最新新版人教版七年级数学上册全册导学案

合集下载

七年级上册数学导学案人教版

七年级上册数学导学案人教版

七年级上册数学导学案人教版一、有理数的认识。

1. 正数和负数。

- 同学们,咱们先来说说正数和负数。

你看啊,在生活中,有很多相反意义的量。

比如说温度,零上和零下就不一样。

如果零上5℃,我们就用+5℃表示(这个“+”号有时候可以省略哦),那零下5℃呢,就用 - 5℃表示。

这就像你赚钱和花钱一样,赚钱是好事,就像正数,花钱就是和赚钱相反的,就像负数。

- 那怎么判断一个数是正数还是负数呢?很简单,只要这个数前面有个“ - ”号,那它就是负数,没有“ - ”号或者前面有个“+”号(“+”号常常省略)的就是正数。

不过要注意哦,0既不是正数也不是负数,它就像一个分界点,把正数和负数分开啦。

2. 有理数的分类。

- 有理数就像一个大家庭,里面有整数和分数这两大成员。

整数又包括正整数、0和负整数。

正整数像1、2、3这些,负整数就是 - 1、 - 2、 - 3之类的。

- 分数呢,也有正分数和负分数。

比如说1/2就是正分数, - 1/2就是负分数。

这里有个小秘密,有限小数和无限循环小数都可以化成分数,所以它们也属于分数这个家族,也就都是有理数啦。

二、数轴。

1. 数轴的概念。

- 想象一下,有一条长长的直线,就像一条马路。

这条直线上有一个点,我们规定这个点表示0,这个点就像马路的中间点一样。

然后在0的右边,我们按照一定的距离依次标上1、2、3……这些正整数,就像马路右边的房子编号一样;在0的左边呢,按照同样的距离标上 - 1、 - 2、 - 3……这些负整数。

这条带有方向(规定向右为正方向)、原点(0这个点)和单位长度(相邻两个数之间的距离)的直线就是数轴啦。

- 任何一个有理数都可以在数轴上找到它的位置。

比如说2就在原点右边2个单位长度的地方, - 3就在原点左边3个单位长度的地方。

就像每个小朋友在教室里都有自己的座位一样,有理数在数轴上也有自己的“座位”呢。

2. 数轴上数的大小比较。

- 在数轴上比较数的大小可简单啦。

就像在赛跑一样,在数轴上右边的数总是比左边的数大。

七年级数学上册 全册导学案 新版新人教版(付,83)

七年级数学上册 全册导学案 新版新人教版(付,83)

