号法则.(2)练习:)4;-(-2)3①计算:(-1);83;(-5)3;0.13;(-10)4;-32;(-12;8.解:1;512;-125;0.001;10000;-9;116②已知n是正整数,那么(-1)2n=1 ,(-1)2n+1=-1.三、评价1.学生的自我评价(围绕三维目标):谈自己在本节学习中的收获和存在的不足之处.2.教师对学生的评价:(1)表现性评价:对本节课学习中大家的态度、方法和成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(15分)在(-2)5中,底数是-2,指数是5,结果是-32.2.(15分)在-24中,底数是2,指数是4,结果是-16.3.(20分)下列各数相等的是(C)A.-33与-23B.32与-23C.-32与-(-3)2D. (-3)2与-324.(20分)计算.(1)(-3)3(2)(-2)4(3)(-1.7)2(4)(-43)3(5)-(-2)3(6)(-2)2×(-3)2 (7)-353(8)-32×(-2)3解:(1)-27;(2)16;(3)2.89;(4)-6427;(5)8;(6)36;(7)-1253;(8)72.二、综合应用(每题15分,共30分)5.(10分)平方等于9的数是几?立方等于27的数是几?解:±3;36.(10分)(1)计算0.12,12,102,1002,观察这些结果,底数的小数点向左(或右)移动一位时,平方数的小数点有什么移动规律?(2)计算0.13,13,103,1003,观察这些结果,底数的小数点向左(或右)移动一位时,立方数的小数点有什么移动规律?解:(1)平方数的小数点向左(向右)移动2位.(2)立方数的小数点向左(向右)移动3位.三、拓展延伸(20分)7.(10分)计算:(-2)2,22,(-2)3,23联系这类具体的数的乘方,你认为当a<0时,下列各式是否成立?(1)a2>0;(2)a2=(-a)2;(3)a2=-a2;(4)a3=-a3.解:4;4;-8;8.(1)(2)成立,(3)(4)不成立.作者留言:非常感谢!您浏览到此文档。
【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)
有理数的乘方乘方( 2)知识与技术 能确立有理数加、 减、乘、除、乘方混淆运算的次序;能够娴熟地进行有理数的加、减、乘、除、乘方的运 过程与方法教课目的算,并在运算过程中合理使用运算律;培育学生对数的感觉, 提升学生正确运算的能力,培感情态度价养 学生思想的逻辑性和灵巧性,进一步发展学生的值观思想能力.教课要点有理数的混淆运算法例教课难点运算次序确实定和性质符号的办理教课过程(师生活动)设计理念教师提出问题:在 2+ 32×(- 6)这个式子中,存在着哪几种运算?给学生充足议论学生回答后,教师可持续发问:这道题应按什么顺的时间,鼓舞他提出问题序运算?前方我们已经学习加减乘除四则运算,知道们多发布自己的小组议论以为在做有理数混淆运算时,应注意哪些运算次序?请看法。
分 4 人小组议论。
小组议论后,请小组代表报告、沟通议论结果,其他同学增补,教师在学生回答的基础上做适合的总结与增补:( 1) 先算乘方,再算乘除,最后算加减;( 2) 同级运算,从左到右进行;( 3) 若有括号, 先做括号内的运算, 按小括号、 中括号、大括号挨次进行。
培育学生擅长归例 1 计算:纳、总结的能力,( 1)(- 2)3+(- 3)× [ (- 4) 2+2] -(- 3)2÷(-五种代数运算可分为三级;加减 沟通反应是一级,乘除是2);( 2) 1- 1× [3 ×(- 2)2-(- 1)41÷(- 1二级,乘方与开 ]+)方(此后会学)2 342是二级。
值.3、师生共同探请教科书44页的例 4.3.重申:按有理数混淆运算的次序进行运算,在每一步运 算中,仍旧是要先确立结果的符号,再确立符号的绝对要先算乘除,再算加减,此刻又多一种乘方运算,你们例 2 察下边三行数:-2, 4,- 8, 16,- 32, 64,⋯;① 0, 6,- 6, 18,- 30, 66,⋯;②-1, 2,- 4, 8 ,- 16, 32,⋯.③( 1)第①行数按什么律摆列?( 2)第②③行数与第①行数分有什么关系?( 3)取每行数的第 10 个数,算三个数的和.225 ] ,1.算3[39建学生采纳多种方法行算。
《1.5.1 第1课时 乘方》教案、同步练习(附导学案)
1.5.1 乘方《第1课时乘方》教案【教学目标】:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.【教学重点】:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【教学难点】:准确理解底数、指数和幂三个概念,并能进行求幂的运算.【教学过程】:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作a n,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3; (2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当a n表示运算时,读作a的n次方;(2)当a n表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-a n及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.(2)在-26中,指数为,底数为.(3)若a 2=16,则a= . (4)平方等于本身的数是 ,立方等于本身的数是 .(5)下列说法中正确的是( ) A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是( )A.(-1)2003=-1B.-12002=1C.(-1)2n =1(n 为正整数)D.(-1)2n+1=-1(n 为正整数)(8)下列各数表示正数的是( )A.|a+1|B.(a-1)2C.-(-a)D.||1.5.1乘方《第1课时 乘方》同步练习1、填空:(1)2)3(-的底数是 ,指数是 ,结果是 ;(2)2)3(--的底数是 ,指数是 ,结果是 ;(3)33-的底数是 ,指数是 ,结果是 。
1.5.1有理数的乘方运算(教案)-人教版七年级数学上册
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的课堂中,我发现学生们对于有理数乘方运算的概念和运算法则掌握得还不错。他们在分组讨论和实验操作环节表现出了较高的兴趣和参与度,这让我感到很欣慰。然而,我也注意到几个问题,需要在未来教学中加以改进。
首先,部分学生在理解负整数乘方和零的乘方时仍存在困难。在今后的教学中,我需要更加耐心地解释这两个概念,通过更多的实例让学生理解它们的意义和运算规则。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘方运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如:计算正方体的体积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方运算的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调有理数乘方的定义和运算法则这两个重点。对于难点部分,如负整数乘方和零的乘方,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量不同边长的正方体的体积,并使用乘方运算进行计算。
针对以上教学难点与重点,教师在教学过程中应进行以下措施:
