上海民办新黄浦实验学校选修1-1第二章《圆锥曲线与方程》测试(有答案解析)
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)
一、选择题1.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B C .12D .22.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 3.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( )A BC D4.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .45.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .6.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .2⎛ ⎝⎭C .23⎛ ⎝⎭D .23⎫⎪⎪⎝⎭7.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( ) A .2y x =±B .3y x =±C .12y x =±D .13y x =±8.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A 227+ B 27+C .53D .29.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A .67B .77C .427D .7710.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( ) A .(42,6)B .(6,8)C .(42,8)D .(6,10)11.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞12.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( ) A .)2,+∞B .)2,⎡+∞⎣C .(2D .(2⎤⎦二、填空题13.已知椭圆22221(0)x y a b a b+=>>的短轴长为8,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB 的面积为4,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为___________. 14.已知双曲线2222:1(0,0)x y C a b a b-=>>右支上一点12,,P F F 分别为其左右焦点,圆M是12PF F △内切圆,且1PF 与圆M 相切于点2,||2cA PA a=(c 为半焦距),若122PF PF >,则双曲线离心率的取值范围是_____. 15.过双曲线M :2213x y -=的右焦点F 作圆C :221(1)2x y ++=的切线,此切线与M 的右支交于A ,B 两点,则||AB =___________.16.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________.17.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________. 18.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________. 19.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切;③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______. 20.已知下列几个命题:①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=; ②“1x >”是“||0x >”的必要不充分条件;③已知命题:33p ≥,:34q >,则p q ∨为真,p q ∧为假,p ⌝为假;④双曲线221916x y -=-的离心率为54.其中正确的命题的序号为_____.三、解答题21.设动点(),M x y (0x ≥)到定点()2,0F 的距离比它到y 轴的距离大2. (Ⅰ)求动点M 的轨迹方程C ;(Ⅱ)设过点F 的直线l 交曲线C 于A ,B 两点,O 为坐标原点,求AOB 面积的最小值.22.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.23.设1F 、2F 分别是椭圆2214xy +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求1PF ·2PF 的取值范围;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.24.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,离心率为22,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,12F PF △的面积为1.(1)求椭圆C 的方程(2)设斜率存在的直线2PF ,与椭圆C 的另一个交点为Q .若存在(),0T t ,使得TP TQ =,求t 的取值范围25.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率32e =,椭圆E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标,26.如图,已知抛物线21:2C y x =直线2y kx =+交抛物线C 于A ,B 两点,O 为坐标原点.(1)证明:OA OB ⊥;(2)设抛物线C 在点A 处的切线为1l ,在点B 处的切线为2l ,证明:1l 与2l 的交点M 在一定直线上.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.2.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=. 可得1a =ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.B解析:B 【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】 解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F PF P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:3e =. 故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.4.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =, 故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 的最小值为22即m 2, 故选:B.方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.5.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.B【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=, 利用2112sin cos 24c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<,2162324πα<<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是2623⎛⎫⎪ ⎪⎝⎭, 故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.7.C解析:C 【分析】依题意可得2244c t te a t ++==+t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4x y t t t-=>+的离心率c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54by x c a c =++,化简得3(54)30bx a c y bc -++=,又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去).故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.9.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b +=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=,所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.7e ∴=== 故选:C 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.10.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PFPF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.11.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点, 所以20a ->,即2a >,此时圆半径为44212r a a =-=->.因此当2r >时,圆无法触及抛物线的顶点O .故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.12.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e-=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】先根据的面积和短轴长得出abc 的值求得的范围再通分化简为关于的函数利用二次函数求得最值即得取值范围【详解】由已知得故∵的面积为∴∴又故∴∴又而即∴当时最大为;当或时最小为即∴即即的取值范围为解析:25, 58⎡⎤⎢⎥⎣⎦【分析】先根据1F AB的面积和短轴长得出a,b,c的值,求得1PF的范围,再通分化简1211PF PF+为关于1PF的函数,利用二次函数求得最值,即得取值范围.【详解】由已知得28b=,故4b=,∵1F AB的面积为4,∴()142a c b-=,∴2a c-=,又()()22216a c a c a c b-=-+==,故8a c+=,∴5a=,3c=,∴12121211PF PFPF PF PF PF++=()()()22 1111111210101021010525aPF a PF PF PF PF PF PF====---+--+,又而1a c PF a c-≤≤+,即128PF≤≤,∴当15PF=时,()21525PF--+最大,为25;当12=PF或8时,()21525PF--+最小,为16,即()211652525PF≤--+≤,∴121011102516PF PF≤+≤,即12211558PF PF≤+≤.即1211PF PF+的取值范围为25,58⎡⎤⎢⎥⎣⎦.故答案为:25,58⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题解题关键在于熟练掌握椭圆的性质1a c PF a c-≤≤+,结合椭圆定义和二次函数最值求法,即突破难点.14.【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与轴切于顶点再分别表示列出关于的齐次不等式求双曲线的离心率的取值范围【详解】设圆心设内切圆与相切于点如图:根据内切圆性质可知点是双曲线的顶点即整理解析:(1,71)-. 【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与x 轴切于顶点,再分别表示12,PF PF ,列出关于,a c 的齐次不等式求双曲线的离心率的取值范围.【详解】设圆心(),M x y ,设内切圆与1212,,PF PF F F 相切于点,,A BC , 如图:根据内切圆性质可知PA PB =,11F A FC =,22F B F C =, 1212122PF PF PA AF PB BF CF CF a ∴-=+--=-=,∴点C 是双曲线的顶点,即11F A FC c a ==+,22F B F C c a ==-,22c PA PB a==, 2122222c c a PF ac PF c a a++=>-+,整理为:22260c ac a +-<,两边同时除以2a , 得2260e e +-<,解得:1717e --<<-+,且1e >, 所以离心率的取值范围是()1,71-.故答案为:()71 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15.【分析】首先设出直线利用直线与圆相切求直线方程再利用弦长公式求弦长【详解】因为直线过双曲线的右焦点且与圆相切所以直线的斜率存在设直线方程为()由直线与圆相切知解得或当时双曲线的一条渐近线的斜率是该直解析:【分析】首先设出直线,利用直线与圆相切,求直线方程,再利用弦长公式求弦长AB . 【详解】因为直线过双曲线的右焦点且与圆相切,所以直线的斜率存在,设直线方程为0y k -=(2x -)=,解得1k =或17k =,当17k =时,双曲线的一条渐近线的斜率是3,173<,该直线不与双曲线右支相交于两点,故舍去;所以直线方程为2y x =-,联立双曲线方程,消元得2212150x x -+=.设()11,A x y ,()22,B x y ,则126x x +=,12152x x =,所以12||AB x =-===.故答案为:【点睛】易错点点睛:利用直线与圆相切,得到两个斜率1k =或17k =,需舍去一个,否则出现增根.16.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a=,221222ABFb Sc b a=⨯⨯=,得12c e a ==.故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.17.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y +=【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,M 解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.18.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭,因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.19.①②④【分析】①将抛物线与直线联立消去利用根与系数关系求出再由弦长公式即可求出弦长进而可求出弦长的最小值即可判断①的正误;②利用中点坐标公式求出以为直径的圆的圆心的纵坐标判断圆心到直线的距离与半径的解析:①②④ 【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误. 【详解】①联立方程241x yy kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立,设两交点坐标分别为()11,A x y ,()22,B x y , 所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥,当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222ABr k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=, 所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上, 当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件, 所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误, ④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m , 所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在, 设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确. 故答案为:①②④ 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组; (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.20.③④【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断【详解】①的两个顶点为周长为18则C 点轨迹方程为当解析:③④ 【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断. 【详解】①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=(5)x ≠±,当5x =±时,构不成三角形,错误; ②当0.1x =时,1x <,所以||0x >不一定有1x >,错误;③已知命题:33p ≥是真命题,:34q >是假命题,根据复合命题的真假判断,p q ∨为真,p q ∧为假,p ⌝为假,正确;④双曲线221916x y -=-,2216,9a b ==,所以22225c a b =+=,54c e a ==,正确.其中正确的命题的序号是③④, 故答案为:③④.【点睛】本题考查了椭圆定义、双曲线离心率、必要不充分条件及复合命题真假的判断,属于基础题.三、解答题21.(Ⅰ)28y x =;(Ⅱ)8. 【分析】(Ⅰ)根据M 的几何性质可得)20x x +=≥,化简后可得抛物线的方程.(Ⅱ)设:2l x ty =+,联立直线方程和抛物线方程,消元后可得面积的表达式,从而可求面积的最小值. 【详解】(Ⅰ)由题设可得)20x x +=≥,整理可得()280y x x =≥.(Ⅱ)设:2l x ty =+,由228x ty y x=+⎧⎨=⎩可得28160y ty --=,故12y y -==又1282OABS =⨯⨯=≥,当且仅当0t =时等号成立, 故AOB 面积的最小值为8.【点睛】方法点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率、斜率的倒数或点的横、纵坐标等.而目标函数的最值可以通过常见函数的性质、基本不等式或导数等求得.22.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0),当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =,所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法.23.(1)[]2,1-;(2)2k -<<2k <<. 【分析】(1)根据椭圆的标准方程可得())12,F F ,设(),P x y ,利用向量数量积的坐标运算可得()2121384PF PF x ⋅=-,再由[]2,2x ∈-即可求解. (2)由题意可得直线0x =不满足题设条件,可设直线:2l y kx =+,将直线与椭圆方程联立,消去y ,可得()221416120kxkx +++=,0∆>,且12120OA OB x x y y ⋅=>+,结合韦达定理即可求解.【详解】解:(1)易知2,1,a b c ===())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=---=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2-; 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1; ∴1PF ·2PF 的取值范围是[]2,1-(2)显然直线0x =不满足题设条件,可设直线:2l y kx =+, 联立22244y kx x y =+⎧⎨+=⎩,消去y ,整理得:()221416120k x kx +++= 由题意,()()2216414120k k ∆=-+⋅>得2k <-或2k >,① 令()()1122,,,A x y B x y ,∴1212221612,1414k x x x x k k +=-=++ ∵AOB ∠为锐角,∴cos 0AOB ∠>即0OA OB ⋅>, ∴12120OA OB x x y y ⋅=>+又()()()2121212122224y y kx kx k x x k x x =++=+++22222212322044141414k k k k k k =-+=-++++ ∴2221220401414k OA OB k k⋅=-+>++,解得24k <, ∴22k -<<,②故由①、②得22k -<<-或22k <<. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用数量积()2121384PF PF x ⋅=-,确定[]2,2x ∈-,并且根据题意得出0OA OB ⋅>,考查了运算求解能力.24.(1)2212x y +=;(2)10,2⎡⎫⎪⎢⎣⎭.【分析】。
(必考题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(答案解析)(1)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D 2.设1F ,2F 是双曲线C :22111y x -=的两个焦点,O 为坐标原点,点M 在C 上且OM =12MF F △的面积是( )A .10B .11C .12D .133.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个A .1B .2C .3D .44.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A B C D 5.已知F 是双曲线2222:1(0)x y E a b a b-=>>的左焦点,过点F 的直线与双曲线E 的左支和两条渐近线依次交于,,A B C 三点,若||||||FA AB BC ==,则双曲线E 的离心率为( )A BC .2D 6.若1F ,2F 是双曲线22221(0,0)y x a b a b-=>>与椭圆2251162x y +=的共同焦点,点P 是两曲线的一个交点,且12PF F △为等腰三角形,则该双曲线的渐近线方程是( )A .y =±B .4y x =±C .3y x =±D .7y x =±7.已知椭圆C 的焦点为()12,0F -,()22,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( ) A .221124x y +=B .2211612x y +=C .221128x y +=D .2212016x y +=8.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .y x =D .y =9.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B .2C D10.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .12+ B C 1 D 111.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .2y x =B .2y x =C .28x y =D .216x y =12.已知抛物线24x y =的焦点为F ,准线为l ,M 是x 轴正半轴上的一点,线段FM 交抛物线于点A ,过A 作l 的垂线,垂足为B .若BF BM ⊥,则FM =( ) A .52B .3C .72D .4二、填空题13.方程1169x x y y+=表示的曲线为函数()y f x =的图象.对于函数()y f x =,现有如下结论:①函数()y f x =的值域是R ;②()y f x =在R 上单调递减;③()y f x =的图象不经过第三象限;④直线340x y +=与曲线()y f x =没有交点.其中正确的结论是___________.14.已知点()1,2A 在抛物线()2:20C y px p =>上,过点()2,2B -的直线交抛物线C 于P ,Q 两点,若直线AP ,AQ 的斜率分别为1k ,2k ,则12k k ⨯等于___________.15.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x py p =>交于A 、B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为___________.16.F 为抛物线2:4C y x =的焦点,过F 且斜率为k 的直线l 与抛物线交于P 、Q 两点,线段PQ 的垂直平分线交x 轴于点M ,且||6PQ =,则||MF =__________.17.设P 是抛物线28y x =上的一个动点,若点B 为()3,2,则PB PF +的最小值为________________.18.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作⊥OD AB 交AB 于点D ,点D 的坐标为()2,1,则椭圆C 的方程为_________.19.设A 、B 是双曲线22221(0,0)x y a b a b-=>>的左、右顶点,F 是右焦点,M 是双曲线上异于A 、B 的动点,过点B 作x 轴的垂线与直线MA 交于点P ,若直线OP 与BM 的斜率之积为4,则双曲线的离心率为_________.20.抛物线24y x =的焦点为F ,点(2,1)A ,M 为抛物线上一点,且M 不在直线AF 上,则MAF ∆周长的最小值为____.三、解答题21.已知椭圆2222:1(0)x y E a b a b +=>>过点1,2P ⎛ ⎝⎭,离心率2e =. (1)求椭圆E 的方程;(2)过点(0,3)M 的直线l 与椭圆E 相交于A ,B 两点. ①当直线OA ,OB 的斜率之和为34时(其中O 为坐标原点),求直线l 的斜率k ; ②求MA MB ⋅的取值范围.22.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率e =E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标,23.在平面直角坐标系中,已知抛物线22y px =的准线方程为12x =-.(1)求p 的值;(2)直线:(0)l y x t t =+≠交抛物线于A ,B 两点,O 为坐标原点,且OA OB ⊥,求线段AB 的长度.24.设曲线()22:10,0C mx ny m n +=>>过()()2,3,22,6M N 两点,直线():2l y k x =-与曲线C 交于,P Q 两点,与直线8x =交于点R .(1)求曲线C 的方程;(2)记直线,,MP MQ MR 的斜率分别为123,,k k k ,求证:123k k k λ+=,其中λ为定值. 25.已知两条动直线14:xl y λ=与2:l y λ=(0λ≠,λ为参数)的交点为P .(1)求点P 的轨迹C 的方程;(2)()2,0E 、()1,0F 是x 轴上的两点,过点E 作直线m 与曲线C 交于A 、B ,当10AF BF +=时,求直线AB 的方程.26.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点(2,)A m 在抛物线E 上, 且|AF |=3.(1)求抛物线E 的方程;(2)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得62cea . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.B解析:B 【分析】由12F F M △是以M 为直角直角三角形得到2212||||48MF MF +=,再利用双曲线的定义得到12||||2MF MF -=,联立即可得到12||||MFMF ,代入12F F M S =△121||||2MF MF 中计算即可. 【详解】由22111y x-=可知1,a c==不妨设12(F F -,因为1212OM F F ==, 所以点M 在以12F F 为直径的圆上,即12F F M △是以M 为直角顶点的直角三角形,故2221212||||||MF MF F F +=,即2212||||48MF MF +=,又12||||22MF MF a -==,所以2124||||MF MF =-=2212||||2MF MF +-12||||482MF MF =-12||||MF MF ,解得12||||22MF MF =,所以12F F M S =△121||||112MF MF = 故选:B 【点晴】关键点点睛:根据OM =12MF F △为直角三角形是解题的关键,再结合双曲线的定义及勾股定理,即可计算焦点三角形面积,是一道中档题.3.D解析:D 【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解. 【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解.显然34k =±不满足方程2724250k k +-=. 综上所述,k 的取值有4个. 故选:D. 【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.4.C解析:C 【分析】作出图形,可知FAB 是以FAB ∠为直角的直角三角形,可得出0AF AB ⋅=,可得出a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率.【详解】如下图所示,可知AFB ∠、ABF ∠均为锐角, 所以,FAB 是以FAB ∠为直角的直角三角形,由题意可知,点(),0F c -、()0,A b 、(),0B a ,则(),AF c b =--,(),AB a b =-,20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=,在等式220c ac a +-=的两边同时除以2a 可得210e e +-=,01e <<,解得512e =. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.B解析:B 【分析】可设出直线AB ,与两渐近线方程联立,解出,B C y y ,利用两者的关系式求出直线的斜率.进而表示出A 的坐标,代入双曲线方程,得到,,a b c 的关系式,从而求得离心率. 【详解】||||||FA AB BC ==,故有1123A B C y y y == 故32B C y y =设过点F 的直线方程为:()y k x c =+联立()y k x c b y x a ⎧=+⎪⎨=-⎪⎩,解之得C C kc x bk a b kc a y b k a -⎧=⎪+⎪⎪⎨⎪=⎪⎪+⎩ 同理联立()y k x c by x a ⎧=+⎪⎨=⎪⎩解之得B B kc x bk a b kc a y b k a ⎧=⎪-⎪⎪⎨⎪=⎪⎪-⎩由32B C y y =有23b bkc kca ab b k k a a =+-,故3232b b k k a a +=- 解之得5bk a=-直线为:()5by x c a=-+ 则1212A B bc y y a -==,又()5A A b y x c a =-+ 故712A cx =-又A 在双曲线上可得:2222491144144c c a a -= 得2213c a =故ca =故选:B 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.B解析:B 【分析】由题意可得双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,由12PF F △为等腰三角形,所以2126PF F F ==,从而可求得1221064PF a PF =-=-=,再利用双曲线的定义可求得在双曲线中1a =,b =,进而可求出双曲线的渐近线方程 【详解】解:因为椭圆2251162x y +=的焦点坐标为(0,3),所以双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,设点P 为两曲线在第一象限的交点,由于在椭圆中,12PF F △为等腰三角形,所以2126PF F F ==, 所以1221064PF a PF =-=-=,在双曲线中,212642a PF PF =-=-=,所以1a =,代入229a b +=,得b =,所以该双曲线的渐近线方程为4a y x x b =±==±, 故选:B 【点睛】关键点点睛:此题考查椭圆、双曲线的定义的应用,解题的关键由12PF F △为等腰三角形和椭圆的定义求出21,PF PF 的值,属于中档题7.C解析:C 【分析】根据椭圆的定义以及余弦定理,结合221cos cos 0AF O BF F ∠+∠=列方程可解得a ,b ,即可得到椭圆的方程. 【详解】22||2||AF BF =,2||3||AB BF ∴=, 又1||||AB BF =,12||3||BF BF ∴=, 又12||||2BF BF a +=,2||2aBF ∴=, 2||AF a ∴=,13||2BF a =, 12||||2AF AF a +=,1||AF a ∴=, 12||||AF AF ∴=,A ∴在y 轴上.在Rt2AF O 中,22cos AF O a∠=,在12BF F △中,由余弦定理可得22221316()()822cos 2242a a a BF F a a +--∠==⨯⨯. 221cos cos 0AF O BF F ∠+∠=,可得22802a a a -+=,解得212a =.2221248b a c =-=-=.椭圆C 的方程为:221128x y +=.故选:C . 【点睛】方法点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求.8.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-, 即112122,M F F D F D E M =∴=,可知四边形12M F DE 为平行四边形; 又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故3==ce a, 故双曲线C 的渐近线方程为2y x = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bx y a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.9.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y .4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩.以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=c a x c,于是()22222200233-=-=b a c y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以2e ==. 故选:B. 【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.10.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e .∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得e =舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.11.D解析:D 【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求. 【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,2=,即8p =,所以1C 的标准方程是216x y =,故选:D . 【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧:已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程. 12.B【分析】先利用方程得求得焦点坐标和准线方程,设点(,0)M m ,()00,A x y ,再利用点()00,A x y 在抛物线与直线上列方程,解出0,x m ,最后利用距离公式计算FM 即可. 【详解】如图所示,抛物线24x y =中,()0,1F ,:1l y =-,依题意设(,0)M m ,()00,A x y ,00x >,则2004x y =,故200,4x A x ⎛⎫⎪⎝⎭,()0,1B x -,因为BF BM ⊥,即BF BM ⊥,而()()00,2,,1BF x BM m x =-=-, 所以()0020BF BM x m x ⋅=-+=,直线:11x y FM m +=,A 在直线上,故200:14x x FM m +=,即02044x m x =-,代入上式即得000024420x x x x ⎛⎫-+= ⎪⎝-⎭,化简整理得4200280x x +-=,即()()2200240x x -+=, 故202x =,而00x >,故02x =()2422242m ==-(22,0)M ,所以FM =()()22220013-+-=.故选:B. 【点睛】本题解题关键在于利用点()00,A x y 既在抛物线上,又在直线上,构建关系式,求解出点M 即突破难点. 二、填空题13.①②③④【分析】根据方程分别讨论和四种情况得到不同的解析式画出对应的图象即可得答案【详解】当时方程为表示椭圆在第一象限的部分当时方程为表示双曲线在第四象限的部分当时方程为表示双曲线在第二象限的部分当解析:①②③④根据方程,分别讨论0,0x y ≥≥、0,0x y ><、0,0x y <>和0,0x y <<四种情况,得到不同的解析式,画出对应的图象,即可得答案. 【详解】当0,0x y ≥≥时,方程为221169x y +=,表示椭圆在第一象限的部分,当0,0x y ><时,方程为221169x y -=,表示双曲线在第四象限的部分, 当0,0x y <>时,方程为221916y x-=,表示双曲线在第二象限的部分,当0,0x y <<时,方程为221916y x --=,无意义,所以()y f x =图象如下所示:所以函数()y f x =的值域是R ;故①正确;()y f x =在R 上单调递减,故②正确; ()y f x =的图象不经过第三象限,故③正确;直线340x y +=为双曲线的渐近线,所以曲线()y f x =没有交点,故④正确. 故答案为:①②③④ 【点睛】解题的关键是根据题意,分类讨论,得到不同的解析式,再画图求解,考查分类讨论,数形结合的能力,属基础题.14.【分析】由题意将的坐标代入抛物线的方程可得的值进而求出抛物线的方程设出直线的方程并与抛物线方程联立求出两根之和及两根之积求出直线的斜率之积化简可得定值【详解】由题意将的坐标代入抛物线的方程可得解得所 解析:4-【分析】由题意将()1,2A 的坐标代入抛物线的方程可得p 的值,进而求出抛物线的方程,设出直线PQ 的方程并与抛物线方程联立求出两根之和及两根之积,求出直线AP ,AQ 的斜率之积,化简可得定值4-. 【详解】由题意将()1,2A 的坐标代入抛物线的方程可得42p =,解得2p =, 所以抛物线的方程为24y x =; 由题意可得直线PQ 的斜率不为0,所以设直线PQ 的方程为:(2)2x m y =++,设1(P x ,1)y ,2(Q x ,2)y ,联立直线与抛物线的方程:2(2)24x m y y x =++⎧⎨=⎩,整理可得:24880y my m ---=,则124y y m +=,1288y y m =--,由题意可得1212122212122222111144y y y y k k y y x x ----=⋅=⋅---- 1212121616164(2)(2)2()488244y y y y y y m m ====-+++++--+⨯+,所以124k k =-. 故答案为:4-. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.15.【分析】设点利用抛物线的定义得出可计算得出再利用点差法可得出可求出的值由此可得出双曲线的渐近线方程【详解】设点由抛物线的定义可得由可得直线的斜率为由两式作差得即所以可得因此该双曲线的渐近线方程为故答解析:2y x =±【分析】设点()11,A x y 、()22,B x y ,利用抛物线的定义得出12y y p +=,可计算得出122ABx x k p +=,再利用点差法可得出2121222AB x x x x b k a p p++=⋅=,可求出b a 的值,由此可得出双曲线的渐近线方程. 【详解】设点()11,A x y 、()22,B x y ,由抛物线的定义可得12p AF y =+,22pBF y =+, 2pOF =,由4AF BF OF +=可得122y y p p ++=,12y y p ∴+=,直线AB 的斜率为221212121212222ABx x y y x x p p k x x x x p--+===--, 由22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差得22221212220x x y y a b ---=, 即()()()()1212121222x x x x y y y y a b -+-+=,所以,22121212122212122ABy y x x x x x x b b k x x a y y a p p -+++==⋅=⋅=-+,2212b a ∴=,可得2b a =,因此,该双曲线的渐近线方程为2y x =±.故答案为:2y x =±. 【点睛】方法点睛:求双曲线的渐近线方程的方法:(1)定义法:直接利用a 、b 求得比值,则焦点在x 轴上时,渐近线方程为b y x a=±,焦点在y 轴上时,渐近线方程为ay x b=±; (2)构造齐次式:利用已知条件结合222a b c =+,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写出渐近线方程即可.16.3【分析】先根据抛物线方程求出p 的值再由抛物线性质求出的垂直平分线方程即可得到答案【详解】∵抛物线∴p=2焦点F(10)可设直线l :P(x1y1)Q(x2y2)将代入抛物线得:∴设PQ 中点为N(x0解析:3 【分析】先根据抛物线方程求出p 的值,再由抛物线性质求出PQ 的垂直平分线方程,即可得到答案. 【详解】∵抛物线2:4C y x =,∴p =2,焦点F (1,0) 可设直线l :(1)y k x =-,P (x 1,y 1)、Q (x 2,y 2)将(1)y k x =-代入抛物线2:4C y x =得:2222(24)0k x k x k -++= ∴12242x x k +=+1224||226,2PQ x x p k k =++=++=∴=±设PQ 中点为N (x 0,y 0),则2120004242,(1)222x x k x y k x k++=====-= 所以线段PQ 的垂直平分线方程:1(2)y k x k-=--令y =0,可得x =4,所以||413MF =-=故答案为:3 【点睛】坐标法是解析几何的基本方法,利用坐标法把几何关系转化为代数运算.17.5【分析】求出抛物线的准线方程把到焦点距离转化为它到准线的距离然后利用三点共线得最小值【详解】如图过作与准线垂直垂足为则∴易知当三点共线时最小最小值为∴的最小值为5故答案为:5【点睛】本题考查抛物线解析:5 【分析】求出抛物线的准线方程,把P 到焦点F 距离转化为它到准线的距离,然后利用三点共线得最小值. 【详解】如图,过P 作PM 与准线2x =-垂直,垂足为M ,则PF PM =,∴PF PB PM PB +=+,易知当,,B P M 三点共线时,PM PB +最小,最小值为3(2)5--=.∴PB PF +的最小值为5.故答案为:5.【点睛】本题考查抛物线的定义,考查抛物线上的点到焦点和到定点距离之和的最小值,解题方法是利用抛物线的定义把点到焦点的距离转化为点到准线距离.18.【分析】先利用点坐标和垂直关系求得直线的斜率并写出直线方程联立直线与椭圆利用韦达定理和垂直的向量关系得到的关系式再结合焦距的关系式解出即得方程【详解】依题意椭圆的焦距为即即由点的坐标为知直线OD的斜解析:221 306xy+=【分析】先利用点D坐标和垂直关系求得直线l的斜率,并写出直线方程,联立直线与椭圆,利用韦达定理和垂直的向量关系得到22,a b的关系式,再结合焦距的关系式解出22,a b,即得方程.【详解】依题意,椭圆的焦距为46,即246c=,26c=,即2224a b-=,由点D的坐标为()2,1,知直线OD的斜率101202ODk-==-,又⊥OD AB,知直线l的斜率为2-,即直线l的方程为12(2)y x-=--,即52y x=-.设()()1122,,,A x yB x y联立方程2222152x ya by x⎧+=⎪⎨⎪=-⎩得()2222222420250a b x a x a a b+-+-=,故2222121222222025,44a a a bx x x xa b a b-+==++,即()()()12121212525225104y y x x x x x x=--=-++2222222222222202525425104444a a ab b a ba b a b a b--=-⨯+⨯=+++,由OA OB⊥知,1212OA OB x x y y⋅=+=,即22222222222525444a ab b a ba b a b--+=++,所以222255a b a b+=,又2224a b-=,消去2a得,42141200b b+-=,解得26b=或220b=-(舍去),故2230,6a b==,椭圆C的方程为221306x y+=.故答案为:221306x y+=.【点睛】思路点睛:求解椭圆中的直线垂直问题时,一般利用直线的斜率之积为-1,或者直线上的向量的数量积为0来处理,再联立直线与椭圆方程,结合韦达定理,即可求出结果.19.【分析】设代入双曲线方程变形为再根据MPA 共线利用斜率相等求得点P 然后再直线与的斜率之积为4得到ab 的关系求解【详解】设则即设又且MPA 共线所以解得则的斜率为的斜率为又直线与的斜率之积为4所以即所以【分析】设(),M m n ,代入双曲线方程变形为22222n b m a a=-,再根据M ,P ,A 共线,利用斜率相等,求得点P ,然后再直线OP 与BM 的斜率之积为4,得到a ,b 的关系求解. 【详解】设(),M m n ,则22221m n a b -=,即22222n b m a a=-, 设(),P a t ,又(),0A a -,且M ,P ,A 共线, 所以2n tm a a=+, 解得2ant m a=+, 则OP 的斜率为2nm a+, BM 的斜率为nm a-, 又直线OP 与BM 的斜率之积为4,所以22222224a n b m a ==-,即222b a =,所以c e a ===【点睛】本题主要考查双曲线的离心率的求法以及点的双曲线上和斜率公式的应用,还考查了运算求解的能力,属于中档题.20.【分析】求△MAF 周长最小值即求|MA|+|MF|的最小值设点M 在准线上的射影为D 根据抛物线定义知|MF|=|MD|转为求|MA|+|MD|的最小值当DMA 三点共线时|MA|+|MD|最小即可得到答解析:3【分析】求△MAF 周长最小值,即求|MA |+|MF |的最小值.设点M 在准线上的射影为D ,根据抛物线定义知|MF |=|MD |,转为求|MA |+|MD |的最小值,当D 、M 、A 三点共线时|MA |+|MD |最小,即可得到答案. 【详解】求△MAF 周长的最小值,即求|MA |+|MF |的最小值, 设点M 在准线上的射影为D ,则 根据抛物线的定义,可知|MF |=|MD |因此,|MA |+|MF |的最小值,即|MA |+|MD |的最小值根据平面几何知识,可得当D ,M ,A 三点共线时|MA |+|MD |最小, 因此最小值为x A ﹣(﹣1)=2+1=3, ∵|AF |=()()222110-+-=2,∴△MAF 周长的最小值为3+2, 故答案为3+2【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,M ,A 三点共线时|MA |+|MD |最小,是解题的关键.三、解答题21.(1)2212x y +=;(2)①3k =-;②808,9⎡⎫⎪⎢⎣⎭.【分析】(1)把点代入方程结合离心率列方程组求解即可;(2)①设直线l 方程为,代入椭圆E 的方程可得,结合判别式与韦达定理,利用直线OA ,OB 的斜率之和为34进而求出直线斜率即可;②当直线l 的斜率不存在时,直线l 的方程为0x =,求得8MA MA ⋅=,当直线l 的斜率存在时,由(2)①得28821MA MB k ⋅=++,从而求得范围.【详解】解:(1)由题意得222221,2c a a b c ⎧=⎪⎨⎪=+⎩,解得222a c =,22b c =.设椭圆E 的方程为222212x y c c +=,又因为点P ⎛ ⎝⎭在椭圆E 上, 所以222211122c c+=,22222,1c a b ===,所以椭圆E 的方程为2212x y +=;(2)①设直线l 方程为:3y kx =+,代入椭圆E 的方程可得,()222112160kx kx +++=因为直线l 与椭圆E 有两个交点,所以216640∆=->k ,即24k >. 设()11,A x y ,()22,B x y ,则1221221k x x k +=-+,1221621x x k ⋅=+, 11223,3y kx y kx =+=+.又()1212121233244OA OBx x y y k k k k x x x x ++=+=+=-=⋅ 解得3k =-,经检验成立.所以,直线l 的斜率3k =-; ②当直线l 的斜率不存在时,直线l 的方程为0x =,将0x =代入2212x y +=,解得1y =±,则(0,1)A ,(0,1)B -,8MA MA ⋅=当直线l 的斜率存在时,由(2)①得()()()()22121212216133121k MA MA x x y y k x x k +⋅=⋅+--=+⋅=+()2228211882121k k k ⎡⎤++⎣⎦==+++因为24k >,所以MA MA ⋅的范围为808,9⎛⎫⎪⎝⎭. 综上,得MA MB ⋅的取值范围是808,9⎡⎫⎪⎢⎣⎭. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率求出c =222a b c =+即可求解.(2)当点C 是椭圆上顶点时,求出()4,3P ,进而求出点83,55D ⎛⎫- ⎪⎝⎭,写出直线CD 的方程,得出直线CD 经过定点()1,0N ,设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x ,写出直线PA 的方程,将直线与椭圆联立,求出2221826,99m m C m m ⎛⎫- ⎪++⎝⎭,同理求出222222,11m m D m m ⎛⎫-- ⎪++⎝⎭,若直线CD 经过定点()1,0N ,只需,,N C D 三点共线,利用向量共线的坐标表示即可求解. 【详解】(1)由椭圆的定义知12|||2|MF MF a =+,所以2122122MF MF MF MF a ⎛+⎫≤= ⎪⎝⎭,已知12||||4MF MF ≤,所以24a =,2a =.因为e =c = 因为222a b c =+,所以1b =,所以椭圆E 的方程为2214x y +=.(2)当点C 是椭圆上顶点时,直线AC 的方程为()122y x =+,可得()4,3P ,则()3:22PB l y x =-与2214x y +=联立解得83,55D ⎛⎫- ⎪⎝⎭,所以直线CD 的方程为:10x y +-=,由椭圆的对称性可知,直线CD 经过x 轴上的定点, 所以直线CD 经过定点()1,0N . 以下证明一般性:设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x 则直线PA 的方程为()26my x =+ 联立22(2)614m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得()2222944360m x m x m +++-=由韦达定理得2243629C m x m --=+,解得2221826,99m m C m m ⎛⎫- ⎪++⎝⎭因为直线PB 的方程为()22my x =- 联立22(2)214m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消去y 得()222214440m x m x m +-+-=由韦达定理得224421D m x m -=+,解得222222,11m m D m m ⎛⎫-- ⎪++⎝⎭ 直线CD 经过定点()1,0N ,即,,N C D 三点共线因为222936,99m m NC m m ⎛⎫-= ⎪++⎝⎭,22232,11m m ND m m ⎛⎫--= ⎪++⎝⎭ 因为222222932639191m m m m m m m m ---⨯-⨯++++ ()()()332218661891m m m m m m -+--=++0=所以//NC ND ,那么,,N C D 三点共线 所以直线CD 经过定点()1,0N , 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用点C 是椭圆上顶点时,求出定点()1,0N ,再证明一般性,借助,,N C D 三点共线求解,考查了运算求解能力. 23.(1)1p =;(2) 【分析】(1)由已知准线方程可得答案;(2)联立直线与抛物线方程,利用韦达定理表示OA OB ⊥可得t ,然后利用弦长公式可得答案. 【详解】 (1)由已知得122p -=-,所以1p =; (2)设()11,A x y ,()22,B x y ,联立22y x =与y x t =+得2220y y t -+=,480t ∆=->,即12t <时有122y y +=,122y y t =, 因为OA OB ⊥,所以()21212121204y y OA OB x x y y y y ⋅=+=+=,可得124y y =-,因为122y y t =,所以2t =-, 则122y y +=,124y y =-, 所以||AB =====【点睛】本题考查了抛物线方程、直线与抛物线的位置关系,关键点是利用韦达定理计算弦长,意在考查学生对这些知识的理解能力掌握水平及其应用能力.24.(1)2211612x y +=;(2)证明见解析.【分析】(1)由已知建立方程组可求得曲线C 的方程;(2)令8x =,则()8,6R k ,联立整理得()()222243161630k x k x k +-+-=,设()()1122,,,P x y Q x y ,()2212122216316,4343k k x x x x k k -+==++,表示12k k +,3k ,可求得定值. 【详解】解:(1)由已知得491861m n m n +=⎧⎨+=⎩,解得116112m n ⎧=⎪⎪⎨⎪=⎪⎩,所以曲线C 的方程为2211612x y +=;(2)令8x =,则()8,6R k ,联立()22116122x y y k x ⎧+=⎪⎨⎪=-⎩,整理得()()222243161630kx k x k +-+-=,设()()1122,,,P x y Q x y ,则()2212122216316,4343k k x x x x k k -+==++, ∴12121212121233113232222y y y y k k x x x x x x ⎛⎫--+=+=+-+ ⎪------⎝⎭,()()221222121222164443232321241633244343k x x k k k k x x x x k k k k -+-+=-⨯=-⨯=--++--+++, 又3631822k k k -==--, ∴1232k k k +=,∴λ等于定值2,得证.【点睛】关键点点睛:本题考查直线与椭圆的综合问题,关键在于由直线的方程与椭圆的方程联立后,由根与系数的关系表示直线的斜率,求得定值.25.(1)()240y x y =≠;(2)20x y +-=或20x y --=.【分析】(1)设点(),P x y ,联立40x y y λλλ⎧=⎪⎪=⎨⎪≠⎪⎩,消去参数λ可得出动点P 的轨迹C 的方程;(2)设直线AB 的方程为2x ty =+,设点()11,A x y 、()22,B x y ,将直线AB 的方程与曲线C 的方程联立,列出韦达定理,利用抛物线的焦半径公式结合韦达定理求出t 的值,由此可求得直线AB 的方程. 【详解】(1)设点(),P x y ,联立40x y y λλλ⎧=⎪⎪=⎨⎪≠⎪⎩,消去参数λ得()240y x y =≠,因此,点P 的轨迹C 的方程为()240y x y =≠;(2)若直线m 与x 轴重合,此时,直线m 与曲线C 无公共点,不合乎题意. 设直线m 的方程为2x ty =+,设点()11,A x y 、()22,B x y ,联立224x ty y x=+⎧⎨=⎩,可得2480y ty --=,则216640t ∆=+>, 由韦达定理可得124y y t +=,易知点()1,0F 为抛物线24y x =的焦点,所以,()21212264610AF BF x x t y y t +=++=++=+=,解得1t =±,因此,直线AB 的方程为20x y +-=或20x y --=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.26.(1)y 2=4x ;(2)证明见解析. 【分析】(1)利用抛物线定义,由|AF |=2+2p=3求解即可; (2)根据点(2,)A m 在抛物线E 上,解得m ,不妨设A (2,直线AF 的方程为1)y x =-,联立)214y x y x⎧=-⎪⎨=⎪⎩,然后证明k G A +k G B =0即可. 【详解】(1)由抛物线定义可得:|AF |=22p+=3, 解得p =2,∴抛物线E 的方程为y 2=4x .(2)∵点(2,)A m 在抛物线E 上,∴m 2=4×2,解得m =±(2A ,(1,0)F , ∴直线AF的方程:1)y x =-,联立)214y x y x⎧=-⎪⎨=⎪⎩,化为2x 2﹣5x +2=0,解得x =2或12,B 12⎛- ⎝,. 又(1,0)G -,∴()0213GA k ==--, ()12GB k ==--, ∴k GA +k GB =0,∴∠AGF =∠BGF ,∴x 轴平分∠AGB , 因此点F 到直线GA ,GB 的距离相等,∴以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切. 【点睛】关键点点睛:本题考查直线和抛物线的位置关系,由GF 为∠AGB 的平分线,即∠AGF =∠BGF ,转化为 k G A +k G B =0结合韦达定理证明.。
(好题)高中数学选修1-1第二章《圆锥曲线与方程》检测题(含答案解析)(2)
一、选择题1.直线3y x与曲线2||194y x x -=的公共点的个数是( )A .1B .2C .3D .42.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( ) A .83,33⎡⎤⎢⎥⎣ B .82,33⎡⎤⎢⎥⎣ C .82,32⎡⎤⎢⎥⎣ D .83,32⎡⎤⎢⎥⎣ 3.如图,已知曲线2yx 上有定点A ,其横坐标为()0a a >,AC 垂直于x 轴于点C ,M 是弧OA 上的任意一点(含端点),MD 垂直于x 轴于点D ,ME AC ⊥于点E ,OE与MD 相交于点P ,则点P 的轨迹方程是( )A .()310y x x a a=≤≤ B .()31022ay x x x a a =+≤≤ C .()220y x ax x a =-≤≤D .()2022a ay x x x a =+≤≤ 4.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( ) A .165B .2C .85D .15.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .46.已知F 是抛物线2:4E y x =的焦点,若直线l 过点F ,且与抛物线E 交于B ,C 两点,以BC 为直径作圆,圆心为A ,设圆A 与y 轴交于点M ,N ,则MAN ∠的取值范围是( ) A .20,3π⎛⎫ ⎪⎝⎭B .20,3π⎛⎤⎥⎝⎦C .2,33ππ⎛⎤⎥⎝⎦D .2,33ππ⎡⎤⎢⎥⎣⎦7.设抛物线2:4C y x =的焦点为F ,M 为抛物线上异于顶点的一点,且M 在直线1x =-上的射影为N ,若MNF 的垂心在抛物线C 上,则MNF 的面积为( )A .1B .2C .3D .48.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .(1,23⎤⎦C .5,43⎡⎤⎢⎥⎣⎦D .[2,23]9.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( ) A .3B .10C .5D .1010.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A .273+ B .273+ C .53D .211.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦12.已知抛物线24x y =的焦点为F ,准线为l ,M 是x 轴正半轴上的一点,线段FM 交抛物线于点A ,过A 作l 的垂线,垂足为B .若BF BM ⊥,则FM =( ) A .52B .3C .72D .4二、填空题13.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n -=___________. 14.直线l 与抛物线24y x =交于A 、B 两点,O 为坐标原点,直线OA 、OB 的斜率之积为1-,以线段AB 为半径的圆与直线l 交于P 、Q 两点,()6,0M ,则22MP MQ +的最小值为______.15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在平面直角坐标系xOy 中,双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线的一条渐近线交于第一象限内的点A ,过点F 且平行于OA 的直线交另一条渐近线于点B ,若AB OB ⊥,则双曲线C 的离心率为____________. 18.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.19.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为__________.20.已知椭圆2212x y +=上存在相异两点关于直线y x t =+对称,则实数t 的取值范围是______.三、解答题21.已知椭圆22:11612x y E +=,1F 、2F 为左、右焦点,()2,3A .(1)求12tan F AF ∠及12F AF ∠的角平分线所在直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出:若不存在,说明理由.22.已知抛物线()2:20C y px p =>过点()4,4-,直线2y x m =-+与抛物线C 相交于不同两点A 、B .(1)求实数m 的取值范围;(2)若AB 中点的横坐标为1,求以AB 为直径的圆的方程.23.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,(2,1),,A P Q --在椭圆C 上,且,P Q 异于点A .(1)求椭圆C 的方程;(2)若||||,||||OP OQ AP AQ ==,求直线PQ 的方程.24.荷兰数学家舒腾(F.van Shooten ,1615-1660)设计了一种画椭圆的工具,如图1所示,两根等长的带槽的直杆AC 和BF 的一端各用钉子固定在点A 和B 上(但分别可以绕钉子转动),4AC BF ==,另一端用铰链与杆FC 连接,2FC AB ==,AC 和BF 的交点为E ,转动整个工具,交点E 形成的轨迹为椭圆Γ.以线段AB 中点O 为原点,AB 所在的直线为x 轴建立如图2的平面直角坐标系.(1)求椭圆Γ的标准方程;(2)经过B 点的直线l 交椭圆Γ于不同的两点M N 、,设点P 为椭圆的右顶点,当PNM △的面积为627时,求直线l 的方程. 25.如图,已知点P 是x 轴下方(不含x 轴)一点,抛物线2:C y x =上存在不同的两点A 、B 满足PD DA λ=,PE EB λ=,其中λ为常数,且D 、E 两点均在C 上,弦AB 的中点为M .(1)若P 点坐标为(1,2)-,3λ=时,求弦AB 所在的直线方程;(2)若直线PM 交抛物线C 于点Q ,求证:线段PQ 与QM 的比为定值,并求出该定值.26.(1)已知椭圆2222:1(0)x y E a b a b+=>>的焦距为221F 、2F 为左、右焦点,M 为椭圆E 上一点,且123F MF π∠=,1223F MF S =△,求椭圆E 的方程. (2)过点()()00P m m a <<,的直线交椭圆E 于A 、B 两点,交直线4x m=于点M ,设MA AP λ=,MB BP μ=,求λμ+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由于已知曲线函数中含有绝对值符号, 将x 以0为分界进行分类讨论,当x ≥0时,曲线为焦点在y 轴上的双曲线,当x <0时,曲线为焦点在y 轴上的椭圆,进而在坐标系中作出直线与曲线的图像,从而可得出交点个数.【详解】当0x ≥时,曲线2194x xy -=的方程为22194y x -=当0x <时,曲线2194x xy -=的方程为22194y x +=,∴曲线2194x xy -=的图象如图,在同一坐标系中作出直线3y x的图象,可得直线与曲线交点个数为3个.故选:C 【点晴】本题讨论曲线类型再利用数形结合法求交点个数是解题的关键.2.C解析:C 【分析】当直线12l l 、有一条斜率不存在时,可直接求得32AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2622t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时22AB =,2222b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++, 令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以13AB CD y ⎡+=∈⎢⎢⎣,综上AB CD +的取值范围是⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.3.A解析:A 【分析】设点(),P x y ,求出点M 、E 的坐标,利用O 、P 、E 三点共线可得出//OP OE 可求得点P 的轨迹方程. 【详解】设点(),P x y ,其中0x a ≤≤,则点()2,M x x,ME 与直线x a =垂直,则点()2,E a x ,因为O 、P 、E 三点共线,则//OP OE ,可得3ay x =,31y x a∴=, 因此,点P 的轨迹方程是()310y x x a a=≤≤. 故选:A. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.4.C解析:C【分析】直接设出直线方程,用“设而不求法”表示出AF,BF,利用性质可解.【详解】由题意可知直线AB的斜率一定存在,设为k,联立2, 22,py k xy px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y可得()22222204k pk x k px-++=,设()11,A x y,()22,B x y,所以2124px x=.又根据抛物线的定142px+=,212px+=,所以241224p p p⎫⎫⎛⎛--=⎪⎪⎝⎝⎭⎭,解得85p=.故选:C【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题. 5.B解析:B【分析】作出图形,过点M分别作抛物线C的准线l和直线3490x y++=的垂线,垂足分别为点B、A,由抛物线的定义得出1d MB MF==,可得出12d d MF MA+=+,利用FM与直线3490x y++=垂直时,12d d+取最小值,然后计算出点F到直线3490x y++=的距离,即为所求.【详解】如下图所示:过点M分别作抛物线C的准线l和直线3490x y++=的垂线,垂足分别为点B、A,由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为2d ==,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.6.B解析:B 【分析】设设()11,B x y ,()22,C x y BC 的中点()00,A x y ,直线l :()1y k x =-与 2:4E y x =联立可得()2222240k x k x k -++=,由韦达定理计算12x x +,12x x ,再求以BC 为直径作圆的半径12r BC =,求出圆心A 点横坐标,设MN 的中点为D ,则12MAD MAN ∠=∠,由圆的性质可得0cos x MAD r∠=并求出其范围,进而可得MAD ∠的范围,再讨论斜率不存在时MAD ∠的值,即可求解. 【详解】由抛物线2:4E y x =可知,焦点()1,0F ,设()11,B x y ,()22,C x y BC 的中点()00,A x y 设直线l :()1y k x =-代入2:4E y x =可得()2222240k x k x k -++=,所以212224k x x k++= ,121=x x ()()22222121212241612444k k x x x x x x k k +⎛⎫+-=+-=-= ⎪⎝⎭, ()()()2222212416111k BC k x x k k+=+-=+⨯,所以()2241k BC k +=,以BC 为直径作圆的半径()222112k r BC k+==,圆心为BC 的中点()20122122k x x x k+=+=, 设MN 的中点为D ,则12MAD MAN ∠=∠,则()()()22202222221111cos 1222212121k x k k MAD r k k k k ++∠====+<+=+++ 且1cos 2MAD ∠>,所以03MAD π<∠<, 当k 不存在时,1,2x y ==±,此时2r ,01x =,1cos 2MAD ∠=,3MAD π∠=,所以03MAD π<∠≤可得203MAN π<∠≤, 所以MAN ∠的取值范围是20,3π⎛⎤⎥⎝⎦故选:B 【点睛】关键点点睛:本题解题的关键点是联立直线与抛物线的方程,求出圆的半径和圆心坐标,由圆的性质知圆心与弦中点的连线与弦垂直可求出12MAN ∠的范围,进而可计算MAN ∠的范围.7.B解析:B 【分析】设点200,4y M y ⎛⎫⎪⎝⎭,则点()01,N y -,求出MNF 的垂心H 的坐标,再由MH FN ⊥可求得0y 的值,进而可求得MNF 的面积. 