第一章有理数1.1 正数和负数1.掌握正数和负数的概念;2.会区分两种不同意义的量,会用正、负数表示具有相反意义的量;3.通过正、负数学习,培养学生应用数学知识的意识;体验数学发展是生活实际的需要,激发学生学习数学的兴趣.用正、负数表示具有相反意义的量.一、温故知新1.小学里学过哪些数请写出来:整数、分数、自然数.2.阅读课本P2三幅图(重点是三个例子,边阅读边思考).3.回答下面提出的问题:在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1.正数与负数的产生:(1)生活中具有相反意义的量:如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:收入1000元与支出800元;(2)负数的产生同样是生活和生产的需要.2.正数和负数的表示方法:(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也可以在它前面放上一个“+”(读作正)号,如前面的5,7,50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3,-8,-47;(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示;(3)阅读P3例题前的内容.3.正数、负数的概念:(1)大于0的数叫做正数,小于0的数叫做负数;(2)正数是大于0的数,负数是小于0的数,0既不是正数也不是负数.一、师生合作(课本P3例题)先引导学生分析,再让学生独立完成.例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.解:这个月小明体重增长2_kg,小华体重增长-1_kg,小强体重增长0_kg;二、跟踪练习(2)2001年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.解:六个国家这一年商品进出口总额的增长率是:美国__-6.4%__; 德国__1.3%____; 法国__-2.4%__; 英国__-3.5%__;意大利__0.2%__; 中国__7.5%____.1.P4练习第1-4题.(直接做在课本上)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作-2万元,-4万元表示支取4万元.3.已知下列各数:-15,-234,3.14,+3065,0,-239.则正数有3.14,+3065;负数有-15,-234,-239. 4.下列结论中正确的是( D )A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,-312,+3.1,-12,2004,+2010.其中是负数的有( B )A .2个B .3个C .4个D .5个以问题的形式,要求学生思考交流:1.正数、负数的概念:(1)大于0的数叫做正数,小于0的数叫做负数;(2)数0既不是正数,也不是负数,0是正数和负数的分界.2.引人负数后,你是怎样认识数0的,数0的意义有哪些变化?0不仅可以表示没有,还可以表示正数、负数的分界.3.怎样用正负数表示具有相反意义的量?用正数表示其中一种意义的量,另一种量用负数表示;特别在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.1.2.1 有理数1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2.了解分类的标准与集合的含义;3.体验分类是数学上常用的处理的问题的方法.重点:正确理解有理数的概念;难点:正确理解分类的标准和按照一定标准分类.一、温故知新通过上节课的学习,那么你能写出3个不同类的数吗?(4名学生板书)二、自主学习问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类.该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为__五__类,分别是:正数,0,负数,正分数,负分数问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳.三、引导归纳1.正整数,0,负整数统称为整数,整数和分数统称为有理数.2.正数集合与负数集合所有的正数组成正数集合,所有的负数组成负数集合.1.P6练习.(做在课本上)2.把下列各数填入它所属于的集合的圈内:15,-19,-5,215,-138,0.1,-5.32,-80,123,2.333.正整数集合负整数集合正分数集合负分数集合有理数分类⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数或者有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数到现在为止我们学过的大部分数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同.下列说法中不正确的是( C )A.-3.14既是负数、分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2000既是负数,也是整数,但不是有理数D.0是正数和负数的分界1.2.2 数轴1.掌握数轴概念,理解数轴上的点和有理数的对应关系;2.会正确地画出数轴,利用数轴上的点表示有理数;3.领会数形结合的重要思想方法.重点:数轴的概念与用数轴上的点表示有理数;难点:会在数轴上表示有理数,能根据数轴上的点写出有理数.一、温故知新1.观察下面的温度计,读出温度.分别是__5__℃;__-10__℃;__0__℃.2.在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m 和7.5 m 处分别有一棵柳树和一棵杨树,汽车站牌西3 m 和4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境?__________________________________ 东汽车站请同学们分小组讨论,交流合作,动手操作.二、自主学习1.由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗? 可以用直线上的点表示有理数.2.自己动手操作,看看可以表示有理数的直线必须满足什么条件?三、引导归纳(1)画数轴需要三个条件,即原点、正方向和单位长度;(2)数轴.1.请画一条数轴.__________________________________2.利用上面的数轴表示下列有理数:1.5,-2,2,-2.5,29,⎪⎪⎪⎪⎪⎪15,0. 3.写出数轴上的点A ,B ,C ,D ,E 所表示的数.小组讨论交流.1.观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现? 负数都在原点左边,正数都在原点右边. 2.每个数到原点的距离是多少?由此你又有什么发现? 数轴上的点到原点的距离都是非负数.3.进一步引导学生完成P9归纳.1.画数轴需要的三个条件是什么?2.一般地,设a 是一个正数,则数轴上表示数a 的点在原点的__右__边,与原点的距离是__a __个单位长度;表示数-a 的点在原点的__左__边,与原点的距离是__a __个单位长度.3.数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具.1.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有__4__个.2.在数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( A )A .-5B .-4C .-3D .-23.你觉得数轴上的点表示的数的大小与点的位置有什么关系?原点的右边离原点越远的点表示的数越大;原点的左边离原点越远的点表示的数越小.1.2.3 相反数1.掌握相反数的意义;2.掌握求一个已知数的相反数;3.体验数形结合思想.重点:求一个已知数的相反数;难点:根据相反数的意义化简符号.一、温故知新1.数轴的三要素是什么?在下面画出一条数轴:2.在上面的数轴上描出表示5,-2,-5,+2 这四个数的点.3.观察上图并填空: 数轴上与原点的距离是2的点有__2__个,这些点表示的数是+2或-2;与原点的距离是5的点有__2__个,这些点表示的数是+5或-5. 从上面的问题可以看出,一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个表示a ,另一个是 __-a __,它们分别在原点的左边和右边,我们说,这两点关于原点对称.二、自主学习自学课本P9,P10的内容并填空:1.相反数的概念像2和-2,5和-5,3和-3这样,只有符号不同的两个数叫做互为相反数.2.练习(1)2.5的相反数是__-2.5__,-115和__115__互为相反数,-2010的相反数是2010; (2)a 和__-a __互为相反数,也就是说,-a 是__a __的相反数.小组讨论交流,发现规律.例如a =7时,-a =-7,即7的相反数是-7.a =-5时,-a =-(-5),“-(-5)”读作“-5的相反数”,而-5的相反数是5,所以,-(-5)=5.你发现了吗,在一个数的前面添上一个“-”号,这个数就成了原数的相反数.1.简化符号:-(+0.75)=-0.75,-(-68)=__68__,-(-0.5)=0.5,-(+3.8)=-3.8.2.0的相反数是__0__.3.数轴上表示相反数的两个点到原点的距离相等.P10第1,2,3,4题.1.一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个是a ,另一个是-a ,它们分别在原点的右边和左边,我们说,这两点关于原点对称;2.要表示一个数或式子的相反数,只需要在这个数或式子前加“-”.1.在数轴上标出3,-1.5,0各数与它们的相反数:2.-1.6的相反数是__1.6__,2x 的相反数是__-2x __,a -b 的相反数是__b -a __.3.相反数等于它本身的数是__0__,相反数大于它本身的数是__负数__.4.填空:(1)如果a =-13,那么-a =__13__; (2)如果-a =-5.4,那么a =__5.4__;(3)如果-x =-6,那么x =__6__;(4)如果-x =9,那么x =__-9__.5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数.(±5)1.2.4 绝对值(二)1.理解、掌握有理数大小比较法则;2.能熟练运用有理数大小比较法则,结合数轴比较有理数的大小,能利用数轴对多个有理数进行有序排列;3.体验运用直观知识解决数学问题.重点:运用有理数大小比较法则,借助数轴比较两个有理数的大小;难点:利用绝对值比较两个负数的大小.一、温故知新1.比较下列各组数的大小:①2__<__3;②34__>__23; ③12__>__0;④0__<__0.001. 2.引入负数后,对于任意有理数(如-2和-1,-3和0,-2和2)怎样比较大小呢?二、自主学习阅读思考,发现新知.阅读P12,你有什么发现吗?讨论交流在数轴上表示的两个数,右边的数总要大于左边的数.也就是:(1)正数大于0,负数小于0,正数大于负数;(2)两个负数,绝对值大的反而小.自学例题 P13 (教师指导)重点书写格式示范指导三、拓展提高例1 写出3个小于-1并且大于-2的数.如:-1.2,-1.5,-1.8.例2 已知|x |=6,|y |=5,且x <y ,求x ,y 的值.解:∵|x|=6,|y|=5,又∵x<y,∴x=±6,y=±5.∴x=-6,y=±5.1.比较下列各对数的大小:-3和-5;-2.5和-∣-2.25∣.-3>-5;-2.5<-|-2.25|.1.比较有理数大小的方法有两种:方法一:利用数轴,把数用数轴上的点表示出来,然后根据“数轴上左边的点所表示的数比右边的点所表示的数小”来比较.方法二:利用比较有理数大小的法则“正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的反而小”来进行.2.在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.1.2.4 绝对值(一)1.理解、掌握绝对值概念.体会绝对值的作用与意义;2.会求一个已知数的绝对值,知道一个数的绝对值,会求这个数;3.掌握绝对值的有关性质.重点:给出一个数,会求它的绝对值;难点:理解绝对值的作用和意义.一、温故知新1.什么叫相反数?相反数有什么特点?问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线不相同(填相同或不相同),他们行走的距离(即路程远近)相同.2.如图,小黄狗,小白兔,小灰狗分别位于点A,B,C处,单位长度为1,小黄狗,小白兔,小灰狗分别距原点多远?小黄狗距原点3个单位长度,小白兔距原点1.5个单位长度,小灰狗距原点4.5个单位长度.二、自主学习1.绝对值的概念上面问题中,A,B,C三个点在数轴上分别表示什么数?离原点的距离是多少?归纳:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值. 如:2的绝对值等于2,记作:|2|=2,-2的绝对值等于__2__,记作:|-2|=2. 跟踪练习 1.把下列各数表示在数轴上,并求出它们的绝对值.-4,3.5,-2,0,-3.5,5.2.从上题寻找规律,正数、零、负数的绝对值有什么特点?一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;零的绝对值等于__零__.互为相反数的两个数绝对值相等.你能用式子表示上面的意思吗?①当a >0时,│a │=__a __;②当a =0时,│a │=__0__;③当a <0时,│a │=__-a __.跟踪练习:(1)什么数的绝对值等于它本身?什么数的绝对值等于它的相反数?非负数,非正数.(2)有人说因为2的绝对值等于2,-2的绝对值等于2,所以a 的绝对值等于a ,-a 绝对值也等于a .你认为对吗?你的观点呢?不对,当a 为负数时,a 的绝对值为-a ,-a 的绝对值等于-a .三、拓展提高1.求一个数的绝对值:例1 求下列各数的绝对值:12,-35,-7.5,0. 例2绝对值等于7的有理数有哪些?跟踪练习:(1)|+2|=__2__,|15|=__15__,|+8.2|=__8.2__; (2)|0|=__0__;(3)|-3|=__3__,|-0.2|=__0.2__,|-8.2|=__8.2__.2.与绝对值的意义有关的问题.例3 (1)如果|a |>a ,则a 是什么数?a 为负数.(2)如果a |a |=1,那么__a >__0;如果a|a |=-1,那么a __<__0.P11第1,2,3大题.(直接做在课本上)1.3.1 有理数的加法(二)掌握加法运算律并能运用加法运算律简化运算.灵活运用加法运算律简化运算.一、温故知新1.想一想,小学里我们学过的加法运算律有哪些?先说说,再用字母表示写在下面:2.计算:(1)30+(-20)=10;(-20)+30=__10__;(2)[8+(-5)]+(-4)=-1;8+[(-5)+(-4)]=-1.思考:观察上面的式子与计算结果,你有什么发现?二、自主学习1.请说说你发现的规律.2.自己换几个数字验证一下,还有上面的规律吗?3.由上可以知道,小学学习的加法交换律、结合律,在有理数范围内同样适合,即:两个数相加,交换加数的位置,和不变.式子表示为a+b=b+a;三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为(a+b)+c=a+(b+c).想想看,式子中的字母可以是哪些数?可以是正数,负数或零.三、新知应用例1 (教师示范书写格式)计算:(1)16+(-25)+24+(-35);解:原式=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(2)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:原式=[(-2.48)+(-7.52)]+[4.33+(-4.33)]=-10+0=-10.四、跟踪练习1.计算:(1)23+(-17)+6+(-22);解:原式=-10;(2)(-2)+3+1+(-3)+2+(-4);解:原式=-3;(3)(-413)+(-417)+413+(-1317).解:原式=-1.例2 每袋小麦的标准质量为90千克,10袋小麦称重记录如下:91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总质量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下.课本P20练习1,2.运用加法运算律简便运算的步骤:1.互为相反数的先加;2.能凑整的先加;3.同分母的先加;4.同号的放在一起加.1.计算:(1)(-7)+11+3+(-2);解:原式=5; (2)14+(-23)+56+(-14)+(-13). 解:原式=-16. 2.绝对值不大于10的整数有__21__个,它们的和是 __0__.3.