圆锥曲线与方程练习题
圆锥曲线与方程测试题及参考答案
![圆锥曲线与方程测试题及参考答案](https://img.taocdn.com/s3/m/43b485d789eb172ded63b7aa.png)
高中数学选修2—1第二章《圆锥曲线与方程》单元测试题及参考答案(时间120分钟 总分150分)一、选择题(本大题共8小题,每小题5分,共40分。
每小题只有一个选项符合题目意思)1.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为 ( C ) A.12 B. 23 C.34 D.452.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( D )A.2833x y =B. 21633x y = C. 28x y = D. 216x y = 3.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= ( C )A.14B.35C.34D.454.已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( D )A.22182x y += B.221126x y += C.221164x y += D.221205x y += 5.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)A.5B.42C.3D.56.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( B ) A.28条 B.32条 C.36条 D.48条7.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =; 则AOB ∆的面积为 ( C )A.22B.2C.322D.228.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
苏教版(新教材)数学选择性必修第一册第3章圆锥曲线与方程3.1椭圆同步测验
![苏教版(新教材)数学选择性必修第一册第3章圆锥曲线与方程3.1椭圆同步测验](https://img.taocdn.com/s3/m/0d796769ae45b307e87101f69e3143323968f508.png)
苏教版(新教材)数学选择性必修第一册第3章圆锥曲线与方程3.1椭圆同步测验共 25 题一、选择题1、已知椭圆的焦点是F1、F2, P是椭圆上的一个动点,如果延长F1P到Q ,使得|PQ|=|PF2|,那么动点Q的轨迹是( )A.圆B.椭圆C.抛物线D.双曲线的一支2、下列说法中正确的是( ).A.已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和等于8的点的轨迹是椭圆B.已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和为6的点的轨迹是椭圆C.到F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆D.到F1(-4,0),F2(4,0)两点距离相等的点的轨迹是椭圆3、椭圆25x2+9y2=225的长轴长,短轴长,离心率依次是( )A.5,3,0.8B.10,6,0.8C.5,3,0.6D.10,6,0.64、若焦点在x轴上的椭圆的离心率为,则m的值为( )A. B.C. D.5、已知椭圆 (a>b>0)的左焦点为F ,右顶点为A ,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若AP:PB=2:1,则椭圆的离心率是( )A. B.C. D.6、椭圆的右焦点到直线y=x的距离是( )A. B.C.1D.7、已知点(3,2)在椭圆上,则( )A.点(-3,-2)不在椭圆上B.点(3,-2)不在椭圆上C.点(-3,2)在椭圆上D.无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上8、已知曲线C上的动点M(x,y)和向量a=(x+2,y),b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是( )A. B.C. D.9、椭圆(a > b > 0 )与直线 x+y=1 交于 p 、 Q 两点,且,其中 O 为坐标原点,求的值()A.1B.3C.2D.10、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A. B.C. D.11、已知椭圆的焦点在y轴上,长轴长是短轴长的两倍,则 m 的值为()A. B.C.2D.412、椭圆C:的左、右顶点分别为 A1 , A2 ,点P在C上且直线 PA2斜率的取值范围是 [-2,-1] ,那么直线 PA1斜率的取值范围是 ( )A. B.C. D.13、设定点F1(0,-3),F2(0,3),动点P(x , y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是( )A.椭圆B.线段C.椭圆、线段或不存在D.不存在14、已知点 P 是椭圆上一点,且在 x 轴上方,分别是椭圆的左、右焦点,直线的斜率为,则的面积是()A. B.C. D.15、椭圆的离心率为( )A. B.C. D.二、填空题16、求以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,)的椭圆的标准方程________.17、过点(-3,2)且与有相同焦点的椭圆方程是________.18、椭圆的左焦点为 F ,直线 x=m 与椭圆相交于 A,B 两点,若△FAB的周长最大时,△FAB的面积为ab ,则椭圆的离心率为________19、若焦点在x轴上的椭圆上存在一点,它与椭圆两焦点的连线互相垂直,则正数b的取值范围是________.20、已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的标准方程为________.三、解答题21、已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.(1)求动点M的轨迹C的方程;(2)过点P(0,3)的直线m与轨迹C交于A,B两点.若A是PB的中点,求直线m的斜率.22、已知椭圆 C 的中心在坐标原点,焦点在 X 轴上,椭圆 C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆 C 的标准方程;(2)若直线与椭圆 C 相交于 A,B 两点( A,B 不是左右顶点),且以 AB 为直径的圆过椭圆 C 的右顶点.求证:直线 l 过定点,并求出该定点的坐标.23、求满足下列各条件的椭圆的标准方程.(1)长轴长是短轴长的2倍且经过点A(2,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.24、已知B , C是两个定点,|BC|=8,且△ABC的周长等于18,求这个三角形的顶点A的轨迹方程.25、已知椭圆的中心在原点,焦点为,且离心率为.(1)求椭圆的方程;(2)直线(与坐标轴不平行)与椭圆交于不同的两点,且线段中点的横坐标为,求直线倾斜角的取值范围.参考答案一、选择题1、【答案】A【解析】【解答】∵|PF1|+|PF2|=2a , |PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a.即|F1Q|=2a.∴动点Q到定点F1的距离等于定长2a ,故动点Q的轨迹是圆.故选A.【分析】本题给出椭圆的焦点是F1、F2,求动点的轨迹,注意应用圆的定义与形成圆的条件即可2、【答案】C【解析】【解答】A中常数8=|F1F2|,B中常数6<|F1F2|,所以轨迹都不是椭圆;可计算C中常数等于>|F1F2|,符合椭圆定义,轨迹是椭圆;D中点的轨迹应该是一条直线,故选C.故选C.【分析】本题给出焦点满足的条件,求动点的轨迹,注意应用椭圆的定义与形成椭圆的条件即可.3、【答案】B【解析】【解答】把椭圆的方程写成标准形式为知a=5,b=3,c=4.∴2a=10,2b=6,=0.8.故选B.【分析】本题给出椭圆25x2+9y2=225方程,化为标准方程再求其他量,注意焦点在x轴或y轴即可.4、【答案】B【解析】【解答】.∵焦点在x轴上,∴a=,b=,c=,∴c=,e===,∴m= .故选B.【分析】根据椭圆 ,得出a与c ,求出离心率即可.5、【答案】D【解析】【解答】由已知B点横坐标为-c ,取B(-c , ).∵AB所在直线方程为y= (x-a),∴P点纵坐标为a-c.由△BFA∽△POA得,,∴2c2-3ac+a2=0.即2e2-3e+1=0解得e= (e=1舍去).故选D.【分析】本小题主要考查椭圆及椭圆的几何性质,注意结合直线的斜率求解即可.6、【答案】B【解析】【解答】椭圆的右焦点为F(1,0),根据点到直线的距离公式得故选B.【分析】根据椭圆标准的方程求出右焦点,再代入点到直线的距离的距离公式即可.【解答】∵点(3,2)在椭圆上,∴由椭圆的对称性知,点(-3,2)、(3,-2)、(-3,-2)都在椭圆上,故选C.【分析】本题考查了点与椭圆的位置关系,由椭圆的对称性,可得点(3,2)和点(-3,2)在椭圆上8、【答案】A【解析】【解答】|a|+|b|=6表示动点M到两定点(-2,0),(2,0)的距离之和为6,所以曲线C是以(-2,0),(2,0)为焦点,以6为长轴长的椭圆,故离心率e= ,故选A.【分析】根据椭圆的定义,求出a与c的值,即可确定离心率.9、【答案】C【解析】【解答】设,由OP⊥OQ x1x2+y1y2=0又将,代入①化简得 ..故选C.【分析】本小题主要考查了椭圆与直线的结合,联立直线消去y,利用两根之和与两根之积,求解即可.10、【答案】B【解析】【解答】由题意知2b=a+c ,又b2=a2-c2,∴4(a2-c2)=a2+c2+2ac.∴3a2-2ac-5c2=0.∴5c2+2ac-3a2=0.∴5e2+2e-3=0.∴e=或e=-1(舍去).故选B.【分析】根据长轴的长度、短轴的长度和焦距成等差数列,找出a与c的关系即可.11、【答案】A【解析】【解答】椭圆方程可化为 ,由焦点在轴上可得长半轴长为 ,短半轴长为1,所以,解得.故选A.【分析】本题给出椭圆的焦点在y轴上,化为标准方程再求其他量即可.12、【答案】B【解析】【解答】设,则,,,故 .因为 ,所以 .故选B.【分析】将代入到中,得到与之间的关系,利用为定值求解的取值范围.13、【答案】C【解析】【解答】当a>|F1F2|=6时,动点P的轨迹为椭圆;当a=|F1F2|=6时,动点P的轨迹为线段;当a<|F1F2|=6时,动点P的轨迹不存在.,故选C.【分析】本题给出点P满足的条件,求动点的轨迹,注意应用椭圆的定义与形成椭圆的条件即可.【解答】.∵椭圆化成标准形式为,∴,可得 .∴椭圆的焦点为, .设位于椭圆轴上方弧上的点为,则解得(负值舍去).∴△的面积 .故选C.【分析】根据椭圆化成标准形式为,可得 .设位于椭圆轴上方弧上的点为,再求出△的面积 .15、【答案】D【解析】【解答】.c2=16-8=8,∴e= .故选D.【分析】根据椭圆 ,得出a与c ,求出离心率即可.二、填空题16、【答案】【第1空】+=1;【解析】【解析】椭圆方程可化为+=1,焦点在y轴上,c=2.设椭圆方程为+=1(a>b>0),则=+4,将点M(2,)的坐标代入方程有+=1,解得=12,=8,故所求椭圆方程为+=1;17、【答案】【第1空】""【解析】【解答】因为焦点坐标为(± ,0),设方程为,将(-3,2)代入方程可得,解得a2=15,故方程为 .【分析】先根据确定另一个椭圆的焦点,再根据标准方程,代入即可.【第1空】""【解析】【解答】设椭圆的右 焦点为 .由椭圆的定义得 的周长为 .∵ ,∴ ,当 过点 时取等号.∴ 的周长 .∴ 的周长 的最大值是 .此时 的面积为,∴ .平方,得,即,∴.【分析】由椭圆的定义先确定△FAB 的周长的最大值,即可.19、【答案】【第1空】【解析】【解答】设椭圆的上顶点为,焦点为,椭圆上存在一点与两焦点的连线互相垂直,则.由余弦定理可得,即,所以,即,解得.【分析】设椭圆 的上顶点为,焦点为,椭圆上存在一点与两焦点的连线互相垂直,则,再根据余弦定理求解即可.20、【答案】【第1空】""【解析】【解答】设椭圆的长半轴长为a , 由2a =12知a =6.又e = = ,故c =,∴b 2=a 2-c 2=36-27=9.∴椭圆标准方程为.【分析】椭圆上一点到椭圆的两个焦点的距离之和为12,确定a 的长度,进而确定c , 即可.三、解答题21、【答案】(1)点M(x,y )到直线x =4的距离是它到点N (1,0)的距离的2倍,则所以,动点M 的轨迹为椭圆,方程为 (2)P(0,3),设 ,由题意知椭圆的上下顶点坐标分别是经检验直线m 不经过这2点,即直线m 斜率k 存在. .设直线m 方程为:联立椭圆和直线方程,整理得:所以,直线m 的斜率 .【解析】【分析】设出动点M 的坐标,根据已知条件列方程即可;设出直线方程与椭圆方程联立,得出k 与 的关系式,利用中点坐标即可得斜率.(1). 【解答】由题意设椭圆的标准方程为,由已知得:,所以椭圆的标准方程为.(2). 【解答】设.联立得,则又因为以 AB 为直径的圆过椭圆的右顶点,,即.所以...解得:,且均满足.当时, l 的方程,直线过点 (2,0) ,与已知矛盾;当时, l 的方程为,直线过定点.所以,直线 l 过定点,定点坐标为.【解析】【分析】(1)椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为3,最小值为1;可得;进而求出椭圆的标准方程.(2)中由直线交椭圆于不同两点得不等式△>0,由中点横坐标得一方程,两者联立即可求得范围,称为“方程不等式法”,解题中注意应用.23、【答案】(1). 【解答】(1)若椭圆的焦点在x轴上,设方程为(a>b>0) ,∵椭圆过点A(2,0),∴=1,a=2,∵2a=2·2b ,∴b=1,∴方程为若椭圆的焦点在y轴上,设椭圆方程为+ =1 (a>b>0),∵椭圆过点A(2,0),∴=1,∴b=2,2a=2·2b ,∴a=4,∴方程为+=1综上所述,椭圆方程为或(2). 【解答】由已知,∴ .从而b2=9,∴所求椭圆的标准方程为或 ,【解析】【分析】根据椭圆的标准方程的分情况讨论,焦点在x轴和在y轴上,即可.24、【答案】【解答】以过B、C两点的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy.如图所示.由|BC|=8,可知点B(-4,0),C(4,0),c=4.由|AB|+|AC|+|BC|=18,|BC|=8,得|AB|+|AC|=10,因此,点A的轨迹是以B、C为焦点的椭圆,这个椭圆上的点与两焦点的距离之和2a=10,但点A不在x轴上.由a=5,c=4,得b2=a2-c2=25-16=9.所以点A的轨迹方程为 (y≠0).【解析】【分析】利用椭圆的定义求动点的轨迹方程,应先根据动点具有的条件,验证是否符合椭圆的定义,即动点到两定点距离之和是否是一常数,且该常数(定值)大于两点的距离,若符合,则动点的轨迹为椭圆,然后确定椭圆的方程,这就是定义法求椭圆标准方程的方法,但注意检验.(1)【解答】(1)设椭圆方程为 .焦点为(0, ),,所以a=3,c= ,所以b=1.故所求椭圆方程为 ..(2)【解答】设直线的方程为y=kx+b,代入椭圆方程整理得(k2+9)x2+2kb+b2-9=0,设A(x1,y1)B(x2,y2) ,且线段AB中点的横坐标为,由题意得解得或 .又直线与坐标轴不平行,故直线倾斜角的取值范围是 .【解析】【分析】本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查学生分析解决问题的能力,(Ⅱ)中由直线交椭圆于不同两点得不等式△>0,由中点横坐标得一方程,两者联立即可求得范围,称为“方程不等式法”,解题中注意应用.。