【详解】设点200,4y M y ⎛⎫ ⎪⎝⎭,则点()01,N y -,设点M 在第一象限, 抛物线C 的焦点为()1,0F ,设MNF 的垂心为H , 由于FHMN ⊥,则点H 的横坐标为1,可得点()1,2H ,MH FN ⊥,则0HM FN ⋅=,2001,24y HM y ⎛⎫=-- ⎪⎝⎭,()02,FN y =-, ()()22200000012122220422y y HM FN y y y y ⎛⎫⋅=--+-=-+=-= ⎪⎝⎭,解得02y =,所以,点M 的坐标为()1,2,所以,2MN =,12222MNF S =⨯⨯=△. 故选:B. 【点睛】关键点点睛:解决本题的关键在于利用已知条件求出点M 的坐标,本题特殊的地方在于MN y ⊥轴,可得出垂心与焦点的连线垂直于x 轴,再结合垂心在抛物线求出垂心的坐标.8.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).9.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y . 4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩. 以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=ca x c,于是()2222220233-=-=b ac y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以e ==. 故选:B. 【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.10.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54by x c a c =++,化简得3(54)30bx a c y bc -++=,又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.11.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=, 又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221 x ya bx y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c axcc a c ayc⎧-⎪=⎪⎨-+⎪=⎪⎩,又M在直线y kx=上,3,3k⎡⎤∈⎢⎥⎣,所以()4224424222222222212111,33212c a c a e e ee ea c aykx-+-+---⎡⎤====-∈⎢⎥⎣⎦,即42424213421eeee⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e ee e⎧-+≥⎨-+≤⎩,解得22423e≤≤+或224233e-≤≤(舍,因为双曲线离心率大于1),所以231e≤≤+,故选:C【点睛】关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF⊥转化为向量数量积的坐标表示,求出点M的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.12.B解析:B【分析】先利用方程得求得焦点坐标和准线方程,设点(,0)M m,()00,A x y,再利用点()00,A x y 在抛物线与直线上列方程,解出0,x m,最后利用距离公式计算FM即可.【详解】如图所示,抛物线24x y=中,()0,1F,:1l y=-,依题意设(,0)M m ,()00,A x y ,00x >,则2004x y =,故200,4x A x ⎛⎫⎪⎝⎭,()0,1B x -,因为BF BM ⊥,即BF BM ⊥,而()()00,2,,1BF x BM m x =-=-, 所以()0020BF BM x m x ⋅=-+=,直线:11x y FM m +=,A 在直线上,故200:14x x FM m +=,即02044x m x =-,代入上式即得000024420x x x x ⎛⎫-+= ⎪⎝-⎭,化简整理得4200280x x +-=,即()()2200240x x -+=, 故202x =,而00x >,故0x =()24m ==-M ,所以FM =3=.故选:B. 【点睛】本题解题关键在于利用点()00,A x y 既在抛物线上,又在直线上,构建关系式,求解出点M 即突破难点. 二、填空题13.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=- 故直线()2222:x PA y y x x y -=--化简得:222222y y y x x x -=-+即2222221x x y y x y +=+=同理有33:1PB x x y y +=又,PA PB 均过点()11,P x y ,有313131311,1x x y y x x y y +=+= 故直线11:1MN x x y y +=1111,m n x y == 221222111x x m n-=-= 故答案为:114.【分析】设直线与抛物线联立方程得韦达定理与代入直线与抛物线表示出与然后根据利用数量积代入求解出从而表示出圆心的坐标根据平行四边形的四边平方和等于对角线平方和代入列式利用二次函数的性质求解最小值【详解 解析:10【分析】设直线AB ,与抛物线联立方程,得韦达定理12y y +与12y y ⋅,代入直线与抛物线表示出12x x +与12x x ⋅,然后根据OA OB ⊥,利用数量积代入求解出4t =,从而表示出圆心的坐标,根据平行四边形的四边平方和等于对角线平方和,代入列式,利用二次函数的性质求解最小值. 【详解】设直线AB 的方程为x my t =+,()11,A x y ,()22,B x y ,由24y x x my t⎧=⎨=+⎩得2440y my t --=,所以()()()22444160m t t m ∆=--=+>, 得124y y m +=,124y y t ,所以()21212242x x m y y t m t +=++=+,222121216y y x x t ⋅==,因为直线OA 、OB 的斜率之积为1-,所以OA OB ⊥,即0OA OB ⋅=,所以2121240x x y y t t +=-=,所以4t =,所以直线AB 的方程为4x my =+,21248x x m +=+,从而圆心为()224,2O m m +',由平行四边形的四边平方和等于对角线平方和(用向量法易证),得()(222222244MP MQMO PQ MO ''+=+=+()()2222422144148161816202m m m m m ⎛⎫⎡⎤=-++=-++=-+ ⎪⎢⎥⎣⎦⎝⎭,所以222218102MP MQ m ⎛⎫+=-+ ⎪⎝⎭, 所以当22m =±时,22MP MQ +的最小值为10. 故答案为:10 【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、向量的数量积、三角形的面积等问题.15.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程 解析:28y x =【分析】 推导出OBE EBF △△,求出tan BOE ∠,可得出直线AO 的方程,联立直线AO 与抛物线C 的方程,求出点A 的坐标,利用抛物线的定义求出p 的值,即可得出抛物线C 的标准方程. 【详解】因为BOE BEF ∠=∠,90OBE EBF ∠=∠=,OBEEBF ∴△△,OB BE BE BF ∴=,即2222p p BE OB BF p =⋅=⨯=,22BE p ∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =, ∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.【分析】设双曲线半焦距为双曲线的渐近线方程为则设直线的方程为然后直线的方程和另一渐近线方程联立求出点从而可求出直线的斜率再由可得两直线的斜率乘积为从而得进而可求出双曲线的离心率【详解】解:设双曲线半【分析】设双曲线半焦距为c ,双曲线的渐近线方程为b y x a =±,则(,0),(,)bcF c A c a,设直线BF 的方程为()by x c a=-,然后直线BF 的方程和另一渐近线方程联立,求出点,22c bc B a ⎛⎫- ⎪⎝⎭,从而可求出直线AB 的斜率,再由AB OB ⊥,可得两直线的斜率乘积为1-,从而得2213b a =,进而可求出双曲线的离心率【详解】解:设双曲线半焦距为c ,双曲线的渐近线方程为b y x a =±,则(,0),(,)bc F c A c a, 设直线BF 的方程为()by x c a=-, 由()b y x c a b y x a ⎧=-⎪⎪⎨⎪=-⎪⎩,得22c x bc y a ⎧=⎪⎪⎨⎪=-⎪⎩,所以,22c bc B a ⎛⎫- ⎪⎝⎭,所以直线AB 的斜率为322AB bc bc b a a k c a c --==-, 因为AB OB ⊥,所以3()1AB OBb bk k a a⋅=⨯-=-, 所以2213b a =,所以双曲线的离心率为3e ==故答案为:3【点睛】关键点点睛:此题考查直线与双曲线的位置关系,考查求双曲线的离心率的方法,解题的关键是灵活运用双曲线的几何性质,考查计算能力,属于中档题18.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 19.(或)【分析】先根据的形状先确定出点坐标然后将点坐标代入双曲线方程根据的齐次式求解出离心率的值【详解】因为是以为直角顶点的等腰直角三角形不妨假设在第一象限所以所以所以所以所以所以所以所以又因为所以故【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭, 所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以23e ==又因为1e >,所以e ===,2). 【点睛】思路点睛:利用齐次式求解椭圆或双曲线的离心率的一般步骤: (1)根据已知条件,先得到关于,,a b c 的方程;(2)结合222a b c =+或222c a b =+将方程中的b 替换为,a c 的形式;(3)方程的左右两边同除以a 的对应次方,由此得到关于离心率e 的方程,从而求解出离心率e 的值.20.【分析】设对称的两点为直线的方程为与联立可得利用根与系数的关系以及中点坐标公式可求的中点利用判别式以及在直线上即可求解【详解】设椭圆存在关于直线对称的两点为根据对称性可知线段被直线直平分且的中点在直解析:33⎛- ⎝⎭【分析】设对称的两点为()11,A x y ,()22,B x y ,直线AB 的方程为y x b =-+与2212x y +=联立可得利用根与系数的关系以及中点坐标公式可求AB 的中点()00,M x y ,利用判别式0∆>以及()00,M x y 在直线y x t =+上即可求解.【详解】设椭圆2212x y +=存在关于直线y x t =+对称的两点为()11,A x y ,()22,B x y ,根据对称性可知线段AB 被直线y x t =+直平分, 且AB 的中点()00,M x y 在直线y x t =+上,且1AB k =-, 故可设直线AB 的方程为y x b =-+,联立方程2222y x bx y =-+⎧⎨+=⎩,整理可得2234220x bx b -+-=, ∴1243b x x +=,()1212223by y b x x +=-+=,由()221612220b b ∆=-->,可得b <<, ∴120223x x b x +==,12023y y b y +==, ∵AB 的中点2,33b b M ⎛⎫⎪⎝⎭在直线y x t =+上,∴233b b t =+,可得3b t =-,33t -<<.故答案为:⎛ ⎝⎭. 【点睛】关键点点睛:本题的关键点是利用直线AB 与直线y x t =+垂直可得直线AB 的斜率为1-,可设直线AB 的方程为y x b =-+,代入2212x y +=可得关于x 的一元二次方程,利用判别式0∆>,可以求出b 的范围,利用韦达定理可得AB 的中点()00,M x y 再代入y x t =+即可t 与b 的关系,即可求解. 三、解答题21.(1)124tan 3F AF ∠=,直线l 的方程为210x y --=;(2)不存在,理由见解析. 【分析】(1)分析得出2AF x ⊥轴,进而可得出12122tan F F F AF AF ∠=,设122F AF θ∠=,求出tan θ的值,可得出直线l 的斜率,进而可得出直线l 的方程;(2)假设椭圆E 上存在关于直线l 对称的相异两点()11,M x y 、()22,N x y ,进而可设直线MN 的方程为2xy t =-+,与椭圆E 的方程联立,列出韦达定理,求出线段MN 的中点P 的坐标,根据点P 在直线l 上,求出t 的值,可得出点P 的坐标,由此可得出结论. 【详解】(1)在椭圆E 中,4a =,23b =,2c =,则()12,0F -、()22,0F ,因为222311612+=,即点A 在椭圆E 上,且2AF x ⊥轴,121224tan 3F F F AF AF ∠==,设122F AF θ∠=,则22tan 4tan 21tan 3θθθ==-,整理可得22tan 3tan 20θθ+-=, 易知θ为锐角,则tan 0θ>,解得1tan 2θ=, 设直线l 的倾斜角为α,则sin cos 12tan tan 22sin tan cos2πθπθαθπθθθ⎛⎫- ⎪⎛⎫⎝⎭=-==== ⎪⎛⎫⎝⎭- ⎪⎝⎭,因此,直线l 的方程为()322y x -=-,即210x y --=;(2)假设椭圆E 上是否存在关于直线l 对称的相异两点()11,M x y 、()22,N x y , 则直线MN 的斜率为12-,设直线MN 的方程为2xy t =-+, 联立22123448y x t x y ⎧=-+⎪⎨⎪+=⎩,整理可得22120x tx t -+-=, 由韦达定理可得12x x t +=,则()121213222y y x x t t +=-++=, 所以,线段MN 的中点为3,24t t P ⎛⎫⎪⎝⎭, 点P 在直线l 上,所以,32110244t t t⨯--=-=,解得4t =, 所以点()2,3P ,此时,点P 与点A 重合,不合乎题意. 因此,椭圆E 上不存在关于直线l 对称的相异两点.【点睛】思路点睛:圆锥曲线中的探索性问题求解思路如下: 第一步:假设结论存在.第二步:结合已知条件进行推理求解.第三步:若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设. 第四步:反思回顾,查看关键点、易错点及解题规范. 22.(1)1,2⎛⎫-+∞ ⎪⎝⎭;(2)()()2215114x y -++=.【分析】(1)将点()4,4-的坐标代入抛物线C 的方程,求出p 的值,可得出抛物线C 的方程,再将直线2y x m =-+的方程与抛物线C 的方程联立,利用0∆>可求得实数m 的取值范围;(2)设点()11,A x y 、()22,B x y ,列出韦达定理,由线段AB 的中点的横坐标可求得m 的值,可求得线段AB 的中点坐标,利用弦长公式可求得AB ,进而可求得以线段AB 为直径的圆的方程. 【详解】(1)将点()4,4-的坐标代入抛物线C 的方程,可得()28416p =-=,解得2p =,所以,抛物线C 的方程为24y x =, 联立224y x m y x=-+⎧⎨=⎩,整理可得()224440x m x m -++=, 由已知条件可得()22441632160m m m ∆=+-=+>,解得12m >-, 因此,实数m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭; (2)设()11,A x y 、()22,B x y ,由韦达定理可得121x x m +=+,2124m x x =,由于AB 中点的横坐标为1,则1212x x m +=+=,解得1m =,1214x x ∴=, 由弦长公式可得12AB x x =-===,所以,所求圆的圆心坐标为()1,1- 因此,以AB 为直径的圆的方程为()()2215114x y -++=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)22182x y +=;(2)20x y +=.【分析】(1)由离心率,点的坐标代入椭圆方程及222a b c =+列方程组解得,,a b c 得椭圆方程; (2)已知条件说明直线AO 为线段PQ 的垂直平分线,直线OA 方程为12y x =,这样可设直线PQ 方程为2y x m =-+,代入椭圆方程,应用韦达定理得12x x +,12,x x 即为,P Q的横坐标,求出中点横坐标1202x x x +=,由直线PA 得中点纵坐标0y ,中点坐标代入直线AO 方程可得参数m ,即直线PQ 方程.【详解】(1)依题意,22222411a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩,,解得2282a b ⎧=⎨=⎩,,.故椭圆C 的方程为22182x y +=;(2)∵||||,||||OP OQ AP AQ ==,∴直线AO 为线段PQ 的垂直平分线,则直线OA 的方程为12y x =,设直线PQ 的方程为2y x m =-+, 由221822x y y x m ⎧+=⎪⎨⎪=-+⎩,得:221716480x mx m -+-=, ()22(16)417480m m =-⨯->,解得m <()()1122,,,P x y Q x y ,由韦达定理得121617mx x +=,设PQ 的中点为()00,H x y , 所以120008,221717x x m m x y x m +===-+=;所以8,1717m m H ⎛⎫⎪⎝⎭. 又8,1717m m H ⎛⎫⎪⎝⎭在直线OA 上,代入得1817217m m =⋅,解得0m =,综上所述,直线PQ 的方程为20x y +=. 【点睛】关键点点睛:本题考查由离心率和一点坐标求椭圆方程,考查直线与椭圆相交问题.在直线与椭圆相交问题时,解题关键是由平面几何知识由条件||||,||||OP OQ AP AQ ==得直线AO 为线段PQ 的垂直平分线,这样用设而不求思想可求得直线PQ 方程.即求出AO 方程,由垂直设出直线PQ 方程,代入椭圆方程应用韦达定理求得PQ 中点坐标,再代入直线AO 方程可得参数值.24.(1)22143x y +=;(2)1x y =±+.【分析】(1)设椭圆Γ的标准方程为22221x y a b+=,连接AF ,由AFB AFC ≌,得到ABE FCE △≌△,再利用椭圆定义求解.(2)设直线l 的方程为:1x my =+,联立221143x my x y =+⎧⎪⎨+=⎪⎩,结合韦达定理得到12y y -,然后由PNM △的面积为627求解. 【详解】 (1)如图所示:由题意可设椭圆Γ的标准方程为22221x y a b+=,连接AF ,可得AFB AFC ≌,所以,,4ABE FCE EF AE EA EB EF EB FB =+=+==≌,由椭圆定义可知:2,1a c ==,3b =所以椭圆Γ的方程为22143x y +=.。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B .5 C .3 D .6 2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+= 3.设O 为坐标原点,1F ,2F 是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且3OP a =,则该椭圆的离心率为( ) A .12B .14C .312- D .224.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出,如图①,一个光学装置由有公共焦点1F 、2F 的椭圆Γ与双曲线Ω构成,现一光线从左焦点1F 发出,依次经Ω与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的Ω去掉,如图②,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若218t t =,则Γ与Ω的离心率之比为( )A .3:4B .2:3C .1:2D .25.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54 B .45C .43D .346.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( ) A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-7.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =8.已知点P 是抛物线22y x =上的一个动点,则点P 到点D ⎛⎝的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .729.已知两定点()0,1M -,()0,1N ,直线l :y x =+,在l 上满足PM PN +=P 的个数为( )A .0B .1C .2D .0或1或210.已知椭圆22:11612x y C +=的左焦点为F ,点P 是椭圆C 上的动点,点Q 是圆()22:21T x y -+=上的动点,则PF PQ的最小值是( )A .12B .27C .23D 11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( )A .(B .C .[D .12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______.14.已知椭圆C 的两个焦点分别为1(2,0)F -,2(2,0)F ,离心率为12e =,点P 在椭圆C 上,且1230F PF ∠=,则12F PF △的面积为__________.15.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.16.已知双曲线2222:1(0,0)x y C a b a b-=>>右支上一点12,,P F F 分别为其左右焦点,圆M是12PF F △内切圆,且1PF 与圆M 相切于点2,||2cA PA a=(c 为半焦距),若122PF PF >,则双曲线离心率的取值范围是_____. 17.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为e ,直线:l y x =与双曲线C 交于,M N 两点,若MN =,则e 的值是___________.18.在双曲线22221x y a b -=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.19.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为__________.20.已知点P 是椭圆22:13x C y +=上动点,则点P 到直线30x y +-=距离的最大值是________.三、解答题21.在平面直角坐标系xOy 中,已知抛物线()2:20C x py p =>,过抛物线焦点F 的直线l 与抛物线相交于M 、N 两点.(1)若l 与y 轴垂直,且OMN 的周长为4+C 的方程; (2)在第一问的条件下,过点()1,2P 作直线m 与抛物线C 交于点A ,B ,若点P 是AB 的中点,求直线m 的方程.22.已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4.(1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积. 23.A B 是抛物线24y x =上两个不同的点,A 、B 纵坐标之和为4. (1)求直线AB 的斜率;(2)O 为原点,若OA OB ⊥,求直线AB 的方程.24.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,离心率为2,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,12F PF △的面积为1.(1)求椭圆C 的方程(2)设斜率存在的直线2PF ,与椭圆C 的另一个交点为Q .若存在(),0T t ,使得TP TQ =,求t 的取值范围25.已知抛物线C :22y px =(0)p >的焦点为F ,点(4,)A m 在抛物线C 上,且OAF △的面积为212p (O 为坐标原点). (1)求抛物线C 的方程;(2)直线l :1y kx =+与抛物线C 交于M ,N 两点,若OM ON ⊥,求直线l 的方程.26.如图,已知抛物线2:2(0)M x py p =>的焦点为(0,1)F ,过焦点F 作直线交抛物线于A ,B 两点,在A ,B 两点处的切线相交于N ,再分别过A ,B 两点作准线的垂线,垂足分别为C ,D .(1)求证:点N 在定直线上;(2)是否存在点N ,使得BDN 的面积是ACN △的面积和ABN 的面积的等差中项,若存在,请求出点N 的坐标,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得62ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22 11 22 22 22 2211x ya bx ya b⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()1212121222x x x x y y y ya b+-+-+=,整理得到2212214y bx a=,即222222244b a ck ka a-=⇒=,即221k e+=故选:B【点睛】关键点点睛:本题的关键利用三等分点得到211222x xyy=-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.A解析:A【分析】根据中线向量可得()1212PO PF PF=+,平方后结合椭圆的定义可得212PF PF a⋅=,在焦点三角形中再利用余弦定理可得224c a=,从而可求离心率.【详解】因为O为12F F的中点,故()1212PO PF PF=+,所以()2221212124PO PF PF PF PF=++⋅,故22212123112442a PF PF PF PF⎛⎫=++⋅⋅⎪⎝⎭,故()2222121212123a PF PF PF PF PF PF PF PF=++⋅=+-⋅,所以212PF PF a⋅=,又22212121422c PF PF PF PF =+-⋅⋅, 故()2222212124343c PF PF PF PF a a a =+-⋅=-=,故12e =. 故选:A. 【点睛】方法点睛:与焦点三角形有关的计算问题,注意利用椭圆的定义来转化,还要注意利用余弦定理和向量的有关方法来计算长度、角度等.4.A解析:A 【分析】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a ,设光速为v ,推导出112a vt =,利用椭圆和双曲线的定义可得出1243a a =,由此可计算得出Γ与Ω的离心率之比. 【详解】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a , 在图②中,1CDF 的周长为111212124CF DF CD CF CF DF DF a vt ++=+++==,所以,1148a vt =,可得112a vt =,在图①中,由双曲线的定义可得2122AF AF a -=,由椭圆的定义可得1212BF BF a +=, 22AF BF AB =-,则2121111222AF AF BF AB AF a BF AB AF a -=--=---=,即()111222a AB AF BF a -++=,由题意可知,1ABF 的周长为111AB AF BF vt ++=,即112111322222a a a a vt a =-=-=, 所以,1243a a =. 因此,Γ与Ω的离心率之比为122112:::3:4c ce e a a a a ===. 故选:A. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.D解析:D 【分析】设112233(,),(,),(,)P x y Q x y G x y ,则可得切线,GP GQ 的方程,即可得到直线PQ 的方程,进而可求出点点,M N 的坐标,再结椭圆方程可求出2231OMON+的值【详解】解:设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=, 所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x+=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D 【点睛】关键点点睛:此题考查椭圆的标准方程,以及简单性质有应用,解题的关键是设点33(,)G x y ,再由已知条件得到直线PQ 的方程为334x x y y +=,从而可得,M N 的坐标,进而可得答案,考查计算能力和转化能力,属于中档题6.C解析:C 【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y , 联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.7.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--,1222221222sin cos1sin 22sin 21cos tan112sin 22PF F b b b S PF PF θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,tan2θ∴=0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF aPF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,2b a ∴=, 因此,双曲线C 的渐近线方程为2by x x a=±=±,即20x y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 8.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -=所以点P 到点332D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=,其他位置,都有||||||PD PF DF +> 所以点P到点D ⎛ ⎝的距离与点P 到y 轴的距离之和的最小值为:1115||||||||||222PD PP PD PF DF +=+-≥-== 当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.9.B解析:B 【分析】求出P 点所在轨迹方程,与直线方程联立方程组,方程组解的个数就是满足题意的P 点的个数. 【详解】∵PM PN +=2MN =,∴P 在以,M N为焦点,由于2a =,a =1c =,因此1b ==,椭圆方程为2212x y +=,由2212y x x y ⎧=+⎪⎨+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 点只有一个. 故选:B . 【点睛】关键点点睛:本题考查求平面满足题意的的个数,方法是求出满足动点P 的一个条件的轨迹方程,由方程组的解的个数确定曲线交点个数,从而得出结论,这也是解析几何的基本思想.10.B解析:B 【分析】作出图形,利用椭圆的定义以及圆的几何性质可求得PF PQ的最小值.【详解】 如下图所示:在椭圆22:11612x y C +=中,4a =,23b =222c a b -,圆心()2,0T 为椭圆C 的右焦点,由椭圆定义可得28PF PT a +==,8PF PT ∴=-,由椭圆的几何性质可得a c PT a c -≤≤+,即26PT ≤≤,由圆的几何性质可得1PQ PT QT PT ≤+=+, 所以,899211111617PF PF PT PQPT PT PT -≥==-≥-=++++. 故选:B. 【点睛】关键点点睛:解本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应圆锥曲线的定义,本题中注意到2PF PT a +=,进而可将PF 用PT 表示;(2)利用圆的几何性质得出PT r PQ PT r -≤≤+,可求得PQ 的取值范围; (3)利用椭圆的几何性质得出焦半径的取值范围:a c PT a c -≤≤+.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点,所以210k -≠,且2248(1)0k k ∆=+->,1k <,解得1k <<,所以实数k 的取值范围为, 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意. 易知抛物线C 的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 14.【分析】由椭圆定义得由余弦定理得结合可得的值从而得答案【详解】由已知得所以由椭圆定义得由余弦定理得即则的面积为故答案为:【点睛】本题考查了椭圆的简单的性质关键点是利用余弦定理和三角形的面积公式解题考解析:24-由椭圆定义得128F P PF +=,由余弦定理得22212121212cos 2F P PF F F F PF F P PF +-∠=⨯,结合可得12F P PF ⨯的值,从而得答案. 【详解】 由已知得12,2c e ==,所以4a =, 由椭圆定义得12248F P PF +=⨯=, 由余弦定理得222121212123cos cos302F P PF F F F PF F P PF +-∠===⨯, 即()2121212216F P PFF P PF P PF +-⨯-=⨯,12F P PF ⨯=, 则12F PF △的面积为12111sin 3024222S F P PF =⨯⨯=⨯=-故答案为:24- 【点睛】本题考查了椭圆的简单的性质,关键点是利用余弦定理和三角形的面积公式解题,考查了学生分析问题、解决问题的能力.15.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解 解析:2【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t=-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴t =故答案为:2. 【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.16.【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与轴切于顶点再分别表示列出关于的齐次不等式求双曲线的离心率的取值范围【详解】设圆心设内切圆与相切于点如图:根据内切圆性质可知点是双曲线的顶点即整理解析:1). 【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与x 轴切于顶点,再分别表示12,PF PF ,列出关于,a c 的齐次不等式求双曲线的离心率的取值范围.【详解】设圆心(),M x y ,设内切圆与1212,,PF PF F F 相切于点,,A B C , 如图:根据内切圆性质可知PA PB =,11F A FC =,22F B F C =, 1212122PF PF PA AF PB BF CF CF a ∴-=+--=-=,∴点C 是双曲线的顶点,即11F A FC c a ==+,22F B F C c a ==-,22c PA PB a==, 2122222c c a PF ac PF c a a++=>-+,整理为:22260c ac a +-<,两边同时除以2a , 得2260e e +-<,解得:1717e --<<-+,且1e >, 所以离心率的取值范围是()1,71-.故答案为:()71 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.17.【分析】联立方程组求出M 的坐标利用整理得求出离心率【详解】不妨设点在第一象限联立得又∴则整理得所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件找到abc 的关系消去b 构造离心率e 6【分析】联立方程组求出M 的坐标,利用2MN b =,整理得225b a =,求出离心率.【详解】不妨设点(),M x y 在第一象限,联立22221x y a b y x⎧-=⎪⎨⎪=⎩,得222222a b x y b a ==-,又MN =,∴2222b x y +=,则2222222a b b b a =-,整理得225b a =,所以==e【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.19.(或)【分析】先根据的形状先确定出点坐标然后将点坐标代入双曲线方程根据的齐次式求解出离心率的值【详解】因为是以为直角顶点的等腰直角三角形不妨假设在第一象限所以所以所以所以所以所以所以所以又因为所以故或2【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭, 所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以23e ==又因为1e >,所以e ===,. 【点睛】思路点睛:利用齐次式求解椭圆或双曲线的离心率的一般步骤: (1)根据已知条件,先得到关于,,a b c 的方程;(2)结合222a b c =+或222c a b =+将方程中的b 替换为,a c 的形式;(3)方程的左右两边同除以a 的对应次方,由此得到关于离心率e 的方程,从而求解出离心率e 的值.20.【分析】设与平行的直线与相切求解出此时的方程则点到直线距离的最大值可根据平行直线间的距离公式求解出【详解】设与平行的直线当与椭圆相切时有:所以所以所以所以或取此时与的距离为所以点到直线距离的最大值为解析:2【分析】设与30x y +-=平行的直线:l y x m '=-+与22:13xC y +=相切,求解出此时l '的方程,则点P 到直线30x y +-=距离的最大值可根据平行直线间的距离公式求解出.【详解】设与30x y +-=平行的直线():3l y x m m '=-+≠,当l '与椭圆C 相切时有:2233y x mx y =-+⎧⎨+=⎩,所以2246330x mx m -+-=, 所以()223616330m m ∆=--=,所以2m =±,所以:20l x y '+-=或:20l x y '++=,取:20l x y '++=,此时:20l x y '++=与30x y +-=的距离为2d ==,所以点P 到直线30x y +-=距离的最大值为2,. 【点睛】方法点睛:求解椭圆22221x y a b+=上一点到直线距离的最值的两种方法:(1)设与已知直线平行的直线l 与椭圆相切,求解出切线l 的方程,根据平行直线间的距离公式求解出点到直线距离的最值;(2)将P 点坐标为设为()cos ,sin a b θθ,利用点到直线的距离公式以及三角函数的知识求解出点到直线距离的最值.三、解答题21.(1)24x y =;(2)230x y -+=. 【分析】 (1)将将2py =代入抛物线C 的方程可求得,M N 坐标,得,,MN OM ON ,由OMN 的周长参数p ,得抛物线方程;(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,由,A B 坐标表示出直线斜率,结合中点坐标即得直线斜率,得直线方程. 【详解】解:(1)由题意,焦点0,2p F ⎛⎫ ⎪⎝⎭,将2p y =代入抛物线C 的方程可求得,2p M p ⎛⎫- ⎪⎝⎭,,2p N p ⎛⎫⎪⎝⎭,∴2MN p =,OM ON p ===,所以QMN 的周长为24p +=+2p =,故抛物线方程为24x y =.(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫⎪⎝⎭,直线m 的斜率为2212121244x x x x x x -+=-, 由条件1212x x +=,故直线m 的斜率为12,从而直线m 的方程为230x y -+=.【点睛】关键点点睛:本题考查求抛物线方程,求中点弦所在直线方程.已知弦中点坐标,一般设弦两端点坐标为1122(,),(,)x y x y 代入圆锥曲线方程相减即可得中点坐标与直线斜率关系.这称为“点差法”. 22.(1)28x y =;(2) 【分析】(1)由题中条件,根据抛物线的定义,得到242p+=,求出p ,即可得出抛物线方程; (2)先由(1)得到焦点坐标,得出直线l 的方程,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,结合韦达定理,以及抛物线的焦点弦公式,求出弦长AB ,再由点到直线距离公式,以及三角形面积公式,即可求出结果. 【详解】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =, 所以抛物线C 的方程为28x y =; (2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=, 设()11,A x y ,()22,B x y , 由228y x x y=+⎧⎨=⎩消去x ,整理得21240y y -+=, 则1212y y +=,因此1212416AB AF BF y y p =+=++=+=, 又点O 到直线20x y -+=的距离为d ==,所以OAB的面积为12OABS AB d ==. 【点睛】 思路点睛:求解圆锥曲线中三角形的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,即可得出三角形的面积.23.(1)1;(2)y x =或4y x =-. 【分析】(1)法一:设()11,A x y ,()22,B x y 代入抛物线方程相减结合斜率公式即可求得;法二:设直线方程与抛物线联立结合韦达定理求得结果;(2)由OA OB ⊥得0OA OB ⋅=即12120x x y y +=结合两根关系可求得m ,即可求直线方程. 【详解】(1)法一:设()11,A x y ,()22,B x y ,则2112224,4,y x y x ⎧=⎨=⎩两式相减得()()()1212124y y y y x x +-=-. ∵124y y +=,∴()()121244y y x x -=-. 根据题意可知12x x ≠,∴12121AB y y k x x -==-, ∴直线AB 的斜率为1.法二:据题意直线AB 斜率存在,可设直线AB 的方程为y kx m =+,与24y x =联立得204k m y y -+=,则1244y y k+==, ∴1k =,∴直线AB 的斜率为1.(2)由(1)得,124y y +=,124y y m ⋅=, 由题意,0OA OB ⋅=,即()221212121214016x x y y y y y y m m +=+=+=, 解得,0m =或4m =-.所以,直线AB 的方程为y x =或4y x =-. 【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.24.(1)2212x y +=;(2)10,2⎡⎫⎪⎢⎣⎭.【分析】(1)根据离心率、12F PF △的面积为1及a 、b 、c 的关系,即可求得a 、b 、c 的值,即可得答案.(2)设()11,P x y ,()22,Q x y ,线段PQ 的中点为()00,N x y ,直线2PF 的斜率为k ,将直线与椭圆联立,根据韦达定理,可求得N 点坐标,根据题意,可得直线TN 为线段PQ 的垂直平分线,利用斜率的关系,即可求得t 的表达式,结合k 的范围,即可求得答案. 【详解】(1)由题可知椭圆离心率2,当P 为椭圆C 的上顶点时,12F PF △的面积为1.∴2221212c ab c b c a⎧=⎪⎪⎪⋅⋅=⎨⎪+=⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩, 故椭圆C 的方程为2212x y +=,(2)设()11,P x y ,()22,Q x y ,线段PQ 的中点为()00,N x y ,直线2PF 的斜率为k , 由(1)设直线PQ 的方程为()1y k x =-. 当0k =时,0t =符合题意.当0k ≠时,把()1y k x =-代入2212x y +=,得()2222124220k x k x k +-+-=,∴()()42221641222880k k k k ∆=-+-=+>,2122412k x x k+=+, ∴212022212x x k x k+==+,()002112k y k x k -=-=+, 即2222,1212k k N k k ⎛⎫- ⎪++⎝⎭. ∵TP TQ =,∴直线TN 为线段PQ 的垂直平分线, ∴TN PQ ⊥,即1TN k k ⋅=-.∴222121212k k k k t k-+⋅=--+, ∴22211122k t k k ==++.20k >,210k ∴> ,2122k+>, 2110122k ∴<<+,即10,2t ⎡⎫∈⎪⎢⎣⎭【点睛】解题的关键是根据韦达定理求得N 点坐标,将题干条件转化为直线TN 为线段PQ 的垂直平分线,根据斜率关系进行求解,考查计算化简的能力,属中档题.25.(1)24y x =;(2)114y x =-+. 【分析】(1)分析题意,列方程组,用待定系数法求抛物线C 的方程;(2)用“设而不求法”联立方程组,把OM ON ⊥转化为12120x x y y +=,求出斜率k ,得到直线方程 【详解】解:(1)由题意可得228,11,222m p p m p ⎧=⎪⎨⨯⋅=⎪⎩解得2p =.故抛物线C 的方程为24y x =. (2)设()11,M x y ,()22,N x y .联立21,4,y kx y x =+⎧⎨=⎩整理得22(24)10k x k x +-+=.由题意可知0k ≠,则12224k x x k -+=-,1221x x k =. 因为OM ON ⊥,所以12120OM ON x x y y ⋅=+=, 则()()()()21212121211110x x kx kx k x x k x x +++=++++=,即()222124110k k k k k -⎛⎫+⋅+⋅-+= ⎪⎝⎭,整理得2140k k +=, 解得14k =-. 故直线l 的方程为114y x =-+. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.26.(1)证明见解析;(2)存在,1N ⎛⎫- ⎪ ⎪⎝⎭. 【分析】(1)由题意设直线:1AB y kx =+,()11,A x y ,()22,B x y ,将直线与抛物线方程联立求出两根之和、两根之积,求出直线121:24x x AN y x =-以及直线222:24x x BN y x =-,将两直线联立求出交点即证.(2)由(1)知点N 为CD 的中点,取AB 的中点E ,则2AC BDEN +=,利用抛物线的定义可得2AB EN =,ABNAENBEN SSS=+,2ACNAF CNS⋅=,2BDNBF CNS ⋅=,根据2BDN ACN ABN S S S =+△△△,可得2BF AF AB =+,即212x x =-,结合韦达定理即可求解. 【详解】解(1)由题知2p = 所以2:4M x y =设直线:1AB y kx =+,()11,A x y ,()22,B x y 联立214y kx x y=+⎧⎨=⎩得2440x kx --= 所以121244x x k x x +=⎧⎨=-⎩对24x y =求导得2x y '=所以直线AN 的斜率为12AN x k =所以直线()111:2x AN y y x x -=-即121:24x x AN y x =-① 同理直线222:24x x BN y x =-② 联立①和②得12122214x x x k x x y +⎧==⎪⎪⎨⎪==-⎪⎩所以点N 的坐标为(2,1)k -,即点N 在定直线1y =-上 (2)由(1)知点N 为CD 的中点 取AB 的中点E ,则2AC BDEN += 由题知AC BD AB += 所以2AB EN =所以22222ABN AEN BEN EN CN EN DN EN CN AB CNS S S ⋅⋅⋅⋅=+=+=⨯=△△△ 而22ACN AC CN AF CN S ⋅⋅==△,22BDN BD DN BF CNS ⋅⋅==△ 若存在点N 满足题意则2BDN ACN ABN S S S =+△△△ 即2BF AF AB =+所以()2121200x x x x -=-+-即212x x =-③ 又因为121244x x kx x +=⎧⎨=-⎩④将③代入④解得=k ±由(1)知(2,1)N k -即12N ⎛⎫±- ⎪ ⎪⎝⎭经检验,存在12N ⎛⎫±- ⎪ ⎪⎝⎭满足题意.【点睛】关键点点睛:本题考查了直线与抛物线的位置关系,解题的关键是由()11,A x y ,()22,B x y ,求出点N 的坐标为(2,1)k -以及212x x =-,考查了计算能力、推理能力.。
(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)
一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.设1F ,2F 是双曲线C :22111y x -=的两个焦点,O 为坐标原点,点M 在C 上且OM =12MF F △的面积是( )A .10B .11C .12D .133.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D4.已知F 是双曲线2222:1(0)x y E a b a b-=>>的左焦点,过点F 的直线与双曲线E 的左支和两条渐近线依次交于,,A B C 三点,若||||||FA AB BC ==,则双曲线E 的离心率为( )A BC .2D 5.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( )A .2B 1C .1D 26.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =7.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B C .2 D8.已知椭圆222:14x y C b+=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC D 9.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B .2C D10.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,3k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( )A .(B .C .[D .12.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .6二、填空题13.过双曲线22221(0,0)x y a b a b-=>>的右顶点且斜率为3的直线,与双曲线的左右两支分别相交,则此双曲线的离心率的取值范围是___________.(用区间表示)14.已知双曲线()22210y x a a -=>的离心率e =12,F F 分别是它的下焦点和上焦点,若Р为该双曲线上支上的一个动点,则1PF 与P 到一条渐近线的距离之和的最小值为_________.15.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,焦距为2c ,若直线)y x c =-与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.16.已知圆22:68210C x y x y ++++=,点A 是圆C 上任一点,抛物线28y x =的准线为l ,设抛物线上任意一点Р到直线l 的距离为m ,则m PA +的最小值为_______ 17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.已知椭圆C :22221(0)x y a b a b+=>>的右焦点(c,0)F ,点P 在椭圆C 上,线段PF与圆22239c b x y ⎛⎫-+= ⎪⎝⎭相切于点Q ,且2PQ QF =,则椭圆C 的离心率为_______.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,若点P 在C 上,点E 在l 上,且PEF 是边长为4的正三角形. (1)求C 的方程;(2)过F 作直线m ,交抛物线C 于A ,B 两点,若直线AB 中点的纵坐标为1-,求直线m 的方程.23.已知点(-在椭圆2222:1(0)x y E a b a b +=>>上,E 的离心率为2. (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围.24.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.25.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.26.在平面直角坐标系xOy 中,设动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等,记P 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点F 的直线交曲线Γ于点A 、B (其中点A 在第一象限),交直线l 于点C ,且点F 是AC 的中点,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.B解析:B 【分析】由12F F M △是以M 为直角直角三角形得到2212||||48MF MF +=,再利用双曲线的定义得到12||||2MF MF -=,联立即可得到12||||MFMF ,代入12F F M S =△121||||2MF MF 中计算即可. 【详解】由22111y x -=可知1,23a c ==不妨设12(23,0),(23,0)F F -, 因为121232OM F F ==,所以点M 在以12F F 为直径的圆上,即12F F M △是以M 为直角顶点的直角三角形,故2221212||||||MF MF F F +=,即2212||||48MF MF +=,又12||||22MF MF a -==,所以2124||||MF MF =-=2212||||2MF MF +-12||||482MF MF =-12||||MF MF ,解得12||||22MF MF =, 所以12F F M S =△121||||112MF MF = 故选:B 【点晴】关键点点睛:根据OM =12MF F △为直角三角形是解题的关键,再结合双曲线的定义及勾股定理,即可计算焦点三角形面积,是一道中档题.3.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.B解析:B 【分析】可设出直线AB ,与两渐近线方程联立,解出,B C y y ,利用两者的关系式求出直线的斜率.进而表示出A 的坐标,代入双曲线方程,得到,,a b c 的关系式,从而求得离心率. 【详解】||||||FA AB BC ==,故有1123A B C y y y == 故32B C y y =设过点F 的直线方程为:()y k x c =+联立()y k x c b y x a ⎧=+⎪⎨=-⎪⎩,解之得C C kc x bk a b kc a y b k a -⎧=⎪+⎪⎪⎨⎪=⎪⎪+⎩ 同理联立()y k x c by x a ⎧=+⎪⎨=⎪⎩解之得B B kc x bk a b kc a y b k a ⎧=⎪-⎪⎪⎨⎪=⎪⎪-⎩由32B C y y =有23b bkc kca ab b k k a a =+-,故3232b b k k a a +=- 解之得5bk a=-直线为:()5by x c a=-+ 则1212A B bc y y a -==,又()5A A b y x c a =-+ 故712A cx =-又A 在双曲线上可得:2222491144144c c a a -= 得2213c a =故ca =故选:B 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+, 又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C ,所以||CI =01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.6.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--, 1222221222sin cos1sin 22sin 321cos tan112sin 22PF F b b b S PF PF b θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,3tan23θ∴=, 0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF a PF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,2b a ∴=, 因此,双曲线C 的渐近线方程为2by x x a=±=±,即20x y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 7.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴233c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.8.B【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.9.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y .4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,0433m c x n y =-⎧⎨=-⎩.以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=ca x c,于是()2222220233-=-=b ac y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以2e ==. 故选:B.本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.10.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=,又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点, 所以210k -≠,且2248(1)0k k ∆=+->,1k <,解得1k <<,所以实数k 的取值范围为, 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果二、填空题13.【分析】根据题意构建渐近线的斜率与3的不等关系再利用求得离心率范围即可【详解】过右焦点与渐近线平行的直线与双曲线有一个交点且一条渐近线的斜率为若斜率为的直线与双曲线的左右两支分别相交则则离心率故答案解析:)+∞【分析】根据题意构建渐近线的斜率与3的不等关系,再利用e =求得离心率范围即可. 【详解】过右焦点与渐近线平行的直线与双曲线有一个交点,且一条渐近线的斜率为b a, 若斜率为3的直线与双曲线的左右两支分别相交,则3ba>,则离心率c e a ===>.故答案为:)+∞.【点睛】求双曲线离心率常见方法:(1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和双曲线的几何关系构建关于a ,b ,c 的方程和不等式,利用222b c a =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.14.【分析】根据离心率先求出双曲线的方程得出渐近线方程根据双曲线的定义可得:所以设点到一条渐进线的距离为则从而得出答案【详解】双曲线的离心率所以解得所以双曲线由的双曲线的渐进线方程为由为该双曲线上支上的 解析:5【分析】根据离心率先求出双曲线的方程,得出渐近线方程,根据双曲线的定义可得:1224PF PF a -==,所以124PF PF =+,设点Р到一条渐进线的距离为d ,则124PF d PF d +=++,从而得出答案.【详解】双曲线()22210y x a a -=>的离心率52e =所以221514e a =+=,解得2a =,所以()()120,5,0,5F F - 双曲线2214y x -=,由2204y x -=,的双曲线的渐进线方程为2y x =±由Р为该双曲线上支上的一个动点,根据双曲线的定义可得:1224PF PF a -== 所以124PF PF =+,设点Р到渐进线2y x =的距离为d则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,垂足为M ,如图.所以225112F M ==+所以122445PF d PF d F M +=++≥+=同理1PF 与P 到渐近线2y x =-的距离之和的最小值为5 故答案为:5【点睛】关键点睛:本题考查利用双曲线的定义解决距离之和的最值问题,解答本题的关键是根据双曲线的定义可得:1224PF PF a -==,所以124PFPF =+,设点Р到渐进线2y x =的距离为d ,则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,属于中档题.15.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系 31【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF,再利用椭圆的定义及离心率的计算公式即可得出. 【详解】设直线3()y x c =--的倾斜角为α,则tan 3α=-,0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则22211,213MF MF ==-=由椭圆定义得122||||31a MF MF =+=+∴椭圆的离心率231231c e a ===-+. 故答案为:31-. 【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.16.【分析】由抛物线的定义可知结合圆的性质当且仅当三点共线时等号成立取得最值【详解】由圆可得圆心设的焦点为则抛物线上任意一点Р到直线l 的距离为过点作于点则由抛物线的定义可知所以当且仅当三点共线时等号成立 解析:412-【分析】由抛物线的定义可知m PF =,m PA PF PA +=+结合圆的性质,当且仅当,,P F C 三点共线时等号成立取得最值. 【详解】由圆22:68210C x y x y ++++=可得圆心()3,4C --,2r,设28y x =的焦点为F ,则()2,0F ,:2l x =-,抛物线上任意一点Р到直线l 的距离为m ,过点P 作PH l ⊥于点H ,则PH m =, 由抛物线的定义可知PH PF =,所以2m PA PH PA PF PA FC r FC +=+=+≥-=-22==,当且仅当,,P F C 三点共线时等号成立,所以m PA +2,2. 【点睛】关键点点睛:本题解题的关键点是利用抛物线的定义转化为抛物线上一点到焦点的距离与到圆上一点的距离之和的最小值,利用三点共线即可求解.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率c e a ==≥=⎫∈⎪⎪⎣⎭e .故答案为:⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.【分析】根据数形结合分析可得并根据勾股定理可得计算离心率【详解】如图首先画出函数图象又且且根据椭圆的定义可知由勾股定理可知即整理为即故答案为:【点睛】方法点睛:本题考查椭圆离心率的取值范围求椭圆离心解析:53【分析】根据数形结合分析,可得'PF PF⊥,并根据勾股定理,可得()()22222244b a bc a b+-==-,计算离心率.【详解】如图,首先画出函数图象,1233EF OF OE c c c=-=-=,2131'23cEFEF c c∴==+,又2PQ QF=,'//PF QE∴,且1'3QEPF=,且'PF PF⊥,3bQE=,'PF b∴=,根据椭圆的定义可知2PF a b=-,由勾股定理可知22212'PF PF F F+=,即()()22222244b a bc a b+-==-整理为222224444b a b ab a b++-=-,即23ba=,2251c ba a∴=-=.故答案为:53【点睛】方法点睛:本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据,,a b c直接求,2.根据条件建立关于,a c的齐次方程求解,3.根据几何关系找到,,a b c的等量关系求解.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =, 所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)24y x =;(2)220x y +-=. 【分析】(1)设l 与x 轴交于点D ,根据PEF 是边长为4的正三角形.得到PE l ⊥,60PEF EFD ∠=∠=︒,然后由||cos60p DF EF ==求解.(2)设()11,A x y ,()22,B x y ,根据点A ,B 在抛物线上,由21122244y x y x ⎧=⎨=⎩,根据线段AB 中点的纵坐标为1-,利用“点差法”求解. 【详解】(1)因为PEF 是边长为4的正三角形. 则||||PE PF =,所以PE l ⊥,设l 与x 轴交于点D ,则60PEF EFD ∠=∠=︒,||4EF =, 所以||cos602p DF EF === 所以抛物线的方程为24y x =.(2)由(1)得抛物线C 的方程为24y x =,焦点(1,0)F ,设A ,B 两点的坐标分别为()11,A x y ,()22,B x y ,由21122244y x y x ⎧=⎨=⎩,得()121212124y y x x x x y y -=≠-+, 因为线段AB 中点的纵坐标为1-,所以直线m 的斜率21442(1)2AB k y y ==-+-⨯=, 所以直线m 的方程为02(1)y x -=--, 即220x y +-=. 【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.23.(1)22:14x E y +=;(2)32,,222⎛⎛⎫--⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OCOB ⋅>,运算即可得解. 【详解】 (1)点⎛- ⎝⎭在椭圆22221(0)x y a b ab+=>>上,∴221314ab +=,又椭圆的离心率为2,∴2c e a ==,由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得k >k <, 且1221614kx x k+=-+,1221214x x k ⋅=+, 由COB ∠为锐角,∴2121212122122()414OC OB x x y y k x x k x x k⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴22k -<<-或22k <<,∴直线l的斜率的范围是32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.24.(1)24y x =;(2)220x y +-=. 【分析】(1)抛物线的定义可得342p ⎛⎫--= ⎪⎝⎭,即可求出p 得值,进而可得抛物线E 的方程; (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,利用点差法可求直线l 的斜率,再求出点()1,0F ,利用点斜式即可求出直线l 的方程. 【详解】(1)由抛物线()2:20E y px p =>可得准线方程为:2p x =-, 由抛物线的定义可得:342p ⎛⎫--= ⎪⎝⎭,解得:2p =, 所以抛物线E 的方程为24y x =,(2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,两式相减可得()2212124y y x x -=-, 所以()()()1212124y y y y x x -+=-,因为线段AB 中点的纵坐标为1-,所以122y y +=-, 所以直线l 的斜率1212124422y y k x x y y -====--+-, 因为()1,0F ,所以直线l 的方程为:()21y x =--,即220x y +-=. 【点睛】思路点睛:对于中点弦问题,多采用设而不求的方法,利用整体代入的思想求出直线的斜率,再结合直线所过的点即可得直线的方程. 25.(1)24y x =;(2)证明见解析. 【分析】(1)设直线l 的方程为2x my p =+,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,由题意可得出222122144y y x x p==,求出p 的值,进而可得出抛物线C 的方程; (2)设点()33,M x y 、()44,N x y ,可得出213y y p =-,224y y p =-,利用直线的斜率公式以及韦达定理可得出lMNk k 为定值.【详解】(1)若直线l 与x 轴重合,则该直线与抛物线C 有且只有一个交点,不合乎题意. 设直线l 的方程为2x my p =+,代入22y px =得22240y pmy p --=,则()22440p m ∆=+>,且2124y y p =-,则22212122444y y x x p p⋅===, 0p >,解得1p =.∴抛物线C 的方程为24y x =;(2)证明:()33,M x y 、()44,N x y ,同(1)可知,直线AM 不可能与x 轴重合,设直线AM 的方程为2p x ty =+, 联立222p x ty y px⎧=+⎪⎨⎪=⎩,消去x 得2220y tpy p --=,由韦达定理可得213y y p =-,同理可得224y y p =-, 又直线l 的斜率12122212121222l y y y y pk y y x x y y p --===--+, 直线MN 的斜率3434342MN y y pk x x y y -==-+,()2221222341212212121212144l MN p y y p p k y y y y y y p p k y y y y y y y y p -+--++--∴======+++-, 故直线l 与直线MN 斜率之比为定值14.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 26.(1)24y x =;(2)16||3AB =. 【分析】(1)根据抛物线定义可得答案;(2)由点F 是AC 的中点可得A 点的坐标,设出直线AB 方程与抛物线方程联立,利用韦达定理再得B 点坐标,再由两点间的距离公式可得答案. 【详解】(1)因为动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等, 由抛物线定义可得曲线Γ为抛物线,设其方程为22(0)y px p =>,则12p=, 所以2p =,曲线Γ的方程为24y x =.(2)设过点F 的直线方程为1x my =+,设1122(,),(,)A x y B x y ,且120,0y y ><,0(1,)C y -,由214x my y x=+⎧⎨=⎩整理得,2440y my --=,所以124y y =-, 因为点F 是AC 的中点,所以1112x -=,解得13x =,所以211412y x ==,得1y =(3,A ,又因为124y y =-,所以2y =,代入抛物线方程得213x =,所以1,3B ⎛ ⎝⎭,所以163AB ===. 【点睛】本题考查了抛物线方程、直线与抛物线的位置关系及弦长,关键点是由点F 是AC 的中点可得A 点的坐标,利用韦达定理再得B 点坐标,考查了学生的基础知识、基本技能.。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(答案解析)(1)