填空:(1)若a >0,b >0,那么a +b __>__0;(2)若a <0,b <0,那么a +b __<__0;(3)若a >0,b <0,且│a │>│b │,那么a +b __>__0;(4)若a <0,b >0,且│a │>│b │,那么a +b __<__0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天共增加多少元?解:把取出记为负,存入记为正,得-950+5000-800+12000-10000-2000=3250(元) 答:共增加了3250元.4.课本P21实验与探究.1.3.1 有理数的加法(一)1.理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2.会利用有理数加法运算解决简单的实际问题.重点:有理数加法法则;难点:异号两数相加.一、温故知新1.比较大小:2__>__-3,-5__>__-7,4__<__|-5|.2.已知a =-5,b =+3,则︱a ︳+︱b ︱=__8__.3.9+12=__21__,11+0=__11__,4+(-2)=______,(+3)+(-8)=______,怎样计算4+(-2)呢.下面我们一起借助数轴来讨论有理数的加法.二、自主学习1.借助数轴来讨论有理数的加法:(1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了__6__米,这个问题用算式表示就是:4+2=6;(2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了__6__米.这个问题用算式表示就是:-2+(-4)=-6.如图所示:(3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了__2__米,写成算式就是-2+(+4)=2.用数轴表示如下图所示:(4)利用数轴,求以下情况时这个人两次运动的结果:①先向东走3米,再向西走5米,这个人从起点向( 西)走了( 2 )米;②先向东走5米,再向西走5米,这个人从起点向( 东)走了( 0 )米;③先向西走5米,再向东走5米,这个人从起点向( 东)走了( 0 )米.写出这三种情况运动结果的算式:3+(-5)=-2;5+(-5)=0;(-5)+5=0.(5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了__5__米.写成算式就是5+0=5或(-5)+0=-5.2.师生归纳两个有理数相加的几种情况.3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则:(1)同号的两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得__0__;(3)一个数同0相加,仍得这个数.4.新知应用例1 (老师演示,书写规范格式)计算:(1)(-3)+(-9);解:原式=-(3+9)=-12;(2)(-4.7)+3.9;解:原式=-(4.7-3.9)=-0.8;(3)(-25)+(+36).解:原式=+(36-25)=11.例2 计算:(1)15+(-22);(2)(-13)+(-8);(3)(-0.9)+1.51.1.填空:(口答)(1)(-4)+(-6)=__-10__;(2)3+(-8)=__-5__;(3)7+(-7)=__0__;(4)(-9)+1=__-8__;(5)(-6)+0=__-6__;(6)0+(-3)=__-3__.2.课本P19第1-4题.有理数加法法则简单理解:同号取同号,绝对值相加,异号取(绝对值)大号,绝对值(大-小)相减.计算一般步骤:先确定符号,再算绝对值.1.有理数a,b在数轴上的位置如图所示,则a__<__b,︱a︱__>__︱b︱.1.3.2 有理数的减法(二)1.理解加减法统一成加法运算的意义;2.会将有理数的加减混合运算转化为有理数的加法运算.有理数加减法统一成加法运算.一、温故知新1.一架飞机作特技表演,起飞后的高度变化如下表:高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米记作+4.5千米-3.2千米+1.1千米-1.4千米__1__ 2.你是怎么算出来的,方法是4.5+(-3.2)+(+1.1)+(-1.4)=1.二、自主学习1.现在我们来研究(-20)+(+3)-(-5)-(+7),该怎么计算呢?还是先自己独立动动手吧!2.怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,老师巡视指导.3.师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法.再把加号记在脑子里,省略不写.如:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7,可以读作:“负20、正3、正5、负7的__和__”或者“负20加3加5减7”.4.师生完整写出解题过程:5.计算:-4.4-(-415)-(+212)+(-2710)+12.4. 解:原式=-4.4+415-212-2710+12.4 =[(-4.4)+12.4]+(4210-2510-2710) =8-1 =7.1.下列各式可以写成a -b +c 的是( B )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )2.算式(-7)-9-(-3)+(-5)写成省略加号和括号的形式为-7-9+3-5,读作负7、负9、正3、负5的和,或读作负7减9加3减5.3.计算:(课本P24练习)(1)1-4+3-0.5;解:原式=-0.5;(2)-2.4+3.5-4.6+3.5;解:原式=0;(3)(-7)-(+5)+(-4)-(-10);解:原式=-6;(4)34-72+(-16)-(-23)-1. 解:原式=-3912. 4.数轴上A ,B 两点分别表示数a ,b ,若a =3,b =7,则A ,B 两点间的距离为__4__;若a =-1,b =-5,则A ,B 两点间的距离为__4__;若a =2,b =-6,则A ,B 两点间的距离为__8__;若a =-8,b =-4,则A ,B 两点间的距离为__4__;若a =m ,b =n ,则A ,B 两点间的距离为|m -n |.1.有理数加减混合运算,可以先运用减法法则把加减法统一成加法运算,再写成省略加号和括号形式,然后可运用加法运算律进行简便运算;2.数轴上A ,B 两点分别表示数a ,b ,则两点间的距离为|a -b |或|b -a |.1.3.2 有理数的减法(一)1.经历探索有理数减法法则的过程.理解并掌握有理数减法法则;2.会正确进行有理数减法运算;3.体验把减法转化为加法的转化思想.有理数减法法则和运算.一、温故知新1.世界上最高的山峰珠穆朗玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为-154米,两处的高度相差多少呢? 试试看,计算的算式应该是8844-(-154).能算出来吗,画草图试试; 2.长春某天的气温是-2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:℃) 显然,这天的温差是3-(-2). 想想看,温差到底是多少呢?那么,3-(-2)=__5__.二、自主学习1.还记得吗,被减数、减数、差之间的关系是:被减数-减数=__差__;差+减数=被减数.2.请你与同桌伙伴一起探究、交流:要计算3-(-2)=?实际上也就是要求?+(-2)=3,所以这个数(差)应该是__5__,也就是3-(-2)=5;再看看,3+2=__5__;所以3-(-2)_=_3+2;由上你有什么发现?请写出来:减去一个数等于加上这个数的相反数.3.换两个式子计算一下,看看上面的结论还成立吗?-1-(-3)=__2__,-1+3=__2__,所以-1-(-3)__=__-1+3;0-(-3)=__3__,0+3=__3__,所以0-(-3)__=__0+3.4.师生归纳(1)法则:减去一个数等于加上这个数的相反数;(2)字母表示:__a -b =a +(-b )__.三、新知应用例1.例题(示范书写格式)计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)-312-514.1.下列运算中正确的是( D )A .3.58-(-1.58)=3.58+(-1.58)=2B .(-2.6)-(-4)=2.6+4=6.6C .0-(+25)-75=(+25)-75=25+(-75)=-1 D.38-145=38+(-95)=-57402.课本P23练习1—2题.1.有理数减法法则:减去一个数,等于加上这个数的相反数.;2.小学时学的减法都是大数-小数,够减,差的符号为正,现在引入了负数后,小数-大数不够减也能减了,差是负数.即:大数-小数=正数,小数-大数=负数.1.计算:(1)(-37)-(-47);解:原式=10(2)(-53)-16;解:原式=-69(3)(-210)-87;解:原式=-297(4)1.3-(-2.7);解:原式=4(5)(-214)-(-1).解:原式=-1142.分别求出数轴上,下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数-2的点与表示数-3的点.解:(1)8-3=5(2)-2-(-3)=13.若|m -n |=n -m ,|m |=4,|n |=3,则m -n =-1或-7.1.4.1 有理数的乘法(二)1.探索多个有理数相乘的符号确定法则;2.会进行有理数的乘法运算;3.通过对问题的探索,培养观察、分析和概括的能力.重点:多个有理数相乘运算符号的确定;难点:正确进行多个有理数的乘法运算.一、温故知新1.有理数乘法法则:2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-4)+(-6)C .0×(-2)D .(-7)-(-10)3.计算:(1)(-114)×(-45);解:原式=+(54×45)=1;(2)(-213)×(-6);解:原式=73×6=14;(3)-320×56. 解:原式=-(320×56)=-18. 二、自主学习1.观察:下列各式的积是正的还是负的?2×3×4×(-5);2×3×(-4)×(-5);2×(-3)×(-4)×(-5);(-2)×(-3)×(-4)×(-5).思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.新知应用例题3(P31)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?先确定符号,再算绝对值.你能看出下列式子的结果吗?如果能,理由几个数相乘,如果其中有因数为0,那么积等于0. 7.8×(-8.1)×0×(-19.6).1.计算:(课本P32练习1,2)1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.几个数相乘,如果其中有一个因数为0,积等于0.一、选择题1.若干个不等于0的有理数相乘,积的符号( C )A .由因数的个数决定B .由正因数的个数决定C .由负因数的个数决定D .由负因数和正因数个数的差决定2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15)3.下列运算错误的是( B )A .(-2)×(-3)=6B .(-12)×(+6)=3 C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24二、计算:(1)(-2)×54×(-910)×(-23); 解:原式=-32; (2)(-6)×5×(-76)×27; 解:原式=10;(3)(-4)×7×(-1)×(-0.25);解:原式=-7;(4)(-524)×815×(-32)×14; 解:原式=124; (5)(-112)×(-113)×(-114)×(-115)×(-116)×(-117). 解:原式=32×43×54×65×76×87=4.1.4.1 有理数的乘法(三)1.熟练有理数的乘法运算律并能用乘法运算律简化运算;2.学生通过观察、思考、探究、讨论,主动地进行学习.重点:正确运用运算律,使运算简化;难点:运用运算律,使运算简化.一、温故知新1.请同学们计算,并比较它们的结果:(1)(-6)×5=-30, 5×(-6)=-30;(2)[3×(-4)]×(-5)=60, 3×[(-4)×(-5)]=60;(3)5×[3+(-7)]=-20,5×3+5×(-7)=-20.请以小组为单位,相互检查,看计算对了吗?二、自主学习1.下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.2.怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?3.归纳、总结乘法交换律:两个数相乘,交换因数的位置,积相等.即:ab =ba .乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:(ab )c =a (bc ).分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a (b +c )=ab +ac .三、新知应用计算:(1)(-0.4)×(+25)×(-5);解:原式=50;(2)(-15)×(-8)×125;解:原式=15000; (3)(79-518)×(-36); 解:原式=-28+10=-18;(4)39×(-13)+39×(-27)解:原式=39×(-13-27)=39×(-40)=-1560. 例4 用两种方法计算(14+16-12)×12. 解法一:原式=(312+212-612)×12 =-112×12 =-1.解法二:原式=14×12+16×12-12×12 =3+2-6=-1.总结:计算中运用运算律可以使计算简便,运算量变小,分配律的反用,有时也能起到简便运算的目的.课本P33练习.1.乘法各运算律用字母表示出来.(提问)2.乘法的交换律,结合律运用时可以先确定符号,再算绝对值,分配律运用时括号内的数要看清符号,分配律反用时要注意相同的因数提起来后,剩下的数连同符号一起放入括号.1.看谁算得快,算得准.(1)(-7)×(-43)×514; 解:原式=103; (2)91118×18; 解:原式=(10-718)×18 =180-7=173;(3)-9×(-11)+12×(-9);解:原式=-9×(-11+12)=-9×1=-9; (4)(79-56+34-718)×36. 解:原式=79×36-56×36+34×36-718×36 =28-30+27-14=55-44=11.1.4.1 有理数的乘法(一)1.理解有理数的运算法则,能根据有理数乘法运算法则进行有理数的简单运算;2.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力.有理数乘法法则.一、温故知新1.有理数加法法则内容是什么?2.计算:(1)2+2+2=__6__;(2)(-2)+(-2)+(-2)=__-6__.3.你能将上面两个算式写成乘法算式吗?(1)2×3=6;(2)(-2)×3=-6.二、自主学习1.自学课本P28—P29,回答下列问题.观察:3×3=9,3×2=6,3×1=3,3×0=0.发现规律:随着后一乘数逐次递减1,积逐次递减3,这一规律引入负数仍然成立,所以有:3×(-1)=-3,3×(-2)=-6,3×(-3)=-9,3×(-4)=-12.根据乘法的交换律又有:(-1)×3=-3,(-2)×3=-6,(-3)×3=-9,(-4)×3=-12.从符号和绝对值的角度观察发现:正数乘正数积为正数,正数乘负数积为负数,负数乘正数积为负数,积的绝对值等于各乘数的绝对值的积.利用这个规律计算:(-3)×3=__-9__, (-3)×2=__-6__, (-3)×1=__-3__,(-3)×0=__0____.发现规律:随着后一个数逐次递减1,积逐次增加3按照这个规律填空:(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.可归纳如下结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积. 由上可知:(1)2×4=__8__;(2)(-2)×4=__-8__;(3)(+2)×(-4)=__-8__;(4)(-2)×(-4)=__8__;(5)两个数相乘,一个数是0时,结果为__0__.观察上面的式子,你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得__0__. 例题讲解(教师示范书写步骤,格式)例1 计算:(1)(-3)×9; (2)8×(-1);解:原式=-27; 解:原式=-8;(3)(-12)×(-2). 解:原式=1.1.直接说出下列两数相乘所得积的符号.(1)5×(-3);“-”(2)(-4)×6;“-”(3)(-7)×(-9);“+”(4)0.9×8.“+”2.一个有理数与其相反数的积( C )A .符号必定为正B .符号必定为负C .一定不大于零D .一定不小于零3.书本P30第1题例2 计算:(1)6×16; (2)(-17)×(-7);。