高二数学圆锥曲线与方程试题答案及解析
![高二数学圆锥曲线与方程试题答案及解析](https://img.taocdn.com/s3/m/eb0f8772f56527d3240c844769eae009581ba2ba.png)
高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。
解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。
3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。
利用“点差法”求弦的斜率,由点斜式写出方程。
故选B。
4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。
【考点】本题主要考查抛物线的定义、标准方程、几何性质。
点评:熟记抛物线的标准方程及几何性质。
5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。
【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。
点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。
第二章 圆锥曲线与方程1
![第二章 圆锥曲线与方程1](https://img.taocdn.com/s3/m/e11caaff4693daef5ef73dc7.png)
第二章综合能力检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] ∵方程mx 2+ny 2=1,即x 21m +y 21n=1表示焦点在y 轴上的椭圆,∴需有:⎩⎪⎨⎪⎧1m >0,1n >0,1m <1n.∴m >n >0,故互为充要条件.2.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 应满足的条件是( )A .k >3B .2<k <3C .k =2D .0<k <2[答案] C[解析] k >0,c =9-k 2=k +3,∴k =2.3.(2012·东营市期末)已知点P 是抛物线y 2=-8x 上一点,设P到此抛物线准线的距离是d1,到直线x+y-10=0的距离是d2,则d1+d2的最小值是()A. 3 B.2 3C.6 2 D.3[答案] C[解析]抛物线y2=-8x的焦点F(-2,0),根据抛物线的定义知,d1+d2=|PF|+d2,显然当由点F向直线x+y-10=0作垂线与抛物线的交点为P时,d1+d2取到最小值,即|-2+0-10|2=6 2.4.已知动圆P过定点A(-3,0),并且与定圆B:(x-3)2+y2=16外切,则动圆的圆心P的轨迹是()A.线段B.双曲线C.圆D.椭圆[答案] B[解析]设动圆P和定圆B外切于M,则动圆的圆心P到两点A(-3,0)和B(3,0)的距离之差恰好等于定圆半径,即|PB|-|P A|=4,∴点P的轨迹是以A、B为焦点的双曲线的右支,故选B.5.与抛物线x2=4y关于直线x+y=0对称的抛物线的焦点坐标是()A.(1,0) B.(116,0)C.(-1,0) D.(0,-116)[答案] C[解析]x2=4y关于x+y=0,对称的曲线为y2=-4x,其焦点为(-1,0).6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( )A.33 B.22 C.14 D.12[答案] D[解析]由题意可得⎩⎪⎨⎪⎧c 2=m 2+n 2,c 2=am ,2n 2=2m 2+c 2.解得c 2a 2=14,∴e =c a =12.7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1 D.x 26-y 23=1[答案] A[解析] ∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,圆C 的标准方程为(x -3)2+y 2=4,∴圆心为C (3,0).又渐近线方程与圆C 相切,即直线bx -ay =0与圆C 相切,∴3b a 2+b2=2,∴5b 2=4a 2.① 又∵x 2a 2-y 2b 2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y24=1.8.已知椭圆2x 2+y 2=2的两个焦点为F 1,F 2,且B 为短轴的一个端点,则△F 1BF 2的外接圆方程为( )A .x 2+y 2=1B .(x -1)2+y 2=4C .x 2+y 2=4D .x 2+(y -1)2=4[答案] A[解析] 椭圆的焦点为F 1(0,1),F 2(0,-1),短轴的一个端点为B (1,0),可知BF 1⊥BF 2,于是△F 1BF 2的外接圆是以原点为圆心,以1为半径的圆,其方程为x 2+y 2=1.9.双曲线的虚轴长为4,离心率e =62,F 1、F 2分别为它的左、右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB |是|AF 2|与|BF 2|的等差中项,则|AB |等于( )A .8 2B .4 2C .2 2D .8[答案] A[解析] ∵c a =62,2b =4,∴a 2=8,a =22, |AF 2|-|AF 1|=2a =42, |BF 2|-|BF 1|=2a =42,两式相加得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=82,又∵|AF2|+|BF2|=2|AB|,|AF1|+|BF1|=|AB|,∴|AB|=8 2.10.设a>1,则双曲线x2a2-y2(a+1)2=1的离心率e的取值范围是()A.(2,2) B.(2,5)C.(2,5) D.(2,5)[答案] B[解析]由已知得e=a2+(a+1)2a=2a2+2a+1a2=1a2+2a+2=(1a+1)2+1,∵a>1,∴0<1a<1,∴1<1a+1<2,∴2<(1a+1)2+1<5,∴2<(1a+1)2+1<5,故选B.11.在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致是()[答案] D[解析]解法一:将方程a2x2+b2y2=1与ax+by2=0转化为标准方程x2 1a2+y21b2=1,y2=-ab x.因为a>b>0,因此1b>1a>0.所以有椭圆的焦点在y轴,抛物线的开口向左.解法二:将方程ax+by2=0中的y换成-y,其结果不变,即说明ax+by2=0的图象关于x轴对称,排除B、C,又椭圆的焦点在y 轴,排除A.12.B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km,现要在曲线PQ上选一处M建一座码头,向B、C两地运转货物.经测算,从M到B、C两地修建公路的费用都是a万元/km,那么修建这两条公路的总费用最低是()A.(7+1)a万元B.(27-2)a万元C.27a万元D.(7-1)a万元[答案] B[解析]设总费用为y万元,则y=a·(MB+MC)∵河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km,∴曲线PQ是双曲线的一支,B为焦点,且a=1,c=2.由双曲线定义,得MA-MB=2a,即MB=MA-2,∴y=a·(MA+MC-2)≥a·(AC-2).以直线AB为x轴,中点为坐标原点,建立直角坐标系,则A(-2,0),C(3,3).∴AC=(3+2)2+(3)2=27,故y≥(27-2)a(万元).二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=____.[答案] 2[解析] 本题考查抛物线的定义. 设A (x 1,y 1),B (x 2,y 2),抛物线y 2=4x ,焦点为(1,0),准线为x =-1. |AF |=x 1-(-1)=2,所以x 1=1. 则AF 与x 轴垂直,|BF |=|AF |=2.14.椭圆mx 2+ny 2=1与直线l :x +y =1交于M 、N 两点,过原点与线段MN 中点的直线斜率为22,则mn =________.[答案] 22[解析] 设M (x 1,y 1),N (x 2,y 2),∴mx 21+ny 21=1① mx 22+ny 22=1②又y 2-y 1x 2-x 1=-1,∴①-②得:m -n ·y 1+y 2x 1+x 2=0, ∵y 1+y 2x 1+x 2=y 1+y 22-0x 1+x 22-0=22,∴m =22n ,∴m n =22. 15.直线y =kx +1(k ∈R )与椭圆x 25+y 2m =1恒有公共点,则m 的取值范围为________.[答案] m ≥1且m ≠5[解析] 将y =kx +1代入椭圆方程,消去y 并整理,得(m +5k 2)x 2+10kx +5-5m =0.由m >0,5k 2≥0,知m +5k 2>0,故△=100k 2-4(m +5k 2)(5-5m )≥0对k ∈R 恒成立. 即5k 2≥1-m 对k ∈R 恒成立,故 1-m ≤0,∴m ≥1.又∵m ≠5,∴m 的取值范围是m ≥1且m ≠5.16.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的双曲线的离心率为________.[答案] 2[解析] ∵AB =2c =4,∴c =2.∵AB =4,BC =3,∠ABC =90°,∴AC =5, ∴2a =CA -CB =2,∴a =1,∴e =ca =2.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P (32,6),求抛物线方程和双曲线方程.[解析] 依题意,设抛物线方程为y 2=2px ,(p >0), ∵点(32,6)在抛物线上,∴6=2p ×32, ∴p =2,∴所求抛物线方程为y 2=4x . ∵双曲线左焦点在抛物线的准线x =-1上,∴c =1,即a 2+b 2=1,又点(32,6)在双曲线上,∴94a 2-6b 2=1, 由⎩⎨⎧a 2+b 2=1,94a 2-6b 2=1.解得a 2=14,b 2=34.∴所求双曲线方程为4x 2-43y 2=1.18.(本小题满分12分)设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[解析] 解法一:由已知|PF 1|+|PF 2|=6,|F 1F 2|=25, 根据直角的不同位置,分两种情况: 若∠PF 2F 1为直角,则 |PF 1|2=|PF 2|2+|F 1F 2|2,即 |PF 1|2=(6-|PF 1|2)+20,解得 |PF 1|=143,|PF 2|=43,故|PF 1||PF 2|=72;若∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2, 即20=|PF 1|2+(6-|PF 1|)2,得 |PF 1|=4,|PF 2|=2,故|PF 1||PF 2|=2.解法二:由椭圆的对称性不妨设P (x ,y )(x >0,y >0),则由已知可得F 1(-5,0),F 2(5,0).根据直角的不同位置,分两种情况:若∠PF 2F 1为直角,则P (5,43),故|PF 1||PF 2|=72;若∠F 1PF 2为直角,则⎩⎨⎧x 29+y 24=1,yx +5·y x -5=-1.解得x =355,y =455,即P (355,455), 于是|PF 1|=4,|PF 2|=2,故|PF 1||PF 2|=2.19.(本小题满分12分)已知抛物线y 2=4x ,椭圆x 29+y2m =1,它们有共同的焦点F 2,并且相交于P 、Q 两点,F 1是椭圆的另一个焦点,试求:(1)m 的值; (2)P 、Q 两点的坐标; (3)△PF 1F 2的面积.[解析] (1)∵抛物线方程为y 2=4x ,∴2p =4, ∴p2=1,∴抛物线焦点F 2的坐标为(1,0),它也是椭圆的右焦点,在椭圆中,c =1,a 2=9=b 2+c 2,∴9=m +1,∴m =8.(2)解方程组⎩⎨⎧ y 2=4x ,x 29+y 28=1.得⎩⎨⎧x =32,y =6,或⎩⎨⎧x =32,y =- 6.∴点P 、Q 的坐标为(32,6)、(32,-6). (3)点P 的纵坐标6就是△PF 1F 2的边F 1F 2上的高, ∴S △PF 1F 2=12|F 1F 2|·|y p |=12×2×6= 6.20.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x+y =1相交于两个不同的点A 、B ,求双曲线C 的离心率的取值范围.[解析] 由C 与l 相交于两个不同点,故知方程组⎩⎨⎧x 2a2-y 2=1,x +y =1有两组不同的实根,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2,且a ≠1. 双曲线的离心率e =1+a 2a =1a 2+1,因为0<a <2且a ≠1. 所以e >62,且e ≠ 2.即离心率e 的取值范围为⎝ ⎛⎭⎪⎫62,2∪(2,+∞).21.(本小题满分12分)如图是抛物线形拱桥,设水面宽|AB |=18m ,拱顶离水面的距离为8m ,一货船在水面上的部分的横断面为一矩形CDEF .若矩形的长|CD |=9m ,那么矩形的高|DE |不能超过多少m 才能使船通过拱桥?[解析] 如图,以O 点为原点,过O 且平行于AB 的直线为x 轴,以线段AB 的垂直平分线为y 轴建立直角坐标系.则B (9,-8),设抛物线方程为x 2=-2py (p >0).∵点B 在抛物线上,∴81=-2p ·(-8), ∴p =8116,∴抛物线的方程为x 2=-818y ,∴当x =92时,y =-2,∴|DE |=6,∴当矩形的高|DE |不超过6m 时,才能使船通过拱桥. 22.(本小题满分14分)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OP →+OQ →与AB →共线?如果存在,求k 值;如果不存在,请说明理由.[解析] (1)由已知条件,直线l 的方程为y =kx +2,代入椭圆方程整理得⎝⎛⎭⎪⎫12+k 2x 2+22kx +1=0.∵直线l 与椭圆有两个不同的交点,∴Δ=8k 2-4⎝⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22.即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞.(2)设P (x 1,y 1)、Q (x 2,y 2), 则OP →+OQ →=(x 1+x 2,y 1+y 2),又x 1+x 2=-42k1+2k 2.又y 1+y 2=k (x 1+x 2)+22=221+2k .又A (2,0),B (0,1),∴AB →=(-2,1). ∵OP →+OQ →与AB →共线, ∴x 1+x 2=-2(y 1+y 2),∴-42k 1+2k 2=-2×221+2k 2,解得k =22. 由(1)知k <-22或k >22,故没有符合题意的常数k .。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)