一、选择题1.平面α内有一条直线m ,过平面α外一点P 作直线n 与m 所成角为6π,则直线n 与平面α交点的轨迹是( ) A .直线B .抛物线C .椭圆D .双曲线2.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .63.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与圆()2239x y -+=相交于A 、B 两点,若2AB =,则该双曲线的离心率为( )A .5B .2C .3D .44.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A .2B C D 5.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .6.已知点P 是抛物线22y x =上的一个动点,则点P 到点D ⎛ ⎝的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .727.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知两定点()0,1M -,()0,1N ,直线l :3y x =+,在l 上满足22PM PN +=的点P 的个数为( )A .0B .1C .2D .0或1或29.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,3,33k ⎡⎤∈⎢⎥⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( ) A .()1,2B .)2,2⎡⎣C .2,31⎡⎤+⎣⎦D .(2,31⎤+⎦10.P 为椭圆22:11713x y C +=上一动点,1F ,2F 分别为左、右焦点,延长1F P 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .()22234x y ++= B .()22268x y ++= C .()22234x y -+=D .()22268x y -+=11.已知抛物线2:4C y x =,过点()1,0A -作C 的两条切线,切点分别为B 、D ,则过点A 、B 、D 的圆截y 轴所得弦长为( ) A .3B .2C .43D .4212.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A .6B.7C.427D.27二、填空题13.已知椭圆C的两个焦点分别为1(2,0)F-,2(2,0)F,离心率为12e=,点P在椭圆C上,且1230F PF∠=,则12F PF△的面积为__________.14.过点()2,0P-的直线l与抛物线2:8C y x=相交于A、B两点,若A、B在第一象限,且点A为线段PB的中点,则直线l的斜率为___________.15.点P为椭圆C上一动点,过点P作以椭圆短轴为直径的圆的两条切线,切点分别为M,N,若60MPN∠=︒,则椭圆C的离心率的取值范围是______.16.设1F,2F为双曲线()2222:10,0x yC a ba b-=>>的左、右焦点,过2F的直线l交双曲线C的右支于A、B两点,且12AF AF⋅=,2212AFBF=,则双曲线C的离心率为___________.17.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A,上顶点为B,8AB=分米,在它的内部放有一个半径为1分米的球形灯泡,球心C在轴AB上,且2AC=分米.已知球形灯泡的球心C到四周轮廓上的点的最短距离是在下顶点A处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a=>,则实数a的取值范围是_______18.已知抛物线C:2y x=的焦点为F,A()00,x y是C上一点,54AF x=,则0x=________.19.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124F F =,则截口BAC 所在椭圆的离心率为______.20.已知下列几个命题:①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=; ②“1x >”是“||0x >”的必要不充分条件;③已知命题:33p ≥,:34q >,则p q ∨为真,p q ∧为假,p ⌝为假;④双曲线221916x y -=-的离心率为54.其中正确的命题的序号为_____. 三、解答题21.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,离心率为22,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,12F PF △的面积为1.(1)求椭圆C 的方程(2)设斜率存在的直线2PF ,与椭圆C 的另一个交点为Q .若存在(),0T t ,使得TP TQ =,求t 的取值范围22.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求C 的方程;(2)若椭圆C 的左右焦点分别为12,F F ,过点1F 的直线l 与C 交于A 、B 两点,12AF F △与12BF F △的面积分别为12,S S ,122S S =,求直线l 的斜率.23.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.24.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.25.如图,已知抛物线2:2(0)M x py p =>的焦点为(0,1)F ,过焦点F 作直线交抛物线于A ,B 两点,在A ,B 两点处的切线相交于N ,再分别过A ,B 两点作准线的垂线,垂足分别为C ,D .(1)求证:点N 在定直线上;(2)是否存在点N ,使得BDN 的面积是ACN △的面积和ABN 的面积的等差中项,若存在,请求出点N 的坐标,若不存在,请说明理由.26.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,焦距为23,点P 为椭圆C 上一动点,且直线,AP BP 的斜率之积为14-.(1)求椭圆C 的标准方程;(2)设,A B 分别是椭圆C 的左右顶点,若点,M N 是C 上不同于,A B 的两点,且满//,//AP OM BP ON ,求证:MON △的面积为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系,设出坐标,分别表示出直线AB 与PM 的方向向量,利用夹角公式即可得出. 【详解】解:过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系.不妨设1OP =,30PBO ∠=︒,3OB ∴=. 则(0P ,0,1),(0,3,0)B .设点(Q x ,y ,0),则(,,1)PQ x y =-,取直线m 的方向向量为(0,1,0)u =. 直线AB 与PQ 所成的角为30, 22||3cos30||||1PQ u PQ u x y ∴︒===++, 化为2213y x -=,即为点Q 的轨迹.故选:D .【点睛】熟练掌握通过建立如图所示的空间直角坐标系利用异面直线的夹角公式求得轨迹的方法是解题的关键.2.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.3.C解析:C【分析】设双曲线的渐近线方程为y kx =,其中bk a=±,利用勾股定理可求得k 的值,即可求得b a,再由双曲线的离心率公式e =即可求得双曲线的离心率. 【详解】设双曲线的渐近线方程为y kx =,其中bk a=±, 圆()2239x y -+=的圆心为()3,0C ,半径为3r =,圆心C 到直线y kx =的距离为d =,2AB =,由勾股定理可得2222AB r d ⎛⎫=+ ⎪⎝⎭,即2219+=,解得k =±ba∴=,因此,该双曲线的离心率为3c e a =====. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.C解析:C 【分析】作出图形,可知FAB 是以FAB ∠为直角的直角三角形,可得出0AF AB ⋅=,可得出a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率.【详解】如下图所示,可知AFB ∠、ABF ∠均为锐角, 所以,FAB 是以FAB ∠为直角的直角三角形,由题意可知,点(),0F c -、()0,A b 、(),0B a ,则(),AF c b =--,(),AB a b =-,20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=,在等式220c ac a +-=的两边同时除以2a 可得210e e +-=,01e <<,解得512e =. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -=所以点P 到点D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +>所以点P 到点D ⎛⎝的距离与点P 到y 轴的距离之和的最小值为:1115||||||||||222PD PP PD PF DF +=+-≥-== 当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=,由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-,2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△10===.故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】求出P 点所在轨迹方程,与直线方程联立方程组,方程组解的个数就是满足题意的P 点的个数. 【详解】∵PM PN +=2MN =,∴P 在以,M N 为焦点,由于2a =,a =1c =,因此1b ==,椭圆方程为2212x y +=,由2212y x x y ⎧=+⎪⎨+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 点只有一个. 故选:B . 【点睛】关键点点睛:本题考查求平面满足题意的的个数,方法是求出满足动点P 的一个条件的轨迹方程,由方程组的解的个数确定曲线交点个数,从而得出结论,这也是解析几何的基本思想.9.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=,又(),M x y 在双曲线上,所以22221x y a b -=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C 【点睛】关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.10.B解析:B 【分析】由椭圆的122PF PF a +==2PQ PF =,所以112PF PQ FQ a +===Q 的轨迹为以()12,0F -为圆心,径的圆,即可求得动点Q 的轨迹方程. 【详解】由2211713x y +=可得:a =,因为122PF PF a +==2PQ PF =,所以112PF PQ FQ a +===所以动点Q 的轨迹为以()12,0F -为圆心, 故动点Q 的轨迹方程为()22268x y ++=. 故选:B. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程.11.A解析:A 【分析】设出直线方程,与抛物线方程联立,由判别式为零解出B 、D 两点的坐标,进而得出过点A 、B 、D 的圆的方程,求出弦长即可. 【详解】设过点()1,0A -的直线方程为1x my =-,联立214x my y x=-⎧⎨=⎩,可得2440y my -+=,由216160m ∆=-=,解得1m =±即2440y y ±+=,2y =±,不妨设()()1,2,1,2B D -,则BD 的中垂线方程为0y =,即圆心在x 轴上又()1,0A -,且点()1,0到点A 、B 、D 的距离都相等,则圆心坐标为()1,0,半径为2 圆的方程为()2214x y -+=,令0x =,解得y =即圆被y轴所截得的弦长为故选:A 【点睛】关键点点睛:本题考查直线与抛物线的位置关系,考查圆的方程以及直线与圆的位置关系,解决本题的关键点是根据直线与抛物线相切,求出切点的坐标,进而得出圆的方程,求出弦长,考查学生逻辑思维能力和计算能力,属于中档题.12.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b +=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=,所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.e ∴=== 故选:C 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】由椭圆定义得由余弦定理得结合可得的值从而得答案【详解】由已知得所以由椭圆定义得由余弦定理得即则的面积为故答案为:【点睛】本题考查了椭圆的简单的性质关键点是利用余弦定理和三角形的面积公式解题考解析:24-【分析】由椭圆定义得128F P PF +=,由余弦定理得22212121212cos 2F P PF F F F PF F P PF +-∠=⨯,结合可得12F P PF ⨯的值,从而得答案. 【详解】 由已知得12,2c e ==,所以4a =, 由椭圆定义得12248F P PF +=⨯=, 由余弦定理得222121212123cos cos3022F P PF F F F PF F P PF +-∠===⨯, 即()2121212216F PPF F P PF P PF +-⨯-=⨯,12F PPF ⨯=, 则12F PF △的面积为12111sin 3024222S F P PF =⨯⨯=⨯=-故答案为:24- 【点睛】本题考查了椭圆的简单的性质,关键点是利用余弦定理和三角形的面积公式解题,考查了学生分析问题、解决问题的能力.14.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象 【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m.【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得4m =,因此,直线l 的斜率为13k m ===.故答案为:3. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.15.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:2⎫⎪⎢⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率2c e a ==≥=,所以2⎫∈⎪⎪⎣⎭e .故答案为:,12⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.16.【分析】利用双曲线的定义分别表示再利用勾股定义和双曲线的定义建立等量关系求双曲线的离心率【详解】设根据双曲线的定义可知即得得中即得根据双曲线的定义即得所以得故答案为:【点睛】方法点睛:本题考查直线与【分析】利用双曲线的定义分别表示1212,,,AF AF BF BF ,再利用勾股定义和双曲线的定义建立等量关系,求双曲线的离心率. 【详解】设2AF x =,22BF x =,1AF y =,根据双曲线的定义可知1212AF AF BF BF -=-, 即12y x BF x -=-,得1BF y x =+,120AF AF ⋅=,12AF AF ∴⊥,()()2223y x y x ∴+=+,得4y x =,12Rt AF F △中,222124AF AF c +=,即22174x c =,得x =,根据双曲线的定义122AF AF a -=,即32x a =,得23x a =,23a =,得c e a ==.【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.17.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围. 【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y axa =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得()22224200002(14)4=+-=+-+d x ax a x a x ,令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a , 当对称轴24102a a -≤时,在0t =处取得最小值,此时d 的最小值为4=2=d , 当对称轴24102a a ->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦. 故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.18.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 19.【分析】取焦点在轴建立平面直角坐标系由题意及椭圆性质有为椭圆通径得结合及解出代入离心率公式计算即可【详解】解:取焦点在轴建立平面直角坐标系由及椭圆性质可得为椭圆通径所以又解得所以截口所在椭圆的离心率解析:13【分析】取焦点在x 轴建立平面直角坐标系,由题意及椭圆性质有BC 为椭圆通径,得2163b a =,结合24c =及222a b c =+解出,,a b c 代入离心率公式计算即可.【详解】解:取焦点在x 轴建立平面直角坐标系,由12BC F F ⊥及椭圆性质可得,BC 为椭圆通径,所以21163b F B a ==,1224F Fc ==又222a b c =+,解得6,2,a c b ===所以截口BAC 所在椭圆的离心率为13故答案为:13【点睛】求椭圆的离心率或其范围的方法:(1)求,,a b c 的值,由22222221c a b b a a a-==-直接求e ; (2)列出含有,,a b c 的齐次方程(或不等式),借助于222a b c =+消去b ,然后转化成关于e 的方程(或不等式)求解.20.③④【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断【详解】①的两个顶点为周长为18则C 点轨迹方程为当解析:③④ 【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断. 【详解】①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=(5)x ≠±,当5x =±时,构不成三角形,错误; ②当0.1x =时,1x <,所以||0x >不一定有1x >,错误;③已知命题:33p ≥是真命题,:34q >是假命题,根据复合命题的真假判断,p q ∨为真,p q ∧为假,p ⌝为假,正确;④双曲线221916x y -=-,2216,9a b ==,所以22225c a b =+=,54c e a ==,正确.其中正确的命题的序号是③④, 故答案为:③④. 【点睛】本题考查了椭圆定义、双曲线离心率、必要不充分条件及复合命题真假的判断,属于基础题.三、解答题21.(1)2212x y +=;(2)10,2⎡⎫⎪⎢⎣⎭.【分析】(1)根据离心率、12F PF △的面积为1及a 、b 、c 的关系,即可求得a 、b 、c 的值,即可得答案.(2)设()11,P x y ,()22,Q x y ,线段PQ 的中点为()00,N x y ,直线2PF 的斜率为k ,将直线与椭圆联立,根据韦达定理,可求得N 点坐标,根据题意,可得直线TN 为线段PQ 的垂直平分线,利用斜率的关系,即可求得t 的表达式,结合k 的范围,即可求得答案. 【详解】(1)由题可知椭圆离心率2,当P 为椭圆C 的上顶点时,12F PF △的面积为1.∴22221212c ab c b c a⎧=⎪⎪⎪⋅⋅=⎨⎪+=⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩, 故椭圆C 的方程为2212x y +=,(2)设()11,P x y ,()22,Q x y ,线段PQ 的中点为()00,N x y ,直线2PF 的斜率为k , 由(1)设直线PQ 的方程为()1y k x =-. 当0k =时,0t =符合题意.当0k ≠时,把()1y k x =-代入2212x y +=,得()2222124220k x k x k +-+-=,∴()()42221641222880k k k k ∆=-+-=+>,2122412k x x k+=+, ∴212022212x x k x k +==+,()002112k y k x k -=-=+, 即2222,1212k k N k k ⎛⎫- ⎪++⎝⎭. ∵TP TQ =,∴直线TN 为线段PQ 的垂直平分线, ∴TN PQ ⊥,即1TN k k ⋅=-.∴222121212k k k ktk -+⋅=--+, ∴22211122k t k k ==++.20k >,210k ∴> ,2122k +>, 2110122k ∴<<+,即10,2t ⎡⎫∈⎪⎢⎣⎭【点睛】解题的关键是根据韦达定理求得N 点坐标,将题干条件转化为直线TN 为线段PQ 的垂直平分线,根据斜率关系进行求解,考查计算化简的能力,属中档题.22.(1)22143x y +=;(2). 【分析】(1)由已知条件可得12c e a ==,将点31,2P ⎛⎫⎪⎝⎭代入椭圆的方程结合222a b c =+即可求得,,a b c 的值,进而可得椭圆C 的方程;(2)设:1l x ty =-,设11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得关于y 的一元二次方程,由韦达定理可得12y y +,12y y ,利用122S S =可得122y y =-,即可解出k 的值,进而可求出直线l 的斜率. 【详解】(1)由题意可得:22222121914c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩得2243a b ⎧=⎨=⎩,故C 的方程为22143x y +=.(2)1(1,0)F -,显然l 与y 轴不垂直,故可设:1l x ty =-,设11(,)A x y ,22(,)B x y ,由221143x ty x y =-⎧⎪⎨+=⎪⎩消去x 得22(34)690t y ty +--=,则122634t y y t +=+,122934y y t -=+, 由122S S =得122y y =-, 所以122262034ty y y t +=+=+,可得22634t y t -=+, 由122934y y t -=+可得2229234y t --=+, 消去2y 可得()222236923434t t t--⨯=++ ,整理可得:245t =t =:1l x y =-,所以直线l:()12y x =±+, 所以直线l的斜率为. 【点睛】关键点点睛:本题解题的关键是由面积之比得出纵坐标122y y =-,联立直线与椭圆的方程消去x 可得关于y 的一元二次方程,由韦达定理可得12y y +,12y y ,可求t 的值,注意求直线的斜率.23.(1)22143x y +=;(2)7. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-, 所以,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.24.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.25.(1)证明见解析;(2)存在,12N ⎛⎫±- ⎪ ⎪⎝⎭.【分析】(1)由题意设直线:1AB y kx =+,()11,A x y ,()22,B x y ,将直线与抛物线方程联立求。
(好题)高中数学选修1-1第二章《圆锥曲线与方程》测试卷(有答案解析)(2)
一、选择题1.已知点A 为椭圆()2222:10x y C a b a b+=>>的左顶点,(),0F c 为椭圆的右焦点,B 、E 在椭圆上,四边形OABE 为平行四边形(O 为坐标原点),过直线AE 上一点P 作圆()2224b x c y -+=的切线PQ ,Q 为切点,若PQF △面积的最小值大于28b ,则椭圆C的离心率的取值范围是( )A .1020,3⎛⎫⎪ ⎪⎝⎭B .102,13⎛⎫⎪ ⎪⎝⎭C .510,3⎛⎫⎪ ⎪⎝⎭D .51,13⎛⎫⎪ ⎪⎝⎭2.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B .33C .12D .223.已知点12,F F 是椭圆()222210x y a b a b+=>>的左右焦点,椭圆上存在不同两点,A B 使得122F A F B =,则椭圆的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭4.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .55.已知F 是抛物线2:4E y x =的焦点,若直线l 过点F ,且与抛物线E 交于B ,C 两点,以BC 为直径作圆,圆心为A ,设圆A 与y 轴交于点M ,N ,则MAN ∠的取值范围是( ) A .20,3π⎛⎫ ⎪⎝⎭B .20,3π⎛⎤⎥⎝⎦C .2,33ππ⎛⎤⎥⎝⎦D .2,33ππ⎡⎤⎢⎥⎣⎦6.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .y x =D .y =7.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( )A .BC .D .8.顶点在原点,经过点(),且以坐标轴为轴的抛物线的标准方程是( )A .2y =或212=-x y B .2y =-或212=-x yC .2y =或212x y =D .2y =-或212x y =9.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫⎪⎝⎭B .2⎛⎝⎭C .23⎛⎝⎭D .32,3⎛⎫⎪⎪⎝⎭10.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .12+ B C 1 D 111.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .B .(6,8)C .D .(6,10)12.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .2y x =B .2y x =C .28x y =D .216x y =二、填空题13.已知中心在原点,对称轴为坐标轴的椭圆,其中一个焦点坐标为()2,0F ,椭圆被直线:3l y x =+所截得的弦的中点横坐标为2-,则此椭圆的标准方程为______.14.双曲线()222210,0x y a b a b-->>的左右焦点分别为1F ,2F ,过1F 作直线l 与双曲线有唯一交点P ,若124sin 5F PF ∠=,则该双曲线的离心率为___________. 15.已知双曲线2222:1(0,0)x y C a b a b-=>>右支上一点12,,P F F 分别为其左右焦点,圆M是12PF F △内切圆,且1PF 与圆M 相切于点2,||2cA PA a=(c 为半焦距),若122PF PF >,则双曲线离心率的取值范围是_____. 16.过双曲线M :2213x y -=的右焦点F作圆C :221(1)2x y ++=的切线,此切线与M 的右支交于A ,B 两点,则||AB =___________.17.已知双曲线2222:1(0,0)y x C a b a b-=>>,直线x b =与C 的两条渐近线分别交于A ,B 两点,过A 作圆222:(2)M x b y b ++=的切线,D 为其中一个切点若||||AD AB =,则C 的离心率为__________.18.已知直线1:43120l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 距离之和的最小值是________.19.已知曲线22:1(0)x y C mn m n+=≠.给出下列四个命题:①曲线C 过坐标原点;②若0m n =>,则C 是圆,其半径为m ; ③若0m n >>,则C 是椭圆,其焦点在x 轴上;④若0mn <,则C 是双曲线,其渐近线方程为y =. 其中所有真命题的序号是___.20.已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,则该双曲线的离心率的取值范围___________.三、解答题21.已知椭圆22:143x y E +=,其右焦点为F ,直线l 与圆22:3O x y +=相切于点Q ,设直线l 与椭圆E 相交于不同的两点A 、B .(1)若M 点是椭圆E 上任意一点,求出MF 的最大值;(2)已知过椭圆E 上的动点P 引圆О的两条切线PC 、PD (C 、D 为切点),探究在椭圆E 上是否存在点P ,使得由点P 向圆O 引的切线互相垂直; (3)当点Q 在y 轴右侧时,求证:AF AQ BF BQ +=+.22.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,且点31,2A ⎛⎫- ⎪⎝⎭在椭圆上. (1)求椭圆的标准方程;(2)设点B 为椭圆的右顶点,直线AB 与y 轴交于点,M 过点M 作直线与椭圆交于,P Q 两点,若6MB MP MA MQ ⋅=⋅,求直线PQ 的斜率.23.设曲线()22:10,0C mx ny m n +=>>过()(2,3,M N 两点,直线():2l y k x =-与曲线C 交于,P Q 两点,与直线8x =交于点R .(1)求曲线C 的方程;(2)记直线,,MP MQ MR 的斜率分别为123,,k k k ,求证:123k k k λ+=,其中λ为定值.24.已知椭圆2222:1(0)x y C a b a b +=>>C 经过点32A ⎛ ⎝⎭. (1)求椭圆C 的方程;(2)椭圆C 的右焦点为F ,过点A 作两条倾斜角互补的直线分别交椭圆于B ,C 两点,证明://BC AF .25.设抛物线2:4C y x =,点()4,0A ,()4,0B -,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.26.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】结合题意先计算直线AE 的表达式,然后运用点到直线的距离计算圆心F 到直线AE 的距离,求出三角形PQF 的面积表达式,结合题意得到不等式,继而计算出椭圆离心率的取值范围. 【详解】因为四边形OABE 是平行四边形,所以//BE AO ,且BE AO a ==,又因为点B 、E关于y 轴对称,所以0,2a E y ⎛⎫ ⎪⎝⎭,将其代入椭圆方程得222214y a a b+=,解得0y =±,故2a E ⎛⎫ ⎪ ⎪⎝⎭,(),0A a -,所以()2:32AE l y x a a =+,即30ay -=,故min PF 即为F 到直线AE 的距离,d=,此时PQ ==故2112228PQFb b SPQ R =⋅=⋅>,化简得2212d b >,故()2222231392b ac b b a +>+,即()()222231239a c a c a +>-+,整理得22222142a ac c a c ++>-,分子分母同除以2a ,得2212142e e e ++>-,即23420e e+->,所以e<舍去)或23e >,在椭圆中a c>,所以1e <,所以2,13e ⎛⎫∈ ⎪ ⎪⎝⎭故选:B【点睛】关键点点睛:本题的关键是求出三角形PQF 的面积表达式,结合题意得到不等式进行求解,有一定的计算量,需要把基础知识掌握牢固.2.B解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.3.C解析:C 【分析】先设点,利用向量关系得到两点坐标之间的关系121223,2x x c y y =-=,再结合点在椭圆上,代入方程,消去222a y 即得2229312c a x c+=,根据题意2x a <,构建,a c 的齐次式,解不等式即得结果. 【详解】设()()1122,,,A x y B x y ,由()()12,0,,0F c F c -得()()112212,,,F A F x c y x c y B -==+,122F A F B =,()()11222,,x c y x c y =∴+-,即121223,2x x c y y =-=,由,A B 在椭圆上,故2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,即()()2222222222222222232b x c a y a b b x a y a b⎧-+=⎪⎨+=⎪⎩, 消去222a y 得,2229312c a x c+=,根据椭圆上点满足a x a -≤≤,又,A B 两点不同,可知2229312c a x a c+=<,整理得22340c ac a -+<,故23410e e -+<,故113e <<.故选:C. 【点睛】 关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到,,a b c 一组等量关系(齐次式),进而求解离心率或范围.4.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-.由AF mFB =,得12y my =-.解得21y y ==-21y y ==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.5.B解析:B 【分析】设设()11,B x y ,()22,C x y BC 的中点()00,A x y ,直线l :()1y k x =-与 2:4E y x =联立可得()2222240k x k x k -++=,由韦达定理计算12x x +,12x x ,再求以BC 为直径作圆的半径12r BC =,求出圆心A 点横坐标,设MN 的中点为D ,则12MAD MAN ∠=∠,由圆的性质可得0cos x MAD r∠=并求出其范围,进而可得MAD ∠的范围,再讨论斜率不存在时MAD ∠的值,即可求解. 【详解】由抛物线2:4E y x =可知,焦点()1,0F ,设()11,B x y ,()22,C x y BC 的中点()00,A x y 设直线l :()1y k x =-代入2:4E y x =可得()2222240k x k x k -++=,所以212224k x x k++= ,121=x x ()()22222121212241612444k k x x x x x x k k +⎛⎫+-=+-=-= ⎪⎝⎭, ()()()2222212416111k BC k x x k k+=+-=+⨯,所以()2241k BC k +=,以BC 为直径作圆的半径()222112k r BC k+==,圆心为BC 的中点()20122122k x x x k +=+=,设MN 的中点为D ,则12MAD MAN ∠=∠, 则()()()22202222221111cos 1222212121k x k k MAD r k k k k ++∠====+<+=+++ 且1cos 2MAD ∠>,所以03MAD π<∠<, 当k 不存在时,1,2x y ==±,此时2r ,01x =,1cos 2MAD ∠=,3MAD π∠=,所以03MAD π<∠≤可得203MAN π<∠≤, 所以MAN ∠的取值范围是20,3π⎛⎤⎥⎝⎦故选:B 【点睛】关键点点睛:本题解题的关键点是联立直线与抛物线的方程,求出圆的半径和圆心坐标,由圆的性质知圆心与弦中点的连线与弦垂直可求出12MAN ∠的范围,进而可计算MAN ∠的范围.6.B解析:B【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-, 即112122,M F F D F D E M =∴=,可知四边形12M F DE 为平行四边形; 又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故3==ce a, 故双曲线C 的渐近线方程为2y x = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bx y a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.7.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式21⎛⎫=- ⎪⎝⎭b c a a 可求得该双曲线的渐近线的斜率. 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±;(2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.8.D解析:D 【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得. 【详解】设抛物线方程为22y mx =,则262(3)m =⋅-,63m =-,方程为2123y x =-, 或设方程为22x ny =,则2(3)26n -=⨯,14n =,方程为212x y =. 所以抛物线方程为2123y x =-或212x y =. 故选:D . 【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.9.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<,1234πα<<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是23⎛⎫⎪ ⎪⎝⎭,故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得12e =(12舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.11.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PFPF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.12.D解析:D【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求. 【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,2=,即8p =,所以1C 的标准方程是216x y =,故选:D . 【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧:已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程. 二、填空题13.【分析】设椭圆方程为代入直线方程整理就后应用韦达定理结合弦中点横坐标求得关系再由可得得椭圆方程【详解】设椭圆方程为由得所以由题意又所以椭圆方程为故答案为:【点睛】方法点睛:本题考查求椭圆的标准方程解解析:22184x y += 【分析】设椭圆方程为22221(0)x y a b a b+=>>,代入直线方程整理就后应用韦达定理结合弦中点横坐标求得,a b 关系,再由2c =可得,a b 得椭圆方程. 【详解】设椭圆方程为22221(0)x ya b a b +=>>,由222213x y a b y x ⎧+=⎪⎨⎪=+⎩,得2222222()690a b x a x a a b +++-=,所以212226a x x a b +=-+,由题意222622a a b-=-⨯+,222a b =, 又2c =,所以22224a b b c -===,28a =,椭圆方程为22184x y +=.故答案为:22184x y +=.【点睛】方法点睛:本题考查求椭圆的标准方程.解题方法是韦达定理.由直线方程与椭圆方程联立方程组,消元后应用韦达定理可得出弦中点坐标,从而得出,a b 的关系.然后结论半焦距c 可求解.14.或【分析】首先设出直线的方程与双曲线方程联立求得点的坐标利用弦长公式求得并根据定义表示中根据余弦定理表示再求离心率【详解】如图当直线与渐近线平行时与双曲线有唯一交点设与双曲线方程联立得解得:中由余弦【分析】首先设出直线l 的方程,与双曲线方程联立,求得点P 的坐标,利用弦长公式求得1PF ,并根据定义表示2PF ,12F PF △中,根据余弦定理表示12281cos 3F PF e ∴-∠=+,再求离心率. 【详解】如图,当直线与渐近线平行时,l 与双曲线有唯一交点P ,设():bl y x c a=+,与双曲线方程联立,得222cx a c -=+,解得:22a cx c+=-,()222122P a c b PF c c c a +=--=+=,2221422b a PF PF a a +=+=,122F F c =, 12F PF △中,124sin 5F PF ∠=,123cos 5F PF ∴∠=±, 由余弦定理222121212122cos F F PF PF PF PF F PF =+-∠()()212121221cos PF PF PF PF F PF =-+-∠,()()()2222212244221cos 4b a b c a F PF a+∴=+⋅-∠,2212222228881cos 433a a F PFb ac a e ∴-∠===+++,当123cos 5F PF ∠=时,28235e =+,e =当123cos 5F PF ∠=-时,28835e =+,e =172 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15.【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与轴切于顶点再分别表示列出关于的齐次不等式求双曲线的离心率的取值范围【详解】设圆心设内切圆与相切于点如图:根据内切圆性质可知点是双曲线的顶点即整理解析:71). 【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与x 轴切于顶点,再分别表示12,PF PF ,列出关于,a c 的齐次不等式求双曲线的离心率的取值范围.【详解】设圆心(),M x y ,设内切圆与1212,,PF PF F F 相切于点,,A B C , 如图:根据内切圆性质可知PA PB =,11F A FC =,22F B F C =, 1212122PF PF PA AF PB BF CF CF a ∴-=+--=-=,∴点C 是双曲线的顶点,即11F A FC c a ==+,22F B F C c a ==-,22c PA PB a==, 2122222c c a PF ac PF c a a++=>-+,整理为:22260c ac a +-<,两边同时除以2a , 得2260e e +-<,解得:1717e -<-1e >,所以离心率的取值范围是()1,71-.故答案为:()71 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.16.【分析】首先设出直线利用直线与圆相切求直线方程再利用弦长公式求弦长【详解】因为直线过双曲线的右焦点且与圆相切所以直线的斜率存在设直线方程为()由直线与圆相切知解得或当时双曲线的一条渐近线的斜率是该直 解析:3【分析】首先设出直线,利用直线与圆相切,求直线方程,再利用弦长公式求弦长AB . 【详解】因为直线过双曲线的右焦点且与圆相切,所以直线的斜率存在, 设直线方程为0y k -=(2x -)2221k =+,解得1k =或17k =,当17k =3137<,该直线不与双曲线右支相交于两点,故舍去;所以直线方程为2y x =-,联立双曲线方程,消元得2212150x x -+=.设()11,A x y ,()22,B x y ,则126x x +=,12152x x =, 所以()22212121215||124264232AB k x x x x x =+-=+-=-⨯=. 故答案为:3【点睛】易错点点睛:利用直线与圆相切,得到两个斜率1k =或17k =,需舍去一个,否则出现增根.17.【分析】将代入C 的渐近线方程可得点坐标利用两点间的距离根式可求导根据勾股定理可得再由可得代入即可【详解】将代入C 的渐近线方程得则不妨假设半径为因为是圆的切线所以即则因为所以即故故答案为:【点睛】本题 解析:224【分析】将x b =代入C 的渐近线方程可得A 点坐标,利用两点间的距离根式可求导||AM .根据勾股定理可得||AD ,再由||||AD AB =可得2238b a =,代入221be a=+即可. 【详解】将x b =代入C 的渐近线方程ay x b=±,得y a =±,则||2AB a =. 不妨假设(),A b a , (2,0)M b -,半径为b DM =, 222||(2)AM b b a =++,因为AD 是圆的切线,所以222||AD DMAM +=,即则22222||(2)8AD b b a b b a =++-=+.因为||||AD AB =,所以2282b a a +=,即2238b a =,故222214b e a =+=. 故答案为:224.【点睛】本题考查双曲线的简单的几何性质,考查直线与圆的位置关系,关键点是用,,b a c 表示||||AD AB =,考查了学生分析问题、解决问题的能力及计算能力.18.【分析】作出图像根据抛物线定义和性质将距离之和转化为动点到直线和焦点距离之和最小值数形结合得焦点到直线的距离最小【详解】解:作出图像如下:根据抛物线定义有动点到直线和直线距离之和为当点位于图中的时取解析:16 5【分析】作出图像,根据抛物线定义和性质将距离之和转化为动点P到直线1l和焦点距离之和最小值,数形结合得焦点F到直线1l的距离最小.【详解】解:作出图像如下:根据抛物线定义有动点P到直线1l和直线2l距离之和为PA PB PB PF+=+当点P位于图中的P'时取得最小值,此时最小值为焦点F到直线1l的距离,由距离公式得:4121655 d+==故答案为:16 5【点睛】抛物线性质的应用技巧:(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程;(2)要结合图形分析,灵活运用平面图形的性质简化运算.19.③④【分析】对于①根据点在曲线上的充分必要条件即可作出判定;对于②利用圆的标准方程可求得半径为的圆故错误;对于③利用椭圆的标准方程可以判定;对于④利用双曲线的标准方程可以作出判定将双曲线方程中的等号解析:③④【分析】对于①,根据点在曲线上的充分必要条件即可作出判定;对于②,利用圆的标准方程可m③,利用椭圆的标准方程可以判定;对于④,利用双曲线的标准方程可以作出判定,将双曲线方程中的等号右边的常数改为0,得到220x y m n +=,整理即可得到渐近线方程. 【详解】对于①,将原点坐标(0,0)代入曲线22:1(0)x y C mn m n+=≠的方程,显然不成立,故曲线C 不过坐标原点,故错误;对于②,若0m n =>,曲线22:1(0)x y C mn m n+=≠的方程为222x y m +==,对的圆,故错误;对于③,若0m n >>,则曲线22:1(0)x y C mn m n+=≠表示半长轴a =半短轴b =x 轴,即焦点在x 轴上的椭圆,故正确;对于④,若0mn <,曲线22:1(0)x y C mn m n+=≠表示双曲线,渐近线方程为220x y m n+=,即y =,故正确.故答案为:③④. 【点睛】本题考查圆,椭圆,双曲线的标准方程和性质,难度不大,要熟练准确掌握圆,椭圆,双曲线的标准方程,注意若0mn <,曲线22:1(0)x y C mn m n +=≠表示双曲线,渐近线方程可用220x y m n+=表示.20.【分析】作出图形根据已知条件可得出与的大小关系再利用公式可求得双曲线的离心率的取值范围【详解】如下图所示双曲线的渐近线方程为由于过点且倾斜角为的直线与双曲线的右支有且只有一个公共点由图可知直线的倾斜解析:3⎡⎫+∞⎪⎢⎪⎣⎭【分析】作出图形,根据已知条件可得出b a 与tan 6π的大小关系,再利用公式e =可求得双曲线的离心率的取值范围. 【详解】如下图所示,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,由于过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点, 由图可知,直线b y x a =的倾斜角6πα≥,所以,3tan 63b a π≥=, 因此,222222231c c a b b e a a a a +⎛⎫====+≥ ⎪⎝⎭ 所以,该双曲线的离心率为取值范围是233⎡⎫+∞⎪⎢⎪⎣⎭. 故答案为:233⎡⎫+∞⎪⎢⎪⎣⎭. 【点睛】方法点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e 的关系式求e 或e 的范围;另一种是建立a 、b 、c 的齐次关系式,将b 用a 、e 表示,令两边同除以a 或2a 化为e 的关系式,进而求解.三、解答题21.(1)3;(2)不存在;(3)证明见解析. 【分析】(1)设出()00,M x y ,把MF 表示出来,利用函数求最值; (2)假设存在点P ,作出切线PC 、PD ,由OCPD 为正方形推出||6OP =3||2OP ≤,矛盾,所以判断点 P 不存在;(3)用坐标法分别求出AF AQ BF BQ 、、、,证明AF AQ BF BQ +=+ 【详解】由椭圆22:143x y E +=,知右焦点为()1,0F ,(1)设()00,M x y ,则()220001,2243x y x +=-≤≤,所以()()()22222000000310132444x x MF x y x x =-+-=-+-=-+ 因为()()220000124444x f x x x =-+=-在 []02,2x ∈-上单减,所以当02x =-时,()422434MF =-⨯-+=最大, 即MF 的最大值为3. (2)假设存在点P 符合题意,如图示,,,OC OD PC PD ⊥⊥又有,PC PD ⊥ 所以OCPD 为矩形;因为|OC |=|OD |,所以OCPD 为正方形,所以||2||236OP OC ==⨯=;又P 在椭圆22:143x y E +=上,所以3||26OP ≤≤≠,故这样的点P 不存在;(3)设()()1122,,,A x y B x y ,连结 OQ ,OA ,OB ,则△AOQ 为直角三角形,所以||AQ==又A在椭圆22:143x yE+=上,所以2211143x y+=,得1||2xAQ===而11||22AF x==-所以11112222AF AQ x x+=-+=;同理可证:2BF BQ+=.所以AF AQ BF BQ+=+,即证【点睛】解析几何问题常见处理方法:(1)正确画出图形,利用平面几何知识简化运算;(2)坐标化,把几何关系转化为坐标运算.22.(1)22143x y+=;(2)【分析】(1)由222214a bea-==以及将点代入椭圆方程即可求解.(2)求出直线AB的方程,进而求出()0,1M,再由6MB MP MA MQ⋅=⋅,根据数量积的运算可得3MP MQ=,讨论直线PQ的斜率存在情况,从而设其方程为1y kx=+,将直线与椭圆方程联立,设()()1122,,,P x y Q x y,可得123x x=-,利用韦达定理即可求解.【详解】命题意图本题考查椭圆的方程和性质,椭圆与直线的位置关系.解析()1由题意知离心率e满足222214a bea-==,所以2234a b=,又因为点31,2A⎛⎫- ⎪⎝⎭在椭圆上,所以()2222312143bb⎛⎫⎪-⎝⎭+=,解得23b=,所以24a =,故椭圆的标准方程为22143x y +=.()2由()1得()2,0B ,所以直线AB 的方程为()122y x =--,与y 轴的交点为()0,1M . 由6MB MP MA MQ ⋅=⋅,得6,MB MP cos BMP MA MQ cos AMQ ∠=∠ 而,2BMP AMQ MB MA ∠=∠=, 因此3MP MQ =.当PQ 与x 轴垂直时,不合题意. 当PQ 与x 轴不垂直时, 设其方程为1y kx =+,联立方程得221143y kx x y =+⎧⎪⎨+=⎪⎩,消去y 可得()2243880k x kx ++-=,设()()1122,,,P x y Q x y , 则12122288,4343k x x x x k k --+==++ 由3MP MQ =得123x x =-, 所以22222882,34343k x x k k ---=-=++ 显然k 不为0,两式相除得22,3x k= 所以248343k k k --=+解得k =± 【点睛】关键点点睛:本题考查了待定系数法求椭圆的标准方程,直线与椭圆的位置关系,解题的关键是根据向量数量积得出3MP MQ =,进而得出123x x =-,考查了运算求解能力.23.(1)2211612x y +=;(2)证明见解析.【分析】(1)由已知建立方程组可求得曲线C 的方程;(2)令8x =,则()8,6R k ,联立整理得()()222243161630k x k x k +-+-=,设()()1122,,,P x y Q x y ,()2212122216316,4343k k x x x x k k -+==++,表示12k k +,3k ,可求得定值. 【详解】解:(1)由已知得491861m n m n +=⎧⎨+=⎩,解得116112m n ⎧=⎪⎪⎨⎪=⎪⎩,所以曲线C 的方程为2211612x y +=;(2)令8x =,则()8,6R k ,联立()22116122x y y k x ⎧+=⎪⎨⎪=-⎩,整理得()()222243161630kx k x k +-+-=,设()()1122,,,P x y Q x y ,则()2212122216316,4343k k x x x x k k -+==++, ∴12121212121233113232222y y y y k k x x x x x x ⎛⎫--+=+=+-+ ⎪------⎝⎭, ()()221222121222164443232321241633244343k x x k k k k x x x x k k k k -+-+=-⨯=-⨯=--++--+++, 又3631822k k k -==--, ∴1232k k k +=,∴λ等于定值2,得证.【点睛】关键点点睛:本题考查直线与椭圆的综合问题,关键在于由直线的方程与椭圆的方程联立后,由根与系数的关系表示直线的斜率,求得定值.24.(1)22132x y +=;(2)证明见解析.【分析】(1)椭圆的离心率为3,且经过点322A ⎛⎫ ⎪ ⎪⎝⎭.,可用待定系数法求椭圆的标准方程; (2)分别表示出直线AB 、AC ,用“设而不求法”后分别表示出BC 、AF 的斜率,从而证明//BC AF【详解】(1)解:因为椭圆C的离心率为3,c e a ==,2232a b =,即2222:132x y C b b +=, 又因为椭圆C过点3,22A ⎛ ⎝⎭,所以229124213b b ⋅+=,解得22b =椭圆C 的方程为22132x y +=.(2)证明:设直线AB的方程为322y k x ⎛⎫=-+ ⎪⎝⎭. 因为直线AB 与直线AC 的倾斜角互补,所以直线AC的方程可设为322y k x ⎛⎫=--+⎪⎝⎭.联立22322132y k x x y ⎧⎛⎫=-+⎪ ⎪⎪⎝⎭⎨⎪+=⎪⎩得()222323(9)36022k x k x k ⎛++-++-+-= ⎝⎭. 设()11,B x y ,()22,C x y,则21239223k x k-++=-+,∴221229393223223k k x k k ---+=--=++.同理可得22293223k x k +-=+. ()22212121212961233BCk k k k k x x ky y k x x x x ---+--=====--又02312AF k -==-,∴BC AF k k =,所以//BC AF .【点睛】 结论点睛:(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)122y x =+或122y x =--;(2)见解析. 【分析】(1)首先根据l 与x 轴垂直,且过点A ,求得直线l 的方程为4x =,代入抛物线方程求得点M 的坐标为()4,4或()4,4-,利用两点式求得直线BM 的方程;(2)设直线l 的方程为4x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立. 【详解】(1)当l 与x 轴垂直时,l 的方程为4x =,可得M 的坐标为()4,4或()4,4-, 所以直线BM 的方程为122y x =+或122y x =--; (2)设l 的方程为4x ty =+,()11,M x y 、()22,N x y ,由244x ty y x=+⎧⎨=⎩,得24160y ty --=,可知124y y t +=,1216y y =-, 直线BM 、BN 的斜率之和为 ()()()()()()()()21122112121212124488444444BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()12121212282168404444ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补, 所以ABM ABN ∠=∠. 【点睛】该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量;在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.26.(1)24y x =;(2)220x y +-=. 【分析】(1)抛物线的定义可得342p ⎛⎫--= ⎪⎝⎭,即可求出p 得值,进而可得抛物线E 的方程; (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,利用点差法可求直线l 的斜率,再求出点()1,0F ,利用点斜式即可求出直线l 的方程.。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(答案解析)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2BC .3D 2.直线3y x与曲线2||194y x x -=的公共点的个数是( )A .1B .2C .3D .43.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .±C .8±D .±4.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D5.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 6.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .⎣B .⎣C .⎣D .⎣ 7.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .48.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .22D .329.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( ) A .12y x =±B .y x =±C .3y x =±D .5y x =±10.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( ) A .2±B .3C .6±D .7±11.顶点在原点,经过点()3,6-,且以坐标轴为轴的抛物线的标准方程是( ) A .2123y x =或212=-x y B .2123y x =-或212=-x y C .2123y x =或212x y =D .2123y x =-或212x y =12.P 为椭圆22:11713x y C +=上一动点,1F ,2F 分别为左、右焦点,延长1F P 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .()22234x y ++= B .()22268x y ++= C .()22234x y -+=D .()22268x y -+=二、填空题13.已知中心在原点,对称轴为坐标轴的椭圆,其中一个焦点坐标为()2,0F ,椭圆被直线:3l y x =+所截得的弦的中点横坐标为2-,则此椭圆的标准方程为______.14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.已知ABC 中,()1,0B -、()1,0C ,1k 、2k 分别是直线AB 和AC 的斜率.关于点A 有如下四个命题:①若A 是双曲线2212y x -=上的点,则122k k ⋅=;②若122k k ⋅=-,则A 是椭圆2212x y +=上的点;③若121k k ,则A 是圆221x y +=上的点;④若2AB AC =,则A 点的轨迹是圆. 其中所有真命题的序号是__________.16.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l 交椭圆C 于A B 、两点,则1F AB 的面积为___________. 17.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________. 18.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且||PF =,则双曲线C 的标准方程为_________. 19.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.20.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124F F =,则截口BAC 所在椭圆的离心率为______.三、解答题21.已知椭圆2222:1(0)x y E a b a b +=>>过点21,2P ⎛⎫ ⎪ ⎪⎝⎭,离心率2e =. (1)求椭圆E 的方程;(2)过点(0,3)M 的直线l 与椭圆E 相交于A ,B 两点. ①当直线OA ,OB 的斜率之和为34时(其中O 为坐标原点),求直线l 的斜率k ; ②求MA MB ⋅的取值范围.22.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.23.已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4. (1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积.24.已知椭圆22:11612x y E +=,1F 、2F 为左、右焦点,()2,3A .(1)求12tan F AF ∠及12F AF ∠的角平分线所在直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出:若不存在,说明理由.25.椭圆2222:1(0)x y E a b a b +=>>的左焦点为1F ,右焦点为2F,离心率2e =,过1F 的直线交椭圆于A ,B 两点,且2ABF的周长为. (1)求椭圆E 的方程;(2)若直线AB,求2ABF 的面积.26.椭圆()2222:10x y C a b a b+=>>过点31,2⎛⎫- ⎪⎝⎭,离心率为12,左、右焦点分别为1F 、2F ,过2F 的直线l 交椭圆于A 、B 两点.(1)求椭圆C 的方程; (2)当1F AB的面积为11时,求直线l 的斜率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=,整理得:()()()() 21212 21212y y yyba x x x x+-=+-BD的中点为(1,3)M,且直线l的斜率为16,代入有:22611262ba=⨯=即22212c aa-=,解得62cea.故选:D【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a、b、c的关系,消去b,构造离心率e的方程或(不等式)即可求出离心率.2.C解析:C【分析】由于已知曲线函数中含有绝对值符号,将x以0为分界进行分类讨论,当x≥0时,曲线为焦点在y轴上的双曲线,当x<0时,曲线为焦点在y轴上的椭圆,进而在坐标系中作出直线与曲线的图像,从而可得出交点个数.【详解】当0x≥时,曲线2194x xy-=的方程为22194y x-=当0x<时,曲线2194x xy-=的方程为22194y x+=,∴曲线2194x xy-=的图象如图,在同一坐标系中作出直线3y x的图象,可得直线与曲线交点个数为3个.故选:C【点晴】本题讨论曲线类型再利用数形结合法求交点个数是解题的关键.3.B解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =, 设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =,显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=, 从而284A B x x k +=+, 所以28489A B A k B x x =++=+=,解得22k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49OMN OAB ABMN S S S +=梯形△△,结合图象,可求得9AB =,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.4.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=. 可得1a =ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.C解析:C 【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++, 令21k t +=,因为0k ≠,所以1t >,所以AB D C ==+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以18262,323AB CD y ⎡⎫+=⨯∈⎢⎪⎪⎢⎣, 综上AB CD +的取值范围是82,323⎡⎤⎢⎥⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.7.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =,故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小,而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m的最小值为2即m, 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.8.D解析:D 【分析】首先设直线2x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率. 【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y ,与椭圆方程联立得22224102a b y cy b ⎛⎫++-= ⎪⎝⎭,2122212cy y a b +=-+,4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-, 得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.9.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:2b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.10.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式=b a . 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.11.D解析:D 【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(3)m =⋅-,3m =-23y x =-, 或设方程为22x ny =,则2(3)26n =⨯,14n =,方程为212x y =. 所以抛物线方程为2123y x =-或212x y =. 故选:D .【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.12.B解析:B 【分析】由椭圆的122PF PF a +==2PQ PF =,所以112PF PQ FQ a +===Q 的轨迹为以()12,0F -为圆心,径的圆,即可求得动点Q 的轨迹方程. 【详解】由2211713x y +=可得:a =,因为122PF PF a +==2PQ PF =,所以112PF PQ FQ a +===所以动点Q 的轨迹为以()12,0F -为圆心, 故动点Q 的轨迹方程为()22268x y ++=. 故选:B. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程.二、填空题13.【分析】设椭圆方程为代入直线方程整理就后应用韦达定理结合弦中点横坐标求得关系再由可得得椭圆方程【详解】设椭圆方程为由得所以由题意又所以椭圆方程为故答案为:【点睛】方法点睛:本题考查求椭圆的标准方程解解析:22184x y +=【分析】设椭圆方程为22221(0)x y a b a b+=>>,代入直线方程整理就后应用韦达定理结合弦中点横坐标求得,a b 关系,再由2c =可得,a b 得椭圆方程.【详解】设椭圆方程为22221(0)x y a b a b +=>>,由222213x ya b y x ⎧+=⎪⎨⎪=+⎩,得2222222()690a b x a x a a b +++-=,所以212226a x x a b +=-+,由题意222622a a b-=-⨯+,222a b =, 又2c =,所以22224a b b c -===,28a =,椭圆方程为22184x y +=.故答案为:22184x y +=.【点睛】方法点睛:本题考查求椭圆的标准方程.解题方法是韦达定理.由直线方程与椭圆方程联立方程组,消元后应用韦达定理可得出弦中点坐标,从而得出,a b 的关系.然后结论半焦距c 可求解.14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,227c a b =+= 依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以12172MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中223NQ MN MQ =-=,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12321cos ,77QN AB F F MN <>===故答案为:217【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.①③【分析】设点可得出结合斜率公式可判断A 选项的正误;求出动点的轨迹方程可判断②的正误;根据求出点的轨迹方程可判断③的正误;由求出点的轨迹方程可判断④的正误【详解】设动点的坐标为对于①由于点是双曲线解析:①③ 【分析】设点(),A x y ,可得出2212y x =+,结合斜率公式可判断A 选项的正误;求出动点A 的轨迹方程,可判断②的正误;根据121k k ,求出点A 的轨迹方程,可判断③的正误;由2AB AC =求出点A 的轨迹方程,可判断④的正误. 【详解】设动点A 的坐标为(),A x y .对于①,由于点A 是双曲线2212y x -=上的点,则2212y x =+,所以,22122221112y y y y k k y x x x =⋅===+--,①正确;对于②,21222111y y y k k x x x =⋅==-+--,化简可得2212y x +=,②错误;对于③,21221111y y y k k x x x =⋅==-+--,化简可得221x y +=,③正确;对于④,由2AB AC ==化简可得2251639x y ⎛⎫-+= ⎪⎝⎭, 当点A 为圆2251639x y ⎛⎫-+= ⎪⎝⎭与x 轴的交点时,A 、B 、C 三点无法构成三角形,④错误.故答案为:①③. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.16.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0, ∴121269,77y y y y +=-=-12211111|||227|2227F AB S F F y y -∴=⨯=⨯⨯==△即1F AB 【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 17.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大, 抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=,264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228x y ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.18.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,23b a =,结合222c a b =+,整理求得结果.【详解】根据题意,可知2b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立2222232b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.19.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+;(2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 20.【分析】取焦点在轴建立平面直角坐标系由题意及椭圆性质有为椭圆通径得结合及解出代入离心率公式计算即可【详解】解:取焦点在轴建立平面直角坐标系由及椭圆性质可得为椭圆通径所以又解得所以截口所在椭圆的离心率解析:13【分析】取焦点在x 轴建立平面直角坐标系,由题意及椭圆性质有BC 为椭圆通径,得2163b a =,结合24c =及222a b c =+解出,,a b c 代入离心率公式计算即可.【详解】解:取焦点在x 轴建立平面直角坐标系,由12BC F F ⊥及椭圆性质可得,BC 为椭圆通径,所以21163b F B a ==,1224F Fc ==又222a b c =+,解得6,2,a c b ===所以截口BAC 所在椭圆的离心率为13故答案为:13【点睛】求椭圆的离心率或其范围的方法:(1)求,,a b c 的值,由22222221c a b b a a a-==-直接求e ; (2)列出含有,,a b c 的齐次方程(或不等式),借助于222a b c =+消去b ,然后转化成关于e 的方程(或不等式)求解.三、解答题21.(1)2212x y +=;(2)①3k =-;②808,9⎡⎫⎪⎢⎣⎭.【分析】(1)把点代入方程结合离心率列方程组求解即可;(2)①设直线l 方程为,代入椭圆E 的方程可得,结合判别式与韦达定理,利用直线OA ,OB 的斜率之和为34进而求出直线斜率即可;②当直线l 的斜率不存在时,直线l 的方程为0x =,求得8MA MA ⋅=,当直线l 的斜率存在时,由(2)①得28821MA MB k ⋅=++,从而求得范围.【详解】解:(1)由题意得222221,2c a a b c ⎧=⎪⎨⎪=+⎩,解得222a c =,22b c =.设椭圆E 的方程为222212x y c c +=,又因为点1,2P ⎛⎫ ⎪ ⎪⎝⎭在椭圆E 上, 所以222211122c c+=,22222,1c a b ===,所以椭圆E 的方程为2212x y +=;(2)①设直线l 方程为:3y kx =+,代入椭圆E 的方程可得,()222112160kx kx +++=因为直线l 与椭圆E 有两个交点,所以216640∆=->k ,即24k >. 设()11,A x y ,()22,B x y ,则1221221k x x k +=-+,1221621x x k ⋅=+, 11223,3y kx y kx =+=+.又()1212121233244OA OB x x y y k k k k x x x x ++=+=+=-=⋅ 解得3k =-,经检验成立.所以,直线l 的斜率3k =-; ②当直线l 的斜率不存在时,直线l 的方程为0x =,将0x =代入2212x y +=,解得1y =±,则(0,1)A ,(0,1)B -,8MA MA ⋅=当直线l 的斜率存在时,由(2)①得()()()()22121212216133121k MA MA x x y y k x x k +⋅=⋅+--=+⋅=+()2228211882121k k k ⎡⎤++⎣⎦==+++因为24k >,所以MA MA ⋅的范围为808,9⎛⎫⎪⎝⎭.综上,得MA MB ⋅的取值范围是808,9⎡⎫⎪⎢⎣⎭. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=, 联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 23.(1)28x y =;(2) 【分析】(1)由题中条件,根据抛物线的定义,得到242p+=,求出p ,即可得出抛物线方程; (2)先由(1)得到焦点坐标,得出直线l 的方程,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,结合韦达定理,以及抛物线的焦点弦公式,求出弦长AB ,再由点到直线距离公式,以及三角形面积公式,即可求出结果. 【详解】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =, 所以抛物线C 的方程为28x y =; (2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=, 设()11,A x y ,()22,B x y ,由228y x x y=+⎧⎨=⎩消去x ,整理得21240y y -+=, 则1212y y +=,因此1212416AB AF BF y y p =+=++=+=, 又点O 到直线20x y-+=的距离为d ==,所以OAB 的面积为12OABS AB d ==. 【点睛】 思路点睛:求解圆锥曲线中三角形的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,即可得出三角形的面积. 24.(1)124tan 3F AF ∠=,直线l 的方程为210x y --=;(2)不存在,理由见解析.。