【全册】最新人教版七年级数学上册导学案

【全册】最新人教版七年级数学上册导学案

最新人教版七年级数学上册全册导学案第一章有理数 (1)第二章整式的加减 (6)第三章一元一次方程 (22)第四章图形认识初步 (57)第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容 3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

七年级数学上册导学案(人教版)

七年级数学上册导学案(人教版)

七年级数学上册导学案(人教版)
目标
本导学案旨在帮助学生在研究七年级数学上册时掌握以下知识和技能:
1. 了解整数、分数和小数的概念和性质;
2. 研究整数、分数和小数的四则运算;
3. 掌握解一元一次方程和一元一次不等式的方法;
4. 理解平行线、垂直线和夹角的概念以及相关性质;
5. 研究解简单的平面图形的计算问题。

导学内容
单元一:整数与小数
1. 整数的概念和性质;
2. 整数之间的比较和排序方法;
3. 小数的概念和性质;
4. 小数的读法和写法。

单元二:分数
1. 分数的概念和性质;
2. 分数的读法和写法;
3. 分数的比较和排序方法;
4. 分数的四则运算。

单元三:线段和角
1. 线段的概念和性质;
2. 线段的比较和排序方法;
3. 角的概念和性质;
4. 角的比较和分类方法。

单元四:平面图形
1. 二维图形的概念和性质;
2. 四边形、三角形和正方形的特征和性质;
3. 二维图形的计算问题。

研究建议
1. 认真阅读教材中的知识点,理解概念和性质;
2. 勤做练题,巩固知识和技能;
3. 积极参与课堂讨论和活动,提出问题并解答问题;
4. 及时向老师请教,解决研究中的困惑。

附加资源
- 人教版七年级数学上册教材
- 题册和练题集
- 网上数学研究资源
祝研究顺利!。

新人教版七年级上册数学全册导学案教案

新人教版七年级上册数学全册导学案教案

第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

新版人教版初一上册数学全册导学案(全册)

新版人教版初一上册数学全册导学案(全册)

新版人教版初一上册数学全册导学案(全册精品)4.3.2角的比较与运算【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;2、理解角平分线的概念,会画角平分线。

【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。

【导学指导】一、知识链接回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?(8)度量法;(2)叠合法。

AB<AC<BC那么怎样比较∠A、∠B、∠C的大小呢?二、自主学习1、比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小。

(2)叠合法:把两个角叠合在一起比较大小。

教师演示:(1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB >∠AOB′。

2、认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?图中共有3个角:∠AOB、∠AOC、∠BOC。

它们的关系是:∠AOC=∠AOB+∠BOC;∠BOC=∠AOC-∠AOB;∠AOB=∠AOC-∠BOC3、用三角板拼角探究:借助三角尺画出150,750的角。

一副三角板的各个角分别是多少度?_________学生尝试画角。

你还能画出哪些角?有什么规律吗?还能画出________________________规律是:凡是的倍数的角都能画出。

4、角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?如图(1)角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。

类似地,还有角的三等分线等。

如图(2)中的OB、OC。

OB是∠AOC的一平分线,可以记作:∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC= 。

5、例题学习例1 如图,O是直线AB上一点,∠AOC=53017′,求∠BOC 的度数。

例2 把一个周角7等分,每一份是多少度的角(精确到分) 【课堂练习】:课本140-141页1、2、3。

最新部编版人教《初中数学七年级上册全册导学案》精品完美优秀实用完整打印版整册每课导学单

最新部编版人教《初中数学七年级上册全册导学案》精品完美优秀实用完整打印版整册每课导学单

最新精品部编版人教初中七年级数学上册优秀导学案(全册完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的导学案(导学单)是高效课堂的前提和保障。