《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)
1.5.1 乘方《第2课时有理数的混合运算》教案【教学目标】:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【教学重点】:根据有理数的混合运算顺序,正确地进行有理数的混合运算.【教学难点】:有理数的混合运算.【教学过程】:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习 1.计算:(1)|-|2+(-1)101-×(0.5-)÷; (2)1÷(1)×(-)÷(-12); (3)(-2)3+3×(-1)2-(-1)4; (4)[2-(-)3]-(-)+(-)×(-1)2; (5)5÷[-(2-2)]×6. 2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a=-1,则A 等于多少? 三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.2.在运算中要注意像-72与(-7)2等这类式子的区别.1.5.1 乘方《第2课时 有理数的混合运算》同步练习1.填空题(1)求几个相同因数的积的运算,叫做_______,即n n a a a a •⋅⋅⋅•=个=a n 在a n 中,a 叫做_______,n 叫做______,a n 叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________; (4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂(2)正数负数正数(3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1). 思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nb b b b ••⋅⋅⋅个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5;(2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)223=49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.(巩固类训练)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b -4)2≥0.又因为(a+12)2+(2b -4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334.6.若n 为自然数,求(-1)2n -(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1.答案:-6.7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值. 思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.1.5.1 乘方《第2课时 有理数的混合运算》导学案【学习目标】:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度【重难点】:有理数的四则混合运算 【学习过程】 一、自主学习: (一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何? (二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。
1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)
有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。
SX-7-023、1.5有理数的乘方(2)有理数的乘方(2)导学案
3 3 (2) 12 1 (12)÷ 6 × (- )3 4 7
2
达 标 测 评
3 3 5 19 1 4 3 (3) (- )3 ( ) 2 2 (1 )3 ( ) 2 ( )3 2 5 19 49 2 5 2
3、能力提升 已知 ab 2 (b 1)2 0 2、观察下面行数: ① -3,9,-27,81,-243,729,… ② 0,12,-24,84,-240,732,… ③ -1,3,-9,27,-81,243,… (1)第①行数有什么规律? (2)第②行数与第①行数有什么关系? (3)第③行数与第①行数有什么关系? (3)取每行数的第 10 个数,计算这三个数的和 2、学习致用 1、计算:
3 3 2 2 11× 2 3÷ 3 (3) 3 ÷ ( 2 )
试求
1 1 1 1 的值 ab (a 1)(b 1) (a 2)(b 2) (a 3)(b 3)
你有什么收获?
教 与 学 反 思
2、 x 、 y 为有理数,且 x 1 2( y 3)2 0 ,求 x2 3xy 2 y 2 的值;
教学反思: 有理数乘法的教学,是教学中的重点。学生也能很快融会贯通,只 是计算中还存在着一些问题,练习过程中我一一指正,并提出要求,针 对学生加减运算中的薄弱环节,在乘法中加入加减运算的练习,让学生 在练习中自己总结经验,牢记结论,做到在简单的运算中不失分。在教 学过程中,我深深感到基本计算能力薄弱,导致所学知识掌握不牢,每 道题目都要进行详细的解答和板书,从而浪费了很多时间,加强计算能 力的培养,有利于加强学生解题的正确性,提高学生的自信心。在教学 设计上,一节课很难练习多个题目,容量总是提高不起来,导致学生的 视野狭窄,由于学生的自觉性很差,不可能自己去找题目做,因而熟练 程度很低,我感觉只有加强课后练习和辅导,才会在一定程度上提高学 生的视野,扩大他们的知识面。这样的教学方法有利于培养学生的分类 讨论的能力。应该把推导的过程留给学生,教师只是起到引导学生进行 思维的作用,不要代替学生思维和推导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:1.5.1《有理数的乘方(2)》学案(人教版七年级上)【学习目标】:
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、会进行有理数的混合运算;
3、培养并提高正确迅速的运算能力;
【学习重点】:运算顺序的确定和性质符号的处理;
【学习难点】:有理数的混合运算;
【导学指导】
一、知识链接
1、在2+23×(-6)这个式子中,存在着种运算。
2、请你们以4人一个小组讨论、交流,上面这个式子应该先算、再算
、最后算。
二、合作探究
1、由上可以知道,在有理数的混合运算中,运算顺序是:
(1)______________________________________________________;
(2)___________________________________________________________;
(3)____________________________________________________________;
2、P43例题3,请你试练
3、师生共同探讨P43例题4
【课堂练习】
P44练习
计算:
(1)、(—1)10×2+(—2)3÷4;
(2)、(—5)3—3×41()2-;
(3)、
111135()532114
⨯-⨯÷;
(4)、(—10)4+[(—4)2—(3+32)×2];
【要点归纳】:
有理数的混合运算的运算顺序是:
【拓展训练】 计算 1、()2253[]39⎛⎫-⨯-+- ⎪⎝⎭
2、3342293⎛⎫-÷⨯- ⎪⎝⎭
【总结反思】:。