(好题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(包含答案解析)
一、选择题1.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+= 2.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B .3C .12D .23.已知点12,F F 是椭圆()222210x y a b a b+=>>的左右焦点,椭圆上存在不同两点,A B 使得122F A F B =,则椭圆的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭4.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D5.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 6.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫ ⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( )A BC D7.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .48.设抛物线2:4C y x =的焦点为F ,M 为抛物线上异于顶点的一点,且M 在直线1x =-上的射影为N ,若MNF 的垂心在抛物线C 上,则MNF 的面积为( ) A .1 B .2 C .3 D .49.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( ) A .3B .102C .5D .1010.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16311.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .1102+ B 122+C 51 D 3112.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( ) A .25 B .100 C .9 D .36 二、填空题13.已知双曲线M :22221x y a b-=(0a >,0b >)的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是___________.14.已知中心在原点,对称轴为坐标轴的椭圆,其中一个焦点坐标为()2,0F ,椭圆被直线:3l y x =+所截得的弦的中点横坐标为2-,则此椭圆的标准方程为______.15.已知双曲线()22210y x a a -=>的离心率52e =,点12,F F 分别是它的下焦点和上焦点,若Р为该双曲线上支上的一个动点,则1PF 与P 到一条渐近线的距离之和的最小值为_________.16.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.17.设P 是双曲线22:13y x Γ-=上任意一点,Q 与P 关于x 轴对称,1F 、2F 分别为双曲线的左、右焦点,若有121PF PF ⋅≥,则1F P 与2F Q 夹角的取值范围是__________. 18.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A ,上顶点为B ,8AB =分米,在它的内部放有一个半径为1分米的球形灯泡,球心C 在轴AB 上,且2AC =分米.已知球形灯泡的球心C 到四周轮廓上的点的最短距离是在下顶点A 处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a =>,则实数a 的取值范围是_______19.若实数x ,y 满足方程2251162x y +=2222(1)(3)x y x y -++-___________.20.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为__________. 三、解答题21.已知椭圆22:11612x y E +=,1F 、2F 为左、右焦点,()2,3A .(1)求12tan F AF ∠及12F AF ∠的角平分线所在直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出:若不存在,说明理由.22.已知动圆M 过点1(2,0),F - 且动圆M 内切于定圆2F :22(2)32,x y -+= 记动圆M 圆心的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)若A 、B 是曲线Γ上两点,点20,3P ⎛⎫⎪⎝⎭满足20,PF PA PB ++= 求直线AB 的方程.23.已知点A 、B 坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-. (1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标. 24.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.25.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.26.已知椭圆2222:1x y C a b +=的左右顶点分别为12(2,0),(2,0)A A -,椭圆C 上不同于12,A A 的任意一点P ,直线1PA 和2PA 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)过椭圆内一点(,0)(0)M m m ≠,作一条不垂直于x 轴的直线交椭圆于,A B 两点,点Q 和点B 关于x 轴对称,直线AQ 交x 轴于点(,0)N n ,证明:m n ⋅为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,整理得到22 12214y bx a=,即222222244b a ck ka a-=⇒=,即221k e+=故选:B【点睛】关键点点睛:本题的关键利用三等分点得到211222x xyy=-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.2.B解析:B【分析】由1MD NF⋅=得1MD NF⊥,结合D是中点,得等腰三角形,由平行线可得2F是MN 中点,从而MN x⊥轴,利用勾股定理可得,a c的关系得离心率.【详解】因为1MD NF⋅=,所以1MD NF⊥,又D是1NF中点,所以1MF MN=,因为12//MF DF,所以2F是MN中点,则22MF NF=,因此MN x⊥轴,设2MF m=,则12MF m=,1232MF MF m a+==,23am=,在12MF F△中,由勾股定理得22242()()(2)33m mc+=,变形可得33cea==.故选:B.【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N的性质(实质上它是等边三角形),特别是MN x⊥轴,然后结合椭圆定义利用勾股定理可得.3.C解析:C【分析】先设点,利用向量关系得到两点坐标之间的关系121223,2x x c y y =-=,再结合点在椭圆上,代入方程,消去222a y 即得2229312c a x c+=,根据题意2x a <,构建,a c 的齐次式,解不等式即得结果. 【详解】设()()1122,,,A x y B x y ,由()()12,0,,0F c F c -得()()112212,,,F A F x c y x c y B -==+,122F A F B =,()()11222,,x c y x c y =∴+-,即121223,2x x c y y =-=,由,A B 在椭圆上,故2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,即()()2222222222222222232b x c a y a b b x a y a b⎧-+=⎪⎨+=⎪⎩, 消去222a y 得,2229312c a x c+=,根据椭圆上点满足a x a -≤≤,又,A B 两点不同,可知2229312c a x a c+=<,整理得22340c ac a -+<,故23410e e -+<,故113e <<.故选:C. 【点睛】 关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到,,a b c 一组等量关系(齐次式),进而求解离心率或范围.4.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +== 故()2222220a ++=. 可得1a=ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.B解析:B 【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】 解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F PF P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:3e = 故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.7.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =,故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 的最小值为22即m 2, 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.8.B解析:B【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,则点()01,N y -,求出MNF 的垂心H 的坐标,再由MH FN ⊥可求得0y 的值,进而可求得MNF 的面积. 【详解】设点200,4y M y ⎛⎫⎪⎝⎭,则点()01,N y -,设点M 在第一象限, 抛物线C 的焦点为()1,0F ,设MNF 的垂心为H , 由于FHMN ⊥,则点H 的横坐标为1,可得点()1,2H ,MH FN ⊥,则0HM FN ⋅=,2001,24y HM y ⎛⎫=-- ⎪⎝⎭,()02,FN y =-,()()22200000012122220422y y HM FN y y y y ⎛⎫⋅=--+-=-+=-= ⎪⎝⎭,解得02y =,所以,点M 的坐标为()1,2,所以,2MN =,12222MNF S =⨯⨯=△. 故选:B. 【点睛】关键点点睛:解决本题的关键在于利用已知条件求出点M 的坐标,本题特殊的地方在于MN y ⊥轴,可得出垂心与焦点的连线垂直于x 轴,再结合垂心在抛物线求出垂心的坐标.9.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y . 4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩. 以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c ya b,将22200=-y c x代入,整理得()22220223-=c axc,于是()22222200233-=-=b a cy c xc,最后将2x,2y代入双曲线方程,整理得22410c a=,所以5102e==.故选:B.【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF和AF BF⋅得到点之间的关系,考查了学生分析问题、解决问题的能力. 10.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.11.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得e =舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.12.A解析:A 【分析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值. 【详解】记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长),又由余弦定理得2224m n mn c ++=,所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立. 故选:A . 【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MFMF a '-=,不能混淆. 二、填空题13.【分析】设双曲线的右焦点经过点T 所作的圆的两条切线互相垂直等价于转化为点到渐近线的距离解得再根据离心率公式可得结果【详解】依题意可得双曲线的右焦点渐近线方程为因为M 的渐近线上存在点T 使得经过点T 所作解析:1e <≤【分析】设双曲线M 的右焦点(c,0)F ,经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,等价于TF =,转化为点(c,0)F 到渐近线的距离d TF ≤,解得ba据离心率公式可得结果. 【详解】依题意可得双曲线M 的右焦点(c,0)F ,渐近线方程为0bx ay ±=,因为M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,设两个切点为,P Q ,所以PTQ ∠2π=,4PTF π∠=,因为FP PT ⊥,PF a =,所以TF =,所以双曲线M 的渐近线上存在点T,使得TF =,所以点(c,0)F到渐近线的距离d =≤,即b a所以离心率c e a =====≤= 又1e >,所以1e <≤所以双曲线M的离心率的取值范围是1e <≤故答案为:1e <≤【点睛】关键点点睛:求双曲线离心率的取值范围的关键是得到,,a b c 的不等式,根据M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,得到圆心到可得,,a b c 的不等式.14.【分析】设椭圆方程为代入直线方程整理就后应用韦达定理结合弦中点横坐标求得关系再由可得得椭圆方程【详解】设椭圆方程为由得所以由题意又所以椭圆方程为故答案为:【点睛】方法点睛:本题考查求椭圆的标准方程解解析:22184x y +=【分析】设椭圆方程为22221(0)x y a b a b+=>>,代入直线方程整理就后应用韦达定理结合弦中点横坐标求得,a b 关系,再由2c =可得,a b 得椭圆方程.【详解】设椭圆方程为22221(0)x ya b a b +=>>,由222213x y a b y x ⎧+=⎪⎨⎪=+⎩,得2222222()690a b x a x a a b +++-=,所以212226a x x a b +=-+,由题意222622a a b-=-⨯+,222a b =, 又2c =,所以22224a b b c -===,28a =,椭圆方程为22184x y +=.故答案为:22184x y +=.【点睛】方法点睛:本题考查求椭圆的标准方程.解题方法是韦达定理.由直线方程与椭圆方程联立方程组,消元后应用韦达定理可得出弦中点坐标,从而得出,a b 的关系.然后结论半焦距c 可求解.15.【分析】根据离心率先求出双曲线的方程得出渐近线方程根据双曲线的定义可得:所以设点到一条渐进线的距离为则从而得出答案【详解】双曲线的离心率所以解得所以双曲线由的双曲线的渐进线方程为由为该双曲线上支上的 解析:5【分析】根据离心率先求出双曲线的方程,得出渐近线方程,根据双曲线的定义可得:1224PF PF a -==,所以124PF PF =+,设点Р到一条渐进线的距离为d ,则124PF d PF d +=++,从而得出答案.【详解】双曲线()22210y x a a -=>的离心率52e =所以221514e a =+=,解得2a =,所以()()120,5,0,5F F - 双曲线2214y x -=,由2204y x -=,的双曲线的渐进线方程为2y x =±由Р为该双曲线上支上的一个动点,根据双曲线的定义可得:1224PF PF a -== 所以124PF PF =+,设点Р到渐进线2y x =的距离为d则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,垂足为M ,如图.所以225112F M ==+所以122445PF d PF d F M +=++≥+=同理1PF 与P 到渐近线2y x =-的距离之和的最小值为5 故答案为:5【点睛】关键点睛:本题考查利用双曲线的定义解决距离之和的最值问题,解答本题的关键是根据双曲线的定义可得:1224PF PF a -==,所以124PFPF =+,设点Р到渐进线2y x =的距离为d ,则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,属于中档题.16.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE x k y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t =-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴2t =.【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.17.【分析】设由求出的取值范围再由平面向量的数量积计算出与夹角的余弦的取值范围从而得夹角的范围【详解】设则又双曲线中即∴又即代入上式得设与夹角为则∵∴∴∵∴故答案为:【点睛】关键点点睛:本题考查依托双曲解析:25,arccos 37ππ⎛⎤⎥⎝⎦- 【分析】设00(,)P x y ,由121PF PF ⋅≥求出20x 的取值范围,再由平面向量的数量积计算出1F P 与2F Q 夹角的余弦的取值范围,从而得夹角的范围.【详解】设00(,)P x y ,则00(,)Q x y -,又双曲线22:13y x Γ-=中2c ==,即12(2,0),(2,0)F F -,∴2212000000(2,)(2,)41PF PF x y x y x y ⋅=---⋅--=-+≥, 又220013y x -=,即220033=-y x ,代入上式得204341x --≥,202x ≥.100(2,)F P x y =+,200(2,)F Q x y =--,2212004F P F Q x y ⋅=--, 设1F P 与2F Q 夹角为θ,则2222221212cos (F P F Q F P F Qθ⋅====∵202x ≥,∴cos θ20202141x x +=--,2200222000132211322414122(41)x x x x x -++==+---, 20417x -≥,203302(41)14x <≤-,201135222(41)7x <+≤-, ∴51cos 72θ-≤<-,∵[0,]θπ∈,∴25arccos 37πθπ<≤-. 故答案为:25,arccos 37ππ⎛⎤ ⎥⎝⎦-.【点睛】关键点点睛:本题考查依托双曲线求平面向量夹角的取值范围.解题方法是设00(,)P x y ,利用P 点满足的条件求出0x 的范围,然后求出向量夹角的余弦值,余弦值的范围,从而得出角的范围.18.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围. 【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y axa =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得==d令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a,当对称轴24102a a-≤时,在0t =处取得最小值,此时d 的最小值为=d , 当对称轴24102a a->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦.故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.19.【分析】由题可知可表示为椭圆上的点到点上焦点的距离之和设其椭圆的下焦点为再由椭圆定义转化为求解的范围【详解】可表示为椭圆上的点到点上焦点的距离之和即设其椭圆的下焦点为又由椭圆定义得所以又所以故故答案 解析:[1010,1010]-+【分析】2222(1)(3)x y x y -++-(),P x y 到点1,0A ,上焦点()20,3F 的距离之和,设其椭圆的下焦点为()10,3F -,再由椭圆定义转化为求解110PA PF +-的范围.【详解】2222(1)(3)x y x y -+++-(),P x y 到点1,0A ,上焦点()20,3F 22222(1)(3)x y x y PA PF -++-=+,设其椭圆的下焦点为()10,3F -,又由椭圆定义得1210PF PF +=,所以2110PA PF PA PF +=+-, 又1110PA PF AF -≤=11010PA PF --≤ 故210101010PA PF ≤+≤ 故答案为:[1010,1010]-+ 【点睛】2222(1)(3)x y x y -++-点(),P x y 到点1,0A ,上焦点()20,3F 的距离之和的问题.20.(或)【分析】先根据的形状先确定出点坐标然后将点坐标代入双曲线方程根据的齐次式求解出离心率的值【详解】因为是以为直角顶点的等腰直角三角形不妨假设在第一象限所以所以所以所以所以所以所以所以又因为所以故【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭, 所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以23e ==又因为1e >,所以2e ===,. 【点睛】思路点睛:利用齐次式求解椭圆或双曲线的离心率的一般步骤: (1)根据已知条件,先得到关于,,a b c 的方程;(2)结合222a b c =+或222c a b =+将方程中的b 替换为,a c 的形式;(3)方程的左右两边同除以a 的对应次方,由此得到关于离心率e 的方程,从而求解出离心率e 的值.三、解答题21.(1)124tan 3F AF ∠=,直线l 的方程为210x y --=;(2)不存在,理由见解析. 【分析】(1)分析得出2AF x ⊥轴,进而可得出12122tan F F F AF AF ∠=,设122F AF θ∠=,求出tan θ的值,可得出直线l 的斜率,进而可得出直线l 的方程;(2)假设椭圆E 上存在关于直线l 对称的相异两点()11,M x y 、()22,N x y ,进而可设直线MN 的方程为2xy t =-+,与椭圆E 的方程联立,列出韦达定理,求出线段MN 的中点P 的坐标,根据点P 在直线l 上,求出t 的值,可得出点P 的坐标,由此可得出结论.【详解】(1)在椭圆E 中,4a =,23b =,2c =,则()12,0F -、()22,0F ,因为222311612+=,即点A 在椭圆E 上,且2AF x ⊥轴,121224tan 3F F F AF AF ∠==,设122F AF θ∠=,则22tan 4tan 21tan 3θθθ==-,整理可得22tan 3tan 20θθ+-=, 易知θ为锐角,则tan 0θ>,解得1tan 2θ=, 设直线l 的倾斜角为α,则sin cos 12tan tan 22sin tan cos 2πθπθαθπθθθ⎛⎫- ⎪⎛⎫⎝⎭=-==== ⎪⎛⎫⎝⎭- ⎪⎝⎭,因此,直线l 的方程为()322y x -=-,即210x y --=;(2)假设椭圆E 上是否存在关于直线l 对称的相异两点()11,M x y 、()22,N x y , 则直线MN 的斜率为12-,设直线MN 的方程为2xy t =-+, 联立22123448y x t x y ⎧=-+⎪⎨⎪+=⎩,整理可得22120x tx t -+-=, 由韦达定理可得12x x t +=,则()121213222y y x x t t +=-++=, 所以,线段MN 的中点为3,24t t P ⎛⎫⎪⎝⎭,点P 在直线l 上,所以,32110244t t t⨯--=-=,解得4t =, 所以点()2,3P ,此时,点P 与点A 重合,不合乎题意. 因此,椭圆E 上不存在关于直线l 对称的相异两点. 【点睛】思路点睛:圆锥曲线中的探索性问题求解思路如下: 第一步:假设结论存在.第二步:结合已知条件进行推理求解.第三步:若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设. 第四步:反思回顾,查看关键点、易错点及解题规范.22.(1)22184x y +=;(2)230x y -+=.【分析】(1)根据两圆内切,以及圆过定点1(2,0),F -列式求轨迹方程;(2)利用重心坐标公式可知122x x +=-,122y y +=,再设直线AB 的方程为,y kx m =+与椭圆方程联立,利用根与系数的关系求解直线方程. 【详解】(1)由已知可得12MF rMF r⎧=⎪⎨=⎪⎩,两式相加可得12124,MF MF F F +=>= 则点M的轨迹是以1F 、2F 为焦点,长轴长为2,a c == 因此曲线Γ的方程是22 1.84y x +=(2)因为20PF PA PB ++=, 则点20,3P ⎛⎫⎪⎝⎭是2F AB 的重心, 易得直线AB 的斜率存在,设直线AB 的方程为()()1122,,,,y kx m A x y B x y =+,121212122020,,2,2333x x y y x x y y ++++∴==∴+=-+= 联立 22,184y kx m x y =+⎧⎪⎨+=⎪⎩ 消 y 得: ()222214280k x kmx m +++-= ()()()2222222216421288840,840k m k m k m k m ∴∆=-+-=-+>∴-+>且 1224221kmx x k -+==-+① ()1211122222y y kx m kx m k x x m k m ∴+=+++=++=-+=②由①②解得 13,,22k m == 则直线AB 的方程为 13,22y x =+ 即 230.x y -+=【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据20,PF PA PB ++=求得122x x +=-,122y y +=.23.(1)221(84x y x +=≠±;(2)证明见解析,()3,0-.【分析】(1)首先设点(),P x y ,利用12PA PB k k ⋅=-,转化为关于,x y 的方程;(2)方法一,首先由椭圆的对称性可知定点必在x 轴上,设:2MN x my =-,与椭圆方程联立,由根与系数的关系得到()1212my y y y =-+,并求出直线ND 的方程,求与x 轴的交点;方法二,直线:2MN x my =-与椭圆方程联立后,利用求根公式求得两个交点的纵坐标,再代入直线ND 的方程,化简,求定点的坐标. 【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P的轨迹方程为221(84x y x +=≠±.(2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上, 由题意得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+, ∴()1212my y y y =-+,2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=---()1211212121221y y y my y y y y y y -+++=-=-=--,3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,122y m =+,222y m =+,()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++2244)2222m x m m m my -+++++=+224)3)2222x x m m my my ++++==++ ∴3x =-时0y =, ∴直线ND 过定点()3,0-. 【点睛】关键点点睛:本题考查椭圆中直线过定点问题,第一个关键是首先判断定点在x 轴上,方法一的关键是利用根与系数的关系得到()1212my y y y =-+,再代回直线方程求交点,方法二的关键是变形,化简. 24.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QR x =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩ 所以222,p p A kk ⎛⎫⎪⎝⎭,因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭直线:p l y k =,点0,R p k ⎛⎫ ⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQpPR x k p QR x k ===. ()2因为222,p p A kk ⎛⎫ ⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离.25.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y , 到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,。
(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(有答案解析)
一、选择题1.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A 、B 两点,则线段AB 的长为( ) A .42B .62C .82D .82.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .83,333⎡⎤⎢⎥⎣ B .82,333⎡⎤⎢⎥⎣ C .82,323⎡⎤⎢⎥⎣ D .83,323⎡⎤⎢⎥⎣ 3.如图,已知曲线2yx 上有定点A ,其横坐标为()0a a >,AC 垂直于x 轴于点C ,M 是弧OA 上的任意一点(含端点),MD 垂直于x 轴于点D ,ME AC ⊥于点E ,OE与MD 相交于点P ,则点P 的轨迹方程是( )A .()310y x x a a=≤≤ B .()31022ay x x x a a =+≤≤ C .()220y x ax x a =-≤≤D .()2022a ay x x x a =+≤≤ 4.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF F B =,23cos 5AF B ∠=,则双曲线的离心率e =( ) A 5B .52C .102D .535.设1F 、2F 分别是椭圆22:1259x yC +=的左、右焦点,O 为坐标原点,点P 在椭圆C上且满足4OP =,则12PF F △的面积为( ) A .3B .33C .6D .96.若椭圆22221(0)x y a b a b +=>>的离心率为223,则213a b +的最小值为( )A .233B .33C .2D .27.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( ) A .230x y +-= B .210x y -+= C .210x y -+=D .20x y +-=8.P 为椭圆22:11713x y C +=上一动点,1F ,2F 分别为左、右焦点,延长1F P 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .()22234x y ++= B .()22268x y ++= C .()22234x y -+=D .()22268x y -+=9.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条10.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( ) A .4B .6C .8D .1011.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( ) A .)2,+∞B .)2,⎡+∞⎣C .(2D .(2⎤⎦12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.直线l 与抛物线24y x =交于A 、B 两点,O 为坐标原点,直线OA 、OB 的斜率之积为1-,以线段AB为半径的圆与直线l 交于P 、Q 两点,()6,0M ,则22MP MQ +的最小值为______.15.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.16.在平面直角坐标系xOy 中,双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线的一条渐近线交于第一象限内的点A ,过点F 且平行于OA 的直线交另一条渐近线于点B ,若AB OB ⊥,则双曲线C 的离心率为____________.17.设1F ,2F 为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 的直线l 交双曲线C 的右支于A 、B 两点,且120AF AF ⋅=,2212AF BF =,则双曲线C 的离心率为___________.18.若实数x ,y 满足方程2251162x y +=___________.19.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.20.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切;③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.已知抛物线()2:20C y px p =>的焦点为F ,过点()2,0A 的直线l 交C 于M ,N两点,当MN 与x 轴垂直时,MNF 的周长为9. (1)求C 的方程:(2)在x 轴上是否存在点P ,使得OPM OPN ∠=∠恒成立(O 为坐标原点)?若存在求出坐标,若不存在说明理由.23.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,离心率为12.(1)求椭圆C 的标准方程;(2)直线l 与x 轴正半轴和y 轴分别交于点,Q P ,与椭圆分别交于点,M N ,各点均不重合且满足,PM MQ PN NQ λμ==.若4λμ+=-,证明:直线l 恒过定点. 24.已知抛物线C :()220y px p =>过点()2,4T -.(1)求抛物线C 的焦点到准线的距离;(2)已知点()4,0A ,过点()4,0B -的直线l 交抛物线C 于点M 、N ,直线MA ,NA 分别交直线4x =-于点P 、Q .求PBBQ的值.25.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且经过点3,22⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB 的面积为17,求直线l 的方程. 26.已知椭圆()2222:10x y M a b a b +=>>经过如下四个点中的三个,112P ⎛⎫ ⎪⎝⎭,,()20,1P ,312P ⎫⎪⎭,,)4P 1.(1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆经过椭圆M 的右顶点C (A ,B 均不与点C 重合),证明:直线l 过定点.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】写出直线l 的方程,设点()11,A x y 、()22,B x y ,联立直线l 与抛物线的方程,列出韦达定理,利用抛物线的焦点弦长公式可求得AB . 【详解】抛物线24y x =的焦点()1,0F ,直线l 的方程为1y x =-,设点()11,A x y 、()22,B x y联立214y x y x=-⎧⎨=⎩,可得2610x x -+=,2640∆=->,所以,126x x +=,由抛物线的焦点弦长公式得1228AB x x =++=. 故选:D. 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式.2.C解析:C 【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k -+=⋅=++,所以12AB x =-=22)12k k +==+,同理221)112k CD k ⎛⎫+- ⎪⎝⎭==⎛⎫+- ⎪⎝⎭所以2222))122k k B k C k A D +++=+++, 令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣,综上AB CD +的取值范围是⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.3.A解析:A 【分析】设点(),P x y ,求出点M 、E 的坐标,利用O 、P 、E 三点共线可得出//OP OE 可求得点P 的轨迹方程. 【详解】设点(),P x y ,其中0x a ≤≤,则点()2,M x x,ME 与直线x a =垂直,则点()2,E a x ,因为O 、P 、E 三点共线,则//OP OE ,可得3ay x =,31y x a∴=, 因此,点P 的轨迹方程是()310y x x a a=≤≤. 故选:A. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.4.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则4c ==,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得208116y =,094y ∴=,因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.6.C解析:C 【分析】和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解. 【详解】由题意,椭圆22221(0)x y a b a b +=>>的离心率为3,即3c a =,即3c =,又由222a b c =+,可得2219b a =,即3a b =所以22191132333a b b b b b ++==+≥=,当且仅当133b b=,即13b =时,“=”成立.故选:C. 【点睛】 关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.7.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-= 所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩ 则()1,1P设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-, 即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.8.B解析:B 【分析】由椭圆的122PF PF a +==2PQ PF =,所以112PF PQ FQ a +===Q 的轨迹为以()12,0F -为圆心,径的圆,即可求得动点Q 的轨迹方程. 【详解】由2211713x y +=可得:a =,因为122PF PF a +==2PQ PF =,所以112PF PQ FQ a +=== 所以动点Q 的轨迹为以()12,0F -为圆心, 故动点Q 的轨迹方程为()22268x y ++=. 故选:B. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程.9.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】 由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解;210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.10.C解析:C 【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度. 【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=, 设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y ,则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则2222200000||(2)44PA x a y x ax a y =--=-++又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-, ∴2222222000002||(2)44b x PA x a y x ax a b a=--=-++-222200244c x ax a b a=-+-222200=44e x ax a b -+-.当PA 最小时,0224202a ax e e-=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y ,由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=,所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;【详解】解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN垂直准线于M ,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p px x k++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】设直线与抛物线联立方程得韦达定理与代入直线与抛物线表示出与然后根据利用数量积代入求解出从而表示出圆心的坐标根据平行四边形的四边平方和等于对角线平方和代入列式利用二次函数的性质求解最小值【详解 解析:10【分析】设直线AB ,与抛物线联立方程,得韦达定理12y y +与12y y ⋅,代入直线与抛物线表示出12x x +与12x x ⋅,然后根据OA OB ⊥,利用数量积代入求解出4t =,从而表示出圆心的坐标,根据平行四边形的四边平方和等于对角线平方和,代入列式,利用二次函数的性质求解最小值. 【详解】设直线AB 的方程为x my t =+,()11,A x y ,()22,B x y ,由24y x x my t⎧=⎨=+⎩得2440y my t --=,所以()()()22444160m t t m ∆=--=+>, 得124y y m +=,124y y t ,所以()21212242x x m y y t m t +=++=+,222121216y y x x t ⋅==,因为直线OA 、OB 的斜率之积为1-,所以OA OB ⊥,即0OA OB ⋅=,所以2121240x x y y t t +=-=,所以4t =,所以直线AB 的方程为4x my =+,21248x x m +=+,从而圆心为()224,2O m m +',由平行四边形的四边平方和等于对角线平方和(用向量法易证),得()(222222244MP MQMO PQ MO ''+=+=+()()2222422144148161816202m m m m m ⎛⎫⎡⎤=-++=-++=-+ ⎪⎢⎥⎣⎦⎝⎭, 所以222218102MP MQ m ⎛⎫+=-+ ⎪⎝⎭,所以当2m =±时,22MP MQ +的最小值为10. 故答案为:10 【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、向量的数量积、三角形的面积等问题.15.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,c ==依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以12172MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中223NQ MN MQ =-=,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12321cos ,77QN AB F F MN <>===故答案为:217【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.16.【分析】设双曲线半焦距为双曲线的渐近线方程为则设直线的方程为然后直线的方程和另一渐近线方程联立求出点从而可求出直线的斜率再由可得两直线的斜率乘积为从而得进而可求出双曲线的离心率【详解】解:设双曲线半 23【分析】设双曲线半焦距为c ,双曲线的渐近线方程为b y x a =±,则(,0),(,)bcF c A c a,设直线BF 的方程为()by x c a=-,然后直线BF 的方程和另一渐近线方程联立,求出点,22c bc B a ⎛⎫- ⎪⎝⎭,从而可求出直线AB 的斜率,再由AB OB ⊥,可得两直线的斜率乘积为1-,从而得2213b a =,进而可求出双曲线的离心率【详解】解:设双曲线半焦距为c ,双曲线的渐近线方程为b y x a =±,则(,0),(,)bc F c A c a, 设直线BF 的方程为()by x c a=-, 由()b y x c a b y x a ⎧=-⎪⎪⎨⎪=-⎪⎩,得22c x bc y a ⎧=⎪⎪⎨⎪=-⎪⎩,所以,22c bc B a ⎛⎫- ⎪⎝⎭, 所以直线AB 的斜率为322AB bc bcb a a kc a c --==-, 因为AB OB ⊥,所以3()1AB OBb bk k a a⋅=⨯-=-, 所以2213b a =,所以双曲线的离心率为e ==【点睛】关键点点睛:此题考查直线与双曲线的位置关系,考查求双曲线的离心率的方法,解题的关键是灵活运用双曲线的几何性质,考查计算能力,属于中档题17.【分析】利用双曲线的定义分别表示再利用勾股定义和双曲线的定义建立等量关系求双曲线的离心率【详解】设根据双曲线的定义可知即得得中即得根据双曲线的定义即得所以得故答案为:【点睛】方法点睛:本题考查直线与【分析】利用双曲线的定义分别表示1212,,,AF AF BF BF ,再利用勾股定义和双曲线的定义建立等量关系,求双曲线的离心率. 【详解】设2AF x =,22BF x =,1AF y =,根据双曲线的定义可知1212AF AF BF BF -=-, 即12y x BF x -=-,得1BF y x =+,120AF AF ⋅=,12AF AF ∴⊥,()()2223y x y x ∴+=+,得4y x =,12Rt AF F △中,222124AF AF c +=,即22174x c =,得x =,根据双曲线的定义122AF AF a -=,即32x a =,得23x a =,23a =,得c e a ==.【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】由题可知可表示为椭圆上的点到点上焦点的距离之和设其椭圆的下焦点为再由椭圆定义转化为求解的范围【详解】可表示为椭圆上的点到点上焦点的距离之和即设其椭圆的下焦点为又由椭圆定义得所以又所以故故答案解析:[10-+【分析】(),P x y 到点1,0A ,上焦点()20,3F 的距离之和,设其椭圆的下焦点为()10,3F -,再由椭圆定义转化为求解110PA PF +-的范围.【详解】+(),P x y 到点1,0A ,上焦点()20,3F 2PA PF =+,设其椭圆的下焦点为()10,3F -,又由椭圆定义得1210PF PF +=,所以2110PA PF PA PF +=+-,又11PA PF AF -≤=1PA PF -≤故21010PA PF +≤故答案为:[10-+【点睛】点(),P x y 到点1,0A ,上焦点()20,3F 的距离之和的问题.19.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 20.①②④【分析】①将抛物线与直线联立消去利用根与系数关系求出再由弦长公式即可求出弦长进而可求出弦长的最小值即可判断①的正误;②利用中点坐标公式求出以为直径的圆的圆心的纵坐标判断圆心到直线的距离与半径的解析:①②④ 【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误. 【详解】①联立方程241x yy kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立,设两交点坐标分别为()11,A x y ,()22,B x y , 所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥,当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222ABr k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=, 所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上, 当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件, 所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误, ④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m , 所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在, 设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确. 故答案为:①②④ 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组; (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =,所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)22y x =;(2)存在,P 点坐标为()2,0-. 【分析】(1)利用焦半径公式表示||||MF NF =,代入坐标2x =,求MN 的长度,并表示MNF 的周长,求p ;(2)假设存在点()0,0P x ,设:2l x my =+,与抛物线方程联立,利用根与系数的关系表示0MP NP k k +=,求定点0x 的值. 【详解】(1)当MN 与x 轴垂直时,||||22pMF NF ==+,||MN =,从而有49p ++= 解得1p =,所以C 的方程为22y x =;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设:2l x my =+,代入抛物线方程22y x =消去x ,得2240y my --=,从而122y y m +=,124y y =-,①由OPM OPN ∠=∠可得0MP NP k k +=, 而121020MP NP y y k k x x x x +=+--12102022y y my x my x =++-+-()()()()1201210202222my y x y y my x my x +-+=+-+-将①代入,从而得()()102042022m mx my x my x --=+-+-恒成立,所以02x =-,因此存在点P 满足题意,P 点坐标为()2,0-. 【点睛】思路点睛:定点问题解决步骤:(1)设直线代入二次曲线方程,整理成一元二次方程; (2)韦达定理列出两根和及两根积;(3)写出定点满足的关系,整体代入两根和及两根积; (4)整理(3)所得表达式探求其恒成立的条件.。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(有答案解析)