(最新精品导学案)《1.1正数和负数》问题导读——评价单班级:姓名:组名:指导教师:审核人:七年级数学组时间:【学习目标】1.掌握正数和负数概念.2.会区分两种不同意义的量,会用符号表示正数和负数.【重点、难点】区分两种不同意义的量,用符号表示正数和负数.【关键问题】通过具有相反意义的量引入正负数.【学法指导】自主学习、合作探究.【知识链接】1.小学里学过哪些数?请举例: .2.在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?【预习评价】(认真阅读教材1—4页的内容并回答下列问题.)1.生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东走50米与向西走47米等都是生活中遇到的具有相反意义的量.请你举出具有相反意义量的例子:.2.一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50.而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47.活动:两个同学一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3.大于0的数叫做,小于0的数叫做.正数是大于0的数,负数是的数,0既不是正数也不是负数.4. 练习:课本P3、 P4课后练习直接做在课本上.【我的问题】【多元评价】自我评价:学科长评价:教师评价:《1.1正数和负数》问题训练——评价单班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.3.零下15℃,表示为_________,比O℃低4℃的温度是_________. 4.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.5.“甲比乙大-3岁”表示的意义是______________________. 6.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数7.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ( )A .2个B .3个C .4个D .5个8.写出比O 小4的数,比4小2的数,比-4小2的数.9.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.回归复习评价 初学日期 3天复习日期 7天复习日期 15天复习日期 自我评价 同伴签字《1.2.1有理数》问题导读——评价单班级:姓名:组名:指导教师:审核人:七年级数学组时间:【学习目标】1.掌握有理数的概念,会对有理数按一定标准进行分类.2.了解分类的标准与集合的含义.【重点、难点】掌握有理数的概念,会对有理数按一定标准进行分类.【关键问题】会对有理数按一定标准进行分类.【学法指导】自主学习、合作探究【知识链接】正数与负数【预习评价】(认真阅读教材6页的内容并回答下列问题.)问题1:你能写出一些不同类的数吗?问题2:观察以上你写这些数,我们将这些数做一下分类.该分为几类,又该怎样分呢?先分组讨论交流,再写出来.分为类,分别是:引导归纳:统称为整数,统称为分数.统称为有理数.所有的正数组成集合,所有的负数组成集合.问题3:归纳总结有理数有哪两种分类方法?问题4:完成课后练习(做在课本上)【我的问题】【多元评价】自我评价:学科长评价:教师评价:《1.2.1有理数》问题训练——评价单班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:1.下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界 2.在下表适当的空格里画上“√”号3.把下列各数填入它所属于的集合的圈内:15, -91, -5, 152, 813 , 0.1, -5.32, -80, 123, 2.333.正整数集合 负整数集合回归复习评价 初学日期 3天复习日期 7天复习日期 15天复习日期 自我评价 同伴签字有理数整数 分数 正整数 负分数 自然数 -9 -2.35 O +5正分数集合负分数集合班级: 姓名: 组名: 指导教师: 审核人: 七年级数学组 时间:【 学习目标】1.掌握数轴概念,理解数轴上的点和有理数的对应关系.2.会正确地画出数轴,并将有理数用数轴上的点来表示.【重点、难点】正确地画出数轴,并将有理数用数轴上的点来表示. 【关键问题】数轴三要素【学法指导】自主学习、合作探究.【预习评价】(认真阅读教材7—9页的内容并回答下列问题) 问题1:什么是数轴?问题2:画数轴需要注意哪些问题?试着画出一条数轴.问题3:你会用数轴上的点来表示数吗?画出数轴并表示下列有理数:4,1.5,-3,-72,0问题4:你能读出下列数轴上的点表示的数吗?5M 4M 3M 2M 1-1-45问题5:若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结:所有的__________都可以用数轴上的点表示,___________•都在原点的左边,______________都在原点的右边.问题6:完成课后练习,直接写在课本上. 【我的问题】:【多元评价】自我评价: 学科长评价: 教师评价:班级:姓名:组名:指导教师:审核人:七年级数学组时间:1.规定了、、叫数轴,所有的有理数都可以用上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P 点表示的数是.3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是() A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 C.不是负数 D.不是正数5.下列语句:①数轴上的点只能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个6.数轴上表示5和-5的点离开原点的距离是,但它们分别在的两侧。

人教版七年级数学上册全册导学案(122页)

人教版七年级数学上册全册导学案(122页)

第一章有理数。

课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

2023年部编本人教版七年级数学上册导学案(全册)

2023年部编本人教版七年级数学上册导学案(全册)

2023年部编本人教版七年级数学上册导学案(全册)第一单元:数学与你我他1. 观察身边的事物,描述它们与数学的关系。

2. 研究数学的重要性和在生活中的应用。

- 探索数学在日常生活中的应用场景。

- 分享身边有趣的数学事例。

3. 研究数学基本概念。

- 了解自然数和整数。

- 掌握数轴上的整数表示方法和比较大小。

- 研究如何用数轴解决实际问题。

第二单元:数的整数运算1. 回顾正整数的加减运算。

2. 研究关于正整数的乘法和除法运算。

- 掌握乘法的运算法则。

- 了解除法的基本概念和运算法则。

3. 练运用整数运算解决实际问题。

- 运用正整数的运算进行计算。

第三单元:图形的认识1. 研究图形相关术语和概念。

- 了解点、线、面的定义。

- 掌握不同类型的线段和角的特征。

2. 研究如何绘制简单的几何图形。

- 利用尺规画直线和圆。

- 绘制多边形和正方形。

3. 在实际情境中运用图形知识。

- 识别和描述身边的图形。

第四单元:一次函数1. 研究函数的概念。

- 了解函数的基本特点。

- 掌握自变量、因变量和函数关系的概念。

2. 认识一次函数。

- 研究一次函数的定义和表示方法。

- 探索一次函数的图象和性质。

3. 运用一次函数解决实际问题。

- 利用一次函数的性质进行计算和推理。

第五单元:平方根与立方根1. 研究平方数和立方数的概念。

- 掌握平方数和立方数的定义。

- 记忆一些常见的平方数和立方数。

2. 研究平方根和立方根的概念和性质。

- 了解平方根和立方根的定义。

- 掌握平方根和立方根的计算方法。

3. 运用平方根和立方根解决实际问题。

- 运用平方根和立方根进行计算和推理。

第六单元:既约分数和倍数1. 复分数的概念和分数的计算。

2. 了解既约分数的概念和性质。

- 掌握既约分数的计算方法。

- 理解既约分数的意义和应用。

3. 研究倍数的概念和计算方法。

- 探索倍数的性质和规律。

- 利用倍数进行计算和推理。

4. 运用既约分数和倍数解决实际问题。

人教版数学七年级上全册导学案(有理数、整式的加减、一元一次方程、几何图形初步)

人教版数学七年级上全册导学案(有理数、整式的加减、一元一次方程、几何图形初步)

人教版数学七年级上全册导学案(有理数、整式的加减、一元一次方程、几何图形初步)人教版数学七年级上导学案第一章有理数1.1 正数和负数(1)学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答上面提出的问题:.二、探究新知1、正数与负数的产生1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. 3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

3)练习P3第一题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示四、应用迁移,巩固提高(A 组为必做题)A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________. 3.已知下列各数:51-,432-,3.14,+3065,0,-239. 则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m 表示的意义是………………………( ) A .向东行进50m C .向北行进50m B .向南行进50m D .向西行进50m5.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008. 其中是负数的有 ……………………………………………………( ) A .2个 B .3个 C .4个 D .5个B 组1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________. C 组1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.正数和负数(2)学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:(教科书第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2009年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家2009年商品进出口总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)用正负数表示加工允许误差.问题: 1. 直径为30.032mm和直径为29.97的零件是否合格?2. 你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。

2024秋季新教材人教版七年级上册数学1.2.2 数轴 导学案

2024秋季新教材人教版七年级上册数学1.2.2 数轴 导学案

第一章有理数1.2 有理数1.2.2 数轴教学目标:1. 识记数轴的三要素并会画数轴.2. 能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,会用数轴比较有理数的大小.3. 会用数形结合的思想理解在特定的条件下数与形是可以相互转化的.重点:数轴的概念,在数轴上表示数.难点:正确的画出数轴,有理数和数轴上的点的对应关系.一、知识链接1.回忆正负数的意义并回答以下问题:在一条东西向的马路旁,有一个汽车站牌,汽车站牌东 3 m 和7.5 m 处分别有一棵柳树和一根交通标志杆,汽车站牌西侧3 m 和 4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.一、要点探究知识点1:数轴的画法及概念合作探究探究一怎样用数简明地表示这些树、标志杆、电线杆与汽车站牌的相对位置关系(方向、距离)?合作探究你能联想到生活中的哪些用直线上的点表示数的工具,请举例说明.它们有什么共同特点?像这样,规定了原点、正方向和单位长度的直线叫作数轴.数轴的画法:1.在直线上任取一点表示数0,这个点叫做原点.2.通常规定直线上从原点向右(或上) 为正方向,从原点向左(或下) 为负方向.3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,···;从原点向左,用类似方法依次表示-1,-2,-3,···.4.原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.1.(松北区校级月考改编)关于数轴的图示,画法正确的是()总结:原点、正方向、单位长度一个也不能少.归纳总结:画数轴注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线是水平的;(3)正方向用箭头表示,一般取从左到右;取单位长度应结合实际需要,但要做到刻度均匀.合作探究探究二为了进一步研究马路情境图(数轴),仿照A 点信息填写表格.数轴上的点表示数:一般地,设 a 是一个正数,则数轴上表示数 a 的点在数轴的___半轴上,与原点的距离是___个单位长度;表示数 -a 的点在数轴的___半轴上,与原点的距离是___个单位长度.数轴上与原点的距离是 a 个单位长度的点,简称为数轴上与原点的距离是 a 的点.例1 画出数轴,并在数轴上表示下列各数: 3,-4,4,0.5,0, −52 ,-1.例2 根据下面给出的数轴,解答下列问题:(1) 请你根据图中 A 、B 两点的位置,分别写出它们所表示的有理数,以及 A 、B 两点距离几个单位长度?(2) 从点 A 出发,沿着数轴正方向移动 2 个单位长度达点 C ,在数轴上请画出点 C ,并写出它所表示的数.1. 画出数轴,并用数轴上的点表示下列各数 ( )1.在数轴上,原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非正数D. 非负数2.在数轴上表示-3 的点与表示4 的点之间的距离是( )A. 7B. -7C. 1D. -13. 画出数轴并表示下列有理数:能力提升:4.在数轴上,一只蚂蚁从原点出发,它先向右爬了4 个单位长度到达点A,再向右爬了2 个单位长度到达点B,然后又向左爬了10 个单位长度到达点C.(1) 将A,B,C 三点所表示的数在下图中的数轴上表示出来;(2) 根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度所到达的点?(3) 如果移动点A,B,C 中的两个点,使得三个点重合,你有几种移动方法?请分别求出移动的长度之和.拓展:数轴上有两个固定点A、B,有一动点C,请问点C在什么位置时,动点C到两定点距离之和最小?参考答案自主学习一、新课导入合作探究一、要点探究知识点1:数轴的画法及概念合作探究知识要点:数轴上的点表示数:正a负a【典例精析】解:如下图所示.总结:原点左边的数是负数←→原点右边的数是正数解:(1) 点A 表示3;点B 表示-1.5;点A、点B 距离 4.5 个单位长度.(2)如上图所示,C 点表示5.1. 解:如下图所示:2.C二、课堂小结当堂检测1.D2.A3.解:如下图所示:4.(1)解:如图所示.(2)可以看作蚂蚁从原点向左平移4 个单位长度达到.(3)。