![(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)](https://img.taocdn.com/s3/m/8da65424bb4cf7ec4bfed073.png)
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
第二章圆锥曲线与方程_单元练习题_文科(选修1-1)B卷
![第二章圆锥曲线与方程_单元练习题_文科(选修1-1)B卷](https://img.taocdn.com/s3/m/62082b31f111f18583d05ab2.png)
第二章B 卷B1 椭圆 (课外提升训练)【理解整合】1. ★★椭圆2212x y +=上的一点P 到焦点1F 的距离等于1,则点P 到另一个焦点2F 的距离是( )A .1B .3C 1D .12.★★焦点坐标为()()0,6,0,6-,10a =,则此椭圆的标准方程为( )A .22110064x y +=B .22110036x y +=C .22110064y x +=D .22110036y x += 3.★★若椭圆2214x y m +=的焦距为2,则m 的值为( ) A .5B .8C .53或D .204.★★★下列方程所表示的曲线中,关于x 轴、y 轴都对称的是( )A .2220x xy y ++=B .2250x x y -+=C .24981x y +=D .224x y =5.★★椭圆221123x y +=的一个焦点为1F ,点P 在椭圆上,如果线段1PF 的中点M 在y 轴上,那么M 点的纵坐标是( )A .±...34±6.★★若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是( )A .221259x y +=B .()2210259y x y +=≠C .()2210169x y y +=≠D . ()2210259x y y +=≠ 7.★★★P 是长轴在x 轴上的椭圆22221x y a b+=上的点,12,F F 分别为椭圆的两个焦点,椭圆的半焦距为c ,则12PF PF 的最大值与最小值之差一定是( )A .1B .2aC .2bD .2c8.★★★两焦点坐标分别为()0,2-,()0,2且经过点35,22⎛⎫- ⎪⎝⎭的椭圆的标准方程是 。
9.★★★如果方程222x ky +=表示焦点在y 轴上的椭圆,求实数k 的取值范围。
10.★★★如果椭圆22360ax y a +-=的一个焦点坐标为()0,2,求a 的值。
高三数学一轮复习章节练习:34圆锥曲线与方程
![高三数学一轮复习章节练习:34圆锥曲线与方程](https://img.taocdn.com/s3/m/075c761c5f0e7cd18425365d.png)
高三数学章节训练题34《圆锥曲线与方程》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共6小题,每小题5分,满分30分) 1.若椭圆经过原点,且焦点为12(1,0),(3,0)F F ,则其离心率为 ( )A .34 B .23 C .12 D .142.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2=,且1=⋅AB OQ ,则P 点的轨迹方程是( )A .()0,0123322>>=+y x y x B .()0,0123322>>=-y x y x C .()0,0132322>>=-y x y xD .()0,0132322>>=+y x y x 3.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A .2B .332 C . 2 D .4 4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是( )A .24(1)(01)y x x =--<≤ B .24(1)(01)y x x =-<≤ C .24(1)(01)y x x =+<≤D . 22(1)(01)y x x =--<≤5.直线2y k =与曲线2222918k x y kx += (,)k R ∈≠且k 0的公共点的个数为( )A . 1B . 2C . 3D . 46.曲线221(6)106x y m m m+=<--与曲线221(59)59x y m m m +=<<--的 ( ) A .焦距相等 B .离心率相等 C .焦点相同 D .准线相同 二、填空题:(本大题共4小题,每小题5分,满分20分)7.椭圆221123x y +=的两个焦点为12,F F ,点P 在椭圆上.如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的______________倍.8.如图把椭圆2212516x y +=的长轴AB 分成8等 分,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是椭圆的焦点,则|P 1F|+|P 2F|+…+|P 7F|= . 9.已知两点(5,0),(5,0)M N -,给出下列直线方程:①530x y -=;②53520x y --=;③40x y --=.则在直线上存在点P 满足||||6M P P N =+的所有直线方程是_______.(只填序号)10.以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,k PB PA =+||||,则动点P 的轨迹为椭圆;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③到定直线c a x 2-=和定点)0,(c F -的距离之比为)0(>>a c ca的点的轨迹是双曲线的左半支;④方程02722=+-x x 的两根可分别作为椭圆和双曲线的离心率; 其中真命题的序号为 (写出所有真命题的 三、解答题:(本大题共2小题,满分30分)11.(本小题满分14分)已知抛物线28y x =,是否存在过点(1,1)Q 的弦AB ,使AB 恰被Q平分.若存在,请求AB 所在直线的方程;若不存在,请说明理由.12.(本小题满分16分)设,x y R ∈,,i j为直角坐标平面内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++ ,(2)b xi y j =+- ,且||||8a b +=. (1)求点(,)M x y 的轨迹C 的方程;(2)过点(0,3)作直线l 与曲线C 交于,A B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.高三数学章节训练题34《圆锥曲线与方程》答案一、 选择题1、C2、D3、C4、A5、D6、A 2.D .由PABP 2=及,A B分别在x 轴的正半轴和y 轴的正半轴上知,3(,0),2A x (0,3)B y ,3(,3)2AB x y =- ,由点Q 与点P 关于y 轴对称知,(,)Q x y -,OQ =(,)x y -,则2233(,3)(,)31(0,0)22OQ AB x y x y x y x y ⋅=-⋅-=+=>>二、填空题7.7倍.由已知椭圆的方程得123,(3,0),(3,0)a b c F F ===-.由于焦点12F F 和关于y 轴对称,所以2PF 必垂直于x 轴.所以21||222P PF PF ===,所以21||7||PF PF =. 8.35. 设P 1(x 1,y 1),P 2(x 2,y 2),…,P 7(x 7,y 7),所以根据对称关系x 1+x 2+…+x 7=0,于是 |P 1F|+|P 2F|+…+|P 7F|=a+ex 1+a+ex 2+…+a+ex 7=7a+e(x 1+x 2+…+x 7)= 7a=35,所以应填35.9.②③. 由||||6MP PN -=可知点P 在双曲线221916x y -=的右支上,故只要判断直线与双曲线右支的交点个数.因为双曲线的渐近线方程为43y x =±,直线①过原点且斜率5433>,所以直线①与双曲线无交点;直线②与直线①平行,且在y 轴上的截距为523-故与双曲线的右支有两个交点;直线③的斜率413<,故与双曲线的右支有一个交点.10.④三、解答题11.假设存在这样的直线,则直线的斜率一定存在,设为k ,点1122(,),(,)A x y B x y 在抛物线上,所以21122288y x y x ⎧=⎪⎨=⎪⎩,两式作差得,121212()()8()y y y y x x +-=-,即121212()()8y y y y x x -+=-,解得4k =,故直线方程为14(1)y x -=-,即43y x =-.经验证,直线符合条件.12.(1)由||||8a b+=,84=>,设12(0,2),(0,2)F F -则动点M 满足1212||||84||M F M F F F +=>=,所以点M 在椭圆上,且椭圆的4,2,a c b ===所以轨迹C 的方程为2211612y x +=.(2)设直线的斜率为k ,则直线方程为3y kx =+,联立方程组22311612y kx y x =+⎧⎪⎨+=⎪⎩消去y得:22(43)18210k x kx ++-=,22(18)84(43)0k k ∆=++>恒成立,设1122(,),(,)A x y B x y ,则1212221821,4343k x x x x k k+=-=++.由AP OB = ,所以四边形OAPB 为平行四边形.若存在直线l ,使四边形OAPB 为矩形,则OA OB ⊥,即212121212(1)3()90OA OB x x y y k x x k x x ⋅=+=++++= ,解得4k =±,所以直线l的方程为34y x =±+,此时四边形OAPB 为矩形.。
第二章圆锥曲线与方程_单元练习题_文科(选修1-1)B卷
![第二章圆锥曲线与方程_单元练习题_文科(选修1-1)B卷](https://img.taocdn.com/s3/m/96e054d9a58da0116c1749d6.png)
第二章圆锥曲线与方程B 卷B1 椭圆 (课外提升训练) 1. 椭圆2212xy+=上的一点P 到焦点1F 的距离等于1,则点P 到另一个焦点2F 的距离是( )A .1B .3C .21-D .221-2.焦点坐标为()()0,6,0,6-,10a =,则此椭圆的标准方程为( )A .22110064xy+= B .22110036xy+= C .22110064yx+= D .22110036yx+=3.若椭圆2214xym+=的焦距为2,则m 的值为( ) A .5 B .8 C .53或 D .204.下列方程所表示的曲线中,关于x 轴、y 轴都对称的是( ) A .2220x x y y ++=B .2250x x y -+=C .24981x y +=D .224x y =5.椭圆221123xy+=的一个焦点为1F ,点P 在椭圆上,如果线段1P F 的中点M 在y 轴上,那么M 点的纵坐标是( )A .34±B .32±C .24±D .34±6.若A B C ∆的两个顶点()()4,0,4,0A B -,A B C ∆的周长为18,则顶点C 的轨迹方程是( )A .221259xy+=B .()2210259yxy +=≠C .()2210169xyy +=≠D .()2210259xyy +=≠7.P 是长轴在x 轴上的椭圆22221x y ab+=上的点,12,F F 分别为椭圆的两个焦点,椭圆的半焦距为c ,则12P F P F 的最大值与最小值之差一定是( ) A .1 B .2a C .2b D .2c 8.两焦点坐标分别为()0,2-,()0,2且经过点35,22⎛⎫-⎪⎝⎭的椭圆的标准方程是 。
9.如果方程222x k y +=表示焦点在y 轴上的椭圆,求实数k 的取值范围。
10.如果椭圆22360a x y a +-=的一个焦点坐标为()0,2,求a 的值。
高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)
![高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)](https://img.taocdn.com/s3/m/f25339e5aef8941ea76e0574.png)
12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。
第二章 章末检测(二) 圆锥曲线与方程
![第二章 章末检测(二) 圆锥曲线与方程](https://img.taocdn.com/s3/m/f4373ee9240c844769eaee89.png)