一、选择题1.已知点A 为椭圆()2222:10x y C a b a b+=>>的左顶点,(),0F c 为椭圆的右焦点,B 、E 在椭圆上,四边形OABE 为平行四边形(O 为坐标原点),过直线AE 上一点P 作圆()2224b x c y -+=的切线PQ ,Q 为切点,若PQF △面积的最小值大于28b ,则椭圆C的离心率的取值范围是( )A .1020,3⎛⎫⎪ ⎪⎝⎭B .102,13⎛⎫⎪ ⎪⎝⎭C .510,3⎛⎫⎪ ⎪⎝⎭D .51,13⎛⎫⎪ ⎪⎝⎭2.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B .33C .12D .223.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个A .1B .2C .3D .45.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .1636.已知椭圆22:11612x y C +=的左焦点为F ,点P 是椭圆C 上的动点,点Q 是圆()22:21T x y -+=上的动点,则PF PQ的最小值是( )A .12B .27C .23D .347.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .2548.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条9.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A 6B .77C .427D .7710.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( ) A .4B .6C .8D .1011.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( ) A .(42,6)B .(6,8)C .(42,8)D .(6,10)12.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .2833y x =B .21633y x =C .28x y =D .216x y =二、填空题13.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,焦距为2c ,若直线3()y x c =--与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.F 为抛物线2:4C y x =的焦点,过F 且斜率为k 的直线l 与抛物线交于P 、Q 两点,线段PQ 的垂直平分线交x 轴于点M ,且||6PQ =,则||MF =__________.16.已知双曲线2222:1(0,0)x y C a b a b-=>>右支上一点12,,P F F 分别为其左右焦点,圆M是12PF F △内切圆,且1PF 与圆M 相切于点2,||2cA PA a=(c 为半焦距),若122PF PF >,则双曲线离心率的取值范围是_____. 17.已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,点()4,4M ,若点P 为椭圆C 上的一个动点,则1PM PF -的最小值为____________.18.如图,椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 为椭圆C 的上顶点,若12BF F △的外接圆的半径为23b,则椭圆C 的离心率为________.19.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.20.已知双曲线M :22221x y a b-=(0a >,0b >),ABC 为等边三角形.若点A 在y轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC 的中位线,则双曲线M 的离心率为________.三、解答题21.已知点A 、B 坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-. (1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标.22.已知四点1234,1,,(1,1),(0,1)P P P P ⎛⎛- ⎝⎭⎝⎭中恰有三点在椭圆2222:1x y C a b+=上,其中0a b >>. (1)求,a b 的值;(2)若直线l 过定点(2,0)M 且与椭圆C 交于,A B 两点(l 与x 轴不重合),点B 关于x 轴的对称点为点D .探究:直线AD 是否过定点,若是,求出该定点的坐标;若不是,请说明理由.23.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.24.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别是12(1,0),(1,0)F F -,过点1F 的直线l 与椭圆相交于A B 、两点,且2ABF 的周长为 (1)求椭圆C 的标准方程;(2)在椭圆中有这样一个结论“已知000(,)P x y 在椭圆22221x y a b+=外 ,过0P 作椭圆的两条切线,切点分别为12,P P ,则直线12PP 的方程为00221x x y ya b+=”.现已知M 是圆223x y +=上的任意点,,MA MB 分别与椭圆C 相切于,A B ,求OAB 面积的取值范围.25.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,焦距为23,点P 为椭圆C 上一动点,且直线,AP BP 的斜率之积为14-.(1)求椭圆C 的标准方程;(2)设,A B 分别是椭圆C 的左右顶点,若点,M N 是C 上不同于,A B 的两点,且满//,//AP OM BP ON ,求证:MON △的面积为定值.26.已知椭圆2222:1(0)x y C a b a b +=>>的焦点在圆223x y +=上,且离心率为32.(1)求椭圆C 的方程;(2)过原点O 的直线l 与椭圆C 交于,A B 两点,F 为右焦点,若FA 垂直于AB ,求直线l 的斜率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】结合题意先计算直线AE 的表达式,然后运用点到直线的距离计算圆心F 到直线AE 的距离,求出三角形PQF 的面积表达式,结合题意得到不等式,继而计算出椭圆离心率的取值范围. 【详解】因为四边形OABE 是平行四边形,所以//BE AO ,且BE AO a ==,又因为点B 、E关于y 轴对称,所以0,2a E y ⎛⎫ ⎪⎝⎭,将其代入椭圆方程得2202214y aa b+=,解得0y =±,故2a E ⎛⎫ ⎪ ⎪⎝⎭,(),0A a -,所以()2:32AE l y x a a =+,即30ay -=,故min PF 即为F 到直线AE 的距离,d=,此时PQ ==故2112228PQFb b SPQ R =⋅=⋅>,化简得2212d b >,故()2222231392b ac b b a +>+,即()()222231239a c a c a +>-+,整理得22222142a ac c a c ++>-,分子分母同除以2a ,得2212142e e e ++>-,即23420e e+->,所以e<舍去)或23e >,在椭圆中a c >,所以1e <,所以2,13e ⎛⎫∈ ⎪ ⎪⎝⎭故选:B 【点睛】关键点点睛:本题的关键是求出三角形PQF 的面积表达式,结合题意得到不等式进行求解,有一定的计算量,需要把基础知识掌握牢固.2.B解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c+=,变形可得c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.D解析:D 【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解. 【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k+-=有两个不等的实数解.显然34k=±不满足方程2724250k k+-=.综上所述,k的取值有4个.故选:D.【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.5.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p或12||=++AB y y p,若不过焦点,则必须用一般弦长公式.6.B解析:B 【分析】作出图形,利用椭圆的定义以及圆的几何性质可求得PF PQ的最小值.【详解】 如下图所示:在椭圆22:11612x y C +=中,4a =,23b =222c a b -,圆心()2,0T 为椭圆C 的右焦点,由椭圆定义可得28PF PT a +==,8PF PT ∴=-,由椭圆的几何性质可得a c PT a c -≤≤+,即26PT ≤≤,由圆的几何性质可得1PQ PT QT PT ≤+=+, 所以,899211111617PF PF PT PQPT PT PT -≥==-≥-=++++. 故选:B. 【点睛】关键点点睛:解本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应圆锥曲线的定义,本题中注意到2PF PT a +=,进而可将PF 用PT 表示;(2)利用圆的几何性质得出PT r PQ PT r -≤≤+,可求得PQ 的取值范围; (3)利用椭圆的几何性质得出焦半径的取值范围:a c PT a c -≤≤+.7.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭,所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.8.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】 由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,k = 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.9.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b+=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=, 所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.e ∴===故选:C【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.10.C解析:C【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度.【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=,设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y , 则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.11.D解析:D【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围.【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF ∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PFPF -=, 可得1112||||8PF PF ⋅=,此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,25P x =易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10,故选:D .【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值. 12.D解析:D【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求.【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,2=,即8p =,所以1C 的标准方程是216x y =,故选:D .【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧: 已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程.二、填空题13.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系1【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF,再利用椭圆的定义及离心率的计算公式即可得出.【详解】设直线)y x c =-的倾斜角为α,则tan α=0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则211,MF MF ===由椭圆定义得122||||1a MF MF =+=∴椭圆的离心率212c e a ===.1.【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值.【详解】解:因为双曲线22:143x y C -=,所以2a =,c ==依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以1212MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中NQ =, 因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12cos ,7QN AB F F MN <>===故答案为:7【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.3【分析】先根据抛物线方程求出p 的值再由抛物线性质求出的垂直平分线方程即可得到答案【详解】∵抛物线∴p=2焦点F(10)可设直线l :P(x1y1)Q(x2y2)将代入抛物线得:∴设PQ 中点为N(x0解析:3【分析】先根据抛物线方程求出p 的值,再由抛物线性质求出PQ 的垂直平分线方程,即可得到答案.【详解】∵抛物线2:4C y x =,∴p =2,焦点F (1,0)可设直线l :(1)y k x =-,P (x 1,y 1)、Q (x 2,y 2)将(1)y k x =-代入抛物线2:4C y x =得:2222(24)0k x k x k -++= ∴12242x x k +=+ 1224||226,2PQ x x p k k =++=++=∴=±设PQ 中点为N (x 0,y 0),则2120004242,(1)222x x k x y k x k ++=====-= 所以线段PQ 的垂直平分线方程:1(2)y k x k-=-- 令y =0,可得x =4,所以||413MF =-=故答案为:3【点睛】坐标法是解析几何的基本方法,利用坐标法把几何关系转化为代数运算.16.【分析】首先利用双曲线的定义和内切圆的性质证明内切圆与轴切于顶点再分别表示列出关于的齐次不等式求双曲线的离心率的取值范围【详解】设圆心设内切圆与相切于点如图:根据内切圆性质可知点是双曲线的顶点即整理 解析:(1,71)-. 【分析】 首先利用双曲线的定义和内切圆的性质证明内切圆与x 轴切于顶点,再分别表示12,PF PF ,列出关于,a c 的齐次不等式求双曲线的离心率的取值范围. 【详解】 设圆心(),M x y ,设内切圆与1212,,PF PF F F 相切于点,,A BC ,如图:根据内切圆性质可知PA PB =,11F A FC =,22F B F C =, 1212122PF PF PA AF PB BF CF CF a ∴-=+--=-=,∴点C 是双曲线的顶点,即11F A FC c a ==+,22F B F C c a ==-,22c PA PB a==, 2122222c c a PF a c PF c a a++=>-+,整理为:22260c ac a +-<,两边同时除以2a , 得2260e e +-<,解得:1717e --<<-+,且1e >,所以离心率的取值范围是()1,71-.故答案为:()71【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.17.1【分析】根据已知可以转化为然后由三点共线即两点之间线段最短可得答案【详解】由已知得因为所以所以所以当三点共线时最小即故答案为:1【点睛】本题考查了椭圆上的点到焦点和定点距离和的问题解题关键是利用定 解析:1【分析】 根据已知可以转化为124PM PF PM PF -=+-,然后由三点共线即两点之间线段最短可得答案.【详解】由已知得222224,3,1a b c a b ===-=,2(1,0)F , 因为2124PF PF a +==,所以124PF PF =-, 所以()12244PM PF PM PF PM PF -=--=+-,所以当三点2M P F 、、共线时,24PM PF +-最小,即224441PM PF MF +-=-==.故答案为:1.【点睛】本题考查了椭圆上的点到焦点和定点距离和的问题,解题关键是利用定义转化为两点之间线段最短的问题,考查了学生分析问题、解决问题的能力. 18.【分析】由题意可得的外接圆的圆心在线段上可得在中由勾股定理可得:即结合即可求解【详解】由题意可得:的外接圆的圆心在线段上设圆心为则在中由勾股定理可得:即所以即所以所以故答案为:【点睛】方法点睛:求椭 解析:12【分析】由题意可得12BF F △的外接圆的圆心在线段OB 上,1OF c =,123b MF BM ==,可得 13OM b =,在1OMF △中,由勾股定理可得:22211MF OM OF =+,即 222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,结合222b a c =-即可求解. 【详解】由题意可得:12BF F △的外接圆的圆心在线段OB 上,1OF c =,设圆心为M ,则2133OM OB BM b b b =-=-=, 在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 所以223b c =,即2223a c c -=,所以2a c =,所以12c e a ==, 故答案为:12. 【点睛】方法点睛:求椭圆离心率的方法:(1)直接利用公式c e a=; (2)利用变形公式221b e a=-; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.19.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性 解析:2212015x y += 【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,3)M -解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列 所以2121224MF a MF F F c ===+,所以2a c =,3b c = 故椭圆方程可设为2222143x y c c+=代(4,3)M 解得25c =所以椭圆方程为2212015x y += 故答案为:2212015x y += 【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.20.【分析】可根据实轴为的中位线得出再根据对称性及为等边三角形表示出的坐标代入双曲线方程得到关系式求解离心率【详解】实轴长为则关于轴对称不妨设在双曲线左支则其横坐标为根据为等边三角形可得故将的坐标代入双【分析】可根据实轴为ABC 的中位线,得出BC ,再根据对称性及ABC 为等边三角形,表示出B 的坐标,代入双曲线方程,得到,a b 关系式求解离心率.【详解】实轴长为2a ,则4BC a =,BC 关于y 轴对称不妨设B 在双曲线左支,则其横坐标为2a ,根据ABC 为等边三角形,60ABC ∠=可得B y =故()2,B a ,()2,C a -,将B 的坐标代入双曲线方程有 2222431a a a b-=,则a b =,则c =故e =【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).三、解答题21.(1)221(84x y x +=≠±;(2)证明见解析,()3,0-. 【分析】(1)首先设点(),P x y ,利用12PA PB k k ⋅=-,转化为关于,x y 的方程;(2)方法一,首先由椭圆的对称性可知定点必在x 轴上,设:2MN x my =-,与椭圆方程联立,由根与系数的关系得到()1212my y y y =-+,并求出直线ND 的方程,求与x 轴的交点;方法二,直线:2MN x my =-与椭圆方程联立后,利用求根公式求得两个交点的纵坐标,再代入直线ND 的方程,化简,求定点的坐标.【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P的轨迹方程为221(84x y x +=≠±. (2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上,由题意得直线MN 的斜率不为0,设:2MN x my =-, 与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+, ∴()1212my y y y =-+, 2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=--- ()1211212121221y y y my y y y y y y -+++=-=-=--, 3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-, 与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,()12422m y m -=+,()22422m y m +=+, ()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++2244)2222m x m m m my -+++++=+224)222x m m my +++==+ ∴3x =-时0y =,∴直线ND 过定点()3,0-.【点睛】关键点点睛:本题考查椭圆中直线过定点问题,第一个关键是首先判断定点在x 轴上,方法一的关键是利用根与系数的关系得到()1212my y y y =-+,再代回直线方程求交点,方法二的关键是变形,化简.22.(1)1a b ⎧=⎪⎨=⎪⎩2)直线AD 过定点(1,0)Q . 【分析】(1)由于12,1,P P ⎛⎛- ⎝⎭⎝⎭关于原点对称,从而可得12,P P 和4P 在椭圆上,然后将这些点的坐标代入椭圆方程中可求出,a b 的值;(2)由题意可知直线l 的斜率存在,则设直线l 为2(0)x ty t =+≠,与椭圆方程联立成方程组,消去x ,得()222420t y ty +++=,再由根与系数的关系得12122242,22t y y y y t t +=-=++,而直线AD 方程为()()()122112210y y x x x y x y x y ++--+=,代入化简可得答案【详解】因为121,,1,22P P ⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭关于原点对称,由题意得12,PP 和4P 在椭圆上, 将14,P P 的坐标代入22221x y a b +=得:222111211a b b ⎧+=⎪⎪⎨⎪=⎪⎩解得:1a b ⎧=⎪⎨=⎪⎩(2)显然,l 与x 轴不垂直,设l 的方程为:2(0)x ty t =+≠()22222242012x ty t y ty x y =+⎧⎪⇒+++=⎨+=⎪⎩ 设()()1122,,,A x y B x y ,则()22,D x y - 且12122242,22t y y y y t t +=-=++ 直线AD 方程为()()()122112210y y x x x y x y x y ++--+=令0y =,得()()122112211212121222242214ty y ty y x y x y ty y t x y y y y y y t ++++===+=+=+++-, 故直线AD 过定点(1,0)Q .【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是设出直线l 的方程为:2(0)x ty t =+≠,与椭圆方程联立方程组,消元后利用根与系数的关系可得12122242,22t y y y y t t +=-=++,进而可得AD 方程为()()()122112210y y x x x y x y x y ++--+=化简可得答案,属于中档题23.(1)2 ;(2)证明见解析.【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算P QPR x QR x =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证.【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A kk ⎛⎫ ⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫ ⎪⎝⎭直线:p l y k =,点0,R p k ⎛⎫ ⎪⎝⎭ 将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222P Q pPR x k p QR x k ===. ()2因为222,p p A k k ⎛⎫ ⎪⎝⎭,0,R p k ⎛⎫ ⎪⎝⎭所以直线AR 的方程为2k p y x k =+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=,所以直线AR 与抛物线C 只有一个公共点.【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离. 24.(1)2212x y +=;(2)2[,32. 【分析】(1)由焦点三角形的周长得a 值,结合焦点坐标可求得b ,从而得椭圆方程; (2)设00(,)M x y ,1122(,),(,)A x y B x y ,由已知得切线AB 方程,与椭圆方程联立消去y 得x 的二次方程,应用韦达定理得1212,x x x x +,由弦长公式求得弦长AB ,再求得原点到直线AB 的距离d ,,从而可得12OAB S AB d =△,用换元法(设t =)可求得OAB S 的范围,再求出00y =时三角形面积,从而可得结论.【详解】(1)由已知1c =,4a =,所以1a b ==所以椭圆C 的标准方程为2212x y += (2)设00(,)M x y ,1122(,),(,)A x y B x y ,22003x y +=,由已知可得直线AB 方程为0012x x y y += 当00y ≠时,将直线AB 方程与椭圆C 的方程联立,消去y 整理得222000(3)4440y x x x y +--+=. 所以0122043x x x y +=+,201220443y x x y -=+ .因此20201)||3y AB y +==+ 又原点O 到直线AB的距离d ==所以01||2OABS AB d ∆=⋅=令(1,2]t =,得到21222(,]2232OAB t S t t t ∆=⋅=⋅∈++ 当00y =时,易得23OAB S ∆=. 综上:OAB面积的取值范围为2[,32. 【点睛】方法点睛:本题考查求椭圆方程,考查直线与椭圆相交中的三角形面积问题,解题方法是设而不求的思想方法,即直线与椭圆交点为1122(,),(,)x y x y ,直线方程与椭圆方程联立消元后应用韦达定理得1212,x x x x +,由此可计算弦长,然后求出原点到直线的距离后可计算三角形面积.这样可把面积用一个参数表示,求出取值范围.25.(1)2214x y +=;(2)定值为1,证明见解析 【分析】(1)根据题意可得2a =,c =222a b c =+即可求解.(2)设1122(,),(,)M x y N x y ,且直线MN 的方程为:x my t =+,由题意可得14OM ON k k ⋅=-,联立直线MN 和椭圆方程,利用韦达定理可得2224t m =+,再由121||||2S t y y =-,化简整理即可求解. 【详解】(1)由题意可得222242a c a b c =⎧⎪=⎨⎪=+⎩解得1b =,∴椭圆C 的标准方程为2214x y += (2)证明:设1122(,),(,)M x y N x y ,直线MN 的方程为:x my t =+ 由1//,//,,4AP BP AP OM BP ON k k ⋅=-得14OM ON k k ⋅=- 即121214y y x x ⋅=-, 联立直线MN 和椭圆方程:2214x my t x y =+⎧⎪⎨+=⎪⎩, 整理得:222(4)240m y mty t +++-= 由韦达定理可得:212122224,44mt t y y y y m m -+=-=++ 又221212244()()4t m x x my t my t m -=++=+ 代入121214y y x x ⋅=-,可得2224t m =+, MON ∴△的面积1211|||||22S t y y t =-=1===,MON ∴△的面积为定值1.【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是求出直线MN 的方程x my t =+中2224t m =+,考查了计算能力.26.(1) 2214x y +=;(2) 2± 【分析】(1)由焦点在圆上解得c=2a=,2221b a c=-=,方程可求;(2)因为FA垂直于AB可知点A为椭圆与圆的交点,联立方程求得坐标,则直线斜率可求.【详解】解:(1)椭圆2222:1(0)x yC a ba b+=>>的焦点在圆223x y+=上,所以203c+=,即c=,因为2cea==得2a=,2221b a c=-=,故椭圆方程为2214xy+=(2)因为FA垂直于AB ,即点A既在椭圆上又在以OF为直径的圆上,所以22221434xyx y⎧+=⎪⎪⎨⎛⎪-+=⎪⎝⎭⎩解得xy⎧=⎪⎪⎨⎪=⎪⎩所以A⎝⎭故AlAykx==所以直线l的斜率为【点睛】关键点点晴:本题的关键在于求出点A的坐标点.。
选修1-1第二章《圆锥曲线与方程》测试题(含答案解析)
一、选择题1.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为抛物线C 的焦点.若4FA FB =,则k =( )A .45B .5C .23D .32.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .193.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( )A .2B 1C .1D 24.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .y x =D .y x = 5.已知椭圆222:14x y C b+=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3B C .5D6.已知两定点()0,1M -,()0,1N ,直线l :y x =l 上满足PM PN +=P 的个数为( )A .0B .1C .2D .0或1或27.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C S SS+=,则a 的值为( )A .9B .11C .17D .198.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( )A .230x y +-=B .210x y -+=C .210x y -+=D .20x y +-=9.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞10.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .611.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( ) A .25 B .100 C .9 D .36 12.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .B .(6,8)C .D .(6,10)二、填空题13.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n -=___________. 14.设1A 、2A 为椭圆()222210x ya b a b+=>>的左、右顶点,若在椭圆上存在异于1A 、2A 的点P ,使得10PO PA ⋅=,其中O 为坐标原点,则椭圆的离心率e 的取值范围是_____. 15.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.16.在平面直角坐标系xOy 中,双曲线()2222:10,0x yC a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线的一条渐近线交于第一象限内的点A ,过点F 且平行于OA 的直线交另一条渐近线于点B ,若AB OB ⊥,则双曲线C 的离心率为____________. 17.已知圆22:68210C x y x y ++++=,点A 是圆C 上任一点,抛物线28y x =的准线为l ,设抛物线上任意一点Р到直线l 的距离为m ,则m PA +的最小值为_______ 18.设点P 是抛物线2:4C y x =上一动点,F 是抛物线的焦点,O 为坐标原点,则OP PF的最大值为___________.19.已知椭圆22:1168x y C +=的左、右焦点分别为12,F F ,直线(44)x m m =-<<与椭圆C 相交于点A ,B .给出下列三个命题:①存在唯一一个m ,使得12AF F △为等腰直角三角形; ②存在唯一一个m ,使得1ABF 为等腰直角三角形; ③存在m ,使1ABF 的周长最大. 其中,所有真命题的序号为_________.20.在平面直角坐标系xOy 中,已知双曲线22:17yx Γ-=的两个焦点分别为1F ,2F ,以2F 为圆心,12F F 长为半径的圆与双曲线Γ的一条渐近线交于M ,N 两点,若OM ON ≥,则OM ON的值为________.三、解答题21.设动点(),M x y (0x ≥)到定点()2,0F 的距离比它到y 轴的距离大2. (Ⅰ)求动点M 的轨迹方程C ;(Ⅱ)设过点F 的直线l 交曲线C 于A ,B 两点,O 为坐标原点,求AOB 面积的最小值.22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F 、,点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆C 的方程;(2)过点M 分别作直线MA 、MB 交椭圆于AB 、两点,设两直线MA 、MB 的斜率分别为12k k 、,且128k k +=,探究:直线AB 是否过定点,并说明理由.23.已知椭圆22:143x y E +=,其右焦点为F ,直线l 与圆22:3O x y +=相切于点Q ,设直线l 与椭圆E 相交于不同的两点A 、B .(1)若M 点是椭圆E 上任意一点,求出MF 的最大值;(2)已知过椭圆E 上的动点P 引圆О的两条切线PC 、PD (C 、D 为切点),探究在椭圆E 上是否存在点P ,使得由点P 向圆O 引的切线互相垂直; (3)当点Q 在y 轴右侧时,求证:AF AQ BF BQ +=+.24.已知抛物线C :22y px =(0)p >的焦点为F ,点(4,)A m 在抛物线C 上,且OAF △的面积为212p (O 为坐标原点). (1)求抛物线C 的方程;(2)直线l :1y kx =+与抛物线C 交于M ,N 两点,若OM ON ⊥,求直线l 的方程.25.设抛物线2:4C y x =,点()4,0A ,()4,0B -,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.26.在平面直角坐标系xOy 中,设动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等,记P 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点F 的直线交曲线Γ于点A 、B (其中点A 在第一象限),交直线l 于点C ,且点F 是AC 的中点,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,由4FA FB =可得出124y y =,代入韦达定理求出正数m 的值,即可求得k 的值.【详解】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,联立228x my y x=-⎧⎨=⎩,整理得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由4FA FB =得()12242x x +=+,即124my my =,124y y ∴=,12258y y y m ∴+==,可得285m y =,则22122844165m y y y ⎛⎫==⨯= ⎪⎝⎭, 0m >,解得54m =,因此,145k m ==. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.2.B解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值. 【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.3.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A FM ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①, 又12||||2FM F M c += ②, 由①+②,解得1||F M a c =+, 又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C , 所以()220||21CI y =+-,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=. 故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2FM F M c +=,考查了学生分析问题、解决问题的能力,属于中档题. 4.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =, 设()2,0F c ()0c >()()220045c -+-=,解得3c =,因为2a =,所以22945b c a --=, 所以双曲线的渐进线为:52b y x x a =±=±, 故选:D【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.5.B解析:B 【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b == 故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.6.B解析:B 【分析】求出P 点所在轨迹方程,与直线方程联立方程组,方程组解的个数就是满足题意的P 点的个数. 【详解】∵PM PN +=2MN =,∴P 在以,M N为焦点,由于2a =a =1c =,因此1b ==,椭圆方程为2212x y +=,由2212y x x y ⎧=+⎪⎨+=⎪⎩,解得3x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 点只有一个. 故选:B . 【点睛】关键点点睛:本题考查求平面满足题意的的个数,方法是求出满足动点P 的一个条件的轨迹方程,由方程组的解的个数确定曲线交点个数,从而得出结论,这也是解析几何的基本思想.7.C解析:C 【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n+=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.8.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-= 所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩ 则()1,1P设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-,即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.9.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F , 即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.10.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果11.A解析:A 【分析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值. 【详解】记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长),又由余弦定理得2224m n mn c ++=, 所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立. 故选:A . 【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MF MF a '-=,不能混淆. 12.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290FPF ∠=,又1,2,5a b c === 由222111212|||||20|PF PF F F =+=,1112||||2PF PF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290FF P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.二、填空题13.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=- 故直线()2222:x PA y y x x y -=-- 化简得:222222y y y x x x -=-+即2222221x x y y x y +=+= 同理有33:1PB x x y y +=又,PA PB 均过点()11,P x y ,有313131311,1x x y y x x y y +=+= 故直线11:1MN x x y y +=1111,m n x y == 221222111x x m n-=-= 故答案为:114.【分析】设点由可得出求出函数在区间上的零点为化简得出进而可解得的取值范围【详解】设点则可知点设则函数在区间上存在零点则为方程的一根设函数在区间内的零点为由韦达定理可得所以即整理可得即解得因此椭圆的离解析:⎫⎪⎪⎝⎭【分析】设点(),P x y ,由10PO PA ⋅=可得出2220e x ax b ++=,求出函数()f x 在区间(),0a -上的零点为22ab c-,化简得出2201b c <<,进而可解得e 的取值范围.【详解】设点(),P x y ,则22222b y b x a=-,可知点()1,0A a -,(),PO x y =--,()1,PA a x y =---,()()22222222221220b c PO PA x a x y x y ax x b x ax x ax b a a⋅=---+-=++=+-+=++=,设()222f x e x ax b =++,则函数()f x 在区间(),0a -上存在零点,()2220f a c a b -=-+=,则a -为方程2220e x ax b ++=的一根,设函数()f x 在区间(),0a -内的零点为1x ,由韦达定理可得222122b a b ax e c-==,212ab x c∴=-,所以,220ab a c -<-<,即2201b c <<,整理可得2222a c b c -=<,222a c ∴<,即221e >,01e <<1e <<.因此,椭圆的离心率e 的取值范围是2⎛⎫⎪ ⎪⎝⎭.故答案为:2⎛⎫⎪ ⎪⎝⎭.【点睛】方法点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a 、c ,代入公式ce a=; ②只需要根据一个条件得到关于a 、b 、c 的齐次式,结合222b a c =-转化为a 、c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(或不等式),解方程(或不等式)即可得e (e 的取值范围).15.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E解析:5【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE 设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率17c e a ==17 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.16.【分析】设双曲线半焦距为双曲线的渐近线方程为则设直线的方程为然后直线的方程和另一渐近线方程联立求出点从而可求出直线的斜率再由可得两直线的斜率乘积为从而得进而可求出双曲线的离心率【详解】解:设双曲线半 23【分析】设双曲线半焦距为c ,双曲线的渐近线方程为b y x a =±,则(,0),(,)bcF c A c a,设直线BF 的方程为()by x c a=-,然后直线BF 的方程和另一渐近线方程联立,求出点,22c bc B a ⎛⎫- ⎪⎝⎭,从而可求出直线AB 的斜率,再由AB OB ⊥,可得两直线的斜率乘积为1-,从而得2213b a =,进而可求出双曲线的离心率【详解】解:设双曲线半焦距为c ,双曲线的渐近线方程为b y x a =±,则(,0),(,)bc F c A c a, 设直线BF 的方程为()by x c a=-, 由()b y x c a b y x a ⎧=-⎪⎪⎨⎪=-⎪⎩,得22c x bc y a ⎧=⎪⎪⎨⎪=-⎪⎩,所以,22c bc B a ⎛⎫- ⎪⎝⎭, 所以直线AB 的斜率为322AB bc bcb a a kc a c --==-, 因为AB OB ⊥,所以3()1AB OBb bk k a a⋅=⨯-=-, 所以2213b a =,所以双曲线的离心率为e ==故答案为:3【点睛】关键点点睛:此题考查直线与双曲线的位置关系,考查求双曲线的离心率的方法,解题的关键是灵活运用双曲线的几何性质,考查计算能力,属于中档题17.【分析】由抛物线的定义可知结合圆的性质当且仅当三点共线时等号成立取得最值【详解】由圆可得圆心设的焦点为则抛物线上任意一点Р到直线l 的距离为过点作于点则由抛物线的定义可知所以当且仅当三点共线时等号成立2【分析】由抛物线的定义可知m PF =,m PA PF PA +=+结合圆的性质,当且仅当,,P F C 三点共线时等号成立取得最值. 【详解】由圆22:68210C x y x y ++++=可得圆心()3,4C --,2r,设28y x =的焦点为F ,则()2,0F ,:2l x =-, 抛物线上任意一点Р到直线l 的距离为m , 过点P 作PH l ⊥于点H ,则PH m =, 由抛物线的定义可知PH PF =,所以2m PA PH PA PF PA FC r FC +=+=+≥-=-()()223242412=--+-=,当且仅当,,P F C 三点共线时等号成立, 所以m PA +412, 412. 【点睛】关键点点睛:本题解题的关键点是利用抛物线的定义转化为抛物线上一点到焦点的距离与到圆上一点的距离之和的最小值,利用三点共线即可求解.18.【分析】设点则则可得出令利用二次函数的基本性质求出二次函数的最大值即可得出的最大值【详解】设点则则抛物线的准线方程为由抛物线的定义可得所以令当且仅当时函数取得最大值因此的最大值为故答案为:【点睛】方 23【分析】设点(),P x y ,则24y x =,则0x ≥,可得出()223111OP PFx x =+-++(]10,11t x =∈+,利用二次函数的基本性质求出二次函数2321y t t =-++的最大值,即可得出OP PF的最大值.【详解】设点(),P x y ,则24y x =,则0x ≥,抛物线C 的准线方程为1x =-,由抛物线的定义可得1PF x =+,所以,OP PF==== 0x ≥,令(]10,11t x =∈+,221443213333y t t t ⎛⎫=-++=--+≤ ⎪⎝⎭, 当且仅当13t =时,函数2321y t t =-++取得最大值43,因此,OP PF【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.19.①③【分析】首先根据题意得到设对①分类讨论和以及即可判断①为真命题对②根据椭圆的对称性可知利用解方程即可判断②为假命题对③利用椭圆的定义即可判断③为真命题【详解】由题知:设对①若则此时则所以满足为等解析:①③【分析】首先根据题意得到4a =,b c ==()1F -,()2F ,设(),A m y ,(),B m y -.对①,分类讨论12AF AF =,1290F AF ∠=,和1290AF F ∠=,以及2190AF F ∠=,即可判断①为真命题.对②,根据椭圆的对称性可知,11AF BF =,利用11AF k ==,解方程即可判断②为假命题,对③,利用椭圆的定义即可判断③为真命题.【详解】由题知:4a =,b c ==()1F -,()2F , 设(),A m y ,(),B m y -.对①,若12AF AF =,则0m =,此时(0,A .11AF k =,21AF k ==-,则121AF AF k k ⋅=-,所以1290F AF ∠=,满足12AF F △为等腰直角三角形.若1290AF F ∠=,则()2A -,此时12AF =,12F F =.若2190AF F ∠=,则()2A ,此时22AF =,12F F =.所以存在唯一一个m ,使得12AF F △为等腰直角三角形,故①为真命题. 对②,根据椭圆的对称性可知,11AF BF =,满足等腰三角形. 当190AF B ∠=时,根据椭圆的对称性可知:直线1AF 的倾斜角为45,11AF k ==,即y m =+又因为221168m y +=,所以(22216m m ++=,解得0m =或3m =-,都在44m -<<内, 故存在唯一一个m ,使得1ABF 为等腰直角三角形为假命题. 对③,1ABF 的周长为11AB AF BF ++, 又因为128AF AF =-,128BF BF =-, 所以()112216AF BF AF BF +=-+, 即1ABF 的周长为()2216AB AF BF +-+,又因为22AF BF AB +≥,当且仅当m = 所以()22AF BF AB -+≤-,即1ABF 的周长为()22161616AB AF BF AB AB +-+≤+-=.当且仅当m =时,1ABF 的周长最大. 故③为真命题. 故答案为:①③ 【点睛】关键点点睛:本题主要考查椭圆的定义,解决本题①的关键为分类讨论12AF AF =,1290F AF ∠=,和1290AF F ∠=,以及2190AF F ∠=,②的关键为代入椭圆的对称性,③的关键为椭圆的定义,属于中档题.20.【分析】求出双曲线的两个焦点坐标和渐近线方程再求圆的方程与渐近线方程联立可得MN 两点的横坐标由即为横坐标的绝对值的比可得答案【详解】由已知得取双曲线的一条渐近线所以圆的方程为由整理得解得取双曲线的另解析:32【分析】求出双曲线的两个焦点坐标和渐近线方程,再求圆的方程与渐近线方程联立可得M ,N 两点的横坐标,由OM ON即为横坐标的绝对值的比可得答案.【详解】由已知得2221,7,8a b c ===,2c =,12(F F -,取双曲线的一条渐近线y =,所以圆的方程为(2232x y +=-,由(2232y x y ⎧=⎪⎨-+=⎪⎩整理得2260x -=,解得2N M x x ==32MNM O x x O N===.取双曲线的另一条渐近线y =,(2232y x y ⎧=⎪⎨-+=⎪⎩整理得2260x -=与上同,综上32OM ON=. 故答案为:32. 【点睛】关键点点睛:本题考查了直线与双曲线、圆的位置关系,解答本题的关键是求出渐近线与圆的方程然后联立,得到M ,N 两点的横坐标再由绝对值做比值,考查了学生的运算求解能力.三、解答题21.(Ⅰ)28y x =;(Ⅱ)8. 【分析】(Ⅰ)根据M 的几何性质可得)20x x +=≥,化简后可得抛物线的方程.(Ⅱ)设:2l x ty =+,联立直线方程和抛物线方程,消元后可得面积的表达式,从而可求面积的最小值. 【详解】(Ⅰ)由题设可得)20x x +=≥,整理可得()280y x x =≥.(Ⅱ)设:2l x ty =+,由228x ty y x=+⎧⎨=⎩可得28160y ty --=,故12y y -==又1282OAB S =⨯⨯=≥,当且仅当0t =时等号成立,故AOB 面积的最小值为8. 【点睛】方法点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率、斜率的倒数或点的横、纵坐标等.而目标函数的最值可以通过常见函数的性质、基本不等式或导数等求得.22.(1)22184x y +=;(2)直线AB 过定点1,22⎛⎫-- ⎪⎝⎭,理由见解析【分析】(1)通过点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形,可求得,a b ,从而可求椭圆方程;(2)若直线AB 的斜率存在,设AB 方程代入椭圆方程,利用韦达定理及128k k +=,可得直线AB 的方程,从而可得直线AB 过定点;若直线AB 的斜率不存在,设AB 方程为0x x =,求出直线AB 的方程,即可得到结论.【详解】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =, 又12FMF △是等腰直角三角形,可得a=,即a =28a =,24b =所以椭圆的标准方程为22184x y +=;(2)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2m ≠±,联立22184y kx mx y =+⎧⎪⎨+=⎪⎩,得222(12)4280k x kmx m +++-=由已知0∆>,设1122(,),(,)A x y B x y ,由韦达定理得:2121222428,1212km m x x x x k k--+==++, 128k k +=12221211212222y y kx m k k k x m x x x x -+-+-=+=+-∴+12212121142(2)()2(2)2(2)828x x kmk m k m k m x x x x m +-=+-+=+-=+-=- 42kmk m ∴-=+,整理得122m k =- 故直线AB 方程为122y kx k =+-,即122y k x ⎛⎫=+- ⎪⎝⎭,所以直线AB 过定点1,22⎛⎫-- ⎪⎝⎭; 若直线AB 的斜率不存在,设AB 方程为0x x =,设0000(,),(,)A x y B x y -, 由已知得0000228y y x x ---+=,解得012x =-, 此时直线AB 方程为12x =-,显然过点1,22⎛⎫-- ⎪⎝⎭;综上,直线AB 过定点1,22⎛⎫-- ⎪⎝⎭. 【点睛】方法及易错点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和椭圆方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系对题目条件进行化简计算,从而可得出结论,另外设直线方程时常常不要忽略斜率是否存在的问题.23.(1)3;(2)不存在;(3)证明见解析. 【分析】(1)设出()00,M x y ,把MF 表示出来,利用函数求最值;(2)假设存在点P ,作出切线PC 、PD ,由OCPD为正方形推出||OP =||2OP ≤,矛盾,所以判断点 P 不存在;(3)用坐标法分别求出AF AQ BF BQ 、、、,证明AF AQ BF BQ +=+ 【详解】由椭圆22:143x y E +=,知右焦点为()1,0F ,(1)设()00,M x y ,则()220001,2243x y x +=-≤≤,所以MF ===因为()()220000124444x f x x x =-+=-在 []02,2x ∈-上单减,所以当02x =-时,()422434MF =-⨯-+=最大, 即MF 的最大值为3. (2)假设存在点P 符合题意,如图示,,,OC OD PC PD ⊥⊥又有,PC PD ⊥ 所以OCPD 为矩形;因为|OC |=|OD |,所以OCPD 为正方形,所以||2||236OP OC ==⨯=;又P 在椭圆22:143x y E +=上,所以3||26OP ≤≤≠,故这样的点P 不存在;(3)设()()1122,,,A x y B x y ,连结 OQ ,OA ,OB ,则△AOQ 为直角三角形,所以222211||3AQ OA OQ x y =-=+-又A 在椭圆22:143x y E +=上,所以 2211143x y +=,得2221111||342x x AQ x y =+-==而11||22AF x =-所以11112222AF AQ x x +=-+=; 同理可证:2BF BQ +=. 所以AF AQ BF BQ +=+,即证 【点睛】解析几何问题常见处理方法:(1)正确画出图形,利用平面几何知识简化运算; (2)坐标化,把几何关系转化为坐标运算. 24.(1)24y x =;(2)114y x =-+. 【分析】(1)分析题意,列方程组,用待定系数法求抛物线C 的方程;(2)用“设而不求法”联立方程组,把OM ON ⊥转化为12120x x y y +=,求出斜率k ,得到直线方程 【详解】解:(1)由题意可得228,11,222m p p m p ⎧=⎪⎨⨯⋅=⎪⎩解得2p =.故抛物线C 的方程为24y x =. (2)设()11,M x y ,()22,N x y .联立21,4,y kx y x =+⎧⎨=⎩整理得22(24)10k x k x +-+=.由题意可知0k ≠,则12224k x x k -+=-,1221x x k =. 因为OM ON ⊥,所以12120OM ON x x y y ⋅=+=, 则()()()()21212121211110x x kx kx k x x k x x +++=++++=,即()222124110k k k k k -⎛⎫+⋅+⋅-+= ⎪⎝⎭,整理得2140k k +=, 解得14k =-. 故直线l 的方程为114y x =-+. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)122y x =+或122y x =--;(2)见解析. 【分析】(1)首先根据l 与x 轴垂直,且过点A ,求得直线l 的方程为4x =,代入抛物线方程求得点M 的坐标为()4,4或()4,4-,利用两点式求得直线BM 的方程;(2)设直线l 的方程为4x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立. 【详解】(1)当l 与x 轴垂直时,l 的方程为4x =,可得M 的坐标为()4,4或()4,4-, 所以直线BM 的方程为122y x =+或122y x =--; (2)设l 的方程为4x ty =+,()11,M x y 、()22,N x y ,由244x ty y x=+⎧⎨=⎩,得24160y ty --=,可知124y y t +=,1216y y =-, 直线BM 、BN 的斜率之和为 ()()()()()()()()21122112121212124488444444BM BN x y x y ty y ty y y y k k x x x x x x +++++++=+==++++++()()()()()()12121212282168404444ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补, 所以ABM ABN ∠=∠. 【点睛】该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量;在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.26.(1)24y x =;(2)16||3AB =. 【分析】(1)根据抛物线定义可得答案;(2)由点F 是AC 的中点可得A 点的坐标,设出直线AB 方程与抛物线方程联立,利用韦达定理再得B 点坐标,再由两点间的距离公式可得答案.【详解】(1)因为动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等, 由抛物线定义可得曲线Γ为抛物线,设其方程为22(0)y px p =>,则12p=, 所以2p =,曲线Γ的方程为24y x =. (2)设过点F 的直线方程为1x my =+,设1122(,),(,)A x y B x y ,且120,0y y ><,0(1,)C y -,由214x my y x=+⎧⎨=⎩整理得,2440y my --=,所以124y y =-, 因为点F 是AC 的中点,所以1112x -=,解得13x =,所以211412y x ==,得1y =A ,又因为124y y =-,所以23y =-,代入抛物线方程得213x =,所以1,3B ⎛ ⎝⎭,所以163AB ==. 【点睛】本题考查了抛物线方程、直线与抛物线的位置关系及弦长,关键点是由点F 是AC 的中点可得A 点的坐标,利用韦达定理再得B 点坐标,考查了学生的基础知识、基本技能.。
(易错题)高中数学选修1-1第二章《圆锥曲线与方程》测试(有答案解析)
一、选择题1.设O 为坐标原点,1F ,2F 是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且3OP a =,则该椭圆的离心率为( ) A .12B .14C .312- D .222.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C .3D .23.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线250x y -+=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( ) A .2B .3C .2D .54.如图所示,一隧道内设有双行线公路,其截面由一个长方形的三条边和抛物线的一段构成.为保证安全,要求行驶车辆顶部(假设车顶为平顶)与隧道顶部在竖直方向上高度之差至少要有0.6m ,已知行车道总宽度7m AB =,则车辆通过隧道的限制高度为( )A .3.90mB .3.95mC .4.00mD .4.05m5.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1166.设1F 、2F 分别是椭圆22:1259x yC +=的左、右焦点,O 为坐标原点,点P 在椭圆C上且满足4OP =,则12PF F △的面积为( )A .3B .33C .6D .97.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且1223PF F S b =△,则双曲线C 的渐近线方程是( )A .20x y ±=B .20x y ±=C .320x y ±=D .230x y ±=8.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若3OA b =,则该双曲线的离心率为( )A .2B .23C .2D .5 9.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .1210.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( ) A .230x y +-= B .210x y -+= C .210x y -+=D .20x y +-=11.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( ) A .4877B .2477C .147D .14712.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( ) A .)2,+∞B .)2,⎡+∞⎣C .(2D .(2⎤⎦二、填空题13.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为___________.14.若A 、B 、C 是三个雷达观察哨,A 在B 的正东,两地相距6km ,C 在A 的北偏东30°,两地相距4km ,在某一时刻,B 观察哨发现某种信号,测得该信号的传播速度为1km /s ,4s 后A 、C 两个观察哨同时发现该信号,在如图所示的平面直角坐标系中,指出发出了这种信号的点P 的坐标___________.15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 的直线:2230l kx y ka --=与双曲线C 交于A 、B 两点.若7AF FB =,则实数k =________.16.双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线210x y +-=平行,则双曲线的离心率为___________.17.设1A 、2A 为椭圆()222210x y a b a b+=>>的左、右顶点,若在椭圆上存在异于1A 、2A 的点P ,使得10PO PA ⋅=,其中O 为坐标原点,则椭圆的离心率e 的取值范围是_____. 18.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.19.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l交椭圆C 于A B 、两点,则1F AB 的面积为___________.20.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________. 三、解答题21.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.22.已知抛物线()2:20C y px p =>过点()4,4-,直线2y x m =-+与抛物线C 相交于不同两点A 、B .(1)求实数m 的取值范围;(2)若AB 中点的横坐标为1,求以AB 为直径的圆的方程.23.椭圆2222:1(0)x y E a b a b +=>>的左焦点为1F ,右焦点为2F ,离心率2e =,过1F的直线交椭圆于A ,B 两点,且2ABF 的周长为. (1)求椭圆E 的方程;(2)若直线AB ,求2ABF 的面积.24.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为离心率为2. (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.25.已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.26.已知抛物线()2:20C x py p =>的焦点到准线的距离为2,直线:2l y kx =+交抛物线于()11,A x y ,()22,B x y 两点. (1)求抛物线C 的标准方程;(2)过点A ,B 分别作抛物线C 的切线1l ,2l ,点P 为直线1l ,2l 的交点. (i )求证:点P 在一条定直线上; (ii )求PAB △面积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据中线向量可得()1212PO PF PF =+,平方后结合椭圆的定义可得212PF PF a ⋅=,在焦点三角形中再利用余弦定理可得224c a =,从而可求离心率. 【详解】因为O 为12F F 的中点,故()1212PO PF PF =+, 所以()2221212124PO PF PF PF PF =++⋅,故22212123112442a PF PF PF PF ⎛⎫=++⋅⋅ ⎪⎝⎭, 故()2222121212123a PF PF PF PF PF PF PF PF =++⋅=+-⋅,所以212PF PF a ⋅=,又22212121422c PF PF PF PF =+-⋅⋅, 故()2222212124343c PF PF PF PF a a a =+-⋅=-=,故12e =. 故选:A. 【点睛】方法点睛:与焦点三角形有关的计算问题,注意利用椭圆的定义来转化,还要注意利用余弦定理和向量的有关方法来计算长度、角度等.2.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k 的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±,圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.3.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +== 故()2222220a ++=. 可得1a=ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).4.B解析:B 【分析】设抛物线的方程为2x ay =,可知点()5,5-在该抛物线上,求出a 的值,将 3.5x =代入抛物线方程,求出y 的值,即可得解. 【详解】设抛物线的方程为2x ay =,可知点()5,5-在该抛物线上,则255a -=,解得5a =-,所以,抛物线的方程为25x y =-,将 3.5x =代入抛物线方程得25 3.5y -=,解得 2.45y =-, 因此,车辆通过隧道的限制高度为()7 2.450.6 3.95m --=. 故选:B. 【点睛】关键点点睛:本题考查抛物线的实际应用,设出抛物线的方程,分析出抛物线上的点的坐标,求出抛物线的方程是解题的关键,同时要注意车辆限高的意义.5.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭,故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 6.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则4c ==,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得208116y =,094y ∴=,因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.7.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=,在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--,1222221222sin cos1sin 22sin 21cos tan112sin 22PF F b b b S PF PF θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,tan2θ∴=0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF aPF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,b ∴=, 因此,双曲线C的渐近线方程为by x a=±=0y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 8.B解析:B 【分析】延长2F A 交1PF 于点Q,可得12QF OA ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO,且12QF OA ==,又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴23c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.9.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-,2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△10===.故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.10.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-= 所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩则()1,1P设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-, 即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.11.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案. 【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得7a =,则FAB的周长为47a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===222200=44e x axa b -+-.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴2e <. ∵双曲线离心率1e >,∴12e <<.故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】先利用点求抛物线方程利用相切关系求切线再分别联立直线和抛物线求出点即求出直线方程【详解】在抛物线上故即抛物线方程为设过点与圆相切的直线的方程为:即则圆心到切线的距离解得如图直线直线联立得故由 解析:3640x y ++=【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线,AB AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离2202211k kd k -+-==+,解得3k =±,如图,直线():232AB y x -=-,直线():232AC y x -=--.联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x ++-=,故163A B x x -=,由2A x =得83B x -=,故63B y =,联立)2222y x y x⎧-=-⎪⎨=⎪⎩,得()2314160x x -++=,故A C x x =2A x =得C x =,故C y =,故66433B C y y -+=+=-,又由,B C 在抛物线上可知, 直线BC 的斜率为22221114222B C B C BC B C B C B C y y y y k x x y y y y --=====--+--,故直线BC的方程为618323y x ⎛--=-- ⎝⎭,即3640x y ++=. 故答案为:3640x y ++=14.【分析】转化条件为点在线段的垂直平分线上再结合双曲线的定义可得点在以、为焦点的双曲线的左支上联立方程即可得解【详解】由题意点即则线段的中点为直线的斜率所以线段的垂直平分线的斜率所以线段的垂直平分线的解析:(-【分析】转化条件为点P 在线段AC 的垂直平分线上,再结合双曲线的定义可得点P 在以A 、B 为焦点的双曲线的左支上,联立方程即可得解. 【详解】由题意,点()3,0A ,()3,0B -,()34cos60,4sin 60C +即(5,C , 则线段AC的中点为(,直线AC的斜率AC k ==, 所以线段AC的垂直平分线的斜率k =, 所以线段AC的垂直平分线的方程为)4y x =-即y x =+, 设(),P x y ,由PA PC =可得点P 在线段AC 的垂直平分线上,又46PA PB AB -=<=,所以点P 在以A 、B 为焦点的双曲线的左支上,该双曲线的方程为()221245x y x -=≤-,所以22145233x y x y x ⎧-=⎪⎪⎪≤-⎨⎪⎪=-+⎪⎩,解得8x y =-⎧⎪⎨=⎪⎩. 所以点P的坐标为(-.故答案为:(-. 【点睛】 关键点点睛:解决本题的关键是对条件的转化,转化条件为点P 为线段AC 的垂直平分线与双曲线左支的交点,运算即可得解.15.【分析】由直线方程过右焦点得的关系设直线方程与双曲线方程联立消去应用韦达定理得出由得这样结合起来可得值【详解】在中令得所以则设由消去得由得所以化简得故答案为:【点睛】方法点睛::本题考查直线与双曲线解析:【分析】由直线方程过右焦点得,a b 的关系,设1122(,),(,)A x y B x y ,直线方程与双曲线方程联立消去x ,应用韦达定理得出1212,y y y y +,由7AF FB =,得127y y =-,这样结合起来可得k 值.【详解】在2230kx y ka --=中令0y =得32a x =,所以32a c =,则222254a b c a =-=,设1122(,),(,)A x y B x y ,由222212230x y a bkx y ka ⎧-=⎪⎨⎪--=⎩,消去x 得22222223504b ab a b a y y k k ⎛⎫-++= ⎪⎝⎭, 2122223kab y y a k b+=-,2221222254()k a b y y b a k =-, 由7AF FB =得127y y =-,212222236kab y y y a k b +=-=-,222222()kab y a k b =--, 所以224222212222222225774()4()k a b k a b y y y a k b b a k =-=-⨯=--,化简得2221235b k a ==,k =.故答案为: 【点睛】方法点睛::本题考查直线与双曲线相交问题,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,由直线方程与双曲线方程联立,消元后应用韦达定理(本题得)1212,y y y y +,已知条件又得127y y =-,这样结合起来可求得k 值.16.【分析】由双曲线的一条渐近线与直线平行求得进而求得双曲线的离心率得到答案【详解】由题意双曲线的渐近线方程为因为双曲线的一条渐近线与直线平行可得即则故答案为:【点睛】本题主要考查了双曲线的标准方程及其【分析】由双曲线的一条渐近线与直线210x y +-=平行,求得12b a =,进而求得双曲线的离心率,得到答案. 【详解】由题意,双曲线22221(0,0)x y a b a b -=>>的渐近线方程为b y x a=±,因为双曲线的一条渐近线与直线210x y +-=平行,可得12b a -=-,即12b a =,则c e a ===. 【点睛】本题主要考查了双曲线的标准方程及其几何性质的应用,其中解答中熟记双曲线的几何性质是解答的关键,着重考查运算与求解能力.17.【分析】设点由可得出求出函数在区间上的零点为化简得出进而可解得的取值范围【详解】设点则可知点设则函数在区间上存在零点则为方程的一根设函数在区间内的零点为由韦达定理可得所以即整理可得即解得因此椭圆的离解析:2⎛⎫⎪ ⎪⎝⎭【分析】设点(),P x y ,由10PO PA ⋅=可得出2220e x ax b ++=,求出函数()f x 在区间(),0a -上的零点为22ab c-,化简得出2201b c <<,进而可解得e 的取值范围.【详解】设点(),P x y ,则22222b y b x a=-,可知点()1,0A a -,(),PO x y =--,()1,PA a x y =---,()()22222222221220b c PO PA x a x y x y ax x b x ax x ax b a a⋅=---+-=++=+-+=++=,设()222f x e x ax b =++,则函数()f x 在区间(),0a -上存在零点,()2220f a c a b -=-+=,则a -为方程2220e x ax b ++=的一根,设函数()f x 在区间(),0a -内的零点为1x ,由韦达定理可得222122b a b ax e c -==,212ab x c∴=-,所以,220ab a c -<-<,即2201b c<<,整理可得2222a c b c -=<,222a c ∴<,即221e >,01e <<,解得12e <<.因此,椭圆的离心率e 的取值范围是2⎛⎫⎪ ⎪⎝⎭.故答案为:,12⎛⎫⎪ ⎪⎝⎭.【点睛】方法点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a 、c ,代入公式ce a=; ②只需要根据一个条件得到关于a 、b 、c 的齐次式,结合222b a c =-转化为a 、c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(或不等式),解方程(或不等式)即可得e (e 的取值范围).18.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E解析:5【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE 设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =, ∴离心率17c e a ==. 故答案为:175【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.19.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积 解析:1227【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0,∴121269,77y y y y +=-=-12211111|||227|2227F AB S F F y y -∴=⨯=⨯⨯==△即1F AB 的面积为7【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 20.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==11122OABSO y O y A B ==12⨯=≥=,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 三、解答题21.(1)22122y x -=;(2)8.【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可; (2)求得直线方程代入抛物线,结合焦点弦长求解即可. 【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b =⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -=(2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-.与抛物线方程联立,得214y x y x =-⎧⎨=⎩,消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=.由抛物线的定义可知,12||628AB x x p =++=+=. 所以,线段AB 的长是8. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 22.(1)1,2⎛⎫-+∞ ⎪⎝⎭;(2)()()2215114x y -++=.【分析】(1)将点()4,4-的坐标代入抛物线C 的方程,求出p 的值,可得出抛物线C 的方程,再将直线2y x m =-+的方程与抛物线C 的方程联立,利用0∆>可求得实数m 的取值范围;(2)设点()11,A x y 、()22,B x y ,列出韦达定理,由线段AB 的中点的横坐标可求得m 的值,可求得线段AB 的中点坐标,利用弦长公式可求得AB ,进而可求得以线段AB 为直径的圆的方程. 【详解】(1)将点()4,4-的坐标代入抛物线C 的方程,可得()28416p =-=,解得2p =,所以,抛物线C 的方程为24y x =,联立224y x m y x=-+⎧⎨=⎩,整理可得()224440x m x m -++=,由已知条件可得()22441632160m m m ∆=+-=+>,解得12m >-, 因此,实数m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭; (2)设()11,A x y 、()22,B x y ,由韦达定理可得121x x m +=+,2124m x x =,由于AB 中点的横坐标为1,则1212x x m +=+=,解得1m =,1214x x ∴=, 由弦长公式可得12AB x x =-===,所以,所求圆的圆心坐标为()1,1-,半径为2, 因此,以AB 为直径的圆的方程为()()2215114x y -++=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)2212x y +=;(2)7.【分析】(1)根据椭圆的定义,由2ABF的周长为a ,再根据离心率求出c ,进而可求出2b ,从而可得椭圆方程;(2)先直线AB的方程为1)y x =+,()11,A x y ,()22,B x y ,联立直线与椭圆方程,根据韦达定理,结合三角形面积公式,即可求出结果. 【详解】(1)因为过1F 的直线交椭圆于A ,B 两点,且2ABF的周长为得2211224AB AF BF AF BF AF BF a ++=+++==a =又2e =,所以2c a =,1c =, 所以21b =,所以椭圆E 的方程为2212x y +=;(2)设直线AB的方程为1)y x =+,()11,A x y ,()22,B x y由221)12y x x y ⎧=+⎪⎨+=⎪⎩消去y ,整理得271240x x ++=, 所以12127x x +=-,1247x x ⋅=,所以12127y y x -=-==.所以2121ABF Sc y y =⋅-==. 【点睛】 思路点睛:求解圆锥曲线中的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,(有时也需要点到直线距离公式),即可求解.24.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可. 【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m -=+,∴AB ==)2212m m +=+,同理)22221111122m m CD m m ⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果.25.(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析. 【分析】(1)设(,)D x y ,用,x y 表示出P 点坐标,代入圆的方程即可得;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,直线方程代入椭圆方程,应用韦达定理得1212,x x x x +,利用率1k 、k 、2k 成等比数列,得2121212y y k k k x x ==可计算出214k =,然后计算12S S +可得证. 【详解】(1)设(,)D x y ,则有(,2)P x y ,又P 在已知不上,∴2244x y +=,所以曲线E 的方程为2214x y +=;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠, 由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-=,2222644(14)(44)0k t k t ∆=-+->,∴122814kt x x k +=-+,21224414t x x k-=+, 111y k x =,222y k x =,∵1k 、k 、2k 成等比数列,∴2121212y y k k k x x ==, ∴2221212121212()()()kx t kx t k x x kt x x t k x x x x +++++==,212()0kt x x t ++=,又0t ≠,∴12()0k x x t ++=,228014k tt k-+=+,解得12k =±. 1228414kt x x kt k +=-=-+,22122442214t x x t k-==-+, 22222222121212()2162(22)4444x x x x x x k t t t t +=+-=--=-+=,22222222121122()()2244OM ON S S OM ON x y x y ππππ⎛⎫⎛⎫+=⨯+⨯=+=+++ ⎪ ⎪⎝⎭⎝⎭, 222222222211221212124()()4()2()2x y x y kx t kx t k x x kt x x t +++=++++=+++++222244825k k t t =+-+=,∴1254S S π+=为定值. 【点睛】关键点点睛:本题考查求轨迹方程,考查直线与椭圆相交问题中的定值问题.解题方法是设而不求的思想方法,设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,直线方程代入椭圆方程,应用韦达定理得1212,x x x x +,再利用题中其他条件求出参数满足的结论,并计算12S S +.26.(1)24x y =;(2)(i )证明见解析;(ii ))⎡+∞⎣. 【分析】(1)由题意可得2p =,代入抛物线方程即可求解.(2)(i )联立方程组24,2x yy kx ⎧=⎨=+⎩消去y ,求出两根之和、两根之积,再求出切线PA 方程以及切线PB 方程,求出两直线的交点即可求解.(ii )利用点到直线的距离公式求出点P 到直线AB 的距离,再利用弦长公式求出AB ,由12PABSd AB =⋅即可求解. 【详解】解:(1)抛物线()2:20C x py p =>的焦点到准线的距离为2,可得2p =,所以抛物线的标准方程为24x y =.(2)联立方程组24,2x yy kx ⎧=⎨=+⎩消去y 得,2480x kx --=, ∴124x x k +=,128x x =- 由24x y =得,12y x '=,所以切线PA 方程为()111112:l y y x x x -=- 切线PB 方程为()22221:2l y y x x x -=- 联立直线PA 、PB 方程可解得1222x x x k +==,1224x x y ⋅==-. (i )所以点P 的坐标为()2,2k -. 所以点P 在定直线2y =-上 (ii )点P 到直线AB 的距离为2d =所以AB ==PAB △的面积为()322214422PABS d AB k =⋅==+△所以当0k =时,PABS有最小值PAB △面积的取值范围是)⎡+∞⎣.【点睛】关键点点睛:本题考查了直线与抛物线的位置关系,解题的关键是求出抛物线的两切线方程,考查了运算求解能力,需熟记弦长公式.。
