人教版数学八年级上册 轴对称填空选择专题练习(解析版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上册轴对称填空选择专题练习(解析版)

一、八年级数学全等三角形填空题(难)

1.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.

【答案】1或7

【解析】

【分析】

分点P在线段BC上和点P在线段AD上两种情况解答即可.

【详解】

设点P的运动时间为t秒,则BP=2t,

当点P在线段BC上时,

∵四边形ABCD为长方形,

∴AB=CD,∠B=∠DCE=90°,

此时有△ABP≌△DCE,

∴BP=CE,即2t=2,解得t=1;

当点P在线段AD上时,

∵AB=4,AD=6,

∴BC=6,CD=4,

∴AP=BC+CD+DA=6+4+6=16,

∴AP=16-2t,

此时有△ABP≌△CDE,

∴AP=CE,即16-2t=2,解得t=7;

综上可知当t为1秒或7秒时,△ABP和△CDE全等.

故答案为1或7.

【点睛】

本题考查了全等三角形的判定,判定三角形全等方法有:ASA、SAS、AAS、SSS、HL.解决本题时注意分情况讨论,不要漏解.

2.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.

【答案】12.5

【解析】

【分析】

过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角

形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=1

2

×5×5=12.5,即可得出结论.

【详解】

如图,过A作AE⊥AC,交CB的延长线于E,

∵∠DAB=∠DCB=90°,

∴∠D+∠ABC=180°=∠ABE+∠ABC,

∴∠D=∠ABE,

又∵∠DAB=∠CAE=90°,

∴∠CAD=∠EAB,

又∵AD=AB,

∴△ACD≌△AEB(ASA),

∴AC=AE,即△ACE是等腰直角三角形,

∴四边形ABCD的面积与△ACE的面积相等,

∵S△ACE=1

2

×5×5=12.5,

∴四边形ABCD的面积为12.5,

故答案为12.5.

【点睛】

本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题

3.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CDE=55°.如图,则∠EAB的度数为_________

【答案】35°

【解析】

【分析】

过点E作EF⊥AD于F,根据角平分线上的点到角的两边的距离相等可得CE=EF,再根据到角的两边距离相等的点在角的平分线上可得AE是∠BAD的平分线,然后求出∠AEB,再根据直角三角形两锐角互余求解即可.

【详解】

过点E作EF⊥AD于F.

∵DE平分∠ADC,∴CE=EF.

∵E是BC的中点,∴CE=BE,∴BE=EF,∴AE是∠BAD的平分线,∴∠EAB=∠FAE.

∵∠B=∠C=90°,∴∠CDA+∠DAB=180°,∴2∠CDE+2∠EAB=180°,

∴∠CDE+∠EAB=90°,∴∠EAB=90°-∠CDE=90°-55°=35°.

故答案为:35°.

【点睛】

本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的判定,熟记性质并作辅助线是解题的关键.

4.AD、BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC=______.【答案】45°或135°

【解析】

【分析】

分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据等腰直角三角形的性质即可得答案.

【详解】

①如图,当△ABC为锐角三角形时,

∵AD、BE为△ABC的两条高,

∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,

∵∠BOD=∠AOE,

∴∠CAD=∠OBD,

又∵∠ODB=∠ADC=90°,OB=AC,

∴△BOD≌△ACD,

∴AD=BD,

∵AD⊥BC,

∴∠ABC=45°,

②如图,当∠B为钝角时,

∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,

又∵∠ADC=∠ODB=90°,OB=AC,

∴△BOD≌△ACD,

∴BD=AD,

∵AD⊥BC,

∴∠ABD=45°,

∴∠ABC=180°-45°=135°.

③如图,当∠A为钝角时,

同理可证:△BOD≌△ACD,

∴AD=BD.

∴∠ABC=45°,

④如图,当∠C为钝角时,

同理可证:△BOD≌△ACD,

∴AD=BD.

∴∠ABC=45°.

⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,

当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,

如图,当∠A为直角时,点A、E、O重合,

∵OB=AC,∠CAB=90°,

∴△ABC是等腰直角三角形,

∴∠ABC=45°.

综上所述:∠ABC的度数为45°或135°.

故答案为:45°或135°

【点睛】

本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.

相关文档
最新文档