章末检测(二) 圆锥曲线与方程 时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 23-y 26=1的右焦点到渐近线的距离是( ) A.3 B . 6 C .3D .6解析:双曲线的焦点到渐近线的距离等于b ,即b = 6. 答案:B2.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于( ) A .4 B .6 C .7D .8解析:由渐近线方程y =32x ,且b =3,得a =2,由双曲线的定义,得|PF 2|-|PF 1|=4,又|PF 1|=3, ∴|PF 2|=7. 答案:C3.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1.答案:C4.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6 B .5 C .4D .3解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6. 答案:A5.已知椭圆x 2a 2+y 22=1的一个焦点为(2,0),则椭圆的方程是( ) A.x 24+y 22=1 B.x 23+y 22=1 C .x 2+y 22=1D.x 26+y 22=1解析:由题意知,椭圆焦点在x 轴上,且c =2, ∴a 2=2+4=6,因此椭圆方程为x 26+y 22=1,故选D.答案:D6.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析:由条件知|PM |=|PF |,∴|PO |+|PF |=|PO |+|PM |=|OM |=k >|OF |, ∴P 点的轨迹是以O ,F 为焦点的椭圆. 答案:A7.从抛物线y 2=4x 上一点P 引其准线的垂线,垂足为M ,设抛物线的焦点为F , 且|PF |=5,则△MPF 的面积为( )A .5 6 B.2534 C .20D .10解析:由题意,设P ⎝ ⎛⎭⎪⎫y 204,y 0,则|PF |=|PM |=y 204+1=5,所以y 0=±4,所以S △MPF =12|PM |·|y 0|=10. 答案:D8.椭圆x 24+y 23=1的离心率为e ,点(1,e )是圆x 2+y 2-4x -4y +4=0的一条弦的中点,则此弦所在直线的方程是( ) A .3x +2y -4=0 B .4x +6y -7=0 C .3x -2y -2=0D .4x -6y -1=0解析:依题意得e =12,圆心坐标为(2,2),圆心(2,2)与点⎝ ⎛⎭⎪⎫1,12的连线的斜率为2-122-1=32,所求直线的斜率等于-23,所以所求直线方程是y -12=-23(x -1),即4x +6y -7=0,选B. 答案:B9.已知定点A (2,0),它与抛物线y 2=x 上的动点P 连线的中点M 的轨迹方程为( )A .y 2=2(x -1)B .y 2=4(x -1)C .y 2=x -1D .y 2=12(x -1)解析:设P (x 0,y 0),M (x ,y ),则⎩⎪⎨⎪⎧x =x 0+22y =y 02,所以⎩⎪⎨⎪⎧x 0=2x -2y 0=2y,由于y 20=x 0,所以4y 2=2x -2, 即y 2=12(x -1).答案:D10.设F 1、F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值等于( ) A .0 B .2 C .4D .-2解析:易知当P ,Q 分别在椭圆短轴端点时, 四边形PF 1QF 2的面积最大.此时,F 1(-3,0),F 2(3,0),P (0,1), ∴PF 1→=(-3,-1),PF 2→=(3,-1), ∴PF 1→·PF 2→=-2. 答案:D11.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为( ) A .2 B .3 C.52D.32解析:由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知当|AB |为通径,即|AB |=2p =4时,为最小值,所以|AC |+|BD |的最小值为2. 答案:A12.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎭⎪⎫14,94 B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫0,12 解析:由题意:B ⎝ ⎛⎭⎪⎫c ,b 2a ,∴k =b 2ac +a=a -c a =1-e ,∴13<1-e <12,∴12<e <23,故选C. 答案:C二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.已知F 1(-1,0),F 2(1,0)是椭圆x 2a 2+y 2b 2=1的两个焦点,若椭圆上一点P 满足|PF 1|+|PF 2|=4,则椭圆的离心率e =________.解析:由椭圆定义得|PF 1|+|PF 2|=4,所以2a =4,解得a =2,又c =1,所以e =c a =12. 答案:1214.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点, 若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 解析:由双曲线的方程可知a =1,c =2, ∴||PF 1|-|PF 2||=2a =2, ∴|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4, ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=(2c )2=8, ∴2|PF 1||PF 2|=4,∴(|PF 1|+|PF 2|)2=8+4=12, ∴|PF 1|+|PF 2|=2 3. 答案:2 315.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A ,B 两点(点A 在y 轴左侧),则|AF ||FB |=________.解析:由题意可得焦点F ⎝ ⎛⎭⎪⎫0,p 2,故直线AB 的方程为y =33x +p 2,与x 2=2py 联立得A ,B 两点的横坐标为x A =-33p ,x B =3p ,故A ⎝ ⎛⎭⎪⎫-33p ,16p ,B ⎝ ⎛⎭⎪⎫3p ,32p ,所以|AF |=23p , |BF |=2p ,所以|AF ||BF |=13. 答案:1316. 已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1(图略), 则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,∴|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).答案:x 24+y 23=1(y ≠0)三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(12分)如果直线l 过定点M (1,2)且与抛物线y =2x 2有且只有一个公共点,求直线l 的方程.解析:①当直线l 的斜率不存在时,x =1与对称轴平行,有一个交点;②当直线l 的斜率存在时,设直线方程为y -2=k (x -1), 与y =2x 2联立,得2x 2-kx +k -2=0, 由Δ=k 2-8(k -2)=0得k =4, 所以直线l 的方程为y =4x -2.综上,直线l 的方程为x =1或y =4x -2.18.(12分)已知双曲线的中心在原点,过右焦点F (2,0)作斜率为 35的直线,交双曲线于M ,N 两点,且|MN |=4,求双曲线方程.解析:设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由右焦点为F (2,0)知c =2,b 2=4-a 2,则双曲线方程为x 2a 2-y 24-a2=1.直线MN 的方程为:y =35(x -2),代入双曲线方程整理,得(20-8a 2)x 2+12a 2x +5a 4-32a 2=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-12a 220-8a 2,x 1x 2=5a 4-32a 220-8a 2. ∴|MN |=1+⎝⎛⎭⎪⎫352×(x 1+x 2)2-4x 1x 2=85×⎝ ⎛⎭⎪⎪⎫-12a 220-8a 22-4·5a 4-32a 220-8a 2=4. 解得:a 2=1,∴b 2=4-1=3. 故所求双曲线方程为:x 2-y 23=1.19.(12分)已知抛物线的顶点在原点,焦点F 在x 轴正半轴上,且过点P (2,2),过F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. (1)求抛物线的方程;(2)设直线l 是抛物线的准线,求证:以AB 为直径的圆与准线l 相切. 解析:(1)设抛物线y 2=2px (p >0),将点(2,2)代入得p =1. ∴y 2=2x 为所求抛物线的方程.(2)证明:设l AB 的方程为:x =ty +12,代入y 2=2x 得:x 2-(1+2t 2)x +14=0,设AB 的中点为M (x 0,y 0),则x 0=1+2t 22.∴点M 到准线l 的距离d =x 0+12=1+2t 22+12=1+t 2,又AB =x 1+x 2+p =1+2t 2+1=2+2t 2,∴d =12AB ,故以AB 为直径的圆与准线l 相切.20.(12分)正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线 y 2=2px (p >0)上,求这个正三角形的边长.解析:如图所示,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又|OA |=|OB |,所以x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,整理得(x 1-x 2)(x 1+x 2+2p )=0.因为x 1>0,x 2>0,2p >0,所以x 1=x 2,由此可得|y 1|=|y 2|,即点A ,B 关于x 轴对称.由此得∠AOx =30°,所以y 1=33x 1,与y 21=2px 1联立,解得y 1=23p .所以|AB |=2y 1=43p .21.(13分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点F 到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.解析:(1)依题意,可设椭圆方程为x 2a 2+y 2=1,则右焦点为F (a 2-1,0).由题意,知|a 2-1+22|2=3,解得a 2=3.故所求椭圆的方程为x 23+y 2=1.(2)设点M ,N 的坐标分别为M (x M ,y M ),N (x N ,y N ),弦MN 的中点为P (x P ,y P ).由⎩⎨⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0.∵直线y =kx +m (k ≠0)与椭圆相交于不同的两点, ∴Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0⇒m 2<3k 2+1, ①∴x P =x M +x N 2=-3mk 3k 2+1,从而y P =kx P +m =m 3k 2+1,∴k AP =y P +1x P =-m +3k 2+13mk .又|AM |=|AN |, ∴AP ⊥MN ,则-m +3k 2+13mk =-1k , 即2m =3k 2+1,②把②代入①,得m 2<2m ,解得0<m <2. 由②,得k 2=2m -13>0,解得m >12.综上可得,m 的取值范围是12<m <2.22.(13分)已知椭圆E 的方程为:x 2a 2+y 2b 2=1(a >b >0),其右焦点为F 2(1,0),点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上.(1)求椭圆E 的方程;(2)过椭圆E 的左顶点A 作两条互相垂直的直线分别与椭圆E 交于(不同于点A 的)两点M ,N .问:直线MN 是否一定经过x 轴上一定点?若是,求出定点坐标;若不是,说明理由.解析:(1)∵椭圆E 的右焦点为F 2(1,0),∴c =1,左焦点为F 1(-1,0),∵点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上. ∴2a =|PF 1|+|PF 2| =(1+1)2+⎝ ⎛⎭⎪⎫322+(1-1)2+⎝ ⎛⎭⎪⎫322=4.∴a =2,b =a 2-c 2= 3.∴椭圆E 的方程为x 24+y 23=1.(2)由(1)知A 点坐标为(-2,0),设直线AM 的方程为y =k (x +2), 则由⎩⎪⎨⎪⎧y =k (x +2)3x 2+4y 2=12⇒(3+4k 2)x 2+16k 2x +16k 2-12=0,解得M ⎝ ⎛⎭⎪⎪⎫6-8k 23+4k 2,12k 3+4k 2, 同理可得N ⎝ ⎛⎭⎪⎪⎫6k 2-83k 2+4,-12k 3k 2+4. 若6-8k 23+4k 2=6k 2-83k 2+4,则得k 2=1,即直线MN 的方程为x =-27,此时过x 轴上一点Q ⎝ ⎛⎭⎪⎫-27,0.当k 2≠1时,假设直线MN 过x 轴上一定点Q ′(m,0),则Q ′M →∥NQ ′→,又Q ′M →=⎝ ⎛⎭⎪⎪⎫6-8k 23+4k 2-m ,12k 3+4k 2,NQ ′→=⎝ ⎛⎭⎪⎪⎫m -6k 2-83k 2+4,12k 3k 2+4, 则由Q ′M →∥NQ ′→,解得m =-27.∴直线MN 过x 轴上一定点Q ⎝ ⎛⎭⎪⎫-27,0.。
圆锥曲线与方程综合测试题
![圆锥曲线与方程综合测试题](https://img.taocdn.com/s3/m/a30ff6d95022aaea998f0fc1.png)