初一上册数学全册导学案(新版人教版)

初一上册数学全册导学案(新版人教版)

初一上册数学全册导学案(新版人教版)432角的比较与运算【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;2、理解角平分线的概念,会画角平分线。

【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。

【导学指导】一、知识链接回顾线段大小的比较,,怎样比较图中线段AB、B、A的长短?(8)度量法;(2)叠合法。

AB<A<B那么怎样比较∠A、∠B、∠的大小呢?二、自主学习1、比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小。

(2)叠合法:把两个角叠合在一起比较大小。

教师演示:(1)∠AB<∠AB′;(2)∠AB=∠AB′;(3)∠AB>∠AB′。

2、认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?图中共有3个角:∠AB、∠A、∠B。

它们的关系是:∠A=∠AB+∠B;∠B=∠A-∠AB;∠AB=∠A-∠B3、用三角板拼角探究:借助三角尺画出10,70的角。

一副三角板的各个角分别是多少度?_________学生尝试画角。

你还能画出哪些角?有什么规律吗?还能画出________________________规律是:凡是的倍数的角都能画出。

4、角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?如图(1)角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。

类似地,还有角的三等分线等。

如图(2)中的B、。

B是∠A的一平分线,可以记作:∠A=2∠AB=2∠B或∠AB=∠B= 。

、例题学习例1 如图,是直线AB上一点,∠A=3017′,求∠B的度数。

例2 把一个周角7等分,每一份是多少度的角(精确到分)【堂练习】:本140-141页1、2、3。

【要点归纳】:1、角的大小比较的方法和角的和差关系;2、用一副三角板画角;3、角的平分线及表示。

人教新版七年级上数学全册导学案(56页)

人教新版七年级上数学全册导学案(56页)

二、自主学习 自学课本第 10、11 的内容并填空:
1、相反数的概念
像 2 和—2、5 和—5、3 和—3 这样,只有
不同的两个数叫做互为相反数。
2、练习
(1)、2.5 的相反数是
,—1 1 和 5
相反数,
的相反数是 2010;
是互为
(2)、a 和 互为相反数,也就是说,—a 是
的相反数
例如 a=7 时,—a=—7,即 7 的相反数是—7.
2、每个数到原点的距离是多少?由此你又有什 么发现?
3、进一步引导学生完成 P9 归纳
【要点归纳】: 画数轴需要三个条件是什么?
课题:1.2.3 相反数 【学习目标】:
1、掌握相反数的意义; 2、掌握求一个已知数的相反数; 3、体验数形结合思想; 【学习重点】:求一个已知数的相反数; 【学习难点】:根据相反数的意义化简符号。 【导学指导】 一、温故知新 1、数轴的三要素是什么?在下面画出一条数轴:
a=—5 时,—a=—(—5),“—(—5)”读
作“-5 的相反数”,而—5 的相反数是 5,所以,
—(—5)=5
你发现了吗,在一个数的前面添上一个“—”
号,这个数就成了原数的
1.
简化符号:
-(+0.75)=
, -(-68)=

-(-0.5 )=
,-(+
3.8)=

(4)、0 的相反数是
.
3、数轴上表示相反数的两个点和原点的距
3 . “ 甲 比 乙 大 -3 岁 ” 表 示 的 意 义 是 ______________________。 4.如果海平面的高度为 0 米,一潜水艇在海水 下 40 米处航行,一条鲨鱼在潜水艇上方 10 米处 游动,试用正负数分别表示潜水艇和鲨鱼的高 度。 【总结反思】:

新人教版七年级上册数学导学案(全册)

新人教版七年级上册数学导学案(全册)

七年级数学(上册)导学案之阿布丰王创作第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种分歧意义的量,会用符号暗示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】一、:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的发生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的发生同样是生活和生产的需要2、正数和负数的暗示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数暗示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来暗示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数暗示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元暗示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239;则正数有_____________________;负数有____________________。

4.下列结论中正确的是…………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做。

新人教版七年级上册数学导学案(全册)

新人教版七年级上册数学导学案(全册)