(好题)高中数学选修1-1第二章《圆锥曲线与方程》检测(包含答案解析)(2)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D 2.设1F ,2F 是双曲线C :22111y x -=的两个焦点,O 为坐标原点,点M 在C 上且OM =12MF F △的面积是( )A .10B .11C .12D .133.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒4.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( ) A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-5.过抛物线26y x =的焦点作一条直线与抛物线交于()()1122,,,A x y B x y 两点,若123x x +=,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条6.设1F 、2F 分别是椭圆22:1259x yC +=的左、右焦点,O 为坐标原点,点P 在椭圆C上且满足4OP =,则12PF F △的面积为( )A .3B .C .6D .97.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .y x =D .y =8.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C S SS+=,则a 的值为( )A .9B .11C .17D .199.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .26,⎛⎫ ⎪ ⎪⎝⎭C .222,⎛⎫⎪ ⎪⎝⎭D .32,3⎛⎫⎪ ⎪⎝⎭10.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( ) A .(2,2)-B .[1,2)C .[2,2]-D .(1,2)12.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .6二、填空题13.若A 、B 、C 是三个雷达观察哨,A 在B 的正东,两地相距6km ,C 在A 的北偏东30°,两地相距4km ,在某一时刻,B 观察哨发现某种信号,测得该信号的传播速度为1km /s ,4s 后A 、C 两个观察哨同时发现该信号,在如图所示的平面直角坐标系中,指出发出了这种信号的点P 的坐标___________.14.已知双曲线M :22221x y a b-=(0a >,0b >)的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是___________.15.抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后.反射光线平行于抛物线的轴.已知抛物线22y x =,平行于x 轴的光线在抛物线上点P 处反射后经过抛物线的焦点F ,在抛物线上点Q 处再次反射,又沿平行于x 轴方向射出,则两平行光线间的最小距离为___________.16.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,焦距为2c ,若直线3()y x c =--与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.17.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为e ,直线:l y x =与双曲线C 交于,M N 两点,若2MN b =,则e 的值是___________.18.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A ,上顶点为B ,8AB =分米,在它的内部放有一个半径为1分米的球形灯泡,球心C 在轴AB 上,且2AC =分米.已知球形灯泡的球心C 到四周轮廓上的点的最短距离是在下顶点A 处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a =>,则实数a 的取值范围是_______19.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,3)M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.20.如图所示,已知M ,N 为双曲线22221(0,0)x y a b a b-=>>上关于原点对称的两点,点M与点Q 关于x 轴对称,2516ME MQ =,直线NE 交双曲线右支于点P ,若2NMP π∠=,则e =_____________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为22,且经过点21,2A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,当直线AB 的斜率为0时,||||7AB CD +=.(Ⅰ)求椭圆的方程;(Ⅱ)求||||AB CD +的取值范围.23.已知直线:1l y kx =+过抛物线()2:20E x py p =>的焦点,且与抛物线E 交于A 、B 两点,点M 为AB 中点.(1)求抛物线E 的方程;(2)以AB 为直径的圆与x 轴交于C 、D 两点,求MCD △面积取得最小值时直线l 的方程.24.已知抛物线C :22y px =(0)p >的焦点为F ,点(4,)A m 在抛物线C 上,且OAF △的面积为212p (O 为坐标原点). (1)求抛物线C 的方程;(2)直线l :1y kx =+与抛物线C 交于M ,N 两点,若OM ON ⊥,求直线l 的方程.25.荷兰数学家舒腾(F.van Shooten ,1615-1660)设计了一种画椭圆的工具,如图1所示,两根等长的带槽的直杆AC 和BF 的一端各用钉子固定在点A 和B 上(但分别可以绕钉子转动),4AC BF ==,另一端用铰链与杆FC 连接,2FC AB ==,AC 和BF 的交点为E ,转动整个工具,交点E 形成的轨迹为椭圆Γ.以线段AB 中点O 为原点,AB 所在的直线为x 轴建立如图2的平面直角坐标系.(1)求椭圆Γ的标准方程;(2)经过B 点的直线l 交椭圆Γ于不同的两点M N 、,设点P 为椭圆的右顶点,当PNM △的面积为27时,求直线l 的方程. 26.如图,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),||3CD =.(1)求椭圆E 的方程;(2)设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得6cea . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.B解析:B【分析】由12F F M △是以M 为直角直角三角形得到2212||||48MF MF +=,再利用双曲线的定义得到12||||2MF MF -=,联立即可得到12||||MFMF ,代入12F F M S =△121||||2MF MF 中计算即可. 【详解】由22111y x -=可知1,a c ==不妨设12(F F -,因为1212OM F F ==, 所以点M 在以12F F 为直径的圆上,即12F F M △是以M 为直角顶点的直角三角形,故2221212||||||MF MF F F +=,即2212||||48MF MF +=,又12||||22MF MF a -==,所以2124||||MF MF =-=2212||||2MF MF +-12||||482MF MF =-12||||MF MF ,解得12||||22MF MF =, 所以12F F M S =△121||||112MF MF = 故选:B 【点晴】关键点点睛:根据OM =12MF F △为直角三角形是解题的关键,再结合双曲线的定义及勾股定理,即可计算焦点三角形面积,是一道中档题.3.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++,求出AB 中点N 的坐标,写出MN 的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】 由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y px p y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N k k ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN ==23(12p k k +=,∵AB =,∴22232(1)(12p k p k k k++=, 整理得23k =,∵0k >,∴k =∴倾斜角为60︒.故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.4.C解析:C 【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y , 联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.5.A解析:A 【分析】由抛物线方程求得焦点F 的坐标,分直线AB 斜率不存在和直线斜率存在,存在时设直线AB 方程与抛物线方程联立,由韦达定理表示出A 、B 两点的横坐标之和,求得k ,即可得结论. 【详解】抛物线26y x =的焦点为3,02F ⎛⎫⎪⎝⎭, 当过焦点的直线斜率不存在时,即为32x =, 1232x x ==,符合123x x +=, 当过焦点的直线斜率存在时设为32y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于()()1122,,,A x y B x y 两点,由2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得()222293604k k x k x -++=, 所以2122363k x x k++==,即22363k k +=,所以无解, 则这样的直线有且只有一条. 故选:A. 【点睛】本题考查直线与抛物线的位置关系,解题的时候要注意讨论直线斜率不存在时的情况,以免遗漏,是中档题.6.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则224c a b =-=,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-, 222000162549OP x y y =+=-=,解得208116y =,094y ∴=,因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.7.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-,即112122,M F F D F D E M =∴=,可知四边形12M F DE 为平行四边形; 又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-,故()()222442c a a =-,故==ce a,故双曲线C 的渐近线方程为y = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.8.C解析:C 【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n +=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.9.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α,所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<,1234πα<<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是23⎛⎫⎪ ⎪⎝⎭,故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点, 所以210k -≠,且2248(1)0k k ∆=+->,1k <,解得1k <<,所以实数k 的取值范围为, 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果二、填空题13.【分析】转化条件为点在线段的垂直平分线上再结合双曲线的定义可得点在以、为焦点的双曲线的左支上联立方程即可得解【详解】由题意点即则线段的中点为直线的斜率所以线段的垂直平分线的斜率所以线段的垂直平分线的解析:(-【分析】转化条件为点P 在线段AC 的垂直平分线上,再结合双曲线的定义可得点P 在以A 、B 为焦点的双曲线的左支上,联立方程即可得解. 【详解】由题意,点()3,0A ,()3,0B -,()34cos60,4sin 60C +即(5,C ,则线段AC的中点为(,直线AC的斜率AC k ==, 所以线段AC的垂直平分线的斜率3k =-, 所以线段AC的垂直平分线的方程为)43y x =--即33y x =-+, 设(),P x y ,由PA PC =可得点P 在线段AC 的垂直平分线上,又46PA PB AB -=<=,所以点P 在以A 、B 为焦点的双曲线的左支上,该双曲线的方程为()221245x y x -=≤-,所以22145233x y x y x ⎧-=⎪⎪⎪≤-⎨⎪⎪=-+⎪⎩,解得8x y =-⎧⎪⎨=⎪⎩. 所以点P的坐标为(-.故答案为:(-. 【点睛】 关键点点睛:解决本题的关键是对条件的转化,转化条件为点P 为线段AC 的垂直平分线与双曲线左支的交点,运算即可得解.14.【分析】设双曲线的右焦点经过点T 所作的圆的两条切线互相垂直等价于转化为点到渐近线的距离解得再根据离心率公式可得结果【详解】依题意可得双曲线的右焦点渐近线方程为因为M 的渐近线上存在点T 使得经过点T 所作解析:1e <≤【分析】设双曲线M 的右焦点(c,0)F ,经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,等价于TF =,转化为点(c,0)F 到渐近线的距离d TF ≤,解得ba据离心率公式可得结果. 【详解】依题意可得双曲线M 的右焦点(c,0)F ,渐近线方程为0bx ay ±=,因为M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,设两个切点为,P Q ,所以PTQ ∠2π=,4PTF π∠=,因为FP PT ⊥,PF a =,所以2TF a =,所以双曲线M 的渐近线上存在点T ,使得2TF a =,所以点(c,0)F 到渐近线的距离222d a b a =≤+,即2b a ≤,所以离心率2222221123c c a b b e a a a a +⎛⎫====+=≤+= ⎪⎝⎭,又1e >,所以13e <≤.所以双曲线M 的离心率的取值范围是13e <≤.故答案为:13e <≤【点睛】关键点点睛:求双曲线离心率的取值范围的关键是得到,,a b c 的不等式,根据M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,得到圆心到渐近线的距离小于等于2a 可得,,a b c 的不等式.15.【分析】作出图像设题中问题即为求的最小值设直线联立用韦达定理表示即可得解【详解】根据题意作出图像如图所示设题中问题即为求的最小值设由得所以所以当时最小为2故答案为:2 解析:2【分析】作出图像,设1122(,),(,)A x y B x y ,题中问题即为求12||y y -的最小值,设直线,联立,用韦达定理表示即可得解. 【详解】根据题意作出图像,如图所示,设1122(,),(,)A x y B x y ,题中问题即为求12||y y -的最小值.设1:2AB x ty =+, 由2122x ty y x⎧=+⎪⎨⎪=⎩,得2210y ty --=,所以12122,1y y t y y +==-.所以12||y y -==当0t =时,12||y y -最小为2. 故答案为:2.16.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系1【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF ,再利用椭圆的定义及离心率的计算公式即可得出. 【详解】设直线)y x c =-的倾斜角为α,则tan α=0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则211,MF MF ===由椭圆定义得122||||1a MF MF =+=∴椭圆的离心率212c e a ===.1. 【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.17.【分析】联立方程组求出M 的坐标利用整理得求出离心率【详解】不妨设点在第一象限联立得又∴则整理得所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件找到abc 的关系消去b 构造离心率e【分析】联立方程组求出M的坐标,利用MN =,整理得225b a =,求出离心率.【详解】不妨设点(),M x y 在第一象限,联立22221x y a b y x⎧-=⎪⎨⎪=⎩,得222222a b x y b a ==-,又MN =,∴2222b x y +=,则2222222a b b b a =-,整理得225b a =,所以==e【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围. 【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y axa =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得==d令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a, 当对称轴24102a a-≤时,在0t =处取得最小值,此时d 的最小值为=d , 当对称轴24102a a->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦.故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.19.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y +=【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,3)M -解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列 所以2121224MF a MF F F c ===+,所以2a c =,3b c =故椭圆方程可设为2222143x y c c +=代(4,3)M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.20.【分析】设利用点差法得到即可求出离心率;【详解】解:设则由得从而有又所以又由从而得到所以所以故答案为:【点睛】双曲线的离心率是双曲线最重要的几何性质求双曲线的离心率(或离心率的取值范围)常见有两种方解析:54【分析】设()()1122,,,M x y P x y 利用点差法得到22PM PN b k k a⋅=,即可求出离心率; 【详解】解:设()()1122,,,M x y P x y ,则()()1111,,,N x y Q x y ---.由2516ME MQ =,得1117,8E x y ⎛⎫- ⎪⎝⎭,从而有11119,16MN PN ENy y k k k x x ===-,又1190,MN yNMP k x ∠==,所以11MP x k y =-, 又由()()()()22112212121212222222221111x y a bx x x x y y y y ab x y a b ⎧-=⎪⎪⇒+-=+-⎨⎪-=⎪⎩, 从而得到22PM PNb k k a⋅=所以211211991616PM PN x y b k k y x a ⎛⎫⋅=-⋅-== ⎪⎝⎭,所以54e ==.故答案为:54【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).三、解答题21.(1)2212x y +=;(2.【分析】(12A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=, 联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(Ⅰ)22143x y +=;(Ⅱ)48,77⎡⎤⎢⎥⎣⎦; 【分析】(Ⅰ)通过当直线AB 的斜率为0时可知||2AB a =,22||b CD a =,结合12c e a ==,计算即得结论;(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线AB 、CD 的方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得||||AB CD +的表达式,利用换元法及二次函数的性质计算即得结论. 【详解】解:(Ⅰ)当直线AB 的斜率为0时,直线CD 垂直于x 轴,||2AB a ∴=,22||b CD a =,即22||||27b AB CD a a+=+=,12c e a ==,且222a b c =+,解得:2,a b ==, 所以椭圆方程为22143x y +=;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意可知,||||7AB CD +=;②当两条弦斜率均存在且不为0时,设1(A x ,1)y ,2(B x ,2)y , 设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--,将直线AB 的方程代入椭圆方程中,并整理得:2222(34)84120k x k x k +-+-=, ∴221212228412,3434k k x x x x k k-+==++,∴212212(1)|||34k AB x x k +=-=+,同理,2222112(1)12(1)||4343k k CD k k++==++, ∴2222222212(1)12(1)84(1)||||3434(34)(34)k k k AB CD k k k k ++++=+=++++,令21t k =+,则1t >,∴2222848484||||1149(41)(31)121()24t t AB CD t t t t t +===-++---+,1t >,∴101t<<,∴211494912()244t <--+,∴241111494912()24t <--+, ∴24884711497()24t <--+,∴48||||77AB CD +<, 综合①②可知,||||AB CD +的取值范围为:48,77⎡⎤⎢⎥⎣⎦. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.23.(1)24x y =;(2)1y =. 【分析】(1)求出抛物线E 的焦点坐标,将焦点坐标代入直线l 的方程,求出p 的值,即可求得抛物线E 的方程;(2)设点()11,A x y 、()22,B x y ,联立直线l 与抛物线E 的方程,求出点M 的坐标,求出点M 到CD 的距离以及CD ,可得出MCD △的面积的表达式,利用函数的单调性可求得MCD △面积的最小值,进而可求得对应的直线l 的方程. 【详解】(1)抛物线2:2E x py =的焦点为0,2p ⎛⎫ ⎪⎝⎭,则0,2p ⎛⎫⎪⎝⎭在:1l y kx =+上,12p ∴=,2p ∴=,所以,抛物线E 的方程为24x y =; (2)设()11,A x y 、()22,B x y ,由241x y y kx ⎧=⎨=+⎩得2440x kx --=,所以,212121616044k x x k x x ⎧∆=+>⎪+=⎨⎪=-⎩,则AB 中点()22,21Mk k +,()21241AB x k =-==+,所以,以AB 为直径的圆M 的半径()221r k=+,M 到CD 的距离221dk=+,CD ==((221221212MCD S k k ∴=⨯⨯+=+△,令()20k t t =≥,则(21MCDSt =+[)0,+∞单调递增.当0t =时,即0k =时,MCD Sl 的方程为1y =.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值. 24.(1)24y x =;(2)114y x =-+. 【分析】(1)分析题意,列方程组,用待定系数法求抛物线C 的方程;(2)用“设而不求法”联立方程组,把OM ON ⊥转化为12120x x y y +=,求出斜率k ,得到直线方程 【详解】解:(1)由题意可得228,11,222m p p m p ⎧=⎪⎨⨯⋅=⎪⎩解得2p =.故抛物线C 的方程为24y x =. (2)设()11,M x y ,()22,N x y .联立21,4,y kx y x =+⎧⎨=⎩整理得22(24)10k x k x +-+=.由题意可知0k ≠,则12224k x x k -+=-,1221x x k =. 因为OM ON ⊥,所以12120OM ON x x y y ⋅=+=, 则()()()()21212121211110x x kx kx k x x k x x +++=++++=,即()222124110k k k k k -⎛⎫+⋅+⋅-+= ⎪⎝⎭,整理得2140k k +=, 解得14k =-. 故直线l 的方程为114y x =-+. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)221 43x y+=;(2)1x y=±+.【分析】(1)设椭圆Γ的标准方程为22221x ya b+=,连接AF,由AFB AFC≌,得到ABE FCE△≌△,再利用椭圆定义求解.(2)设直线l的方程为:1x my=+,联立221143x myx y=+⎧⎪⎨+=⎪⎩,结合韦达定理得到12y y-,然后由PNM△的面积为62求解.【详解】(1)如图所示:由题意可设椭圆Γ的标准方程为22221x ya b+=,连接AF,可得AFB AFC≌,所以,,4ABE FCE EF AE EA EB EF EB FB=+=+==≌,由椭圆定义可知:2,1a c==,3b=所以椭圆Γ的方程为22143x y+=.(2)由题意知,(1,0)B,设直线l的方程为:1x my=+,设()()1122,,,M x y N x y,联立221143x myx y=+⎧⎪⎨+=⎪⎩,消去x得:()2234690m y my++-=,可知12y y -=,12112PMNSy y ∴=⨯-⨯==, 解得1m =±,所以直线l 的方程为1x y =±+. 【点睛】方法点睛:1、解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2、解决直线与曲线的弦长时,往往设直线与曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB ==k 为直线斜率).注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.26.(1)22143x y +=;(2)是定值,理由见解析.【分析】(1)由焦点及通经长,用待定系数法求椭圆的标准方程;(2)设出直线AB :y kx m =+,与椭圆联立,用“设而不求法”表示ACD BCD ∠=∠,整理得12k =. 【详解】(1)由2321b a c ⎧=⎪⎨⎪=⎩得:24a =,23b =∴椭圆E 的方程:22143x y +=(2)依题意知直线AB 的斜率存在,设AB 方程:y kx m =+()11,A x y ,()22,B x y代入椭圆方程22143x y +=得:()2224384120k x kmx m +++-=(*)122843km x x k ∴+=-+,212241243m x x k -=+。
上海上海第中学选修1-1第二章《圆锥曲线与方程》检测(包含答案解析)
一、选择题1.已知椭圆22:13620x y C +=的右焦点是F ,直线()0y kx k =≠与椭圆C 交于A 、B 两点,则222AF BF +的最小值是( ) A .36B .48C .72D .962.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A .22B .31- C .51- D .3 3.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为2的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .22D .324.如图所示,一隧道内设有双行线公路,其截面由一个长方形的三条边和抛物线的一段构成.为保证安全,要求行驶车辆顶部(假设车顶为平顶)与隧道顶部在竖直方向上高度之差至少要有0.6m ,已知行车道总宽度7m AB =,则车辆通过隧道的限制高度为( )A .3.90mB .3.95mC .4.00mD .4.05m5.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若3OA b =,则该双曲线的离心率为( )A 2B .233C .2D 56.已知点P 是抛物线22y x =上的一个动点,则点P 到点D ⎛ ⎝的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .727.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .⎝⎭C .⎝⎭D .23⎫⎪⎪⎝⎭8.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦9.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .810.已知动点(),P x y 5a a=+(a 为大于零的常数)﹐则动点P 的轨迹是( ) A .线段B .圆C .椭圆D .双曲线11.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2ax c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( )A .12B C .34D .45二、填空题13.F 为抛物线2:4C y x =的焦点,过F 且斜率为k 的直线l 与抛物线交于P 、Q 两点,线段PQ 的垂直平分线交x 轴于点M ,且||6PQ =,则||MF =__________.14.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________. 15.设P 是双曲线22:13y x Γ-=上任意一点,Q 与P 关于x 轴对称,1F 、2F 分别为双曲线的左、右焦点,若有121PF PF ⋅≥,则1F P 与2F Q 夹角的取值范围是__________. 16.已知1F 、2F 为椭圆1C 和双曲线2C 的公共焦点,P 为1C 和2C 的一个公共点,且1213F PF π∠=,椭圆1C 和双曲线2C 的离心率分别为1e ,2e ,则1211e e +的最大值为________________.17.若实数x ,y 满足方程2251162x y +=___________.18.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.19.双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,A 、B 分别为C 的左,右支上的点,O 为坐标原点,若四边形ABOF 为菱形,则C 的离心率为______.20.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.三、解答题21.椭圆2212516x y +=上一点P 到左焦点F 的距离为6,若点M 满足1()2OM OP OF =+(O 为坐标原点),则||OM =________.22.在平面直角坐标系xOy 中,已知抛物线()2:20C x py p =>,过抛物线焦点F 的直线l 与抛物线相交于M 、N 两点.(1)若l 与y 轴垂直,且OMN 的周长为4+C 的方程; (2)在第一问的条件下,过点()1,2P 作直线m 与抛物线C 交于点A ,B ,若点P 是AB 的中点,求直线m 的方程.23.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,上顶点为M ,离心,12MF F△. (1)求椭圆C 的标准方程;(2)过点2F ,的直线l 交椭圆于A 、B 两点,当1ABF 面积最大时,求直线l 的方程. 24.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.25.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且椭圆C 经过点3,22A ⎛ ⎝⎭. (1)求椭圆C 的方程;(2)椭圆C 的右焦点为F ,过点A 作两条倾斜角互补的直线分别交椭圆于B ,C 两点,证明://BC AF .26.已知椭圆2222:1(0)x y C a b a b +=>>的焦点在圆223x y +=(1)求椭圆C 的方程;(2)过原点O 的直线l 与椭圆C 交于,A B 两点,F 为右焦点,若FA 垂直于AB ,求直线l 的斜率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求得2AF BF a +=,结合a c BF a c -<<+,利用二次函数的基本性质可求得222AF BF +的最小值.【详解】设椭圆C 的左焦点为F ',在椭圆C 中,6a =,25b =,则224c a b =-=,由题意可知,点A 、B 关于原点对称,且O 为FF '的中点, 所以,四边形AFBF '为平行四边形,所以,BF AF '=,由椭圆的定义可得212AF BF AF AF a '+=+==,0k ≠,a c BF a c ∴-<<+,即210BF <<,()()2222222122324144349696AF BF BFBF BF BF BF ∴+=-+=-+=-+≥,当且仅当4BF =时,等号成立,因此,222AF BF +的最小值为96. 故选:D. 【点睛】关键点点睛:解决本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应曲线的定义,本题中利用对称性结合椭圆定义可得出AF BF +;(2)利用椭圆的几何性质得出焦半径的取值范围.2.C解析:C 【分析】作出图形,可知FAB 是以FAB ∠为直角的直角三角形,可得出0AF AB ⋅=,可得出a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率.【详解】如下图所示,可知AFB ∠、ABF ∠均为锐角, 所以,FAB 是以FAB ∠为直角的直角三角形,由题意可知,点(),0F c -、()0,A b 、(),0B a ,则(),AF c b =--,(),AB a b =-,20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=,在等式220c ac a +-=的两边同时除以2a 可得210e e +-=,01e <<,解得512e =. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.3.D解析:D 【分析】 首先设直线2x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率. 【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y ,与椭圆方程联立得 222241202a b y b cy b ⎛⎫++-= ⎪⎝⎭,2122222b cy y a b +=+4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-,得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =,椭圆的离心率2c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.4.B解析:B 【分析】设抛物线的方程为2x ay =,可知点()5,5-在该抛物线上,求出a 的值,将 3.5x =代入抛物线方程,求出y 的值,即可得解. 【详解】设抛物线的方程为2x ay =,可知点()5,5-在该抛物线上,则255a -=,解得5a =-,所以,抛物线的方程为25x y =-,将 3.5x =代入抛物线方程得25 3.5y -=,解得 2.45y =-, 因此,车辆通过隧道的限制高度为()7 2.450.6 3.95m --=. 故选:B. 【点睛】关键点点睛:本题考查抛物线的实际应用,设出抛物线的方程,分析出抛物线上的点的坐标,求出抛物线的方程是解题的关键,同时要注意车辆限高的意义.5.B解析:B 【分析】延长2F A 交1PF 于点Q,可得12QF OA ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO,且12QF OA ==, 又11122QF PF PQ PF PF a =-=-=,∴2a =,222233()a b c a ==-,∴233c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.6.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -= 所以点P 到点32,32D ⎛⎫⎪⎝⎭的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +> 所以点P 到点32,32D ⎛⎫⎪⎝⎭的距离与点P 到y 轴的距离之和的最小值为: 221111335||||||||||2022222PD PP PD PF DF ⎛⎫⎛⎫+=+-≥-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.7.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<<⎛⎫+ ⎪⎝⎭e 的取值范围是⎝⎭,故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.8.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=,又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣,所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C 【点睛】关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.9.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点, 所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=,所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.10.C解析:C 【分析】由a 为大于零的常数,可知5a a+的最小值,再根据两点间距离公式得几何意义以及椭圆定义判断轨迹. 【详解】的几何意义为点(),P x y 与点(0,2)A 间的距离,的几何意义为点(),P x y 与点(0,2)B -间的距离,且4AB =又由a为大于零的常数,可知54a a +≥=>, 当且仅当5aa=,即a =54a a=+>, 即动点P 到点A 与到点B 的距离之和为定值,且大于AB , 所以动点P 的轨迹为椭圆, 故选:C. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.11.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.12.B解析:B 【分析】设直线2a x c=交x轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.二、填空题13.3【分析】先根据抛物线方程求出p 的值再由抛物线性质求出的垂直平分线方程即可得到答案【详解】∵抛物线∴p=2焦点F(10)可设直线l :P(x1y1)Q(x2y2)将代入抛物线得:∴设PQ 中点为N(x0解析:3 【分析】先根据抛物线方程求出p 的值,再由抛物线性质求出PQ 的垂直平分线方程,即可得到答案. 【详解】∵抛物线2:4C y x =,∴p =2,焦点F (1,0) 可设直线l :(1)y k x =-,P (x 1,y 1)、Q (x 2,y 2)将(1)y k x =-代入抛物线2:4C y x =得:2222(24)0k x k x k -++= ∴12242x x k +=+1224||226,2PQ x x p k k =++=++=∴=±设PQ 中点为N (x 0,y 0),则2120004242,(1)222x x k x y k x k++=====-= 所以线段PQ 的垂直平分线方程:1(2)y k x k-=--令y =0,可得x =4,所以||413MF =-=故答案为:3 【点睛】坐标法是解析几何的基本方法,利用坐标法把几何关系转化为代数运算.14.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a =,221222ABFb Sc b a=⨯⨯=,得12c e a ==.故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.15.【分析】设由求出的取值范围再由平面向量的数量积计算出与夹角的余弦的取值范围从而得夹角的范围【详解】设则又双曲线中即∴又即代入上式得设与夹角为则∵∴∴∵∴故答案为:【点睛】关键点点睛:本题考查依托双曲解析:25,arccos 37ππ⎛⎤⎥⎝⎦- 【分析】设00(,)P x y ,由121PF PF ⋅≥求出20x 的取值范围,再由平面向量的数量积计算出1F P 与2F Q 夹角的余弦的取值范围,从而得夹角的范围.【详解】设00(,)P x y ,则00(,)Q x y -,又双曲线22:13y x Γ-=中2c ==,即12(2,0),(2,0)F F -,∴2212000000(2,)(2,)41PF PF x y x y x y ⋅=---⋅--=-+≥, 又220013y x -=,即220033=-y x ,代入上式得204341x --≥,202x ≥.100(2,)F P x y =+,200(2,)F Q x y =--,2212004F P F Q x y ⋅=--, 设1F P 与2F Q 夹角为θ,则2222221212cos (F P F Q F P F Qθ⋅====∵22x ≥,∴cos θ20202141x x +=--, 2200222000132211322414122(41)x x x x x -++==+---, 20417x -≥,203302(41)14x <≤-,201135222(41)7x <+≤-,∴51cos 72θ-≤<-,∵[0,]θπ∈,∴25arccos 37πθπ<≤-. 故答案为:25,arccos 37ππ⎛⎤ ⎥⎝⎦-.【点睛】关键点点睛:本题考查依托双曲线求平面向量夹角的取值范围.解题方法是设00(,)P x y ,利用P 点满足的条件求出0x 的范围,然后求出向量夹角的余弦值,余弦值的范围,从而得出角的范围.16.【分析】设椭圆的长轴为双曲线的实轴为公共焦距为设不放设则有所以在中结合余弦定理可得带入可得所以再利用柯西不等式即可得解【详解】设椭圆的长轴为双曲线的实轴为公共焦距为设不放设则有由所以在中有代入可得所 【分析】设椭圆1C 的长轴为12a ,双曲线2C 的实轴为22a ,公共焦距为2c ,设1122,PF r PF r ==,不放设12r r >,则有1211222,2r r a r r a +=-=,112r a a =+,212r a a =-,所以在12PF F △中,结合余弦定理可得带入可得22222221212124223c a a a a a a =+-+=+,所以2212134e e += ,再利用柯西不等式,即可得解. 【详解】设椭圆1C 的长轴为12a ,双曲线2C 的实轴为22a ,公共焦距为2c ,设1122,PF r PF r ==,不放设12r r >, 则有1211222,2r r a r r a +=-=,112r a a =+,212r a a =-,由1213F PF π∠=,所以在12PF F △中, 有22212121212=2cos F F r r rr F PF +-∠,代入可得2221212121214()()2()()2c a a a a a a a a =++--+-⨯222222*********a a a a a a =+-+=+,所以2212134e e += ,2222221212121111()(()1e e e e ⎡⎤⎡⎤+=⨯≤++⎢⎥⎢⎥⎣⎦⎣⎦221213416()33e e =+⨯=,所以1211e e +≤.【点睛】本题考查了椭圆和双曲线的定义,考查了离心率公式,以及利用柯西不等式求最值,有一定的计算量,属于中档题.本题关键点有:(1)椭圆和双曲线的定义,圆锥曲线的定义是解析几何常考考点; (2)柯西不等式的应用,柯西不等式是求最值得重要方法.17.【分析】由题可知可表示为椭圆上的点到点上焦点的距离之和设其椭圆的下焦点为再由椭圆定义转化为求解的范围【详解】可表示为椭圆上的点到点上焦点的距离之和即设其椭圆的下焦点为又由椭圆定义得所以又所以故故答案解析:[10-+【分析】(),P x y 到点1,0A ,上焦点()20,3F 的距离之和,设其椭圆的下焦点为()10,3F -,再由椭圆定义转化为求解110PA PF +-的范围.【详解】+(),P x y 到点1,0A ,上焦点()20,3F 2PA PF =+,设其椭圆的下焦点为()10,3F -,又由椭圆定义得1210PF PF +=,所以2110PA PF PA PF +=+-,又11PA PF AF -≤=1PA PF -≤故21010PA PF +≤故答案为:[10-+ 【点睛】点(),P x y 到点1,0A ,上焦点()20,3F 的距离之和的问题.18.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==2212121116116122OABy y SO y O y A B ⎛⎫⎛⎫++ ⎪⎪⎝=⎭⎝=⎭22222222121212122161811821616161616161612y y y y y y y y ⨯+++=+++≥++=, 22222212121222161616161616y y y y y y+=+≥⨯=, 所以221282822161616OABy y S++≥⨯==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 19.【分析】先根据四边形为菱形及双曲线的性质求的度数再根据双曲线的定义找的关系最后由离心率的计算公式求结论【详解】设右焦点为连接过作轴于因为双曲线关于轴对称四边形为菱形所以所以所以所以根据双曲线的定义可解析:31+. 【分析】先根据四边形ABOF 为菱形,及双曲线的性质,求AFO ∠的度数,再根据双曲线的定义找,a c 的关系,最后由离心率的计算公式求结论. 【详解】设右焦点为'F ,连接'AF ,过A 作AH x ⊥轴于H ,因为双曲线C 关于y 轴对称,四边形ABOF 为菱形, 所以AB OF AF c ===,2c OH FH ==,所以60AFO ∠=︒,所以'AF AF ⊥,所以'AF =,根据双曲线的定义可得'2AF AF c a -=-=,所以1e ==+,1. 【点睛】方法点睛:该题考查的是有关双曲线离心率的求解问题,对于求解圆锥曲线离心率的值或范围的解题方法如下:(1)一般不直接求出的值,而是根据题目给出的圆锥曲线的集合特征建立关于参数,,c a b 的方程组或不等式组,通过解方程组或不等组求得离心率的值或范围; (2)通常从两个方面入手研究,一是考虑几何关系,二是考虑代数关系; (3)注意用好定义.20.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440y ky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x =,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-,所以111,y A x ⎛⎫--⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.三、解答题21.2 【分析】根据222a c b -=求出左焦点F 的坐标,然后设P 的坐标00(,)P x y ,根据两点间的距离公式求出P 到左焦点的距离以及代入椭圆方程中解得P 的坐标,由1()2OM OP OF =+得到M 为PF 的中点,根据中点坐标公式求出M 的坐标,利用两点间的距离公式求出||OM 即可.【详解】由椭圆2212516x y +=得5a =,4b =, 左焦点(3,0)F -,设00(,)P x y ,则()2200336x y ++=又220012516x y +=解得053x =或0553x =-(舍去);又P 在椭圆上,则将053x =代入到椭圆方程中求出0y =所以点5(3P ,;由点M 满足1()2OM OP OF =+,则得M 为PF 中点,根据中点坐标公式求得2,3M ⎛- ⎝⎭, 所以||(2OM =-=故答案为:2. 【点睛】本题考查椭圆的简单几何性质,会利用两点间的距离公式及中点坐标公式、点到直线的距离公式化简求值,同时也考查学生掌握向量的运用法则及向量模的求法,属于中档题. 22.(1)24x y =;(2)230x y -+=. 【分析】 (1)将将2py =代入抛物线C 的方程可求得,M N 坐标,得,,MN OM ON ,由OMN 的周长参数p ,得抛物线方程;(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,由,A B 坐标表示出直线斜率,结合中点坐标即得直线斜率,得直线方程. 【详解】解:(1)由题意,焦点0,2p F ⎛⎫ ⎪⎝⎭,将2p y =代入抛物线C 的方程可求得,2p M p ⎛⎫- ⎪⎝⎭,,2p N p ⎛⎫⎪⎝⎭,∴2MN p =,2OM ON p ===,所以QMN 的周长为24p +=+2p =,故抛物线方程为24x y =.(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫⎪⎝⎭,直线m 的斜率为2212121244x x x x x x -+=-, 由条件1212x x +=,故直线m 的斜率为12,从而直线m 的方程为230x y -+=.【点睛】关键点点睛:本题考查求抛物线方程,求中点弦所在直线方程.已知弦中点坐标,一般设弦两端点坐标为1122(,),(,)x y x y 代入圆锥曲线方程相减即可得中点坐标与直线斜率关系.这称为“点差法”.23.(1)2213x y +=;(2)0x y -=或0x y +=.【分析】(1)由离心率、面积和222a b c =+可得答案;(2)设()11,A x y ,()22,B x y,:l x ty =+11212AF BF F AF F BSSS=+,结合基本不等式,可得答案.【详解】 (1)∵c e a ==,12MF F S bc ==△222a b c =+,解得a =1b =,c =C 的方程为:2213x y +=.(2)()1F,)2F ,设()11,A x y ,()22,B x y ,已知直线l 的斜率不为0,设直线l:x ty =+2213x ty x y ⎧=+⎪⎨+=⎪⎩,得()22310t y ++-=,故12y y +=,12213y y t =-+,1212121212F F A F F BSSF F y y+=-=因为2312t =≤+=,即1t =±时等号成立,所以直线l 的方程为0x y --=或0x y +=.【点睛】本题考查了椭圆的定义,考查了三角形的面积公式,关键点是利用韦达定理表示1212F F AF F BSS+并利用基本不等式求最值,考查了直线与椭圆的位置关系和计算能力.24.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.25.(1)22132x y +=;(2)证明见解析.【分析】(1,且经过点322A ⎛⎫ ⎪ ⎪⎝⎭.,可用待定系数法求椭圆的标准方程; (2)分别表示出直线AB 、AC ,用“设而不求法”后分别表示出BC 、AF 的斜率,从而证明//BC AF【详解】(1)解:因为椭圆C 的离心率为3,c e a ==,2232a b =,即2222:132x y C b b +=, 又因为椭圆C过点3,22A ⎛ ⎝⎭,所以229124213b b ⋅+=,解得22b = 椭圆C 的方程为22132x y +=.(2)证明:设直线AB的方程为322y k x ⎛⎫=-+ ⎪⎝⎭. 因为直线AB 与直线AC 的倾斜角互补,所以直线AC的方程可设为322y k x ⎛⎫=--+⎪⎝⎭.联立22322132y k x x y ⎧⎛⎫=-+⎪ ⎪⎪⎝⎭⎨⎪+=⎪⎩得()222323(9)36022k x k x k ⎛++-++-+-= ⎝⎭. 设()11,B x y ,()22,C x y,则21239223k x k -++=-+,∴221229393223223k k x k k ---+=--=++.同理可得22293223k x k +-=+. ()22212121212229612332323BCk k k k k x x k y y k x x x x k k ---+--=====--++又02312AF k -==-,∴BC AF k k =,所以//BC AF . 【点睛】 结论点睛:(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.26.(1)2214xy+=;(2)2±【分析】(1)由焦点在圆上解得c=2a=,2221b a c=-=,方程可求;(2)因为FA垂直于AB可知点A为椭圆与圆的交点,联立方程求得坐标,则直线斜率可求.【详解】解:(1)椭圆2222:1(0)x yC a ba b+=>>的焦点在圆223x y+=上,所以203c+=,即c=,因为2cea==得2a=,2221b a c=-=,故椭圆方程为2214xy+=(2)因为FA垂直于AB ,即点A既在椭圆上又在以OF为直径的圆上,所以222214324xyx y⎧+=⎪⎪⎨⎛⎫⎪-+=⎪⎪⎪⎝⎭⎩解得3xy⎧=⎪⎪⎨⎪=±⎪⎩所以33A⎛±⎝⎭故2AlAykx==±所以直线l的斜率为2±.【点睛】关键点点晴:本题的关键在于求出点A的坐标点.。
(好题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)(3)