圆锥曲线与方程1、已知0≠mn ,则方程122=+ny mx 与02=+ny mx 在同一坐标系下的图形可能是( A )2、如图直线l:022=+-y x 过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率( D ) A 51 B 52 C 55 D 552 3、已知ABC ∆的顶点B ,C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长为(C ) A 32 B6 C 34 D 124、双曲线19422=-y x 的渐近线方程是( A ) A x y 23+-= B x y 32+-= C x y 49+-= D x y 94+-= 5、焦点为(-2,0)的抛物线的标准方程为( D ) A x y 42= B x y 82= C x y 42-= D x y 82-=6、已知椭圆的焦点是P F F ,,21是椭圆上的一个动点,如果延长P F 1到Q 使得2PF PQ =那么动点Q 的轨迹是( A )A 圆B 椭圆C 双曲线的一支D 抛物线7、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是( A ) A 34 B 57 C 58 D3 8、已知椭圆4222=+y x ,则直线032=-+y x 被椭圆截得的弦长为( C ) A 23 B 32 C 330 2339、椭圆1822=+m y x 的焦点与双曲线1322=-y x 的焦点相同,则m 的值为( D ) A 12 B 10 C 6 D 410、若R k ∈,则k>3是方程13322=+--k y k x 表示双曲线的( A ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件11、抛物线()0242 a ax y =上有一点M ,它的横坐标为3,它到焦点的距离是5,则抛物线的方程为( A )A x y 82=B x y 122=C x y 162=D x y 202=12、一动圆的圆心在抛物线y x 42=上,过点(0,1)且恒与直线L 相切,则直线L 的方程为(C )Ax=1 B 161=x Cy=-1 D 161-=y 13、已知抛物线22x y =上两点()()2211,,y x B y x A 关于直线y=x+m 对称,且2121-=x x ,那么m 的值为14、过椭圆14522=+y x 的右焦点做一条斜率为2的直线与椭圆交于A,B 两点,O 是坐标原点,则OAB ∆的面积为15、已知抛物线过点()2,3-,则抛物线的标准方程为16、M 是椭圆14922=+y x 上任意一点,21F F 是椭圆的左右焦点,则21MF MF 的最大值是17、椭圆C :()012222 b a by a x =+的两个焦点为2,1F F ,点P 在椭圆C 上,且1PF 垂直21F F ,3143421==PF PF (1)求椭圆C 的方程 (2)若直线L 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A,B 两点,且A,B 关于点M 对称,求直线L 的方程18、如图所示A ,B ,C 是三个观察哨,A 在B 的正东,两地相距6km ,C 在B 的北偏西∙30,两地相距4km 。
圆锥曲线求方程真题练习(解析版)
![圆锥曲线求方程真题练习(解析版)](https://img.taocdn.com/s3/m/e984d9f329ea81c758f5f61fb7360b4c2e3f2a77.png)
圆锥曲线求方程真题练习(解析版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.2.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点. (1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,渐近线方程为y =. (1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①①①中选取两个作为条件,证明另外一个成立:①M 在AB 上;①PQ AB ∥;①||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.4.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =6.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.8.已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求①AMN 的面积的最大值.9.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.10.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析11.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.12.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.13.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.14.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.15.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ①x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.(1C 上. (①)求C 的方程;(①)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.17.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.18.已知点()0,2A -,椭圆E :22221(0)x y a b a b +=>>F 是椭圆的焦点,直线AFO 为坐标原点. (1)求E 的方程; (2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ △的面积最大时,求l 的方程.19.平面直角坐标系xOy 中,过椭圆 M :22221x y a b +=( 0a b >>)右焦点的直线0x y +交 M 于A ,B 两点,P 为AB 的中点,且 OP 的斜率为12.(①)求椭圆M 的方程; (①)C , D 为M 上的两点,若四边形ACBD的对角线 CD AB ⊥,求四边形ACBD 面积的最大值.20.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,长轴长为4,离心率为12.过点(4,0)Q 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)设直线,AF BF 的斜率分别为()122,0k k k ≠,求证:12k k 为定值.。
(必考题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)
![(必考题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)](https://img.taocdn.com/s3/m/4e0ff0fda300a6c30d229f4c.png)
一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.已知斜率为(0)k k >的直线l 与抛物线2:4C y x =交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM ∆的面积等于3,则k =( )A .14B .13C .12D .33.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF FB =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52C D .536.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .2y x =±D .2y x =±7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F ,,点M 在双曲线C 的渐近线上,若212211221cos 12cos ,3MF F MF F FMF MF F ∠+=∠∠=∠,则双曲线C 的离心率为( )A .BC .D .28.已知点P 是抛物线22y x =上的一个动点,则点P 到点32,32D ⎛⎫⎪⎝⎭的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .729.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25410.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条11.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2a x c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( ) A .12B .22C .34D .4512.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为___________.15.过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,且点A 为线段PB 的中点,则直线l 的斜率为___________.16.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线与圆()22234x y +-=相交于A ,B 两点,且2AB =,则双曲线C 的离心率为___________.17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.19.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.20.已知抛物线y 2=4x 的焦点为F ,过点F 的直线AB 交抛物线于A ,B 两点,交准线于点C ,若|BC |=2|BF |,则|AB |=_____.三、解答题21.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,当直线AB 的斜率为0时,||||7AB CD +=.(Ⅰ)求椭圆的方程;(Ⅱ)求||||AB CD +的取值范围.22.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为222 (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.23.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.24.在平面直角坐标系中,已知抛物线22y px =的准线方程为12x =-.(1)求p 的值;(2)直线:(0)l y x t t =+≠交抛物线于A ,B 两点,O 为坐标原点,且OA OB ⊥,求线段AB 的长度.25.已知椭圆()2222:10x y C a b a b +=>>3,22⎛ ⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB l 的方程.26.已知椭圆2222:1(0)x y C a b a b +=>>(2,1),,A P Q --在椭圆C 上,且,P Q 异于点A .(1)求椭圆C 的方程;(2)若||||,||||OP OQ AP AQ ==,求直线PQ 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值. 【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.B解析:B 【分析】先求出F ,设出A 、B 、M ,用“点差法”找出121202y y k x x y -==-,利用OFM ∆的面积等于3计算出0y ,求出斜率k . 【详解】由抛物线2:4C y x =知:焦点()1,0F 设()()()112200,,,,,,A x y B x y M x y因为M 是线段AB 的中点,所以0121222x x x y y y =+⎧⎨=+⎩将2114y x =和2224y x =两式相减可得:()2212124y y x x -=-,即121202y y k x x y -==- ∵000k y >∴> ∴00113,62OFM S y y ∆=⨯⨯=∴=, 022163k y ∴===. 故选:B 【点睛】“中点弦”问题通常用“点差法”处理.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=. 设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==,121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N kk ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN =23(12p k k +=,∵AB =,∴22232(1)(12p k p k k k++=, 整理得23k =,∵0k >,∴k =∴倾斜角为60︒. 故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.5.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:2b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.7.D解析:D 【分析】根据角的关系计算出12216030MF F MF F ∠=︒∠=︒,,从而求出渐近线方程为y =,得到ba=. 【详解】因为21221cos 12cos MF F MF F ∠+=∠,故1221cos cos2MF F MF F ∠=∠,即12212MF F MF F ∠=∠,而12213FMF MF F ∠=∠,故12216030MF F MF F ∠=︒∠=︒,,则三角形1MFO 为等边三角形,故双曲线C 的渐近线方程为y =,则2e ==,故选D .【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.8.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -= 所以点P 到点332D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +> 所以点P 到点332D ⎛⎝的距离与点P 到y 轴的距离之和的最小值为: 221111335||||||||||2022222PD PP PD PF DF ⎛⎫⎛⎫+=+-≥-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.9.