七年级数学(上册)导学案之青柳念文创作第一章有理数1.1 正数和负数(1)【学习方针】1、掌握正数和负数概念;2、会区分两种分歧意义的量,会用符号暗示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.【导学指导】一、:1、小学里学过哪些数请写出来:、、.2、阅读讲义P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,唯一整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的发生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.(2)负数的发生同样是生活和生产的需要2、正数和负数的暗示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数暗示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来暗示,如上面的—3、—8、—47.(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另外一个同学用正负数暗示.(3)阅读P3操练前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做.2)正数是大于0的数,负数是的数,0既不是正数也不是负数.【讲堂操练】:1. P3第1题到第2题(讲义上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那末取出2万元应记作_______,-4万元暗示________________.3.已知下列各数:51-,432-,,+3065,0,-239;则正数有_____________________;负数有____________________.4.下列结论中正确的是…………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有……………………………………………………( )A .2个B .3个C .4个D .5个 【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做.(2)正数是大于0的数,负数是的数,0既不是正数也不是负数.【拓展训练】:1.零下15℃,暗示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”暗示的意义是______________________.4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别暗示潜水艇和鲨鱼的高度.【总结反思】:课题:1.1正数和负数(2)【学习方针】:1、会用正、负数暗示具有相反意义的量;2、通过正、负数学习,培养学生应用数学知识的意识;【学习重点】:用正、负数暗示具有相反意义的量;【学习难点】:实际问题中的数量关系;【导学指导】一、知识链接.通过上节课的学习,我们知道在实际生产和生活中存在着两种分歧意义的量,为了区分它们,我们用__________ 和___________ 来分别暗示它们.问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度暗示中的零上,零下和零度.二.自主探究问题:(讲义第4页例题)先引导学生分析,再让学生独立完成例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变更,写出他们这个月的体重增长值;2)2001年下各国家的商品进出口总额比上一年的变更情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;2)六个国家2001年商品进出口总额的增长率:美国___________ 德国__________法国___________ 英国__________意大利__________ 中国__________【讲堂操练】1.讲义第4页操练2、阅读思考(讲义第8页)用正负数暗示加工允许误差;问题:直径为30.032mm和直径为29.97的零件是否合格?【要点归纳】1、本节课你有那些收获?2、还有没处理的问题吗?【拓展训练】1)甲冷库的温度是-12°C,乙冷库的温度比甲刻毒低5°C,则乙冷库的温度是;2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),暗示这种零件的尺度尺寸是9mm,加工要求最大不超出尺度尺寸多少?最小不小于尺度尺寸多少?【总结反思】:课题:1.2.1 有理数【学习方针】:1、掌握有理数的概念,会对有理数按一定尺度停止分类,培养分类才能;2、懂得分类的尺度与集合的含义;3、体验分类是数学上常常使用的处理问题方法;【学习重点】:正确懂得有理数的概念【学习难点】:正确懂得分类的尺度和依照一定尺度分类【导学指导】一、温故知新1、通过两节课的学习,,那末你能写出3个分歧类的数吗?.(4论理学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数.问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【讲堂操练】1、P8操练(做在讲义上)2.把下列各数填入它所属于的集合的圈内: 15, -91, -5, 152, 813-, 0.1, -5.32, -80, 123,2.333;正整数集合 负整数集合 正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 【拓展训练】1、下列说法中不正确的是……………………………………………( )A .既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:【学习方针】: 1、掌握数轴概念,懂得数轴上的点和有理数的对应关系;2、会正确地画出数轴,操纵数轴上的点暗示有理数;3、体会数形连系的重要思想方法;【重点难点】:数轴的概念与用数轴上的点暗示有理数;【导学指导】一、知识链接1、°C 、°C 、°C ;和一棵杨树,汽车站西3m 和4.8m 处分别有一棵槐树和一根电线杆,试画图暗示这一 情境?东汽车站请同学们分小组讨论,交流合作,动手操纵二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来暗示有理数吗?2、自己动手操纵,看看可以暗示有理数的直线必须知足什么条件?引导归纳:1)、画数轴需要三个条件,即、方向和长度.2)数轴【讲堂操练】1、请你画好一条数轴2、操纵上面的数轴暗示下列有理数1.5, —2, 2, —2.5, 92,23-, 0;3、 写出数轴上点A,B,C,D,E 所暗示的数:三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每一个数到原点的间隔是多少?由此你又有什么发现?3、进一步引导学生完成P9归纳【要点归纳】:画数轴需要三个条件是什么?【拓展操练】1、在数轴上,暗示数-3,2.6,53-,0,314,322-,-1的点中,在原点左边的点有个.2、在数轴上点A 暗示-4,如果把原点O 向正方向移动1个单位,那末在新数轴上点A 暗示的数是( )3、你感觉数轴上的点暗示数的大小与点的位置有什么关系?【总结反思】:课题:1.2.3 相反数【学习方针】:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形连系思想;【学习重点】:求一个已知数的相反数;【学习难点】:根据相反数的意义化简符号.【导学指导】一、温故知新1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出暗示5、—2、—5、+2 这四个数的点.3、观察上图并填空:数轴上与原点的间隔是2的点有个,这些点暗示的数是;与原点的间隔是5的点有个,这些点暗示的数是.从上面问题可以看出,一般地,如果a是一个正数,那末数轴上与原点的间隔是a的点有两个,即一个暗示a,另外一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称.二、自主学习自学讲义第10、11的内容并填空:1、相反数的概念像2和—2、5和—5、3和—3这样,只有分歧的两个数叫做互为相反数.2、操练(1)、2.5的相反数是,—115和是互为相反数,的相反数是2010;(2)、a和互为相反数,也就是说,—a是的相反数例如a=7时,—a=—7,即7的相反数是—7.a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以,—(—5)=5你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的(3)简化符号:-(+0.75)=,-(-68)=,-(-0.5 )=,-(+3.8)=;(4)、0的相反数是.3、数轴上暗示相反数的两个点和原点的间隔.【讲堂操练】 P11第1、2、3题【要点归纳】:1、本节课你有那些收获?2、还有没处理的问题吗?【拓展训练】1.在数轴上标出3,-1.5,0各数与它们的相反数.2是,2x的相反数是,a-b的相反数是;3. 相反数等于它自己的数是,相反数大于它自己的数是;4.填空:(1)如果a=-13,那末-a=;(2)如果-a=-5.4,那末a=;(3)如果-x=-6,那末x=;(4)-x=9,那末x=;相反数的两个数的点之间的间隔为10,求这两个数.【总结反思】:【学习方针】:1、懂得、掌握相对值概念.体会相对值的作用与意义;2、掌握求一个已知数的相对值和有理数大小比较的方法;3、体验运用直观知识处理数学问题的成功;【重点难点】:相对值的概念与两个负数的大小比较【导学指导】一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的道路(填相同或不相同),他们行走的间隔(即旅程远近)二、自主探究1、由上问题可以知道,10到原点的间隔是,—10到原点的间隔也是到原点的间隔等于10的数有个,它们的关系是一对.这时我们就说10的相对值是10,—10的相对值也是10;例如,—3.8的相对值是3.8;17的相对值是17;—613的相对值是一般地,数轴上暗示数a的点与原点的间隔叫做数a的相对值,记作∣a∣.2、操练(1)、式子∣∣暗示的意义是.(2)、—2的相对值暗示它分开原点的间隔是个单位,记作;(3)、∣24∣=. ∣—∣=,∣—13∣=,∣0∣=;3、思考、交流、归纳由相对值的定义可知:一个正数的相对值是;一个负数的相对值是它的;0的相对值是.用式子暗示就是:1)、当a 是正数(即a>0)时,∣a ∣=;2)、当a 是负数(即a<0)时,∣a ∣=;3)、当a=0时,∣a ∣=;4、随堂操练 P12第1、2大题(直接做在讲义上)5、阅读思考,发现新知阅读P12问题—P13第12行,你有什么发现吗?在数轴上暗示的两个数,右边的数总要左边的数.也就是:1)、正数0,负数0,正数大于负数.2)、两个负数,相对值大的.【讲堂操练】:1、自学例题 P13 (教员指导)2、比较下列各对数的大小:—3和—5; ——∣—∣【要点归纳】:一个正数的相对值是;一个负数的相对值是它的;0的相对值是.【拓展操练】1.如果a a 22-=-,则a 的取值范围是…………………………( )A .a >OB .a ≥OC .a ≤OD .a <O2.7=x ,则______=x ; 7=-x ,则______=x .3.如果3>a ,则______3=-a ,______3=-a .4.相对值等于其相反数的数一定是…………………………………( )A .负数B .正数C .负数或零D .正数或零5.给出下列说法:①互为相反数的两个数相对值相等;②相对值等于自己的数只有正数;③不相等的两个数相对值不相等; ④相对值相等的两数一定相等.其中正确的有…………………………………………………()A.0个B.1个C.2个D.3个【总结反思】:课题:1.3.1有理数的加法(1)【学习方针】:1、懂得有理数加法意义,掌握有理数加法法则,会正确停止有理数加法运算;2、会操纵有理数加法运算处理简单的实际问题;【学习重点】:有理数加法法则【学习难点】:异号两数相加【导学指导】一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有能够超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为 4+(-2),蓝队的净胜球数为 1+(-1).这里用到正数和负数的加法.那末,怎样计算4+(-2)下面我们一起借助数轴来讨论有理数的加法.二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那末一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式暗示就是:2)如果规定向东为正,向西为负,那末一个人向西走2米,再向西走4米,两次共向西走多少米?很分明,两次共向西走了米.这个问题用算式暗示就是:如图所示:3)如果向西走2米,再向东走4米,那末两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴暗示如下图所示:4)操纵数轴,求以下情况时这个人两次运动的成果:①先向东走3米,再向西走5米,这个人从起点向()走了()米;②先向东走5米,再向西走5米,这个人从起点向()走了()米;③先向西走5米,再向东走5米,这个人从起点向()走了()米.写出这三种情况运动成果的算式5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了米.写成算式就是2、师生归纳两个有理数相加的几种情况.3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取的符号,并把相加.(2)相对值不相等的异号两数相加,取的加数的符号,并用较大的相对值较小的相对值. 互为相反数的两个数相加得;(3)一个数同0相加,仍得.例1 计算(自己动动手吧!)(1)(-3)+(-9);(2)(-4.7)+3.9.例2 (自己独立完成)【讲堂操练】:1.填空:(口答)(1)(-4)+(-6)= ;(2)3+(-8)= ;(4)7+(-7)= ;(4)(-9)+1 = ;(5)(-6)+0 = ;(6)0+(-3) = ;2. 讲义P18第1、2题【要点归纳】:有理数加法法则:【拓展训练】:1.断定题:(1)两个负数的和一定是负数;(2)相对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.2.已知│a│= 8,│b│= 2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.【总结反思】:课题:1.3.1有理数的加法(2)【学习方针】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:矫捷运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母暗示写在下面:、2、计算⑴ 30 +(-20)= (-20)+30=⑵ [ 8 +(-5)] +(-4)= 8 + [(-5)]+(-4)]=思考:观察上面的式子与计算成果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、连系律在有理数范围内同样适应,三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子暗示为想想看,式子中的字母可以是哪些数?例1 计算: 1)16 +(-25)+ 24 +(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)例2 每袋小麦的尺度重量为90千克,10袋小麦称重记录如下:10袋小麦总计超出多少千克或缺乏多少千克?10袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下.【讲堂操练】讲义P20页操练 1、2【要点归纳】:你会用加法交换律、连系律简化运算了吗?【拓展训练】1.计算:(1)(-7)+ 11 + 3 +(-2);(2)).31()41(65)32(41-+-++-+2.相对值不大于10的整数有个,它们的和是.3、填空:(1)若a>0,b>0,那末a+b 0.(2)若a<0,b<0,那末a+b 0.(3)若a>0,b<0,且│a│>│b│那末a+b 0.(4)若a<0,b>0,且│a│>│b│那末a+b 0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?4、讲义P20实验与探究【总结反思】:课题:1.3.2有理数的减法(1)【学习方针】:1、履历探索有理数减法法则的过程.懂得并掌握有理数减法法则;2、会正确停止有理数减法运算;3、体验把减法转化为加法的转化思想;【重点难点】:有理数减法法则和运算【导学指导】一、知识链接1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?试试看,计算的算式应该是.能算出来吗,画草图试试2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2);想想看,温差到底是多少呢?那末,3―(―2)=;二、自主探究1、还记得吗,被减数、减数差之间的关系是:被减数—减数=;差+减数=.2、请你与同桌伙伴一起探究、交流:要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是;也就是3―(―2)=5;再看看,3+2=;所以3―(―2)3+2;由上你有什么发现?请写出来.3、换两个式子计算一下,看看上面的结论还成立吗?—1—(—3)=,—1+3=,所以—1—(—3)—1+3;0—(—3)=, 0+3=,所以0—(—3)0+3;4、师生归纳1)法则:2)字母暗示:三、新知应用1、例题例1计算:(1) (-3)―(―5); (2)0-7;―(―4.8); (4)-341521 ;请同学们先测验测验处理 【讲堂操练【要点归纳】: 有理数减法法则: 【拓展训练】 1、计算:(1)(-37)-(-47); (2)(-53)-16; (3)(-210)-87; (4)1.3-(-2.7);(5)(-243)-(-121);2.分别求出数轴上下列两点间的间隔: (1)暗示数8的点与暗示数3的点; (2)暗示数-2的点与暗示数-3的点;【总结反思】:课题:1.3.2 有理数的减法(2)【学习方针】:1、懂得加减法统一成加法运算的意义;2、会将有理数的加减混合运算转化为有理数的加法运算;【重点难点】:有理数加减法统一成加法运算; 【导学指导】 一、知识链接1、一架飞机作特技扮演,起飞后的高度变更如下表:. 2、你是怎么算出来的,方法是 二、自主探究1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为.再把加号记在头脑里,省略不写如:(-20)+(+3)-(-5)-(+7) 有加法也有减法 =(-20)+(+3)+(+5)+(-7) 先把减法转化为加法 = -20+3+5-7 再把加号记在头脑里,省略不写 可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.4、师生完整写出解题过程5、补偿例题:计算-4.4-(-451)-(+221)+(-2107)+12.4;【讲堂操练】计算:(讲义P24操练) (1)1—4+3—0.5; —4.6+3.5 ;(3)(—7)—(+5)+(—4)—(—10);(4)3712()()14263-+----;【要点归纳】: 【拓展训练】: 1、计算:1)27—18+(—7)—32 2)245()()()(1)799++--+-+【总结反思】:课题:1.4.1有理数的乘法(1)【学习方针】:1、懂得有理数的运算法则;能根占有理数乘法运算法则停止有理的简单运算;2、履历探索有理数乘法法则过程,发展观察、归纳、猜测、验证才能;【重点难点】:有理数乘法法则 【导学指导】 一、温故知新1.有理数加法法则内容是什么?(1)2+2+2= (2)(-2)+(-2)+(-2)=3.你能将上面两个算式写成乘法算式吗? 二、自主探究1、自学讲义28-29页回答下列问题(1)如果它以每分2cm 的速度向右匍匐,3分钟后它在什么位置? 可以暗示为 .( 2)如果它以每分2cm 的速度向左匍匐,3分钟后它在什么位置? 可以暗示为(3) 如果它以每分2cm 的速度向右匍匐,3分钟前它在什么位置? 可以暗示为(4)如果它以每分2cm 的速度向左匍匐,3分钟前它在什么位置? 可以暗示为 由上可知:(1) 2×3 = ; (2)(-2)×3 =;(3)(+2)×(-3)=; (4)(-2)×(-3)=; (5)两个数相乘,一个数是0时,成果为0观察上面的式子, 你有什么发现?能说出有理数乘法法则吗? 归纳有理数乘法法则两数相乘,同号,异号,并把相乘. 任何数与0相乘,都得.2、直接说出下列两数相乘所得积的符号1)5×(—3) ; 2)(—4)×6 ; 3)(—7)×(—×8 ; 3、请同学们自己完成例1 计算:(1)(-3)×9; (2)(-21)×(-2); 归纳: 的两个数互为倒数. 例2【讲堂操练】讲义30页操练1.2.3(直接做在讲义上) 【要点归纳】: 有理数乘法法则: 【拓展训练】1.如果ab >0,a+b >0,确定a 、b 的正负.2.对于有理数a 、b 定义一种运算:a*b=2a-b,计算(-2)*3+1 【总结反思】:课题:1.4.1有理数的乘法(2)【学习方针】:1、履历探索多个有理数相乘的符号确定法则;2、会停止有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的才能;【学习重点】:多个有理数乘法运算符号的确定; 【学习难点】:正确停止多个有理数的乘法运算; 【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)× (-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年大树中学七年级数学第一章导学案第1学时内容:正数和负数(1)学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答上面提出的问题:.二、探究新知1、正数与负数的产生1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