一、选择题1.设O 为坐标原点,1F ,2F 是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且OP ,则该椭圆的离心率为( )A .12B .14C .12D .22.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5 C .52D .63.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒4.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( ) A .165B .2C .85D .15.设1F 、2F 分别是椭圆22:1259x yC +=的左、右焦点,O 为坐标原点,点P 在椭圆C上且满足4OP =,则12PF F △的面积为( )A .3B .C .6D .96.已知椭圆222:14x y C b +=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC D 7.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B .2C D8.已知抛物线2:C x y =,点()2,0A ,()0,2B -,点P 在抛物线上,则满足PAB △为直角三角形的点P 的个数有( ) A .2B .4C .6D .89.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .12+ B .12+ C 1 D 110.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞11.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( )A B .7C D 12.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆上,则双曲线的离心率的值为( )A .1BC .1+D 二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l于点C .若6AF =,2CB BF =,则p =____________15.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.16.已知直线1:43120l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 距离之和的最小值是________.17.已知双曲线M :22221x y a b-=(0a >,0b >),ABC 为等边三角形.若点A 在y轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC 的中位线,则双曲线M 的离心率为________.18.在平面直角坐标系xOy 中,已知双曲线22:17y x Γ-=的两个焦点分别为1F ,2F ,以2F 为圆心,12F F 长为半径的圆与双曲线Γ的一条渐近线交于M ,N 两点,若OM ON ≥,则OMON的值为________.19.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.20.已知椭圆2212x y +=上存在相异两点关于直线y x t =+对称,则实数t 的取值范围是______.三、解答题21.在平面直角坐标系xOy 中,已知抛物线()2:20C x py p =>,过抛物线焦点F 的直线l 与抛物线相交于M 、N 两点.(1)若l 与y 轴垂直,且OMN 的周长为4+C 的方程; (2)在第一问的条件下,过点()1,2P 作直线m 与抛物线C 交于点A ,B ,若点P 是AB 的中点,求直线m 的方程.22.已知抛物线22(0)x py p =>的焦点在圆221x y +=上.(1)求抛物线的方程;(2)圆上一点00,x y 处的切线交抛物线于两点,A B ,且满足2AOB π∠=(O 为坐标原点),求0y 的值.23.椭圆()2222:10x y C a b a b+=>>过点31,2⎛⎫- ⎪⎝⎭,离心率为12,左、右焦点分别为1F 、2F ,过2F 的直线l 交椭圆于A 、B 两点.(1)求椭圆C 的方程;(2)当1F AB 的面积为11时,求直线l 的斜率. 24.已知两条动直线14:xl y λ=与2:l y λ=(0λ≠,λ为参数)的交点为P .(1)求点P 的轨迹C 的方程;(2)()2,0E 、()1,0F 是x 轴上的两点,过点E 作直线m 与曲线C 交于A 、B ,当10AF BF +=时,求直线AB 的方程.25.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,右焦点到左顶点的距离是2 3.+(1)求椭圆C 的方程;(2)设点M 为椭圆上位于第一象限内一动点,A ,B 分别为椭圆的左顶点和下顶点,直线MB 与x 轴交于点C ,直线MA 与y 轴交于点D ,求证:四边形ABCD 的面积为定值. 26.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点(2,)A m 在抛物线E 上, 且|AF |=3.(1)求抛物线E 的方程;(2)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据中线向量可得()1212PO PF PF =+,平方后结合椭圆的定义可得212PF PF a ⋅=,在焦点三角形中再利用余弦定理可得224c a =,从而可求离心率. 【详解】因为O 为12F F 的中点,故()1212PO PF PF =+, 所以()2221212124PO PF PF PF PF =++⋅,故22212123112442a PF PF PF PF ⎛⎫=++⋅⋅ ⎪⎝⎭, 故()2222121212123a PF PF PF PF PF PF PF PF =++⋅=+-⋅,所以212PF PF a ⋅=,又22212121422c PF PF PF PF =+-⋅⋅, 故()2222212124343c PF PF PF PF a a a =+-⋅=-=,故12e =. 故选:A. 【点睛】方法点睛:与焦点三角形有关的计算问题,注意利用椭圆的定义来转化,还要注意利用余弦定理和向量的有关方法来计算长度、角度等.2.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.3.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】 由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N k k ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN ==23(12p k k +=,∵AB =,∴222(1)p k k += 整理得23k =,∵0k >,∴k =∴倾斜角为60︒.故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.4.C解析:C 【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解. 【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =.故选:C 【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.5.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则4c ==,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得208116y =,094y ∴=,因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.6.B【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.7.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y .4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,0433m c x n y =-⎧⎨=-⎩.以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=ca x c,于是()2222220233-=-=b ac y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以2e ==. 故选:B.本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.8.B解析:B 【分析】分三个角为直角分别进行讨论,通过数形结合即得结果. 【详解】(1)若APB ∠为直角,如下图,即以AB 为直径的圆与抛物线的交点为P ,易见有O ,P 两个点符合题意;(2)若PAB ∠为直角,则过A 作直线垂直AB ,如下图,易见有P ,P '两个点符合题意;(3)若PBA ∠为直角,则过B 作直线垂直AB ,如上图,易见无交点,不存在点P 符合题意.综上,共有4个点符合题意. 故选:B. 【点睛】 关键点点睛:本题的解题关键在于对三个角为直角进行分类讨论,再结合数形结合思想即突破难点.9.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得12e =(12舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.10.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.11.C解析:C【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案. 【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得a =,则FAB的周长为4a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.A解析:A 【分析】先由题意求出以AB 为直径的圆的半径为2b r a=和圆心坐标得到圆的方程,然后代入左焦点坐标,利用222c a b =+化简后可得答案. 【详解】将x c =代入22221x y a b-=可得2by a =±,所以以AB 为直径的圆的半径为2b r a=,圆心为(),0c ,圆的方程为()4222ab xc y -+=,左焦点为(),0c -,因为双曲线的左焦点在圆上,所以()2240b c ac +--=,整理得242460a c c c +=-,即42610e e -+=,解得23e =+23e =-所以1e = 故选:A . 【点睛】关键点点睛:本题考查直线和双曲线的位置关系、点和圆的位置关系,关键点是先求出以AB 为直径的圆的半径,再根据双曲线的左焦点在圆上,得到所要求的,,a b c 等量关系即可,考查了学生的运算求解能力,逻辑推理能力. 二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3【分析】过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,根据2CB BF =结合抛物线的定义可得30DFA MCB ∠=∠=,据此求出||3AD =,再根据抛物线的定义可求出p . 【详解】如图:过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,因为2CB BF =,所以||2||CB BF =, 因为||||BF BM =,所以||2||CB BM =, 所以30MCB ∠=,所以30DFA ∠=,在直角三角形ADF 中,因为||6AF =,所以||3AD =, 因为||||6AN AF ==,且||||3AN AD p p =+=+, 所以63p =+,所以3p =. 故答案为:3 【点睛】关键点点睛:利用抛物线的定义求解是解题关键.15.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==11122OABSO y O y A B ==12⨯=≥=,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 16.【分析】作出图像根据抛物线定义和性质将距离之和转化为动点到直线和焦点距离之和最小值数形结合得焦点到直线的距离最小【详解】解:作出图像如下:根据抛物线定义有动点到直线和直线距离之和为当点位于图中的时取 解析:165【分析】作出图像,根据抛物线定义和性质将距离之和转化为动点P 到直线1l 和焦点距离之和最小值,数形结合得焦点F 到直线1l 的距离最小. 【详解】解:作出图像如下:根据抛物线定义有动点P 到直线1l 和直线2l 距离之和为PA PB PB PF +=+ 当点P 位于图中的P '时取得最小值,此时最小值为焦点F 到直线1l 的距离, 由距离公式得:4121655d +== 故答案为:165【点睛】抛物线性质的应用技巧:(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程; (2)要结合图形分析,灵活运用平面图形的性质简化运算.17.【分析】可根据实轴为的中位线得出再根据对称性及为等边三角形表示出的坐标代入双曲线方程得到关系式求解离心率【详解】实轴长为则关于轴对称不妨设在双曲线左支则其横坐标为根据为等边三角形可得故将的坐标代入双 2【分析】可根据实轴为ABC 的中位线,得出BC ,再根据对称性及ABC 为等边三角形,表示出B 的坐标,代入双曲线方程,得到,a b 关系式求解离心率. 【详解】实轴长为2a ,则4BC a =,BC 关于y 轴对称不妨设B 在双曲线左支,则其横坐标为2a ,根据ABC 为等边三角形,60ABC ∠=可得3B y a =-故()2,3B a a -,()2,3C a a --,将B 的坐标代入双曲线方程有2222431a a a b-=,则a b =,则2c a = 故2e =2【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).18.【分析】求出双曲线的两个焦点坐标和渐近线方程再求圆的方程与渐近线方程联立可得MN 两点的横坐标由即为横坐标的绝对值的比可得答案【详解】由已知得取双曲线的一条渐近线所以圆的方程为由整理得解得取双曲线的另解析:32【分析】求出双曲线的两个焦点坐标和渐近线方程,再求圆的方程与渐近线方程联立可得M ,N 两点的横坐标,由OMON即为横坐标的绝对值的比可得答案.【详解】由已知得2221,7,8a b c ===,2c =,12(F F -,取双曲线的一条渐近线y =,所以圆的方程为(2232x y +=-,由(2232y x y ⎧=⎪⎨-+=⎪⎩整理得2260x -=,解得2N M x x ==,32M NM O x x O N===.取双曲线的另一条渐近线y =,(2232y x y ⎧=⎪⎨-+=⎪⎩整理得2260x -=与上同,综上32OM ON=. 故答案为:32. 【点睛】关键点点睛:本题考查了直线与双曲线、圆的位置关系,解答本题的关键是求出渐近线与圆的方程然后联立,得到M ,N 两点的横坐标再由绝对值做比值,考查了学生的运算求解能力.19.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴3e = 3【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.20.【分析】设对称的两点为直线的方程为与联立可得利用根与系数的关系以及中点坐标公式可求的中点利用判别式以及在直线上即可求解【详解】设椭圆存在关于直线对称的两点为根据对称性可知线段被直线直平分且的中点在直解析:33⎛- ⎝⎭【分析】设对称的两点为()11,A x y ,()22,B x y ,直线AB 的方程为y x b =-+与2212x y +=联立可得利用根与系数的关系以及中点坐标公式可求AB 的中点()00,M x y ,利用判别式0∆>以及()00,M x y 在直线y x t =+上即可求解.【详解】设椭圆2212x y +=存在关于直线y x t =+对称的两点为()11,A x y ,()22,B x y ,根据对称性可知线段AB 被直线y x t =+直平分, 且AB 的中点()00,M x y 在直线y x t =+上,且1AB k =-, 故可设直线AB 的方程为y x b =-+, 联立方程2222y x bx y =-+⎧⎨+=⎩,整理可得2234220x bx b -+-=, ∴1243b x x +=,()1212223b y y b x x +=-+=,由()221612220b b ∆=-->,可得b <<, ∴120223x x b x +==,12023y y b y +==, ∵AB 的中点2,33b b M ⎛⎫⎪⎝⎭在直线y x t =+上,∴233b b t =+,可得3b t =-,33t -<<.故答案为:33⎛⎫- ⎪ ⎪⎝⎭. 【点睛】关键点点睛:本题的关键点是利用直线AB 与直线y x t =+垂直可得直线AB 的斜率为1-,可设直线AB 的方程为y x b =-+,代入2212x y +=可得关于x 的一元二次方程,利用判别式0∆>,可以求出b 的范围,利用韦达定理可得AB 的中点()00,M x y 再代入y x t =+即可t 与b 的关系,即可求解. 三、解答题21.(1)24x y =;(2)230x y -+=. 【分析】 (1)将将2py =代入抛物线C 的方程可求得,M N 坐标,得,,MN OM ON ,由OMN 的周长参数p ,得抛物线方程;(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,由,A B 坐标表示出直线斜率,结合中点坐标即得直线斜率,得直线方程. 【详解】解:(1)由题意,焦点0,2p F ⎛⎫ ⎪⎝⎭,将2p y =代入抛物线C 的方程可求得,2p M p ⎛⎫- ⎪⎝⎭,,2p N p ⎛⎫⎪⎝⎭, ∴2MN p =,2OM ON p ===,所以QMN的周长为24p +=+2p =,故抛物线方程为24x y =.(2)设点211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫⎪⎝⎭,直线m 的斜率为2212121244x x x x x x -+=-, 由条件1212x x +=,故直线m 的斜率为12,从而直线m 的方程为230x y -+=.【点睛】关键点点睛:本题考查求抛物线方程,求中点弦所在直线方程.已知弦中点坐标,一般设弦两端点坐标为1122(,),(,)x y x y 代入圆锥曲线方程相减即可得中点坐标与直线斜率关系.这称为“点差法”. 22.(1)24x y =;(2)014y =. 【分析】(1)求出221x y +=与y 轴交点,得出抛物线22(0)x py p =>的焦点,求出p(2)设出直线AB ,与抛物线联立,利用12120x x y y +=求出直线的参数m ,再利用AB 为切线,求出直线方程.再与圆方程联立求出交点纵坐标即可. 【详解】(1)∵抛物线22(0)x py p =>的焦点为0,2p F ⎛⎫ ⎪⎝⎭, 圆221x y +=与y 轴交点为(0,1),122pp ∴=⇒=, 即24x y =.(2)设直线AB 为y kx m =+(k 一定存在),224404y kx m x kx m x y=+⎧∴⇒--=⎨=⎩, 2221212124,44x x x x m y y m ∴=-=⋅=,又21212,04042AOB x x y y m m m π∠=∴+=⇒-=⇒=,即直线AB 为24,115y kx k =+=⇒=,2202215(40161y x x x y ⎧=⎪∴=⇒=⎨+=⎪⎩, 20116y ∴=,即014y =.【点睛】解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11,A x y ,()22,B x y ;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)22143x y +=;(2或【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,解出2a 、2b 的值,由此可得出椭圆C 的标准方程;(2)由题意可知,直线l 的斜率存在,设直线l 的方程为()1y k x =-,设点()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,利用三角形的面积公式可得出1F AB 的面积关于k 的等式,解出k 的值即可得解. 【详解】解:(1)因为椭圆过()2222:10x y C a b a b+=>>点31,2⎛⎫- ⎪⎝⎭,221914a b ∴+=.①又因为椭圆C 的离心率为12,所以12c a =,②,由题意可得22191412a b c a c ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得24a =,23b =. ∴椭圆C 的方程为22143x y +=; (2)由题意可知,直线l 的斜率存在,设直线l 的方程为()1y k x =-,设点()11,A x y 、()22,B x y , 由22143y kx k x y =-⎧⎪⎨+=⎪⎩得()22224384120k x k x k +-+-=,则()2224310k ∆=⨯+>, 且2122843k x x k +=+,212241243k x x k -=+,112121212F AB S y y F F k x x k ∴=-⋅=⋅-=11k ===, 即422523540k k --=,解得22k =或22725k =-(舍去),所以k =∴或.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.24.(1)()240y x y =≠;(2)20x y +-=或20x y --=. 【分析】(1)设点(),P x y ,联立40x y y λλλ⎧=⎪⎪=⎨⎪≠⎪⎩,消去参数λ可得出动点P 的轨迹C 的方程;(2)设直线AB 的方程为2x ty =+,设点()11,A x y 、()22,B x y ,将直线AB 的方程与曲线C 的方程联立,列出韦达定理,利用抛物线的焦半径公式结合韦达定理求出t 的值,由此可求得直线AB 的方程.【详解】(1)设点(),P x y ,联立40x y y λλλ⎧=⎪⎪=⎨⎪≠⎪⎩,消去参数λ得()240y x y =≠, 因此,点P 的轨迹C 的方程为()240y x y =≠; (2)若直线m 与x 轴重合,此时,直线m 与曲线C 无公共点,不合乎题意.设直线m 的方程为2x ty =+,设点()11,A x y 、()22,B x y ,联立224x ty y x=+⎧⎨=⎩,可得2480y ty --=,则216640t ∆=+>, 由韦达定理可得124y y t +=,易知点()1,0F 为抛物线24y x =的焦点, 所以,()21212264610AF BF x x t y y t +=++=++=+=,解得1t =±, 因此,直线AB 的方程为20x y +-=或20x y --=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.25.(1)2214x y +=;(2)证明见解析. 【分析】(1)由题意可得c a =2a c +=222a b c =+即可求出,a b 得值,进而可得椭圆C 的方程;(2)由椭圆的方程可得,A B 两点的坐标,设(,)(0,0)M m n m n >>,即可求出直线BM 、AM 的方程,进而可得点C 、D 的坐标,结合2214m n +=,计算1||||2ABCD S AC BD =⋅⋅即可求解. 【详解】(1)由已知可得:22222c a a c a b c ⎧=⎪⎪⎪+=+⎨⎪=+⎪⎪⎩21a b =⎧⎨=⎩. 所以椭圆C 的方程为:2214x y +=. (2)因为椭圆C 的方程为:2214x y +=,所以(2,0)A -,(0,1)B -, 设(,)(0,0)M m n m n >>,则2214m n +=,即2244m n +=. 则直线BM 的方程为:11n y x m +=-,令0y =,得1c m x n =+; 同理:直线AM 的方程为(2)2n y x m =++,令0x =,得22D n y m =+. 所以21121(22)||||2122122(2)(1)ABCD m n m n S AC BD n m m n ++=⋅⋅=⋅+⋅+=⋅++++ 22144448144882222222m n mn m n mn m n mn m n mn m n ++++++++=⋅=⋅=++++++. 即四边形ABCD 的面积为定值2.【点睛】关键点点睛:本题解题的关键点是设出点(,)(0,0)M m n m n >>,求出直线BM 、AM 的方程以及点C 、D 的坐标,直接计算ABCD S ,需要注意点(,)M m n 在椭圆上可得2214m n +=.求定值的问题往往设而不求整体消参. 26.(1)y 2=4x ;(2)证明见解析.【分析】(1)利用抛物线定义,由|AF |=2+2p =3求解即可; (2)根据点(2,)A m 在抛物线E 上,解得m ,不妨设A (2,直线AF 的方程为1)y x =-,联立)214y x y x ⎧=-⎪⎨=⎪⎩,然后证明k G A +k G B =0即可. 【详解】(1)由抛物线定义可得:|AF |=22p +=3, 解得p =2,∴抛物线E 的方程为y 2=4x . (2)∵点(2,)A m 在抛物线E 上,∴m 2=4×2,解得m =±(2A ,(1,0)F , ∴直线AF的方程:1)y x =-,联立)214y x y x⎧=-⎪⎨=⎪⎩,化为2x 2﹣5x +2=0, 解得x =2或12,B 12⎛- ⎝,. 又(1,0)G -,∴()0213GA k ==--,()01312GB k ==---, ∴k GA +k GB =0,∴∠AGF =∠BGF ,∴x 轴平分∠AGB ,因此点F 到直线GA ,GB 的距离相等,∴以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【点睛】关键点点睛:本题考查直线和抛物线的位置关系,由GF 为∠AGB 的平分线,即∠AGF =∠BGF ,转化为 k G A +k G B =0结合韦达定理证明.。
上海民办平和学校选修1-1第二章《圆锥曲线与方程》测试卷(有答案解析)
一、选择题1.已知点()P m n ,是抛物线214y x =-上一动点,则2222(1)(4)(5)m n m n +++-++的最小值为A .4B .5C .30D .62.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线250x y -+=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( ) A .2B .3C .2D .53.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .44.若椭圆22221(0)x y a b a b +=>>的离心率为22,则213a b +的最小值为( )A .23B .3 C .2D .25.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .1636.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( )A .12S SB .122S S =C .1232S S =D .1243S S =7.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A .2273+ B .273+ C .53D .28.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .69.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( ) A .4B .6C .8D .1010.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( ) A .25 B .100 C .9 D .36 11.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( ) A 487 B 247C .147D .2414712.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.方程1169x x y y+=表示的曲线为函数()y f x =的图象.对于函数()y f x =,现有如下结论:①函数()y f x =的值域是R ;②()y f x =在R 上单调递减;③()y f x =的图象不经过第三象限;④直线340x y +=与曲线()y f x =没有交点.其中正确的结论是___________.14.设P 是抛物线28y x =上的一个动点,若点B 为()3,2,则PB PF +的最小值为________________.15.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l于点C .若6AF =,2CB BF =,则p =____________16.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.17.设1F ,2F 为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 的直线l 交双曲线C 的右支于A 、B 两点,且120AF AF ⋅=,2212AF BF =,则双曲线C 的离心率为___________.18.若实数x ,y 2222(3)(3)10x y x y +++-=,则2222(1)(3)x y x y -+++-________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.如图所示,已知M ,N 为双曲线22221(0,0)x y a b a b-=>>上关于原点对称的两点,点M与点Q 关于x 轴对称,2516ME MQ =,直线NE 交双曲线右支于点P ,若2NMP π∠=,则e =_____________.三、解答题21.荷兰数学家舒腾(F.van Shooten ,1615-1660)设计了一种画椭圆的工具,如图1所示,两根等长的带槽的直杆AC 和BF 的一端各用钉子固定在点A 和B 上(但分别可以绕钉子转动),4AC BF ==,另一端用铰链与杆FC 连接,2FC AB ==,AC 和BF 的交点为E ,转动整个工具,交点E 形成的轨迹为椭圆Γ.以线段AB 中点O 为原点,AB 所在的直线为x 轴建立如图2的平面直角坐标系.(1)求椭圆Γ的标准方程;(2)经过B 点的直线l 交椭圆Γ于不同的两点M N 、,设点P 为椭圆的右顶点,当PNM △62时,求直线l 的方程.22.如图,已知抛物线21:2C y x =直线2y kx =+交抛物线C 于A ,B 两点,O 为坐标原点.(1)证明:OA OB ⊥;(2)设抛物线C 在点A 处的切线为1l ,在点B 处的切线为2l ,证明:1l 与2l 的交点M 在一定直线上.23.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,2右焦点到左顶点的距离是2 3.+(1)求椭圆C 的方程;(2)设点M 为椭圆上位于第一象限内一动点,A ,B 分别为椭圆的左顶点和下顶点,直线MB 与x 轴交于点C ,直线MA 与y 轴交于点D ,求证:四边形ABCD 的面积为定值. 24.如图,已知抛物线24y x =的焦点为F ,过F 作斜率为(0)k k >的直线交抛物线于()11,A x y 、()22,B x y 两点,且10y >,弦AB 中垂线交x 轴于点T ,过A 作斜率为k -的直线交抛物线于另一点C .(1)若14y =,求点B 的坐标;(2)记ABT 、ABC 的面积分别为1S 、2S ,若214S S =,求点A 的坐标.25.已知椭圆2222:1(0)x y C a b a b +=>>的焦点在圆223x y +=3(1)求椭圆C 的方程;(2)过原点O 的直线l 与椭圆C 交于,A B 两点,F 为右焦点,若FA 垂直于AB ,求直线l 的斜率.26.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值.最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.2.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -=过点F,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=.可得1a =ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.B解析:B【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】 如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.4.C解析:C 【分析】由椭圆的离心率为223和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解. 【详解】由题意,椭圆22221(0)x y a b a b +=>>的离心率为3,即3c a =,即3c =,又由222a b c =+,可得2219b a =,即3a b =所以22191132333a b b b b b ++==+≥,当且仅当133b b=,即13b =时,“=”成立.故选:C. 【点睛】 关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.5.D解析:D 【分析】由题意作出MD 垂直于准线l ,然后得2PM MD =,得30∠=︒DPM ,写出直线方程,联立方程组,得关于y 的一元二次方程,写出韦达定理,代入焦点弦公式计算. 【详解】如图,过点M 做MD 垂直于准线l ,由抛物线定义得M F M D =,因为PF FM =,所以2PM MD =,所以30∠=︒DPM ,则直线MN方程为1)x y =-,联立21)4x y x y ⎧=-⎪⎨=⎪⎩,,消去x 得,231030y y -+=,设()()1122,,,M x y N x y ,所以121210,13y y y y +==,得121016||2233MN y y =++=+=. 故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.6.D解析:D 【分析】设12MF F △的面积为S ,内切圆半径为r ,则可得4Sr c=,从而可得1121122244S S F F r c S c ==⋅⋅=,再由G 是12MF F △的重心,可得11222213323MOF MF F SS S S ==⨯=,进而可得结果 【详解】解:由于椭圆的离心率为13,所以13c a =,即3a c =,设12MF F △的面积为S ,内切圆半径为r ,则121211()(22)422S MF MF F F r a c r cr =++=+=, 所以4Sr c=, 所以1121122244S S F F r c S c ==⋅⋅=, 因为G 是12MF F △的重心, 所以11222213323MOF MF F S S S S ==⨯=,所以1234S S =,即1243S S =, 故选:D 【点睛】关键点点睛:此题考查椭圆的性质的应用,解题的关键是设12MF F △的面积为S ,内切圆半径为r ,然后求出4Sr c=,进而可表示出1S ,2S ,从而可得结果,属于中档题 7.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54by x c a c =++,化简得3(54)30bx a c y bc -++=,又直线FP 与圆222x y a +=相切,a =,345bc a a c =+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.8.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果9.C解析:C 【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度. 【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=, 设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y , 则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.10.A解析:A 【分析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值. 【详解】记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长),又由余弦定理得2224m n mn c ++=,所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立. 故选:A . 【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MF MF a '-=,不能混淆. 11.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22b a18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案. 【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得a =FAB的周长为4a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点,所以20a ->,即2a >,此时圆半径为2r ==>. 因此当2r >时,圆无法触及抛物线的顶点O . 故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.①②③④【分析】根据方程分别讨论和四种情况得到不同的解析式画出对应的图象即可得答案【详解】当时方程为表示椭圆在第一象限的部分当时方程为表示双曲线在第四象限的部分当时方程为表示双曲线在第二象限的部分当解析:①②③④ 【分析】根据方程,分别讨论0,0x y ≥≥、0,0x y ><、0,0x y <>和0,0x y <<四种情况,得到不同的解析式,画出对应的图象,即可得答案. 【详解】当0,0x y ≥≥时,方程为221169x y+=,表示椭圆在第一象限的部分,当0,0x y ><时,方程为221169x y -=,表示双曲线在第四象限的部分, 当0,0x y <>时,方程为221916y x-=,表示双曲线在第二象限的部分,当0,0x y <<时,方程为221916y x --=,无意义,所以()y f x =图象如下所示:所以函数()y f x =的值域是R ;故①正确;()y f x =在R 上单调递减,故②正确; ()y f x =的图象不经过第三象限,故③正确;直线340x y +=为双曲线的渐近线,所以曲线()y f x =没有交点,故④正确. 故答案为:①②③④ 【点睛】解题的关键是根据题意,分类讨论,得到不同的解析式,再画图求解,考查分类讨论,数形结合的能力,属基础题.14.5【分析】求出抛物线的准线方程把到焦点距离转化为它到准线的距离然后利用三点共线得最小值【详解】如图过作与准线垂直垂足为则∴易知当三点共线时最小最小值为∴的最小值为5故答案为:5【点睛】本题考查抛物线解析:5 【分析】求出抛物线的准线方程,把P 到焦点F 距离转化为它到准线的距离,然后利用三点共线得最小值. 【详解】如图,过P 作PM 与准线2x =-垂直,垂足为M ,则PF PM =,∴PF PB PM PB +=+,易知当,,B P M 三点共线时,PM PB +最小,最小值为3(2)5--=.∴PB PF +的最小值为5.故答案为:5.【点睛】本题考查抛物线的定义,考查抛物线上的点到焦点和到定点距离之和的最小值,解题方法是利用抛物线的定义把点到焦点的距离转化为点到准线距离.15.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3 【分析】过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,根据2CB BF =结合抛物线的定义可得30DFA MCB ∠=∠=,据此求出||3AD =,再根据抛物线的定义可求出p . 【详解】如图:过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,因为2CB BF =,所以||2||CB BF =, 因为||||BF BM =,所以||2||CB BM =, 所以30MCB ∠=,所以30DFA ∠=,在直角三角形ADF 中,因为||6AF =,所以||3AD =, 因为||||6AN AF ==,且||||3AN AD p p =+=+, 所以63p =+,所以3p =. 故答案为:3 【点睛】关键点点睛:利用抛物线的定义求解是解题关键.16.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:3⎡⎫⎪⎢⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤ 所以离心率22213112c b e a a ⎫⎛==-≥-= ⎪⎝⎭3⎫∈⎪⎪⎣⎭e .故答案为:⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.【分析】利用双曲线的定义分别表示再利用勾股定义和双曲线的定义建立等量关系求双曲线的离心率【详解】设根据双曲线的定义可知即得得中即得根据双曲线的定义即得所以得故答案为:【点睛】方法点睛:本题考查直线与【分析】利用双曲线的定义分别表示1212,,,AF AF BF BF ,再利用勾股定义和双曲线的定义建立等量关系,求双曲线的离心率. 【详解】设2AF x =,22BF x =,1AF y =,根据双曲线的定义可知1212AF AF BF BF -=-, 即12y x BF x -=-,得1BF y x =+,120AF AF ⋅=,12AF AF ∴⊥,()()2223y x y x ∴+=+,得4y x =,12Rt AF F △中,222124AF AF c +=,即22174x c =,得x =,根据双曲线的定义122AF AF a -=,即32x a =,得23x a =,23a =,得c e a ==【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】由已知条件得出点P 在以为焦点以为长轴长的椭圆上再由两点的距离公式得出表示点到点的距离之和再根据椭圆的定义将问题转化为求的范围根据两点的距离公式可求得范围【详解】设点则由椭圆的定义得点P 在以为解析:[10【分析】由已知条件得出点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,再由两+(),P x y 到点()()11,00,3A F ,的距离之和,再根据椭圆的定义将问题转化为求210+d PA PF =-的范围,根据两点的距离公式可求得范围. 【详解】设点(),P x y ,则由椭圆的定义得点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,所在椭圆的方程为:22+11625x y =,(),P x y 到点()()11,00,3A F ,的距离之和,即1+d PA PF =,由椭圆的定义得12+210PF PF a ==,所以1210PFPF =-,所以()122++1010+d PA PF PA PF PA PF ==-=-,而222AF PA PF AF -≤-≤,又2AF ==,所以21010+d PA PF ≤=-≤[10,故答案为:[10. 【点睛】关键点点睛:本题考查根式的最值和范围求解问题,解决的关键在于利用椭圆的定义得出动点的轨迹,将问题转化为求两线段的距离之差的范围.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440y ky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫--⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】设利用点差法得到即可求出离心率;【详解】解:设则由得从而有又所以又由从而得到所以所以故答案为:【点睛】双曲线的离心率是双曲线最重要的几何性质求双曲线的离心率(或离心率的取值范围)常见有两种方解析:54【分析】设()()1122,,,M x y P x y 利用点差法得到22PM PN b k k a⋅=,即可求出离心率; 【详解】解:设()()1122,,,M x y P x y ,则()()1111,,,N x y Q x y ---.由2516ME MQ =,得1117,8E x y ⎛⎫- ⎪⎝⎭,从而有11119,16MN PN EN y y k k k x x ===-,又1190,MN y NMP k x ∠==,所以11MP x k y =-, 又由()()()()22112212121212222222221111x y a bx x x x y y y y ab x y a b ⎧-=⎪⎪⇒+-=+-⎨⎪-=⎪⎩, 从而得到22PM PNb k k a ⋅=所以211211991616PM PN x y b k k y x a ⎛⎫⋅=-⋅-== ⎪⎝⎭,所以54e ==.故答案为:54【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).三、解答题21.(1)22143x y +=;(2)1x y =±+.【分析】(1)设椭圆Γ的标准方程为22221 xya b+=,连接AF,由AFB AFC≌,得到ABE FCE△≌△,再利用椭圆定义求解.(2)设直线l的方程为:1x my=+,联立221143x myx y=+⎧⎪⎨+=⎪⎩,结合韦达定理得到12y y-,然后由PNM△的面积为627求解.【详解】(1)如图所示:由题意可设椭圆Γ的标准方程为22221x ya b+=,连接AF,可得AFB AFC≌,所以,,4ABE FCE EF AE EA EB EF EB FB=+=+==≌,由椭圆定义可知:2,1a c==,3b=所以椭圆Γ的方程为22143x y+=.(2)由题意知,(1,0)B,设直线l的方程为:1x my=+,设()()1122,,,M x y N x y,联立221143x myx y=+⎧⎪⎨+=⎪⎩,消去x得:()2234690m y my++-=,可知212212134my ym+-=+,21216112PMNmS y y+∴=⨯-⨯=.2347m ∴=+,解得1m =±,所以直线l 的方程为1x y =±+. 【点睛】方法点睛:1、解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2、解决直线与曲线的弦长时,往往设直线与曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB ==k 为直线斜率).注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.22.(1)证明见解析;(2)证明见解析. 【分析】 (1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭,联立直线与抛物线方程,消元、列出韦达定理,即可得到0OA OB ⋅=,从而得证;(2)对函数求导,利用导数的几何意义求出过点A 、B 的切线1l 、1l 的方程,即可得到12122y x x ==-,即可得证; 【详解】解:(1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭, 把2y kx =+代入212y x =,得2240x kx --=. 由韦达定理得122x x k +=,124x x =-.()22211221212111,,0224OA OB x x x x x x x x ⎛⎫⎛⎫∴⋅=⋅=+= ⎪ ⎪⎝⎭⎝⎭. 所以OA OB ⊥(2)212y x =,y x '∴=, 故经过点211,12A x x ⎛⎫ ⎪⎝⎭的切线1l 的方程为:()211112y x x x x -=-, 即21112y x x x =-,①同理,经过点222,12B x x ⎛⎫ ⎪⎝⎭的切线2l 的方程为:22212y x x x =-,②21x x ⨯-⨯①②,得12122y x x ==-. 即点M 在直线:2l y =-上. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.23.(1)2214x y +=;(2)证明见解析.【分析】(1)由题意可得c a =2a c +=222a b c =+即可求出,a b 得值,进而可得椭圆C 的方程;(2)由椭圆的方程可得,A B 两点的坐标,设(,)(0,0)M m n m n >>,即可求出直线BM 、AM 的方程,进而可得点C 、D 的坐标,结合2214m n +=,计算1||||2ABCD S AC BD =⋅⋅即可求解.【详解】(1)由已知可得:22222c a a c a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:21a b =⎧⎨=⎩. 所以椭圆C 的方程为:2214x y +=.(2)因为椭圆C 的方程为:2214x y +=,所以(2,0)A -,(0,1)B -,设(,)(0,0)M m n m n >>,则2214m n +=,即2244m n +=.则直线BM 的方程为:11n y x m +=-,令0y =,得1c mx n =+; 同理:直线AM 的方程为(2)2n y x m =++,令0x =,得22D ny m =+.所以21121(22)||||2122122(2)(1)ABCDm n m n S AC BD n m m n ++=⋅⋅=⋅+⋅+=⋅++++ 22144448144882222222m n mn m n mn m n mn m n mn m n ++++++++=⋅=⋅=++++++. 即四边形ABCD 的面积为定值2.【点睛】关键点点睛:本题解题的关键点是设出点(,)(0,0)M m n m n >>,求出直线BM 、AM 的方程以及点C 、D 的坐标,直接计算ABCD S ,需要注意点(,)M m n 在椭圆上可得2214m n +=.求定值的问题往往设而不求整体消参. 24.(1)1,14B ⎛⎫- ⎪⎝⎭;(2)A . 【分析】(1)设直线AB ,然后联立方程组,根据韦达定理,代入14y =,即可求出2y ,再代入抛物线方程即可得点B 的坐标;(2)设()33,C x y ,表示出直线AB 与AC 的斜率,然后相加为零得3122=--y y y ,表示出直线AB 的中垂线方程,求出点T 的坐标,将214S S =转化为4=C T d d ,列式计算.【详解】(1)设直线AB 方程为1x my =+∴21212214404,44x my y my y y y y m y x=+⎧⇒--=⇒=-+=⎨=⎩ ∵1221414y y x =⇒=-⇒=即1,14B ⎛⎫-⎪⎝⎭(2)设()33,C x y ∵12122212121244--===--+AB y y y y k y y x x y y ,同理:134AC k y y =+,因为直线AB 与AC 的斜率分别为,k k -,∴1213312121344002y y y y y y y y y y y +=⇒+++=⇒=--++ 又∵直线AB 方程为:()()1112124440y y x x x y y y y y -=-⇒-+-=+ 直线AB 中垂线方程为:121212242y y y y x x y x +++⎛⎫-=-- ⎪⎝⎭,令221212022288T x x y y y x +=⇒=+=++又∵2144C T S S d d =⇒=,=C d221284=++-=T y y d ∴()()()()21212123123222212122244448442222++++--+-===++-++C Ty y y y y y x y y y d y y y yd又∵124y y =-∴212211212132632412842y y y A y y -+=⇒=⇒++ 【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.25.(1) 2214x y +=;(2)【分析】(1)由焦点在圆上解得c =2a =,2221b a c =-=,方程可求; (2)因为FA 垂直于AB 可知点A 为椭圆与圆的交点,联立方程求得坐标,则直线斜率可求. 【详解】解:(1)椭圆2222:1(0)x y C a b a b+=>>的焦点在圆223x y +=上,所以203c += ,即c =,因为2c e a == 得2a =,2221b a c =-=,故椭圆方程为2214x y +=(2)因为FA 垂直于AB,即点A 既在椭圆上又在以OF 为直径的圆上,所以 222214324x y x y ⎧+=⎪⎪⎨⎛⎪-+=⎪⎝⎭⎩解得3x y ⎧=⎪⎪⎨⎪=±⎪⎩所以A ⎝⎭。
上海市选修1-1第二章《圆锥曲线与方程》测试题(有答案解析)
一、选择题1.平面α内有一条直线m ,过平面α外一点P 作直线n 与m 所成角为6π,则直线n 与平面α交点的轨迹是( ) A .直线B .抛物线C .椭圆D .双曲线2.已知抛物线2:2C y px =的焦点为F ,过抛物线上两点A ,B 分别向抛物线C 的准线作垂线,垂足为M ,N ,且()95OBN OAM ABNM S S S +=梯形△△,当直线AB 经过点F 且点F 到抛物线C 准线的距离为4时,直线l 的斜率为( )A .2±B .±C .8±D .±3.已知斜率为(0)k k >的直线l 与抛物线2:4C y x =交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM ∆的面积等于3,则k =( )A .14B .13C .12D 4.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .⎣B .3⎡⎢⎣C .3⎡⎢⎣D .⎣ 5.过抛物线26y x =的焦点作一条直线与抛物线交于()()1122,,,A x y B x y 两点,若123x x +=,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条6.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .y x =D .y x = 7.设抛物线2:4C y x =的焦点为F ,M 为抛物线上异于顶点的一点,且M 在直线1x =-上的射影为N ,若MNF 的垂心在抛物线C 上,则MNF 的面积为( )A .1B .2C .3D .48.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( ) A .230x y +-=B .210x y -+=C .210x y -+=D .20x y +-=9.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .810.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A B C .7D11.已知动点(),P x y 5a a=+(a 为大于零的常数)﹐则动点P 的轨迹是( ) A .线段B .圆C .椭圆D .双曲线12.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .B .(6,8)C .D .(6,10)二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.已知双曲线M :22221x y a b-=(0a >,0b >)的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是___________.15.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,焦距为2c ,若直线)y x c =-与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.16.设1A 、2A 为椭圆()222210x ya b a b+=>>的左、右顶点,若在椭圆上存在异于1A 、2A 的点P ,使得10PO PA ⋅=,其中O 为坐标原点,则椭圆的离心率e 的取值范围是_____. 17.已知圆22:68210C x y x y ++++=,点A 是圆C 上任一点,抛物线28y x =的准线为l ,设抛物线上任意一点Р到直线l 的距离为m ,则m PA +的最小值为_______18.过双曲线M :2213x y -=的右焦点F 作圆C :221(1)2x y ++=的切线,此切线与M 的右支交于A ,B 两点,则||AB =___________.19.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且3||PF =,则双曲线C 的标准方程为_________. 20.过抛物线24y x =的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若||3AF =,则AOB 的面积为_______.三、解答题21.椭圆2212516x y +=上一点P 到左焦点F 的距离为6,若点M 满足1()2OM OP OF =+(O 为坐标原点),则||OM =________.22.在平面直角坐标系xOy 中,已知直线y x =被抛物线2:2(0)C y px p =>截得的弦长为42,直线l 与抛物线C 相交于点M ,N ,点()1,2A ,且直线AM ,AN 的斜率之和为4.(1)求抛物线C 的方程;(2)求证:直线l 过定点,并求出定点坐标.23.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且椭圆C 经过点32,22A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)椭圆C 的右焦点为F ,过点A 作两条倾斜角互补的直线分别交椭圆于B ,C 两点,证明://BC AF .24.如图,点(1,0)F 为椭圆2222:1(0)x yE a b a b+=>>的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),||3CD =.(1)求椭圆E 的方程;(2)设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.25.设抛物线2:2(0)C y px p =>的焦点为F ,(1,2)M 是抛物线C 上的点. (1)求抛物线C 的方程;(2)若过点(2,0)的直线l 与抛物线C 交于不同的两点,A B ,且13AF BF ⋅=,求直线l 的方程.26.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为5.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系,设出坐标,分别表示出直线AB 与PM 的方向向量,利用夹角公式即可得出. 【详解】解:过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系.不妨设1OP =,30PBO ∠=︒,3OB ∴=. 则(0P ,0,1),3,0)B .设点(Q x ,y ,0),则(,,1)PQ x y =-,取直线m 的方向向量为(0,1,0)u =. 直线AB 与PQ 所成的角为30,22||3cos30||||1PQ u PQ u x y ∴︒===++, 化为2213y x -=,即为点Q 的轨迹.故选:D .【点睛】熟练掌握通过建立如图所示的空间直角坐标系利用异面直线的夹角公式求得轨迹的方法是解题的关键.2.B解析:B 【分析】根据题意,求得4p =,可得抛物线的方程,因为()95OBN OAM ABNM S S S +=梯形△△,所以49OMN OAB ABMN S S S +=梯形△△,根据面积公式,结合抛物线定义,即可求得AB ,不妨设AB 的斜率为k ,可得直线AB 的方程,与抛物线联立,根据韦达定理,可求得A B x x +的值,代入弦长公式,即可求得答案. 【详解】因为点F 到抛物线C 准线的距离为4,所以4p =,所以28y x =, 设抛物线C 的准线与x 轴交于点H ,因为()95OBN OAM ABNM S S S +=梯形△△,所以()()11422192M N A BOMN OABABMNM N OH y y OF y y S S S AM BN y y ⋅-+⋅-+==+⋅-梯形△△,因为2OH OF ==,M N A B y y y y -=-,AM BN AB +=,所以449OMN OAB ABMN S S S AB +==梯形△△,则9AB =, 显然直线AB 的斜率存在,不妨设为k ,则():2AB y k x =-, 与抛物线联立可得:()22224840k x k x k -++=,从而284AB x x k +=+, 所以28489A B A k B x x =++=+=,解得22k =±. 故选:B【点睛】解题的关键是根据面积的关系,得到49OMN OAB ABMN S S S +=梯形△△,结合图象,可求得9AB =,再利用抛物线的弦长公式求解,考查分析计算,化简求值的能力,属中档题.3.B解析:B 【分析】先求出F ,设出A 、B 、M ,用“点差法”找出121202y y k x x y -==-,利用OFM ∆的面积等于3计算出0y ,求出斜率k . 【详解】由抛物线2:4C y x =知:焦点()1,0F 设()()()112200,,,,,,A x y B x y M x y因为M 是线段AB 的中点,所以0121222x x x y y y =+⎧⎨=+⎩将2114y x =和2224y x =两式相减可得:()2212124y y x x -=-,即121202y y k x x y -==- ∵000k y >∴> ∴00113,62OFM S y y ∆=⨯⨯=∴=,022163k y ∴===. 故选:B 【点睛】“中点弦”问题通常用“点差法”处理.4.C解析:C 【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k -+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以B C A D +=+, 令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.5.A解析:A 【分析】由抛物线方程求得焦点F 的坐标,分直线AB 斜率不存在和直线斜率存在,存在时设直线AB 方程与抛物线方程联立,由韦达定理表示出A 、B 两点的横坐标之和,求得k ,即可得结论. 【详解】抛物线26y x =的焦点为3,02F ⎛⎫ ⎪⎝⎭, 当过焦点的直线斜率不存在时,即为32x =, 1232x x ==,符合123x x +=, 当过焦点的直线斜率存在时设为32y k x ⎛⎫=- ⎪⎝⎭, 与抛物线交于()()1122,,,A x y B x y 两点,由2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得()222293604k k x k x -++=, 所以2122363k x x k++==,即22363k k +=,所以无解, 则这样的直线有且只有一条. 故选:A. 【点睛】本题考查直线与抛物线的位置关系,解题的时候要注意讨论直线斜率不存在时的情况,以免遗漏,是中档题.6.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:2b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.7.B解析:B 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,则点()01,N y -,求出MNF 的垂心H 的坐标,再由MH FN ⊥可求得0y 的值,进而可求得MNF 的面积. 【详解】设点200,4y M y ⎛⎫⎪⎝⎭,则点()01,N y -,设点M 在第一象限, 抛物线C 的焦点为()1,0F ,设MNF 的垂心为H , 由于FH MN ⊥,则点H 的横坐标为1,可得点()1,2H ,MH FN ⊥,则0HM FN ⋅=,2001,24y HM y ⎛⎫=-- ⎪⎝⎭,()02,FN y =-,()()22200000012122220422y y HM FN y y y y ⎛⎫⋅=--+-=-+=-= ⎪⎝⎭,解得02y =,所以,点M 的坐标为()1,2,所以,2MN =,12222MNF S =⨯⨯=△. 故选:B. 【点睛】关键点点睛:解决本题的关键在于利用已知条件求出点M 的坐标,本题特殊的地方在于MN y ⊥轴,可得出垂心与焦点的连线垂直于x 轴,再结合垂心在抛物线求出垂心的坐标.8.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-= 所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩ 则()1,1P设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-,即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.9.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点, 所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==, 所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===,所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.10.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b+=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=, 所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.7e ∴=== 故选:C 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.11.C解析:C【分析】由a 为大于零的常数,可知5a a+的最小值,再根据两点间距离公式得几何意义以及椭圆定义判断轨迹. 【详解】的几何意义为点(),P x y 与点(0,2)A 间的距离,的几何意义为点(),P x y 与点(0,2)B -间的距离,且4AB =又由a 为大于零的常数,可知54a a +≥=>,当且仅当5a a=,即a =54a a=+>, 即动点P 到点A 与到点B 的距离之和为定值,且大于AB , 所以动点P 的轨迹为椭圆, 故选:C. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.12.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290FPF ∠=,又1,2,5a b c === 由222111212|||||20|PF PF F F =+=,1112||||2PF PF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290FF P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p px x k ++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】设双曲线的右焦点经过点T 所作的圆的两条切线互相垂直等价于转化为点到渐近线的距离解得再根据离心率公式可得结果【详解】依题意可得双曲线的右焦点渐近线方程为因为M 的渐近线上存在点T 使得经过点T 所作解析:1e <≤【分析】设双曲线M 的右焦点(c,0)F ,经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,等价于TF =,转化为点(c,0)F 到渐近线的距离d TF ≤,解得ba≤据离心率公式可得结果. 【详解】依题意可得双曲线M 的右焦点(c,0)F ,渐近线方程为0bx ay ±=,因为M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,设两个切点为,P Q ,所以PTQ ∠2π=,4PTF π∠=,因为FP PT ⊥,PF a =,所以TF =,所以双曲线M 的渐近线上存在点T ,使得TF =,所以点(c,0)F 到渐近线的距离d =≤,即ba ≤,所以离心率c e a =====≤=又1e >,所以1e <≤所以双曲线M 的离心率的取值范围是1e <≤故答案为:1e <≤【点睛】关键点点睛:求双曲线离心率的取值范围的关键是得到,,a b c 的不等式,根据M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,得到圆心到可得,,a b c 的不等式.15.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系1【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF ,再利用椭圆的定义及离心率的计算公式即可得出. 【详解】设直线)y x c =-的倾斜角为α,则tan α=0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则211,MF MF ===由椭圆定义得122||||1a MF MF =+=∴椭圆的离心率212c e a ===.1. 【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.16.【分析】设点由可得出求出函数在区间上的零点为化简得出进而可解得的取值范围【详解】设点则可知点设则函数在区间上存在零点则为方程的一根设函数在区间内的零点为由韦达定理可得所以即整理可得即解得因此椭圆的离解析:⎫⎪⎪⎝⎭【分析】设点(),P x y ,由10PO PA ⋅=可得出2220e x ax b ++=,求出函数()f x 在区间(),0a -上的零点为22ab c-,化简得出2201b c <<,进而可解得e 的取值范围.【详解】设点(),P x y ,则22222b y b x a=-,可知点()1,0A a -,(),PO x y =--,()1,PA a x y =---,()()22222222221220b c PO PA x a x y x y ax x b x ax x ax b a a⋅=---+-=++=+-+=++=,设()222f x e x ax b =++,则函数()f x 在区间(),0a -上存在零点,()2220f a c a b -=-+=,则a -为方程2220e x ax b ++=的一根,设函数()f x 在区间(),0a -内的零点为1x ,由韦达定理可得222122b a b ax e c-==,212ab x c∴=-,所以,220ab a c -<-<,即2201b c <<,整理可得2222a c b c -=<,222a c ∴<,即221e >,01e <<1e <<.因此,椭圆的离心率e 的取值范围是2⎛⎫⎪ ⎪⎝⎭.故答案为:2⎛⎫⎪ ⎪⎝⎭.【点睛】方法点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a 、c ,代入公式ce a=; ②只需要根据一个条件得到关于a 、b 、c 的齐次式,结合222b a c =-转化为a 、c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(或不等式),解方程(或不等式)即可得e (e 的取值范围).17.【分析】由抛物线的定义可知结合圆的性质当且仅当三点共线时等号成立取得最值【详解】由圆可得圆心设的焦点为则抛物线上任意一点Р到直线l 的距离为过点作于点则由抛物线的定义可知所以当且仅当三点共线时等号成立2【分析】由抛物线的定义可知m PF =,m PA PF PA +=+结合圆的性质,当且仅当,,P F C 三点共线时等号成立取得最值. 【详解】由圆22:68210C x y x y ++++=可得圆心()3,4C --,2r,设28y x =的焦点为F ,则()2,0F ,:2l x =-, 抛物线上任意一点Р到直线l 的距离为m , 过点P 作PH l ⊥于点H ,则PH m =, 由抛物线的定义可知PH PF =,所以2m PA PH PA PF PA FC r FC +=+=+≥-=-()()223242412=--+-=,当且仅当,,P F C 三点共线时等号成立, 所以m PA +412, 412. 【点睛】关键点点睛:本题解题的关键点是利用抛物线的定义转化为抛物线上一点到焦点的距离与到圆上一点的距离之和的最小值,利用三点共线即可求解.18.【分析】首先设出直线利用直线与圆相切求直线方程再利用弦长公式求弦长【详解】因为直线过双曲线的右焦点且与圆相切所以直线的斜率存在设直线方程为()由直线与圆相切知解得或当时双曲线的一条渐近线的斜率是该直 解析:23【分析】首先设出直线,利用直线与圆相切,求直线方程,再利用弦长公式求弦长AB . 【详解】因为直线过双曲线的右焦点且与圆相切,所以直线的斜率存在, 设直线方程为0y k -=(2x -)2221k =+,解得1k =或17k =,当17k =17<,该直线不与双曲线右支相交于两点,故舍去;所以直线方程为2y x =-,联立双曲线方程,消元得2212150x x -+=.设()11,A x y ,()22,B x y ,则126x x +=,12152x x =,所以12||AB x =-===故答案为:【点睛】易错点点睛:利用直线与圆相切,得到两个斜率1k =或17k =,需舍去一个,否则出现增根.19.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,2b a =222c a b =+,整理求得结果.【详解】根据题意,可知2b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立222222b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.20.【分析】根据已知条件不妨设在第一象限根据抛物线定义以及方程求出点坐标进而得出直线方程与抛物线方程联立求出点坐标即可求出AOB 的面积【详解】抛物线的焦点为∵∴点A 到准线的距离为3点的横坐标为根据对称性解析:2【分析】根据已知条件不妨设A 在第一象限,根据抛物线定义以及方程,求出A 点坐标,进而得出直线AF 方程,与抛物线方程联立,求出B 点坐标,即可求出AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,∵3AF =,∴点A 到准线:1l x =-的距离为3, 点A 的横坐标为2,根据对称性不妨设点A 在第一象限, 设1122(2,)(0),(,)A y y B x y >,2x =代入抛物线方程得1y =,直线AF 方程为1)y x =-,联立21)4y x y x⎧=-⎪⎨=⎪⎩,消去x 得,240y -=,解得12y y ==,∴AOB 的面积为1211122S y OF y =⨯⨯==-⨯⨯.故答案为:2. 【点睛】本题考查抛物线的定义,考查三角形的面积的计算,确定相交点的坐标是解题关键,属于中档题.三、解答题21.2 【分析】根据222a c b -=求出左焦点F 的坐标,然后设P 的坐标00(,)P x y ,根据两点间的距离公式求出P 到左焦点的距离以及代入椭圆方程中解得P 的坐标,由1()2OM OP OF =+得到M 为PF 的中点,根据中点坐标公式求出M 的坐标,利用两点间的距离公式求出||OM 即可.【详解】由椭圆2212516x y +=得5a =,4b =,左焦点(3,0)F -,设00(,)P x y ,则()2200336x y ++=又220012516x y +=解得053x =或0553x =-(舍去);又P 在椭圆上,则将053x =代入到椭圆方程中求出0y =所以点5(3P ,; 由点M 满足1()2OM OP OF =+,则得M 为PF 中点,根据中点坐标公式求得2,3M ⎛- ⎝⎭,所以||(2OM =-故答案为:2. 【点睛】本题考查椭圆的简单几何性质,会利用两点间的距离公式及中点坐标公式、点到直线的距离公式化简求值,同时也考查学生掌握向量的运用法则及向量模的求法,属于中档题. 22.(1)24y x =;(2)直线l 过定点,定点坐标为()0,1-,证明见解析. 【分析】(1)联立直线方程和抛物线方程,求出交点的坐标后利用弦长公式可求p 的值,从而可求抛物线的方程.(2)设直线l 的方程为x my b =+,联立直线方程和抛物线方程,消去x 后利用韦达定理化简斜率之和,从而可得b m =,故可求定点坐标.我们也可以设211,4y M y ⎛⎫⎪ ⎪⎝⎭,222,4y N y ⎛⎫⎪⎝⎭,用坐标表示斜率之和,再用该两点的坐标表示直线l ,化简后可得直线过定点.【详解】(1)由2,2,y x y px =⎧⎨=⎩解得10x =,22x p =,因为直线y x =被抛物线()2:20C y px p =>截得的弦长为0p -=0p >,解得2p =, 所以抛物线C 的方程为24y x =.(2)法一: 设直线l 的方程为x my b =+,()11,M x y ,()22,N x y ,由2,4,x my b y x =+⎧⎨=⎩得2440y my b --=, 所以124y y m +=,124y y b =-,因为点()1,2A ,且直线AM ,AN 的斜率之和为4,所以121222411y y x x --+=--,而2114y x =,2224y x =,化简得12120y y y y ++=, 所以440m b -=,即b m =, 所以直线l 的方程为()1x m y =+, 所以直线l 过定点,定点坐标为()0,1-.法二: 设211,4y M y ⎛⎫ ⎪ ⎪⎝⎭,222,4y N y ⎛⎫⎪⎝⎭, 因为点()1,2A ,且直线AM ,AN 的斜率之和为4,所以1222122241144y y y y --+=--,即12120y y y y ++=, ①当210y y +≠时,直线l 的方程为221112221444y yy y y x y y ⎛⎫--=- ⎪⎝⎭-即2141y x y y =--, 所以直线l 过定点,定点坐标为()0,1-;②当210y y +=时,120y y =,所以120y y ==,不满足题意. 所以直线l 过定点,定点坐标为()0,1-. 【点睛】方法点睛:. 直线与抛物线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题,也可以设出交点坐标,用交点坐标表示目标代数式,从而解决定点、定值、最值问题.23.(1)22132x y +=;(2)证明见解析.【分析】(1,且经过点3,22A ⎛ ⎝⎭.,可用待定系数法求椭圆的标准方程; (2)分别表示出直线AB 、AC ,用“设而不求法”后分别表示出BC 、AF 的斜率,从而证明//BC AF【详解】(1)解:因为椭圆C3c e a ==,2232a b =,即2222:132x y C b b +=, 又因为椭圆C过点322A ⎛⎫⎪ ⎪⎝⎭,所以229124213b b ⋅+=,解得22b =椭圆C 的方程为22132x y +=.(2)证明:设直线AB的方程为322y k x ⎛⎫=-+ ⎪⎝⎭. 因为直线AB 与直线AC 的倾斜角互补,所以直线AC的方程可设为322y k x ⎛⎫=--+⎪⎝⎭.联立22322132y k x x y ⎧⎛⎫=-+⎪ ⎪⎪⎝⎭⎨⎪+=⎪⎩得()222323(9)36022k x k x k ⎛++-++-+-= ⎝⎭. 设()11,B x y ,()22,C x y,则21239223k x k-++=-+,∴221229393223223k k x k k ---+=--=++.同理可得22293223k x k +-=+.()22212121212229612332323BCk k k k k x x k y y k x x x x k k ---+--=====--++.又02312AF k -==-∴BC AF k k =,所以//BC AF .【点睛】 结论点睛:(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.24.(1)22143x y +=;(2)是定值,理由见解析.【分析】(1)由焦点及通经长,用待定系数法求椭圆的标准方程;(2)设出直线AB :y kx m =+,与椭圆联立,用“设而不求法”表示ACD BCD ∠=∠,整理得12k =. 【详解】(1)由2321b a c ⎧=⎪⎨⎪=⎩得:24a =,23b =∴椭圆E 的方程:22143x y +=(2)依题意知直线AB 的斜率存在,设AB 方程:y kx m =+()11,A x y ,()22,B x y代入椭圆方程22143x y +=得:()2224384120k x kmx m +++-=(*)122843km x x k ∴+=-+,212241243m x x k -=+ 由ACD BCD ∠=∠得0AC BC k k +=31,2C ⎫⎛ ⎪⎝⎭,121212123333222201111y y kx m kx m x x x x --+-+-∴+=+=---- ()1212322302kx x m k x x m ⎫⎛∴+--+-+= ⎪⎝⎭22241238223043243m km k m k m k k -⎛⎫⎛⎫∴⋅+----+= ⎪⎪++⎝⎭⎝⎭整理得:(63)(223)0k k m -+-=2230k m ∴+-=或630k -=当2230k m +-=时,直线AB 过定点31,2C ⎛⎫⎪⎝⎭,不合题意630k ∴-=,12k =,∴直线AB 的斜率是定值12另解:设直线AB 的方程为3(1)12m x n y ⎫⎛-+-= ⎪⎝⎭椭圆E 的方程即:22333[(1)1]41222x y ⎡⎤⎫⎛-++-+= ⎪⎢⎥⎝⎭⎣⎦即:22334126(1)3(1)022y y x x ⎫⎫⎛⎛-+-+-+-= ⎪ ⎪⎝⎝⎭⎭ 联立得:233(412)(126)22n y m n y ⎫⎫⎛⎛+-++- ⎪ ⎪⎝⎝⎭⎭2(1)(63)(1)0x m x -++-=即23322(412)(126)(63)011y y n m n m x x ⎛⎫-- ⎪+++++= ⎪-- ⎪⎝⎭∴由ACD BCD ∠=∠得121233(126)22011(412)ACBCy y m n k k x x n --++=+=-=--+即:2n m =- ∴直线AB 的斜率为12m n -=,是定值. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)24y x =;(2)()2y x =±-. 【分析】(1)将已知点代入抛物线的方程中,求得2p =,可得抛物线C 的方程.(2)设1122(,),(,)A x y B x y ,分直线AB 斜率不存在,直线AB 斜率存在两种情况分别满足题意,求得直线的方程. 【详解】(1)因为(1,2)M 是抛物线C 上的点,所以222p =,解得2p =,则抛物线C 的方程为24y x =. (2)设1122(,),(,)A x y B x y ,当直线AB 斜率不存在时,方程为2x =,此时3AF BF ==,不合题意,舍去. 当直线AB 斜率存在时,设直线AB 方程为(2)y k x =- 由2(2)4y k x y x =-⎧⎨=⎩得2222(44)40k x k x k -++=,所以0∆>,1212244,4x x x x k +=+=, 由抛物线的定义知121,1AF x BF x =+=+, 则()()12121211()1AF BF x x x x x x =++=+++24913k=+=, 解得1k =±,所以直线l 的方程为2y x =±-().【点睛】方法点睛:在解决抛物线上的点与焦点的距离时,可根据抛物线的定义进行转化,此时,其距离只涉及抛物线上的点的横坐标或纵坐标,使问题得以简单化.26.(1)22194x y +=;(2)最大值为【分析】(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合c a =222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C 过点1,3P ⎛⎫ ⎪ ⎪⎝⎭, 所以2213219a b+=,因为离心率为33c a =, 又222a b c =+,所以得22194x y +=;。