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍) 当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.10.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.11.B解析:B 【分析】设直线2a x c=交x 轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x 轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点,所以20a ->,即2a >,此时圆半径为44212r a a =-=->. 因此当2r >时,圆无法触及抛物线的顶点O . 故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;【详解】解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN垂直准线于M ,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p p x x k ++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】先利用点求抛物线方程利用相切关系求切线再分别联立直线和抛物线求出点即求出直线方程【详解】在抛物线上故即抛物线方程为设过点与圆相切的直线的方程为:即则圆心到切线的距离解得如图直线直线联立得故由 解析:3640x y ++=【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线,AB AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离2202211k kd k -+-==+,解得3k =±,如图,直线):232AB y x -=-,直线):232AC y x -=--.联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x ++-=,故1683A B x x -=,由2A x =得843B x -=,故236B y -=, 联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x -++=,故1683A C x x +=,由2A x =得843C x +=,故236C y --=, 故236236433B C y y -+=+=-,又由,B C 在抛物线上可知, 直线BC 的斜率为22221114222B C B C BC B C B C B C y y y y k x x y y y y --=====--+--,故直线BC 的方程为2361843323y x ⎛--=-- ⎝⎭,即3640x y ++=. 故答案为:3640x y ++=15.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象 解析:223【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m. 【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y , 联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m . 由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得4m =,因此,直线l 的斜率为13k m ===.. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.16.2【分析】由双曲线圆的方程确定渐近线方程为圆心为半径为根据圆的相交弦与半径弦心距之间的几何关系有结合双曲线参数间的关系即可求其离心率【详解】由题意知:双曲线的渐近线为而圆心为半径为∴圆心到渐近线的距解析:2 【分析】由双曲线、圆的方程确定渐近线方程为by x a=±,圆心为,半径为2r ,根据圆的相交弦与半径、弦心距之间的几何关系有222||4AB r d -=,结合双曲线参数间的关系即可求其离心率. 【详解】由题意知:双曲线的渐近线为by x a=±,而圆心为,半径为2r ,∴圆心到渐近线的距离d ==,而2AB =,∴221r d -=,故222123a ab =+,又222,1c a b c e a +==>, ∴2e =. 故答案为:2. 【点睛】关键点点睛:根据双曲线、圆的标准方程确定渐近线方程、圆心、半径长,结合圆中相交弦的几何性质及双曲线参数关系,列出关于,a c 的齐次方程求离心率.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率2c e a ==≥=,所以⎫∈⎪⎪⎣⎭e .故答案为:,12⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=.由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.19.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化解析: 【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出b a =,b c=即可求出结果. 【详解】由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b bBAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么b =,极有b a =,b c =5=-.故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO∠=∠+∠;(2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c的比值问题.(3)根据离心率求出,,a b c的比值,代入可求.20.【分析】分别过作准线的垂线利用抛物线的定义将到焦点的距离转化到准线的距离利用已知和相似三角形的相似比建立关系式求解可算得弦长【详解】设可知如图作垂直于准线分别于则又解得故答案为:【点睛】1本题体现了解析:16 3【分析】分别过,A B作准线的垂线,利用抛物线的定义将,A B到焦点的距离转化到准线的距离,利用已知和相似三角形的相似比,建立关系式,求解,AF BF可算得弦长.【详解】设242y x px ==,可知2p =如图,作AM ,BN 垂直于准线分别于,M N ,则BN BF =, 又2BC BN =,23CB CF=,23BN p ∴= 43BN =,83BC =,4CF ∴= 2CF AM CA=,244CF AM CA AM ∴==+,解得4AM = 4AF ∴=416433AB AF BF ∴=+=+= 故答案为:163【点睛】1.本题体现了数形结合,解析几何问题,一定要注意对几何图形的研究,以便简化计算2. 抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.三、解答题21.(Ⅰ)22143x y +=;(Ⅱ)48,77⎡⎤⎢⎥⎣⎦;【分析】(Ⅰ)通过当直线AB 的斜率为0时可知||2AB a =,22||b CD a =,结合12c e a ==,计算即得结论;(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线AB 、CD 的方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得||||AB CD +的表达式,利用换元法及二次函数的性质计算即得结论. 【详解】解:(Ⅰ)当直线AB 的斜率为0时,直线CD 垂直于x 轴,||2AB a ∴=,22||b CD a =,即22||||27b AB CD a a+=+=,12c e a ==,且222a b c =+,解得:2,a b =, 所以椭圆方程为22143x y +=;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意可知,||||7AB CD +=;②当两条弦斜率均存在且不为0时,设1(A x ,1)y ,2(B x ,2)y , 设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--,将直线AB 的方程代入椭圆方程中,并整理得:2222(34)84120k x k x k +-+-=,∴221212228412,3434k k x x x x k k -+==++,∴212212(1)|||34k AB x x k +=-=+,同理,2222112(1)12(1)||4343k k CD k k++==++, ∴2222222212(1)12(1)84(1)||||3434(34)(34)k k k AB CD k k k k ++++=+=++++,令21t k =+,则1t >,∴2222848484||||1149(41)(31)121()24t t AB CD t t t t t +===-++---+,1t >,∴101t<<,∴211494912()244t <--+,∴241111494912()24t <--+, ∴24884711497()24t <--+,∴48||||77AB CD +<, 综合①②可知,||||AB CD +的取值范围为:48,77⎡⎤⎢⎥⎣⎦. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11xy m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可.【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m-=+, ∴AB==)2212m m +=+,同理)22221111122m m CD m m ⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果. 23.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QRx =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A k k ⎛⎫⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭ 直线:p l y k =,点0,R p k ⎛⎫⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQp PR x k p QR x k ===. ()2因为222,p p A kk ⎛⎫ ⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离. 24.(1)1p =;(2). 【分析】(1)由已知准线方程可得答案;(2)联立直线与抛物线方程,利用韦达定理表示OA OB ⊥可得t ,然后利用弦长公式可得答案. 【详解】 (1)由已知得122p -=-,所以1p =; (2)设()11,A x y ,()22,B x y ,联立22y x =与y x t =+得2220y y t -+=,480t ∆=->,即12t <时有122y y +=,122y y t =, 因为OA OB ⊥,所以()21212121204y y OA OB x x y y y y ⋅=+=+=,可得124y y =-,因为122y y t =,所以2t =-, 则122y y +=,124y y =-, 所以||AB =====【点睛】本题考查了抛物线方程、直线与抛物线的位置关系,关键点是利用韦达定理计算弦长,意在考查学生对这些知识的理解能力掌握水平及其应用能力.25.(1)22132x y +=;(2)22y x =±+或2y =+.【分析】(1)由离心率公式、将点3,22⎛ ⎝⎭代入椭圆方程得出椭圆C 的方程;(2)联立椭圆和直线l 的方程,由判别式得出k 的范围,再由韦达定理结合三角形面积公式得出22317S k ==+,求出k 的值得出直线l 的方程.【详解】解:(1,所以2222133b a ⎛⎫=-= ⎪ ⎪⎝⎭.①又因为椭圆经过点3,22⎛ ⎝⎭,所以有2291142a b +=.②联立①②可得,23a =,22b =,所以椭圆C 的方程为22132x y+=.(2)由题意可知,直线l 的斜率k 存在,设直线l 的方程为2y kx =+.由222,132y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得,()22231260+++=k x kx .因为直线l 与椭圆C 交于不同的两点A ,B 所以()()()22212242324320k kk∆=-+=->,即2320k ->,所以223k >. 设()11,A x y ,()22,B x y ,则1221223k x x k -+=+,122623x x k =+. 由题意得,OAB 的面积1212S OM x x =⨯⨯-12x x =-=,即S == 因为OAB 的面积为17=()2232k =+.化简得,42491660k k -+=,即()()2243220k k --=,解得234k =或222k =,均满足0∆>,所以k =或k = 所以直线l的方程为2y x =+或2y =+. 【点睛】关键点睛:在第二问中,关键是由韦达定理建立12,x x 的关系,结合三角形面积公式求出斜率,得出直线l 的方程.26.(1)22182x y +=;(2)20x y +=.【分析】(1)由离心率,点的坐标代入椭圆方程及222a b c =+列方程组解得,,a b c 得椭圆方程; (2)已知条件说明直线AO 为线段PQ 的垂直平分线,直线OA 方程为12y x =,这样可设直线PQ 方程为2y x m =-+,代入椭圆方程,应用韦达定理得12x x +,12,x x 即为,P Q 的横坐标,求出中点横坐标1202x x x +=,由直线PA 得中点纵坐标0y ,中点坐标代入直线AO 方程可得参数m ,即直线PQ 方程. 【详解】(1)依题意,22222411a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩,,解得2282a b ⎧=⎨=⎩,,.故椭圆C 的方程为22182x y +=;(2)∵||||,||||OP OQ AP AQ ==,∴直线AO 为线段PQ 的垂直平分线,则直线OA 的方程为12y x =,设直线PQ 的方程为2y x m =-+, 由221822x y y x m ⎧+=⎪⎨⎪=-+⎩,得:221716480x mx m -+-=, ()22(16)417480m m =-⨯->,解得m <()()1122,,,P x y Q x y ,由韦达定理得121617mx x +=,设PQ 的中点为()00,H x y , 所以120008,221717x x m m x y x m +===-+=;所以8,1717m m H ⎛⎫⎪⎝⎭.又8,1717m m H ⎛⎫⎪⎝⎭在直线OA 上,代入得1817217m m =⋅,解得0m =, 综上所述,直线PQ 的方程为20x y +=. 【点睛】关键点点睛:本题考查由离心率和一点坐标求椭圆方程,考查直线与椭圆相交问题.在直线与椭圆相交问题时,解题关键是由平面几何知识由条件||||,||||OP OQ AP AQ ==得直线AO 为线段PQ 的垂直平分线,这样用设而不求思想可求得直线PQ 方程.即求出AO 方程,由垂直设出直线PQ 方程,代入椭圆方程应用韦达定理求得PQ 中点坐标,再代入直线AO 方程可得参数值.。