3)练习P3第一题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示四、应用迁移,巩固提高(A 组为必做题)A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________. 3.已知下列各数:51-,432-,3.14,+3065,0,-239. 则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m 表示的意义是………………………( ) A .向东行进50m C .向北行进50m B .向南行进50m D .向西行进50m5.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008. 其中是负数的有 ……………………………………………………( ) A .2个 B .3个 C .4个 D .5个B 组1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________. C 组1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.第2学时内容:正数和负数(2)学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:(教科书第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2009年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家2009年商品进出口总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)用正负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。

标重的记录情况如下:+1,-0.5,-0.5,-1,+0.5,-0.5,+0.5,+0.5,+0.5,-0.5。

问这10筐橘子各重多少千克?总重多少千克?【解】-17°6.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?【解】9.05mm,8.95mm正数和负数巩固提高练习第3学时1.具有相反意思的量某市某一天的最高温度是零上5℃,最低温度是零下5℃现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运入”和“运出”,其意义是相反的.同学们能举例子吗?________________________________________ 2.正数和负数数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).①高于海平面8848米,记作+8848米;低于海平面155米,记作________米。

②如果80m表示向东走80m,那么-60m表示_________。

③如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_________m。

④月球表面的白天平均温度是零上126℃,记作________℃,夜间平均温度是零下150℃,记作________℃。

问题1读下列各数,并指出其中哪些是正数,哪些是负数。

42-+---1,2.5,,0, 3.14,120, 1.732,37正数:__________________________________________________负数:__________________________________________________3.有理数正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

(整数和分数统称为有理数)有理数的分类:_________0________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩整数有理数 0____________________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正数________有理数 问题2:有理数:1322,0,,10.3,,52,8,0.38,102,31,1,6.3245----+-,其中:正数:}{ … 正分数:}{ … 负数:}{… 负分数:}{ … 负整数:}{… 正整数:}{… 巩固A :1. 如果收入100元记作+100元,那么支出180元记作___________;如果电梯上升了两层记作+2,那么-3表示电梯__________________。

2. 某校初一年级举行乒乓球比赛,一班获胜2局记作+2,二班失败3局记作_________,三班不胜不败记作_______.3. 下列各数中既不是正数又不是负数的是( )A .-1 B. -3 C.-0.13 D.0 4. -206不是( )A .有理数 B.负数 C.整数 D.自然数 5.既是分数,又是正数的是( ) A .+5B .-514C .0D .83106.下列说法正确的是( )A .有理数是指整数、分数、正有理数、零、负有理数这五类数B .有理数不是正数就是负数C .有理数不是整数就是分数;D .以上说法都正确7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是_______,如果在原来的位置上再上升20米,则高度是________. 巩固B :1.判断:①所有整数都是正数;( ) ②所有正数都是整数:( )③奇数都是正数;( ) ④分数是有理数: ( )2. 把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-45,-15%,-112,227,2613.正数集合{ …}, 负数集合{ …},整数集合{ …}, 分数集合{ …}, 非负整数集合{ …}.3.北京某一天记录的温度是:早晨-1℃,中午4℃,晚上-3℃,(0℃以上温度记为正数),其中温度最高是______(写度数),最低是________(写度数).4.某班在班际篮球赛中,第一场赢4分,第二场输3分,第三场赢2分,第四场输2分,结果这个班是赢了还是输了?请用有理数表示各场的得分和最后的总分。

相关文档
最新文档