圆锥曲线的参数方程练习题(带答案)
![圆锥曲线的参数方程练习题(带答案)](https://img.taocdn.com/s3/m/068326ff5ebfc77da26925c52cc58bd6318693f7.png)
圆锥曲线的参数方程练习题(带答案)1.若点P(3,m)在以点F为焦点的抛物线y^2=4x上,则PF 等于多少?解析:抛物线的准线为x=-1,焦点为F(-1,0),参数方程为x=4t^2,y=4t。
因此PF为P到准线x=-1的距离,即PF=|3+1|=4.所以选C。
2.参数方程{x=sinθ+cosθ,y=1+sin^2θ}所表示的曲线是什么?解析:将参数方程化为普通方程,得x^2=y(0≤y≤2),表示抛物线的一部分。
所以选B。
3.椭圆{x=5cosφ,y=3sinφ}的焦点坐标是什么?解析:椭圆的普通方程为x^2/25+y^2/9=1,因此c=sqrt(25-9)=4.又因为椭圆焦点在x轴上,所以焦点坐标为(±4,0)。
所以选B。
4.已知过曲线{x=3cosθ,y=4sinθ}上一点P和原点O的连线PO的倾斜角为π/4,则P点的坐标是什么?解析:直线PO的方程为y=x,又点P为曲线{x=3cosθ,y=4sinθ}上一点,因此3cosθ=4sinθ,即tanθ=3/4.因为倾斜角为π/4,所以θ∈[0,π/4]。
解得sinθ=3/5,cosθ=4/5.因此P点的坐标为(3,4/5×3)= (3,12/5)。
所以选D。
5.已知O为原点,P为椭圆{x=4cosα,y=2/3sinα}上第一象限内一点,OP的倾斜角为π/3,则点P坐标为什么?解析:椭圆的普通方程为16cos^2α/16+9sin^2α/4=1,即cos^2α/4+sin^2α/16=1.直线OP的斜率为tan(π/3)=sqrt(3),因此OP的方程为y=sqrt(3)x。
联立解得x=4/5,y=4sqrt(3)/15.因此点P的坐标为(4cosα,2/3sinα)=(4×4/5,2/3×4sqrt(3)/5)=(16/5,4sqrt(3)/5)。
所以选D。
高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)
![高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)](https://img.taocdn.com/s3/m/485b1c1bbf1e650e52ea551810a6f524ccbfcbe5.png)
专题15 《圆锥曲线的方程》单元测试卷一、单选题1.(2020·辽宁省高三月考(文))若抛物线上的点M 到焦点的距离为10,则M 点到y 轴的距离是( )A .6B .8C .9D .10【答案】C 【解析】抛物线的焦点,准线为,由M 到焦点的距离为10,可知M 到准线的距离也为10,故到M 到的距离是9,故选C .2.(2019·涟水县第一中学高二月考)椭圆的焦距为,则的值等于( )A .B .C .或D .【答案】C 【解析】若椭圆的焦点在轴上时,则有,解得;若椭圆的焦点在轴上时,则有,解得.综上所述,或.故选:C.3.(2018·镇原县第二中学高二期末(文))设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是( )A .y 2=﹣8x B .y 2=8xC .y 2=﹣4xD .y 2=4x【答案】B 【解析】∵准线方程为x=﹣2∴=2∴p=424y x =24y x =()10F ,1x =-2214x y m +=2m 53538x 2=5m =y 2=3m =5m =3∴抛物线的方程为y 2=8x 故选B4.(2020·天津高三一模)设为抛物线的焦点,过且倾斜角为的直线交于,两点,则( )AB .C .D .【答案】C【解析】由题意,得.又因为AB 的方程为,与抛物线联立,得,设,由抛物线定义得,,选C .5.(2018·镇原县第二中学高二期末(文))已知,,则椭圆的标准方程是( )A .B .C .或D .【答案】C 【解析】由,,,可解得,,则当椭圆的焦点在轴上时,此时椭圆的标准方程为:;当椭圆的焦点在轴上时,椭圆的标准方程为:.故选:C6.(2018·镇原县第二中学高二期末(文))双曲线,则()F 2:3C y x =F 30o C A B AB =6123(,0)4F 0k tan 30==34y x =-2=3y x 21616890x x -+=1122(,),(,)A x y B x y 12AB x x p =++=168312162+=9a b +=3c =221259x y +=2212516x y +=2212516x y +=2251162x y+=221169x y +=9a b +=3c =222a b c =+225a =216b =x 2212516x y +=y 2251162x y +=()2221012x y b b-=>0+=b =A .3B .2CD .【答案】D 【解析】双曲线的焦点在轴,,渐近线方程是,,解得:.故选:7.(2018·民勤县第一中学高二期末(文))已知椭圆的一个焦点为F (0,1),离心率,则椭圆的标准方程为()A .B .C .D .【答案】D 【解析】由题意知,又离心率,所以,,即所求椭圆的标准方程,故选D .8.(2019·涟水县第一中学高二月考)设双曲线(a >0,b >0)的虚轴长为2,焦距为( )A.y =x B .y =±2xC .y =x D .y =±x【答案】C 【解析】由题意知∴,a 2=c 2-b 2x a =by x a=±0+=k ===b =D12e =2212x y +=2212y x +=22143x y +=22134x y +=1c =12e =2a =2223b a c =-=22134x y +=22221x y a b-=12∴渐近线方程为y=±x.故选C.9.(2019·浙江省高二期中)如图,,,是椭圆上的三个点,经过原点,经过右焦点,若且,则该椭圆的离心率为( )A.BCD【答案】B【解析】取左焦点,连接,,根据椭圆的对称性可得:是矩形,设,中,即:解得:,则在中即:,.b a A B C 22221x y a b+=()0a b >>AB O AC F BF AC ^3BF CF =121F 111,,AF CF BF BF AC ^1AFBF 11,2,3,23,22CF m CF a m BF AF m AF a m AC a m ==-===-=-1Rt AF C D 22211AF AC CF +=222(3)(22)(2)m a m a m +-=-3am =1,AF a AF a ==1Rt AF F D 22211AF AF FF +=222(2)a a c +=222212,2c a c a ==故选:B10.(2018·安徽省合肥一中高三一模(文))已知椭圆的左、右焦点分别为,,是椭圆在第一象限上的一个动点,圆与的延长线,的延长线以及线段都相切,且为其中一个切点.则椭圆的离心率为( )ABCD【答案】B 【解析】设圆与的延长线相切于点,与相切于点,由切线长相等,得,,,,,由椭圆的定义可得,,,则,即,又,所以因此椭圆的离心率为.故选:B.二、多选题11.(2019·山东省青岛二中高二月考)(多选题)下列说法正确的是( )2221(1)x y a a+=>1F 2F A C 1F A 12F F 2AF ()3,0M C 1F A N 2AF T AN AT =11F N F M =22F T F M =1(,0)F c -2(,0)F c 122AF AF a +=()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--26a =3a =1b =c ==c e a ==A .方程表示两条直线B .椭圆的焦距为4,则C .曲线关于坐标原点对称D .双曲线的渐近线方程为【答案】ACD 【解析】方程即,表示,两条直线,所以A 正确;椭圆的焦距为4,则或,解得或,所以B 选项错误;曲线上任意点,满足,关于坐标原点对称点也满足,即在上,所以曲线关于坐标原点对称,所以C 选项正确;双曲线即,其渐近线方程为正确,所以D 选项正确.故选:ACD12.(2019·山东省高二期中)已知椭圆的中心在原点,焦点,在轴上,且短轴长为2,离心率,过焦点作轴的垂线,交椭圆于,两点,则下列说法正确的是( )A .椭圆方程为B .椭圆方程为C .D .的周长为【答案】ACD 【解析】2x xy x +=221102x y m m +=--4m =22259x y xy +=2222x y a b l -=b y xa=±2x xy x +=()10x x y +-=0x =10x y +-=221102x y m m +=--()1024m m ---=()2104m m ---=4m =8m =22259x y xy +=(),P x y 22259x y xy +=(),P x y (),P x y ¢--()()()()22259x y x y --+=--(),P x y ¢--22259x y xy +=22259x y xy +=2222x y a b l -=0l ¹b y x a=±C 1F 2F y 1F y C P Q 2213y x +=2213x y +=PQ =2PF Q D由已知得,2b =2,b =1,又,解得,∴椭圆方程为,如图:∴,的周长为.故选:ACD.13.(2019·江苏省苏州实验中学高二月考)已知双曲线过点且渐近线为,则下列结论正确的是( )A .的方程为B .C .曲线经过的一个焦点D .直线与有两个公共点【答案】AC 【解析】对于选项A :由已知,可得,从而设所求双曲线方程为,又由双曲线过点,从而,即,从而选项A 正确;对于选项B :由双曲线方程可知,,从而离心率为,所以B 选项错误;c a =222a b c =+23a =2213y x +=22b PQ a ===2PF Q D 4a =C (y x =C 2213x y -=C 21x y e -=-C 10x -=C y =±2213y x =2213x y l -=C (22133l ´-=1l =a =1b =2c =c e a ===对于选项C :双曲线的右焦点坐标为,满足,从而选项C 正确;对于选项D :联立,整理,得,由,知直线与双曲线只有一个交点,选项D 错误.故选AC 三、填空题14.(2019·江苏省高三三模)双曲线的焦距为______.【答案】【解析】双曲线的焦距为.故答案为:.15.(2019·重庆巴蜀中学高二期中(理))若双曲线的左焦点在抛物线的准线上,则的值为________.【答案】6【解析】双曲线的左焦点为,即,故.故答案为:.16.(2020·浙江省高三二模)已知椭圆,F 为其左焦点,过原点O 的直线l 交椭圆于A ,B 两点,点A 在第二象限,且∠FAB =∠BFO ,则直线l 的斜率为_____.【答案】【解析】设,则,,且,()2,021x y e -=-221013x x y ì-=ïí-=ïî220y +=2420D =-´=C 2212x y -=2212x y -=2c ==22154x y -=22y px =p 22154x y -=()3,0-32p -=-6p =622197x y C +=:()00,A x y ()00,B x y --00x <00y >2200197x y +=∵F 为其左焦点,∴,AB 的斜率.经分析直线AF 的斜率必存在,设为则,又,,∴,又,,可解得:,,∴直线l的斜率为.故答案为:17.(2019·乐清市知临中学高二期末)已知抛物线的焦点为,定点.若抛物线上存在一点,使最小,则点的坐标为________,最小值是______.【答案】 【解析】根据题意,作垂直于准线,画出几何关系如下图所示:()F tan BFO Ð=10y k x =2k =1212tan 1k k FAB k k -Ð==+FAB BFO Ð=Ð=220002x y ++=2200197x y +=0(3,0)x Î-0x =0y =00y x =22y x =F ()32A ,M MA MF +M ()22,72MH根据抛物线定义可知,,因而当在同一直线上时,的值最小,此时,的纵坐标为2,代入抛物线解析式可知,所以的横坐标为2,即,故答案为:,;四、解答题18.(2018·镇原县第二中学高二期末(文))已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上.(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.【答案】(1);(2)【解析】因为抛物线的准线方程为,则由题意得,点是双曲线的左焦点.(1)双曲线的焦点坐标.(2)由(1)得,又双曲线的一条渐近线方程是,所以,,所以双曲线的方程为:.19.(2019·湖南省衡阳市八中高二月考)已知抛物线的焦点为,点在抛物线上,且点的横坐标为,.MF MH =,,A M H MA MF +72MA MF AH +==M 42x =M ()2,2M ()2,2M 72()222210,0x y a b a b-=>>y =224y x =()6,0F ±221927x y-=224y x =6x =-()16,0F -()6,0F ±22236a b c +==y =ba=29a =227b =221927x y -=22(0)y px p =>F M M 45MF =(1)求抛物线的方程;(2)设过焦点且倾斜角为的交抛物线于两点,求线段的长.【答案】(1);(2).【解析】(1)由题意得,∴,故抛物线方程为.(2)直线的方程为,即.与抛物线方程联立,得,消,整理得,其两根为,且.由抛物线的定义可知,.所以,线段的长是.20.(2020·陕西省西安市远东一中高二期末(理))已知抛物线C 的顶点为坐标原点O ,对称轴为x 轴,其准线过点.(1)求抛物线C 的方程;(2)过抛物线焦点F 作直线l ,使得抛物线C 上恰有三个点到直线l 的距离都为l 的方程.【答案】(1);(2)【解析】(1)由题意得,抛物线的焦点在轴正半轴上,设抛物线C 的方程为,因为准线过点,所以,即. 所以抛物线C 的方程为.(2)由题意可知,抛物线C 的焦点为.当直线l 的斜率不存在时,C 上仅有两个点到l 的距离为当直线l 的斜率存在时,设直线l 的方程为,F 45°l A B 、AB 24y x =8452p MF +==2p =24y x =l 0tan 45(1)y x -=°⋅-1y x =-214y x y x =-ìí=îy 2610x x -+=12,x x 126x x +=12||628AB x x p =++=+=AB 8()2,1--28y x =20x y ±-=x 22y px =()2,1-22p =4p =28y x =()2,0F ()2y k x =-要满足题意,需使在含坐标原点的弧上有且只有一个点P 到直线l 的距离为,过点P 的直线平行直线且与抛物线C 相切.设该切线方程为,代入,可得.由,得.,整理得,又,解得,即.因此,直线l 方程为.21.(2019·会泽县第一中学校高二月考(理))设抛物线:的焦点为,是上的点.(1)求的方程:(2)若直线:与交于,两点,且,求的值.【答案】(1)(2).【解析】(1)因为是上的点,所以, 因为,解得,抛物线的方程为.(2)设,,由得,则,,():2l y k x =-y kx m =+24y x =()222280k x km x m +-+=()2222840km k m D =--=2km =224m k =2km =21k =1k =±20x y ±-=C 22(0)x py p =>F (,1)M p p -C C l 2y kx =+C A B 13AF BF ⋅=k 24x y =1k =±(),1M p p -C ()221p p p =-0p >2p =C 24x y =()11,A x y ()22,B x y 224y kx x y=+ìí=î2480x kx --=216320k D =+>124x x k +=128x x =-由抛物线的定义知,,,则,,,解得.22.(2018·民勤县第一中学高二期末(文))在直线:上任取一点,过作以,为焦点的椭圆,当在什么位置时,所作椭圆长轴最短?并求此椭圆方程.【答案】,【解析】设关于:的对称点,则,,连交于,点即为所求点.:,即,解方程组,,当点取异于的点时,.满足题意的椭圆的长轴最短时,,所以,,.椭圆的方程为:.11AF y =+21BF y =+()()()()12121133AF BF y y kx kx ⋅=++=++()2121239k x x k x x =+++24913k =+=1k =±l 90x y -+=M M ()13,0F -()23,0F M ()5,4M -2214536x y +=()13,0F -l 90x y -+=(),F x y 3909220613x y x y y x -ì-+=ï=-ìïÞíí-=îï=-ï+î()9,6F -2F F l M M 2F F 1(3)2y x =--230x y +-=2305904x y x x y y ì+-==-ìÞíí-+==îî()5,4M -'M M 22''FM M F FF +>22a FF ===a =3c =22245936b a c =-=-=2214536x y +=23.(2019·安徽省高二期末(理))已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.【答案】(1);(2)0.【解析】(1)如图所示由题意得为直角三角形,且,所以则所以椭圆的标准方程为:.O 2222:1(0)x y C a b a b+=>>F 12,P Q C POQ △PQ C F l A B 、PA PB 、2x a =M N 、FM FN ⋅uuuu r uuu r 22143x y +=POQ △PQ PQ =222a b c =+=ïïî1a b c ìï=íï=î22143x y +=(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..l 1x my =+()11,A x y ()22,B x y ()34,M y ()44,N y 221143x my x y =+ìïí+=ïî22(34)690m y my ++-=122122634934m y y m y y m ì+=-ïï+íï⋅=-ï+î,,P A M ()31100422y y x --=--+13163y y my =+24263y y my =+1234341266(3,)(3,)9933y y FM FN y y y y my my ⋅==+=+⋅++uuuu r uuu r g ()122121236939y y m y y m y y =++++2222222936()36934990969189(34)()3()93434m m m m m m m m m --´+=+=+=--++-+-+++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥曲线与方程》单元测试姓名_____________ 学号__________ 成绩____________一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的.1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( )A.10B.8C.7D.62.已知双曲线12222=-by a x 的一条渐近线方程为x 43y =,则双曲线的离心率为( )A.35B.34C.45D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( )A.1201622=-y x B.1201622=-x y C.1162022=-y x D.1162022=-x y 4.方程22125-16x y m m+=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<<C.9252m <<D.92m > 5.过双曲线22149x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( )A.0个B.1个C.2个D.3个 6.抛物线2y x =上的点到直线24x y -=的最短距离是( )A.35B.553C.552D.10537.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A.15 B.152C.215D.158.设12,F F 是椭圆1649422=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ∆的面积为( )A.4B.6C.22D.249.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线10.设P 为椭圆22221x y a b +=(0)a b >>上一点,两焦点分别为21F ,F ,如果1275PF F ∠=2115PF F ∠=,则椭圆的离心率为 ( )A.36 B.33 C.62 D.32二、填空题:本大题共5小题,每小题5分,共25分.将答案填在题中横线上.11.抛物线261x y -=的准线方程为 .12.中心在原点,对称轴为坐标轴,离心率为21,长轴为8的椭圆的标准方程为________.13.以椭圆22185x y +=的焦点为顶点,以椭圆的顶点为焦点的双曲线方程为 .14.过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,则这条弦所在的直线方程是 .15.动点P 在曲线221y x =+上移动,则点P 和定点(0,1)A -连线的中点的轨迹方程是 .三、解答题(本大题共6个大题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分13分)(1)焦点在x 轴上的椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.(2)已知双曲线的一条渐近线方程是20x y +=,并经过点()2,2,求此双曲线的标准方程.17.(本小题满分13分)已知1F 、2F 分别是双曲线22136x y -=的左右焦点,过右焦点2F 作倾斜角为30的直线交双曲线于A 、B 两点.(Ⅰ)求线段AB 的长;(Ⅱ)求1AF B ∆的周长.18.(本小题满分13分)在平面直角坐标系xOy 中,动点P 到两点(0,3)-、(0,3)的距离之和等于4.设点P 的轨迹为C .(I)求曲线C 的方程;(II)设直线1y kx =+与C 交于A B 、两点,若OA OB ⊥,求k 的值.19.(本小题满分12分)炮弹在某处爆炸,在F 1(-5000,0)处听到爆炸声的时间比在F 2(5000,0)处晚30017秒.已知坐标轴的单位长度为1米,声速为340米/秒,爆炸点应在什么样的曲线上?并求爆炸点所在的曲线方程.20.(本小题满分12分)已知两点(0,3)A ,(0,3)B -. 曲线G 上的动点(,)P x y 使得直线PA 、PB 的斜率之积为34-.(I)求G 的方程;(II)过点(0,1)C -的直线与G 相交于E F 、两点,且2EC CF =,求直线EF 的方程.21.(本小题满分12分)已知两点1(2,0)F -、2(2,0)F ,曲线C 上的动点(,)P x y 满足1212||||2P F P F P F P F ⋅+⋅=. (I)求曲线C 的方程;(II)设直线:(0)l y kx m k =+≠,对定点(0,1)A -,是否存在实数m ,使直线l 与曲线C 有两个不同的交点M N 、,满足||||AM AN =? 若存在,求出m 的范围;若不存在,请说明理由.圆锥曲线测试理科答案一、选择题(满分50分,每题5分)二、填空题(满分25分,每题5分)11. 23y = 12. 11216112162222=+=+x y y x 或 (丢解扣2分)13. 22135x y -= 14. 042=-+y x 15. 24y x =16解:(1)由题可知a =2,b =1,椭圆的标准方程为:2214x y +=; 6分 (2)设双曲线方程为:224λx y -=, 9分∵双曲线经过点(2,2),∴22λ24212=-?-,故双曲线方程为:221312y x -=. 12分17.解:(Ⅰ)由双曲线的方程得1(30)F ,-,2(30)F ,,直线AB 的方程为3(3)3y x =-① 2分将其代入双曲线方程消去y 得,256270x x +-=,解之得12935x ,x =-=. 4分将12x ,x 代入①,得1223235y ,y =-=-,故(323)A ,--,923()55B ,-, 故1635AB =. 8分(Ⅱ) 周长11||||||AB AF BF =++83=. 12分18.解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以为焦距,长半轴为2的椭圆.它的短半轴222(3)1,b =-= 故曲线C 的方程为1422=+y x . 4分 (Ⅱ)设1122(,),(,)A x y B x y ,其坐标满足221,4 1.y x y kx ⎧⎪+=⎨⎪=+⎩, 消去y 并整理得22(4)2k x kx ++—3=0,(*) 6分故12122223,.44k x x x x k k +==-++ 若,OA OB ⊥即12120.x x y y += 则22121222233210,444k k x x y y k k k +----+=+++, 10分化简得2410,k -+=所以1.2k =±满足(*)中0∆>,故12k =±为所求. 12分 19[解析] 由声速为340米/秒可知F 1、F 2两处与爆炸点的距离差为340×30017=6000(米),因此爆炸点在以F 1、F 2为焦点的双曲线上.因为爆炸点离F 1处比F 2处更远,所以爆炸点应在靠近F 2处的一支上.1 2 3 4 5 6 7 8 9 10 ACCCBBABCA设爆炸点P 的坐标为(x ,y ),则|PF 1|-|PF 2|=6000,即2a =6000,a =3000. 而c =5000,∴b 2=50002-30002=40002, ∵|PF 1|-|PF 2|=6000>0,∴x >0, 所求双曲线方程为x 230002-y 240002=1(x >0).解:(I )由题知,33(0)AP BP y y k ,k x xx-+==?, 故2233(0)4AP BP y k k x x -==-?,化简得G 的方程为:221(0)43x y x +=?. 4分 (II )设()()1122E x ,y ,F x ,y ,由2EC CF =uu u r uu u r得122x x =-. 6分设直线EF 的方程为1y kx =-,代入G 的方程可得:22(34)880k x kx +--= 8分122834kx x k\+=+,122834x x k -=+ 又12-2x =x ,22834k x k\-=+,2228234x k --=+, 10分 将2x 消去得214k ,=即12k =? 故直线EF 的方程为112y x =?.(I)所求曲线的方程为22 1.3x y += 6分(II)设1122(,),(,),M x y N x y 线段MN 的中点为00(,)P x y ,联立方程组得, 22222,(31)6330.1,3y kx m k x mkx m x y =+⎧⎪∴+++-=⎨+=⎪⎩ 8分 由直线与椭圆有两个交点,得2231m k <+, 10分且000223,1313km mx y kx m k k =-=+=++, 又00111APy k k x k+⋅=-⇒=-,即2132k m +=, 12分代入上式得1(,2)2m ∈. 14分 法二:点差得0121203x y y k x x y -==--,又00111APy k k x k+⋅=-⇒=-,故0031,22x k y =-=. 点00(,)P x y 在椭圆内,得2(0,1),k ∈200131(,2)222m y kx k =-=+∈。