上海民办行知二中选修1-1第二章《圆锥曲线与方程》检测卷(含答案解析)
一、选择题1.已知点()P m n ,是抛物线214y x =-上一动点,则2222(1)(4)(5)m n m n +++-++的最小值为A .4B .5C .30D .62.已知斜率为(0)k k >的直线l 与抛物线2:4C y x =交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM ∆的面积等于3,则k =( )A .14B .13C .12D .263.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( ) A .2B .51-C .1D .52-5.如图,已知曲线2yx 上有定点A ,其横坐标为()0a a >,AC 垂直于x 轴于点C ,M 是弧OA 上的任意一点(含端点),MD 垂直于x 轴于点D ,ME AC ⊥于点E ,OE与MD 相交于点P ,则点P 的轨迹方程是( )A .()310y x x a a=≤≤ B .()31022ay x x x a a =+≤≤ C .()220y x ax x a =-≤≤D .()2022a ay x x x a =+≤≤ 6.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF FB =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52C D .537.设1F 、2F 分别是椭圆22:1259x y C +=的左、右焦点,O 为坐标原点,点P 在椭圆C 上且满足4OP =,则12PF F △的面积为( )A .3B .C .6D .98.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(1,C .5,43⎡⎤⎢⎥⎣⎦D .9.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,P 是双曲线C 右支上一点,若|PF 1|+|PF 2|=4a ,且∠F 1PF 2=60°,则双曲线C 的渐近线方程是( )A 0y ±=B .20x =C 20y ±=D .20x =10.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( ) A .12S SB .122S S =C .1232S S =D .1243S S =11.已知抛物线24x y =的焦点为F ,准线为l ,M 是x 轴正半轴上的一点,线段FM 交抛物线于点A ,过A 作l 的垂线,垂足为B .若BF BM ⊥,则FM =( ) A .52B .3C .72D .412.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .()2,+∞B .)2,⎡+∞⎣C .()1,2D .(1,2⎤⎦二、填空题13.抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后.反射光线平行于抛物线的轴.已知抛物线22y x =,平行于x 轴的光线在抛物线上点P 处反射后经过抛物线的焦点F ,在抛物线上点Q 处再次反射,又沿平行于x 轴方向射出,则两平行光线间的最小距离为___________.14.双曲线()222210,0x y a b a b-->>的左右焦点分别为1F ,2F ,过1F 作直线l 与双曲线有唯一交点P ,若124sin 5F PF ∠=,则该双曲线的离心率为___________. 15.若实数x ,y 满足方程2222(3)(3)10x y x y ++++-=,则2222(1)(3)x y x y -+++-的取值范围为________.16.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124FF =,则截口BAC 所在椭圆的离心率为______.17.在平面直角坐标系xOy 中,已知双曲线22:17yx Γ-=的两个焦点分别为1F ,2F ,以2F 为圆心,12F F 长为半径的圆与双曲线Γ的一条渐近线交于M ,N 两点,若OM ON ≥,则OM ON的值为________.18.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为__________.19.已知点P 是椭圆22:13x C y +=上动点,则点P 到直线30x y +-=距离的最大值是________.20.抛物线24y x =的焦点为F ,点(2,1)A ,M 为抛物线上一点,且M 不在直线AF 上,则MAF ∆周长的最小值为____.三、解答题21.已知抛物线2:2(0)C y px p =>的焦点F 到直线:l y x =的距离为2,A B ,为抛物线C 上两个动点,满足线段AB 的中点M 在直线l 上,点(0,2)N .(1)求抛物线C 的方程; (2)求NAB △面积的取值范围.22.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.23.已知动圆M 过点1(2,0),F - 且动圆M 内切于定圆2F :22(2)32,x y -+= 记动圆M 圆心的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)若A 、B 是曲线Γ上两点,点20,3P ⎛⎫⎪⎝⎭满足20,PF PA PB ++= 求直线AB 的方程.24.已知点M 是圆222:(2)(2)C x y r r -+=>与x 轴负半轴的交点,过点M 作圆C 的弦MN ,并使弦MN 的中点恰好落在y 轴上.(1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,延长NO 交直线2x =-于点A ,延长NC 交曲线E 于点B ,曲线E 在点B 处的切线交y 轴于点D ,求证:AD BD ⊥.25.已知点3(1,)-在椭圆2222:1(0)x y E a b a b +=>>上,E 的离心率为32. (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围. 26.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n ++-++.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n ++-++点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.2.B解析:B 【分析】先求出F ,设出A 、B 、M ,用“点差法”找出121202y y k x x y -==-,利用OFM ∆的面积等于3计算出0y ,求出斜率k . 【详解】由抛物线2:4C y x =知:焦点()1,0F 设()()()112200,,,,,,A x y B x y M x y因为M 是线段AB 的中点,所以0121222x x x y y y =+⎧⎨=+⎩将2114y x =和2224y x =两式相减可得:()2212124y y x x -=-,即121202y y k x x y -==- ∵000k y >∴>∴00113,62OFM S y y ∆=⨯⨯=∴=, 022163k y ∴===. 故选:B 【点睛】“中点弦”问题通常用“点差法”处理.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=. 设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==,121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A FM ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①, 又12||||2FM F M c += ②, 由①+②,解得1||F M a c =+,又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C , 所以()220||21CI y =+-,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=. 故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2FM F M c +=,考查了学生分析问题、解决问题的能力,属于中档题. 5.A解析:A 【分析】设点(),P x y ,求出点M 、E 的坐标,利用O 、P 、E 三点共线可得出//OP OE 可求得点P 的轨迹方程. 【详解】设点(),P x y ,其中0x a ≤≤,则点()2,M x x ,ME 与直线x a =垂直,则点()2,E a x ,因为O 、P 、E 三点共线,则//OP OE ,可得3ay x =,31y x a∴=, 因此,点P 的轨迹方程是()310y x x a a=≤≤. 故选:A. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.6.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).7.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则4c ==,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得28116y =,094y ∴=, 因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.8.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).9.C解析:C 【分析】利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理找出a,c 的等量关系,从而可求a,b 的比值,即可得出双曲线C 的渐近线方程. 【详解】解:因为F 1、F 2是双曲线的左、右焦点,点P 在双曲线右支上, 所以由双曲线定义可得|PF 1|-|PF 2|=2a , 又知|PF 1|+|PF 2|=4a ,所以|PF 1|=3a ,|PF 2|=a .在△PF 1F 2中,由余弦定理可得222121212||||||cos60=2||||PF PF F F PF PF +-⋅,即222(3)41=232a a c a a +-⨯⨯,所以3a 2=10a 2-4c 2,即4c 2=7a 2,又知b 2+a 2=c 2,所以223=4b a ,所以双曲线C 的渐近线方程为32y x =±320x y ±=.故选:C. 【点睛】关键点点睛:利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理解三角形是解答本题的关键.10.D解析:D【分析】设12MF F △的面积为S ,内切圆半径为r ,则可得4Sr c=,从而可得1121122244S S F F r c S c ==⋅⋅=,再由G 是12MF F △的重心,可得11222213323MOF MF F SS S S ==⨯=,进而可得结果 【详解】解:由于椭圆的离心率为13,所以13c a =,即3a c =,设12MF F △的面积为S ,内切圆半径为r ,则121211()(22)422S MF MF F F r a c r cr =++=+=, 所以4Sr c=, 所以1121122244S S F F r c S c ==⋅⋅=, 因为G 是12MF F △的重心, 所以11222213323MOF MF F S S S S ==⨯=, 所以1234S S =,即1243S S =, 故选:D 【点睛】关键点点睛:此题考查椭圆的性质的应用,解题的关键是设12MF F △的面积为S ,内切圆半径为r ,然后求出4Sr c=,进而可表示出1S ,2S ,从而可得结果,属于中档题 11.B解析:B 【分析】先利用方程得求得焦点坐标和准线方程,设点(,0)M m ,()00,A x y ,再利用点()00,A x y 在抛物线与直线上列方程,解出0,x m ,最后利用距离公式计算FM 即可. 【详解】如图所示,抛物线24x y =中,()0,1F ,:1l y =-,依题意设(,0)M m ,()00,A x y ,00x >,则2004x y =,故200,4x A x ⎛⎫⎪⎝⎭,()0,1B x -,因为BF BM ⊥,即BF BM ⊥,而()()00,2,,1BF x BM m x =-=-, 所以()0020BF BM x m x ⋅=-+=,直线:11x y FM m +=,A 在直线上,故200:14x x FM m +=,即02044x m x =-,代入上式即得000024420x x x x ⎛⎫-+= ⎪⎝-⎭,化简整理得4200280x x +-=,即()()2200240x x -+=, 故202x =,而00x >,故02x ()2422242m ==-(22,0)M ,所以FM =()()22220013-+-=.故选:B. 【点睛】本题解题关键在于利用点()00,A x y 既在抛物线上,又在直线上,构建关系式,求解出点M 即突破难点.12.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y , 则2222200000||(2)44PA x a y x ax a y =--=-++又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置, ∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】作出图像设题中问题即为求的最小值设直线联立用韦达定理表示即可得解【详解】根据题意作出图像如图所示设题中问题即为求的最小值设由得所以所以当时最小为2故答案为:2 解析:2【分析】作出图像,设1122(,),(,)A x y B x y ,题中问题即为求12||y y -的最小值,设直线,联立,用韦达定理表示即可得解. 【详解】根据题意作出图像,如图所示,设1122(,),(,)A x y B x y ,题中问题即为求12||y y -的最小值.设1:2AB x ty =+, 由2122x ty y x⎧=+⎪⎨⎪=⎩,得2210y ty --=,所以12122,1y y t y y +==-. 所以22121212||()444y y y y y y t -=+-=+当0t =时,12||y y -最小为2. 故答案为:2.14.或【分析】首先设出直线的方程与双曲线方程联立求得点的坐标利用弦长公式求得并根据定义表示中根据余弦定理表示再求离心率【详解】如图当直线与渐近线平行时与双曲线有唯一交点设与双曲线方程联立得解得:中由余弦217 【分析】首先设出直线l 的方程,与双曲线方程联立,求得点P 的坐标,利用弦长公式求得1PF ,并根据定义表示2PF ,12F PF △中,根据余弦定理表示12281cos 3F PF e ∴-∠=+,再求离心率. 【详解】如图,当直线与渐近线平行时,l 与双曲线有唯一交点P ,设():bl y x c a=+,与双曲线方程联立,得222cx a c -=+,解得:22a cx c+=-,()22222122122P b c ac b PF x c c a a c a+=+--=-+=, 2221422b a PF PF a a+=+=,122F F c =, 12F PF △中,124sin 5F PF ∠=,123cos 5F PF ∴∠=±, 由余弦定理222121212122cos F F PF PF PF PF F PF =+-∠()()212121221cos PF PF PF PF F PF =-+-∠,()()()2222212244221cos 4b a b c a F PF a+∴=+⋅-∠,2212222228881cos 433a a F PFb ac a e ∴-∠===+++, 当123cos 5F PF ∠=时,28235e =+,17e =, 当123cos 5F PF ∠=-时,28835e =+,2e =,172【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭,3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15.【分析】由已知条件得出点P 在以为焦点以为长轴长的椭圆上再由两点的距离公式得出表示点到点的距离之和再根据椭圆的定义将问题转化为求的范围根据两点的距离公式可求得范围【详解】设点则由椭圆的定义得点P 在以为解析:[10【分析】由已知条件得出点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,再由两+(),P x y 到点()()11,00,3A F ,的距离之和,再根据椭圆的定义将问题转化为求210+d PA PF =-的范围,根据两点的距离公式可求得范围. 【详解】设点(),P x y ,则由椭圆的定义得点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,所在椭圆的方程为:22+11625x y =,(),P x y 到点()()11,00,3A F ,的距离之和,即1+d PA PF =,由椭圆的定义得12+210PF PF a ==,所以1210PFPF =-,所以()122++1010+d PA PF PA PF PA PF ==-=-,而222AF PA PF AF -≤-≤,又2AF ==,所以21010+d PA PF ≤=-≤[10,故答案为:[10. 【点睛】关键点点睛:本题考查根式的最值和范围求解问题,解决的关键在于利用椭圆的定义得出动点的轨迹,将问题转化为求两线段的距离之差的范围.16.【分析】取焦点在轴建立平面直角坐标系由题意及椭圆性质有为椭圆通径得结合及解出代入离心率公式计算即可【详解】解:取焦点在轴建立平面直角坐标系由及椭圆性质可得为椭圆通径所以又解得所以截口所在椭圆的离心率解析:13【分析】取焦点在x 轴建立平面直角坐标系,由题意及椭圆性质有BC 为椭圆通径,得2163b a =,结合24c =及222a b c =+解出,,a b c 代入离心率公式计算即可.【详解】解:取焦点在x 轴建立平面直角坐标系,由12BC F F ⊥及椭圆性质可得,BC 为椭圆通径,所以21163b F B a ==,1224F Fc ==又222a b c =+,解得6,2,a c b ===所以截口BAC 所在椭圆的离心率为13故答案为:13【点睛】求椭圆的离心率或其范围的方法:(1)求,,a b c 的值,由22222221c a b ba a a-==-直接求e ; (2)列出含有,,a b c 的齐次方程(或不等式),借助于222a b c =+消去b ,然后转化成关于e 的方程(或不等式)求解.17.【分析】求出双曲线的两个焦点坐标和渐近线方程再求圆的方程与渐近线方程联立可得MN 两点的横坐标由即为横坐标的绝对值的比可得答案【详解】由已知得取双曲线的一条渐近线所以圆的方程为由整理得解得取双曲线的另解析:32【分析】求出双曲线的两个焦点坐标和渐近线方程,再求圆的方程与渐近线方程联立可得M ,N 两点的横坐标,由OM ON即为横坐标的绝对值的比可得答案.【详解】由已知得2221,7,8a b c ===,2c =,12(F F -,取双曲线的一条渐近线y =,所以圆的方程为(2232x y +=-,由(2232y x y ⎧=⎪⎨-+=⎪⎩整理得2260x -=,解得2N M x x ==32MNM O x x O N===.取双曲线的另一条渐近线y =,(2232y x y ⎧=⎪⎨-+=⎪⎩整理得2260x -=与上同,综上32OM ON=.故答案为:32. 【点睛】关键点点睛:本题考查了直线与双曲线、圆的位置关系,解答本题的关键是求出渐近线与圆的方程然后联立,得到M ,N 两点的横坐标再由绝对值做比值,考查了学生的运算求解能力.18.(或)【分析】先根据的形状先确定出点坐标然后将点坐标代入双曲线方程根据的齐次式求解出离心率的值【详解】因为是以为直角顶点的等腰直角三角形不妨假设在第一象限所以所以所以所以所以所以所以所以又因为所以故【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭, 所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以2632e ±==又因为1e >,所以2e ===). 【点睛】思路点睛:利用齐次式求解椭圆或双曲线的离心率的一般步骤: (1)根据已知条件,先得到关于,,a b c 的方程;(2)结合222a b c =+或222c a b =+将方程中的b 替换为,a c 的形式;(3)方程的左右两边同除以a 的对应次方,由此得到关于离心率e 的方程,从而求解出离心率e 的值.19.【分析】设与平行的直线与相切求解出此时的方程则点到直线距离的最大值可根据平行直线间的距离公式求解出【详解】设与平行的直线当与椭圆相切时有:所以所以所以所以或取此时与的距离为所以点到直线距离的最大值为解析:2【分析】设与30x y +-=平行的直线:l y x m '=-+与22:13xC y +=相切,求解出此时l '的方程,则点P 到直线30x y +-=距离的最大值可根据平行直线间的距离公式求解出.【详解】设与30x y +-=平行的直线():3l y x m m '=-+≠,当l '与椭圆C 相切时有:2233y x mx y =-+⎧⎨+=⎩,所以2246330x mx m -+-=, 所以()223616330m m ∆=--=,所以2m =±,所以:20l x y '+-=或:20l x y '++=,取:20l x y '++=,此时:20l x y '++=与30x y +-=的距离为2d ==,所以点P 到直线30x y +-=距离的最大值为2,故答案为:2. 【点睛】方法点睛:求解椭圆22221x y a b+=上一点到直线距离的最值的两种方法:(1)设与已知直线平行的直线l 与椭圆相切,求解出切线l 的方程,根据平行直线间的距离公式求解出点到直线距离的最值;(2)将P 点坐标为设为()cos ,sin a b θθ,利用点到直线的距离公式以及三角函数的知识求解出点到直线距离的最值.20.【分析】求△MAF 周长最小值即求|MA|+|MF|的最小值设点M 在准线上的射影为D 根据抛物线定义知|MF|=|MD|转为求|MA|+|MD|的最小值当DMA 三点共线时|MA|+|MD|最小即可得到答解析:3+【分析】求△MAF 周长最小值,即求|MA |+|MF |的最小值.设点M 在准线上的射影为D ,根据抛物线定义知|MF |=|MD |,转为求|MA |+|MD |的最小值,当D 、M 、A 三点共线时|MA |+|MD |最小,即可得到答案. 【详解】求△MAF 周长的最小值,即求|MA |+|MF |的最小值, 设点M 在准线上的射影为D ,则根据抛物线的定义,可知|MF |=|MD |因此,|MA |+|MF |的最小值,即|MA |+|MD |的最小值根据平面几何知识,可得当D ,M ,A 三点共线时|MA |+|MD |最小, 因此最小值为x A ﹣(﹣1)=2+1=3, ∵|AF |=()()222110-+-=2,∴△MAF 周长的最小值为3+2, 故答案为3+2【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,M ,A 三点共线时|MA |+|MD |最小,是解题的关键.三、解答题21.(1)24y x =;(2)(0,4]. 【分析】(1)利用抛物线焦点F 到直线l 2,求出抛物线方程; (2)设出直线AB 的方程与抛物线方程联立,由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法得出NAB △面积的取值范围. 【详解】 (1),02p F ⎛⎫⎪⎝⎭由2222pd ==,解得2p = 所以抛物线方程为24y x =(2)设直线AB 的方程为:221212,,,,44y y x my t A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭联立方程组24y xx my t⎧=⎨=+⎩,消去x 得2440y my t --=所以121244y y my y t +=⎧⎨=-⎩,得(2,2)M m m有2212444y y m +=,即()21212216y y y y m +-= 所以222t m m =- 点N 到AB的距离h =||AB ==所以1||2|22NABSAB h m t =⋅⋅=+242m m =-令u =u =由24y x y x =⎧⎨=⎩,得l 与抛物线的两交点坐标为(0,0),(4,4),因点M 在l 上可得(0,2)m ∈所以(0,1]μ∈ 得34(0,4]NABSu =∈【点睛】关键点点睛:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查面积公式,解决本题的关键点是由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法和函数的性质得出NAB △的面积的取值范围,考查了学生计算能力,属于中档题. 22.(1)2;(2)y =x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p , 所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y xy k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =所以直线l 的方程为:y =x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法.23.(1)22184x y +=;(2)230x y -+=.【分析】(1)根据两圆内切,以及圆过定点1(2,0),F -列式求轨迹方程;(2)利用重心坐标公式可知122x x +=-,122y y +=,再设直线AB 的方程为,y kx m =+与椭圆方程联立,利用根与系数的关系求解直线方程. 【详解】(1)由已知可得12MF rMF r ⎧=⎪⎨=⎪⎩,两式相加可得12124,MF MF F F +=>= 则点M的轨迹是以1F 、2F 为焦点,长轴长为2,a c == 因此曲线Γ的方程是22 1.84y x +=(2)因为20PF PA PB ++=, 则点20,3P ⎛⎫⎪⎝⎭是2F AB 的重心, 易得直线AB 的斜率存在,设直线AB 的方程为()()1122,,,,y kx m A x y B x y =+,121212122020,,2,2333x x y y x x y y ++++∴==∴+=-+= 联立 22,184y kx m x y =+⎧⎪⎨+=⎪⎩ 消 y 得: ()222214280k x kmx m +++-= ()()()2222222216421288840,840k m k m k m k m ∴∆=-+-=-+>∴-+>且 1224221kmx x k -+==-+① ()1211122222y y kx m kx m k x x m k m ∴+=+++=++=-+=②由①②解得 13,,22k m == 则直线AB 的方程为 13,22y x =+ 即 230.x y -+=【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据20,PF PA PB ++=求得122x x +=-,122y y +=.24.(1)28(0)y x x =>;(2)证明见解析. 【分析】(1)设(,)N x y ,利用N 在圆上及弦MN 的中点在y 轴上可得点N 的轨迹方程,也可以利用垂径定理得到点N 的轨迹方程,注意范围.(2)设()11N x y ,,()22,B x y ,直线NB 的方程为2x my =+,点B 的处的切线方程为()22y y k x x -=-,联立切线方程和抛物线方程,利用判别式为0可求切线方程,从而得到D 的坐标,求出直线ON 的方程后可得A 的坐标,再联立直线NB 的方程与抛物线的方程,利用韦达定理化简可得1AD BD k k ⋅=-,从而得到要求证的垂直关系.我们也可以设()()000,0N x y x ≠,利用导数和韦达定理可求D 的坐标,同样可得1AD BD k k ⋅=-.【详解】(1)解法一:由题意知(2,0)C ,(2,0)M r -, 设(,)N x y 是222:(2)(2)C x y r r -+=>上的任意点,弦MN 的中点2,22r x y -+⎫⎛⎪⎝⎭恰好落在y 轴上, 202r x-+∴=,2r x ∴=+,222(2)(2)x y x ∴-+=+, 整理得28y x =,2r >,0x ∴>,∴点N 的轨迹方程为28(0)y x x =>.解法二:设(,)N x y ,弦MN 的中点为0,2y Q ⎫⎛ ⎪⎝⎭,(,0)M x -, 因为M 在x 轴的负半轴上,故0x >.()2,,2,2y CQ MN x y ⎛⎫=-= ⎪⎝⎭,由垂径定理得CQ MN ⊥,故22220,8(0)2y x y x x -⨯+=∴=>.(2)证法一:设直线NB 的方程为2x my =+,则由282y x x my ⎧=⎨=+⎩,消去x ,整理得28160y my --=,264640m ∆=+>. 设()11N x y ,,()22,B x y ,则128y y m +=,1216y y =-,11ON y k x ∴=,∴直线ON 的方程为11y y x x =, ∴令2x =-,则112y y x -=,1122,y A x ⎫⎛-∴-⎪ ⎝⎭. 设点B 的处的切线方程为()22y y k x x -=-,与28y x =相切,由()2228y y k x x y x ⎧-=-⎨=⎩,消去x ,整理得()222880ky y y kx -+-=,22220k x ky ∴∆=-+=,()22222220408y k ky y k -+=⇒-=,24BD k y ∴=,∴直线()2224:BD y y x x y -=-,令0x =,则 222222244x x y y y y y --+=+=22222484x x x y y -+==,2240,x D y ⎫⎛∴⎪ ⎝⎭, 21212212111422824AD x y x y y k y x y x y ⎫⎛∴=+=+=+⎪ ⎝⎭12113244y y y y +==,121244161AD BD k k y y y y ∴⋅=⋅==-,AD BD ∴⊥. 证法二:设()()000,0N x y x >,则直线ON 的方程为00y y x x =,0022,y A x ⎫⎛∴--⎪ ⎝⎭, 设直线NB 的方程为2x my =+,则由282y xx my ⎧=⎨=+⎩,消去x ,整理得28160y my --=,264640m ∆=+>,设()11,B x y ,则101200016321616,y y y B y y y ⎫⎛=-⇒=-⇒-⎪ ⎝⎭, 由抛物线的对称性,不妨设B 在x 轴下方, 则由曲线28y x =,得y y '=-=-=,切线的斜率为4y k ===-, 切线方程为020016324y y x y y ⎫⎛+=--⎪ ⎝⎭,则080,D y ⎫⎛⎪ ⎝⎭, 020000283282,,y AD BD x y y y ⎫⎫⎛⎛⋅=-⋅-⎪⎪ ⎝⎝⎭⎭22000000641664641664088AD BD y x y x x x =-+-=-+-=⇒⊥. 【点睛】思路点睛:(1)求动点的轨迹方程,几何法、动点转移法、参数法等.(2)直线与抛物线的位置关系中的定值问题,一般联立直线方程和抛物线的方程,利用韦达定理化简目标代数式,涉及到切线范围,可借助导数来求切线的斜率.25.(1)22:14x E y +=;(2)32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OC OB ⋅>,运算即可得解. 【详解】(1)点⎛- ⎝⎭在椭圆22221(0)x y a b a b+=>>上,∴221314a b +=,又椭圆的离心率为2∴2c e a ==,由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得k >k <,且1221614kx x k+=-+,1221214x x k ⋅=+, 由COB ∠为锐角, ∴2121212122122()414OC OB x x y y k x x k x x k⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴2k -<<2k <<,∴直线l的斜率的范围是32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.26.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>* 且124y y m +=,124y y b =-.2OA OBk k =,所以12122y y x x =, 又2114y x =,2224y x =,因此可得128y y =即48b -=,2b =- 代入()*得220m ->,m ∴<或m >所以直线AB 方程为2x my =-,由此可知直线AB 过定点(2,0)-.【点睛】方法点睛:本题考查主要考查抛物线中直线过定点问题,解题方法是设而不求的思想方程,即设直线方程为x my b =+,设交点坐标为11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程后应用韦达定理得1212,y y y y +,代入已知求出参数值,然后由直线方程得定点坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线30x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点()0,11A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( ) A .11B .5C .52D .63.已知椭圆()2222:10x y C a b a b +=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A .22B .312- C .512- D .324.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若16MF OM =,则E 的离心率为( )A 3B .2C 5D 25.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1166.设1F 、2F 分别是椭圆22:1259x y C +=的左、右焦点,O 为坐标原点,点P 在椭圆C 上且满足4OP =,则12PF F △的面积为( )A .3B .C .6D .97.若椭圆22221(0)x y a b a b +=>>的离心率为3,则213a b +的最小值为( )A B C .2D 8.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( )A .BC .D .9.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,P 是双曲线C 右支上一点,若|PF 1|+|PF 2|=4a ,且∠F 1PF 2=60°,则双曲线C 的渐近线方程是( )A 0y ±=B .20x =C 20y ±=D .20x =10.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( ) A .12S SB .122S S =C .1232S S =D .1243S S =11.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .B .(6,8)C .D .(6,10)12.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆上,则双曲线的离心率的值为( )A .1BC .1D 二、填空题13.已知双曲线M :22221x y a b-=(0a >,0b >)的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是___________.14.设点P 是椭圆2213x y +=的短轴的一个上端点,Q 是椭圆上的任意一个动点,则线段PQ |∣长的最大值是________. 15.直线l 与抛物线24y x =交于A 、B 两点,O 为坐标原点,直线OA 、OB 的斜率之积为1-,以线段AB的中点为圆心,l 交于P 、Q 两点,()6,0M ,则22MP MQ +的最小值为______.16.设1F ,2F 为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 的直线l 交双曲线C 的右支于A 、B 两点,且120AF AF ⋅=,2212AF BF =,则双曲线C 的离心率为___________. 17.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AM AF最大时,弦AB 长度是___________.18.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.19.已知直线1:43120l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 距离之和的最小值是________.20.已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,则该双曲线的离心率的取值范围___________.三、解答题21.已知动圆M 过点1(2,0),F - 且动圆M 内切于定圆2F :22(2)32,x y -+= 记动圆M 圆心的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)若A 、B 是曲线Γ上两点,点20,3P ⎛⎫⎪⎝⎭满足20,PF PA PB ++= 求直线AB 的方程.22.已知椭圆()2222:10x y C a b a b+=>>经过点()2,1A ,椭圆C 在点A 处的切线方程为3y x =-+.(1)求椭圆C 的方程;(2)设过点()3,0B 且与x 轴不重合的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 分别与直线3x =-分别交于P ,Q ,记点P,Q 的纵坐标分别为p ,q ,求p q +的值.23.已知椭圆()2222:10x y M a b a b +=>>经过如下四个点中的三个,1132P ⎛⎫- ⎪⎝⎭,,()20,1P ,3132P ⎛⎫ ⎪⎝⎭,,()43P ,1. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆经过椭圆M 的右顶点C (A ,B 均不与点C 重合),证明:直线l 过定点.24.已知点()11,A x y ,()22,B x y 是抛物线C :24x y =上的两点,满足OA OB ⊥,O 是坐标原点.(1)求证:1216x x =-;(2)若⊥OD AB 于点D ,求点D 的轨迹方程. 25.如图,已知抛物线21:2C y x =直线2y kx =+交抛物线C 于A ,B 两点,O 为坐标原点.(1)证明:OA OB ⊥;(2)设抛物线C 在点A 处的切线为1l ,在点B 处的切线为2l ,证明:1l 与2l 的交点M 在一定直线上.26.已知抛物线C :22y px =(0p >)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l x ⊥轴时,4AB =,(1)求p 的值:(2)若2AF BF =,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线0x y -=过(,0)F c -,所以00c --=,得c = 所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-, 又,A B在直线0x y -=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.3.C解析:C 【分析】作出图形,可知FAB 是以FAB ∠为直角的直角三角形,可得出0AF AB ⋅=,可得出a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率.【详解】如下图所示,可知AFB ∠、ABF ∠均为锐角, 所以,FAB 是以FAB ∠为直角的直角三角形,由题意可知,点(),0F c -、()0,A b 、(),0B a ,则(),AF c b =--,(),AB a b =-,20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=,在等式220c ac a +-=的两边同时除以2a 可得210e e +-=,01e <<,解得51e -=.故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c ∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF ==,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.5.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+ ⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭,故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 6.D解析:D 【分析】设点()00,P x y ,求出20y 的值,由此可求得12PF F △的面积.【详解】在椭圆22:1259x y C +=中,5a =,3b =,则4c ==,所以,1228F F c ==,设点()00,P x y ,则22001259x y +=,可得220025259x y =-,4OP ===,解得28116y =,094y ∴=, 因此,12PF F △的面积为1212011989224PF F S F F y =⋅=⨯⨯=△. 故选:D. 【点睛】方法点睛:本题考查椭圆中焦点三角形面积的计算,常用以下两种方法求解: (1)求出顶点P 的坐标,利用三角形面积公式求解;(2)利用余弦定理和椭圆的定义求得12PF PF ⋅的值,利用三角形面积公式求解.7.C解析:C 【分析】由椭圆的离心率为3和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解. 【详解】由题意,椭圆22221(0)x y a b a b +=>>c a =,即3c =,又由222a b c =+,可得2219b a =,即3a b =所以22191132333a b b b b b ++==+≥,当且仅当133b b=,即13b =时,“=”成立.故选:C. 【点睛】 关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.8.C解析:C 【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式=b a . 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.9.C解析:C 【分析】利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理找出a,c 的等量关系,从而可求a,b 的比值,即可得出双曲线C 的渐近线方程. 【详解】解:因为F 1、F 2是双曲线的左、右焦点,点P 在双曲线右支上, 所以由双曲线定义可得|PF 1|-|PF 2|=2a , 又知|PF 1|+|PF 2|=4a ,所以|PF 1|=3a ,|PF 2|=a .在△PF 1F 2中,由余弦定理可得222121212||||||cos60=2||||PF PF F F PF PF +-⋅,即222(3)41=232a a c a a +-⨯⨯,所以3a 2=10a 2-4c 2,即4c 2=7a 2,又知b 2+a 2=c 2,所以223=4b a ,所以双曲线C的渐近线方程为y x =20y ±=.故选:C. 【点睛】关键点点睛:利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理解三角形是解答本题的关键.10.D解析:D 【分析】设12MF F △的面积为S ,内切圆半径为r ,则可得4Sr c=,从而可得1121122244S S F F r c S c ==⋅⋅=,再由G 是12MF F △的重心,可得11222213323MOF MF F SS S S ==⨯=,进而可得结果 【详解】解:由于椭圆的离心率为13,所以13c a =,即3a c =,设12MF F △的面积为S ,内切圆半径为r ,则121211()(22)422S MF MF F F r a c r cr =++=+=, 所以4Sr c=, 所以1121122244S S F F r c S c ==⋅⋅=, 因为G 是12MF F △的重心, 所以11222213323MOF MF F S S S S ==⨯=, 所以1234S S =,即1243S S =, 故选:D 【点睛】关键点点睛:此题考查椭圆的性质的应用,解题的关键是设12MF F △的面积为S ,内切圆半径为r ,然后求出4Sr c=,进而可表示出1S ,2S ,从而可得结果,属于中档题 11.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290FPF ∠=,又1,2,5a b c === 由222111212|||||20|PF PF F F =+=,1112||||2PF PF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290FF P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.12.A解析:A 【分析】先由题意求出以AB 为直径的圆的半径为2b r a=和圆心坐标得到圆的方程,然后代入左焦点坐标,利用222c a b =+化简后可得答案. 【详解】将x c =代入22221x y a b-=可得2by a =±,所以以AB 为直径的圆的半径为2b r a=,圆心为(),0c ,圆的方程为()4222ab xc y -+=,左焦点为(),0c -,因为双曲线的左焦点在圆上,所以()2240b c ac +--=,整理得242460a c c c +=-,即42610e e -+=,解得23e =+23e =-所以1e =+ 故选:A . 【点睛】关键点点睛:本题考查直线和双曲线的位置关系、点和圆的位置关系,关键点是先求出以AB 为直径的圆的半径,再根据双曲线的左焦点在圆上,得到所要求的,,a b c 等量关系即可,考查了学生的运算求解能力,逻辑推理能力.二、填空题13.【分析】设双曲线的右焦点经过点T 所作的圆的两条切线互相垂直等价于转化为点到渐近线的距离解得再根据离心率公式可得结果【详解】依题意可得双曲线的右焦点渐近线方程为因为M 的渐近线上存在点T 使得经过点T 所作解析:1e <≤【分析】设双曲线M 的右焦点(c,0)F ,经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,等价于TF =,转化为点(c,0)F 到渐近线的距离d TF ≤,解得ba≤据离心率公式可得结果. 【详解】依题意可得双曲线M 的右焦点(c,0)F ,渐近线方程为0bx ay ±=,因为M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,设两个切点为,P Q ,所以PTQ ∠2π=,4PTF π∠=,因为FP PT ⊥,PF a =,所以TF =,所以双曲线M 的渐近线上存在点T ,使得TF =,所以点(c,0)F 到渐近线的距离d =≤,即ba ≤,所以离心率c e a =====≤=又1e >,所以1e <≤所以双曲线M 的离心率的取值范围是1e <≤故答案为:1e <≤【点睛】关键点点睛:求双曲线离心率的取值范围的关键是得到,,a b c 的不等式,根据M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,得到圆心到可得,,a b c 的不等式.14.【分析】设出根据点在椭圆上点的坐标满足椭圆方程得到利用两点间距离公式求得结合的范围求得其最大值【详解】由已知得到或由于对称性不妨设设是椭圆上的任一点所以所以又因为所以当时长度取得最大值且最大值为故答解析:2【分析】设出(,)Q x y ,根据点在椭圆上,点的坐标满足椭圆方程,得到223(1)x y =-,利用两点间距离公式求得PQ =,结合y 的范围,求得其最大值.【详解】由已知得到(0,1)P 或(0,1)P -,由于对称性,不妨设(0,1)P , 设(,)Q x y 是椭圆上的任一点,所以223(1)x y =-, 所以PQ ====又因为11y -≤≤,所以当12y时,PQ |∣=故答案为:2. 【点睛】思路点睛:该题考查的是有关椭圆上的点到短轴端点的距离的最值问题,解题思路如下: (1)根据题意,设出点(,)Q x y ,取好点P ;(2)利用两点间距离公式写出PQ |∣,配方,结合椭圆上点坐标的范围求得结果. 15.【分析】设直线与抛物线联立方程得韦达定理与代入直线与抛物线表示出与然后根据利用数量积代入求解出从而表示出圆心的坐标根据平行四边形的四边平方和等于对角线平方和代入列式利用二次函数的性质求解最小值【详解解析:10【分析】设直线AB ,与抛物线联立方程,得韦达定理12y y +与12y y ⋅,代入直线与抛物线表示出12x x +与12x x ⋅,然后根据OA OB ⊥,利用数量积代入求解出4t =,从而表示出圆心的坐标,根据平行四边形的四边平方和等于对角线平方和,代入列式,利用二次函数的性质求解最小值. 【详解】设直线AB 的方程为x my t =+,()11,A x y ,()22,B x y ,由24y x x my t⎧=⎨=+⎩得2440y my t --=,所以()()()22444160m t t m ∆=--=+>, 得124y y m +=,124y y t ,所以()21212242x x m y y t m t +=++=+,222121216y y x x t ⋅==,因为直线OA 、OB 的斜率之积为1-,所以OA OB ⊥,即0OA OB ⋅=, 所以2121240x x y y t t +=-=,所以4t =,所以直线AB 的方程为4x my =+,21248x x m +=+, 从而圆心为()224,2O m m +',由平行四边形的四边平方和等于对角线平方和(用向量法易证),得()(222222244MP MQMO PQ MO ''+=+=+()()2222422144148161816202m m m m m ⎛⎫⎡⎤=-++=-++=-+ ⎪⎢⎥⎣⎦⎝⎭, 所以222218102MP MQ m ⎛⎫+=-+ ⎪⎝⎭,所以当m =时,22MP MQ +的最小值为10. 故答案为:10【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、向量的数量积、三角形的面积等问题.16.【分析】利用双曲线的定义分别表示再利用勾股定义和双曲线的定义建立等量关系求双曲线的离心率【详解】设根据双曲线的定义可知即得得中即得根据双曲线的定义即得所以得故答案为:【点睛】方法点睛:本题考查直线与【分析】利用双曲线的定义分别表示1212,,,AF AF BF BF ,再利用勾股定义和双曲线的定义建立等量关系,求双曲线的离心率. 【详解】设2AF x =,22BF x =,1AF y =,根据双曲线的定义可知1212AF AF BF BF -=-, 即12y x BF x -=-,得1BF y x =+,120AF AF ⋅=,12AF AF ∴⊥,()()2223y x y x ∴+=+,得4y x =,12Rt AF F △中,222124AF AF c +=,即22174x c =,得17x =,根据双曲线的定义122AF AF a -=,即32x a =,得23x a =,23a =,得c e a ==故答案为:3【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.17.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AFAME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AFAEAME==∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF最大,抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=,264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228x y ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.18.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,OA y =OB y ==11122OABSO y O y A B ==12⨯==,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 19.【分析】作出图像根据抛物线定义和性质将距离之和转化为动点到直线和焦点距离之和最小值数形结合得焦点到直线的距离最小【详解】解:作出图像如下:根据抛物线定义有动点到直线和直线距离之和为当点位于图中的时取解析:16 5【分析】作出图像,根据抛物线定义和性质将距离之和转化为动点P到直线1l和焦点距离之和最小值,数形结合得焦点F到直线1l的距离最小.【详解】解:作出图像如下:根据抛物线定义有动点P到直线1l和直线2l距离之和为PA PB PB PF+=+当点P位于图中的P'时取得最小值,此时最小值为焦点F到直线1l的距离,由距离公式得:4121655 d+==故答案为:16 5【点睛】抛物线性质的应用技巧:(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程;(2)要结合图形分析,灵活运用平面图形的性质简化运算.20.【分析】作出图形根据已知条件可得出与的大小关系再利用公式可求得双曲线的离心率的取值范围【详解】如下图所示双曲线的渐近线方程为由于过点且倾斜角为的直线与双曲线的右支有且只有一个公共点由图可知直线的倾斜解析:23⎡⎫+∞⎪⎢⎪⎣⎭【分析】作出图形,根据已知条件可得出ba与tan6π的大小关系,再利用公式21bea⎛⎫=+ ⎪⎝⎭得双曲线的离心率的取值范围.【详解】如下图所示,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,由于过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点, 由图可知,直线by x a =的倾斜角6πα≥,所以,3tan 6b a π≥= 因此,2222222313c c a b b e a a a a +⎛⎫==+ ⎪⎝⎭. 所以,该双曲线的离心率为取值范围是23⎫+∞⎪⎪⎣⎭. 故答案为:23⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求双曲线离心率或离心率范围的两种方法: 一种是直接建立e 的关系式求e 或e 的范围;另一种是建立a 、b 、c 的齐次关系式,将b 用a 、e 表示,令两边同除以a 或2a 化为e 的关系式,进而求解.三、解答题21.(1)22184x y +=;(2)230x y -+=.【分析】(1)根据两圆内切,以及圆过定点1(2,0),F -列式求轨迹方程;(2)利用重心坐标公式可知122x x +=-,122y y +=,再设直线AB 的方程为,y kx m =+与椭圆方程联立,利用根与系数的关系求解直线方程. 【详解】(1)由已知可得12MF rMF r ⎧=⎪⎨=⎪⎩,两式相加可得12124,MF MF F F +=>= 则点M的轨迹是以1F 、2F 为焦点,长轴长为2,a c == 因此曲线Γ的方程是22 1.84y x +=(2)因为20PF PA PB ++=, 则点20,3P ⎛⎫⎪⎝⎭是2F AB 的重心, 易得直线AB 的斜率存在,设直线AB 的方程为()()1122,,,,y kx m A x y B x y =+,121212122020,,2,2333x x y y x x y y ++++∴==∴+=-+= 联立 22,184y kx m x y =+⎧⎪⎨+=⎪⎩ 消 y 得: ()222214280k x kmx m +++-= ()()()2222222216421288840,840k m k m k m k m ∴∆=-+-=-+>∴-+>且 1224221kmx x k -+==-+① ()1211122222y y kx m kx m k x x m k m ∴+=+++=++=-+=②由①②解得 13,,22k m == 则直线AB 的方程为 13,22y x =+ 即 230.x y -+=【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据20,PF PA PB ++=求得122x x +=-,122y y +=.22.(1)22163x y +=;(2)12.【分析】(1)椭圆C 过点()2,1A ,()2,1B --,在点A 处的切线方程为3y x =-+,可用待定系数法求椭圆的标准方程;(2)用设而不求法把p ,q 表示出来,整理化简即可. 【详解】(1)由题意知椭圆C 在()2,1A 处的切线方程为2221x y a b +=也为3y x =-+,∴222113a a b b ⎧=⎪==⇒⎨=⎪⎩椭圆C 的方程为22163x y +=.(2)直线l 的方程为()3y k x =-,()11,M x y ,()22,N x y()()2222232696026y k x x k x x x y ⎧=-⇒+-+-=⎨+=⎩ ()222212121860k xk x k +-+-=直线AM 方程为:()111212y y x x -=-+-,令()1151312y x p x --=-⇒=+- 直线AN 方程为()221212y y x x -=-+-,令()2251312y x q x --=-⇒=+- ∴()()1212121231311152522222k x k x y y p q x x x x ⎡⎤----⎛⎫--+=-++=-++⎢⎥⎪----⎝⎭⎣⎦ ()()()()()121212122121452105122222k x k k x k x x k k x x x x ⎡⎤------+-=-++=-++⋅+⎢⎥----⎣⎦()()()222222221241************121244105122210512212k k k k k k k k k k k k k k -+=-++⋅+--+++-=-++⋅+-=-++⋅+=.即12p q +=.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.23.(1)2214x y +=;(2)证明见解析.【分析】(1)先分析椭圆M 经过P 1、P 3、P 2,用待定系数法求标准方程;(2)先用联立方程组,设而不求法把以AB 为直径的圆经过C,找到两个参数的关系,证明直线过定点. 【详解】(1)2214x y +=; 由题意,点112P ⎛⎫ ⎪⎝⎭,与点312P ⎫⎪⎭,关于原点对称, 根据椭圆的对称性且椭圆过其中的三个点可知,点112P ⎛⎫ ⎪⎝⎭,和点312P ⎫⎪⎭,都在椭圆上, 又因为点312P ⎫⎪⎭,与点)4P 1不可能同时在椭圆上,即椭圆过点112P ⎛⎫ ⎪⎝⎭,,312P ⎫⎪⎭,,()20,1P ,所以(2222121a b⎛⎫ ⎪⎝⎭+=, 且2222011a b+=, 故24a =,21b =,所以,椭圆M 的方程为2214x y +=.(2)直线l 恒过点6,05⎛⎫⎪⎝⎭. 由题意,可设直线AB 的方程()2x ky m m =+≠,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x ,得()2224240k y kmy m +++-=,设()11,A x y ,()22,B x y ,则有12224km y y k -+=+,212244m y y k -⋅=+① 又以线段AB 为直径的圆过椭圆的右顶点C ,0CA CB =∴⋅,由()112,CA x y =-,()222,CB x y =- 得()()1212220x x y y --+= , 将11x ky m =+,22x ky m =+代入上式得()()()()2212121220ky y k m y y m ++-++-=,将①代入上式求得65m =或2m =(舍), 则直线l 恒过点6,05⎛⎫ ⎪⎝⎭. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题;(3)证明直线过定点,通常有两类:①直线方程整理为斜截式y=kx+b ,过定点(0,b );②直线方程整理为点斜式y - y o =k (x- x 0),过定点(x 0,y 0) . 24.(1)证明见解析;(2)()2224x y +-=. 【分析】(1)设出直线方程与抛物线方程联立,由OA OB ⊥转化为坐标形式再利用韦达定理表示可得答案;(2)判断出直线AB 过定点()0,4M ,由⊥OD AB 于点D ,得到点D 在以OM 为直径的圆上可得答案. 【详解】(1)证明:由题意直线AB 的斜率存在,可设方程为y kx b =+,0b ≠,由24y kx bx y=+⎧⎨=⎩可得2440x kx b --=, 所以1x ,2x 是该方程的两根,所以216160k b ∆=+>, 且124x x k +=,124x x b =-,OA OB ∴⊥,12120x x y y ∴+=,即()()()()221212121210x x kx b kx b k x x bk x x b +++=++++=,可得()2224140kb k b b-+++=,0b ≠,解得4b =,此时216160k b ∆=+>成立,12416x x b ∴=-=-.(2)由(1)可得直线AB 的方程为4y kx =+, 所以直线AB 过定点()0,4M ,又⊥OD AB 于点D ,所以点D 在以OM 为直径的圆上,可得点D 的轨迹方程为()2224x y +-=.【点睛】本题考查了直线与抛物线的位置关系,利用韦达定理解决问题时注意判别式的范围,要熟练掌握基础知识及转化能力.25.(1)证明见解析;(2)证明见解析. 【分析】 (1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭,联立直线与抛物线方程,消元、列出韦达定理,即可得到0OA OB ⋅=,从而得证;(2)对函数求导,利用导数的几何意义求出过点A 、B 的切线1l 、1l 的方程,即可得到12122y x x ==-,即可得证; 【详解】 解:(1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭, 把2y kx =+代入212y x =,得2240x kx --=. 由韦达定理得122x x k +=,124x x =-.()22211221212111,,0224OA OB x x x x x x x x ⎛⎫⎛⎫∴⋅=⋅=+= ⎪ ⎪⎝⎭⎝⎭. 所以OA OB ⊥(2)212y x =,y x '∴=, 故经过点211,12A x x ⎛⎫ ⎪⎝⎭的切线1l 的方程为:()211112y x x x x -=-, 即21112y x x x =-,①同理,经过点222,12B x x ⎛⎫ ⎪⎝⎭的切线2l 的方程为:22212y x x x =-,②21x x ⨯-⨯①②,得12122y x x ==-. 即点M 在直线:2l y =-上. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.26.(1)2p =;(2))1y x =±- 【分析】(1)根据题意得,02p F ⎛⎫⎪⎝⎭,当l x ⊥轴时,l 的方程为:2p x =,进而与抛物线联立得,2p A p ⎛⎫ ⎪⎝⎭,,2p B p ⎛⎫- ⎪⎝⎭,故24AB p ==,进而得答案; (2)由(1)得抛物线C :24y x =,()1,0F ,设直线l 方程为:()1y k x =-,()11,A x y ,()22,B x y ,进而与抛物线联立方程得212224k x x k++=,121=x x ,再结合焦半径公式和2AF BF =得1221x x =+,进而得212x =,12x =,故21222452k x x k ++==,解方程得k =±. 【详解】解:(1)根据题意得:,02p F ⎛⎫⎪⎝⎭, 当l x ⊥轴时,l 的方程为:2p x =,与抛物线22y px =联立方程得,2p A p ⎛⎫ ⎪⎝⎭,,2p B p ⎛⎫- ⎪⎝⎭所以24AB p ==,解得2p =.(2)由(1)得抛物线C :24y x =,()1,0F ,根据题意,直线l 的斜率存在,故设直线l 方程为:()1y k x =-,()11,A x y ,()22,B x y ,与抛物线联立方程()241y x y k x ⎧=⎪⎨=-⎪⎩得:()2222240k x k x k -++=,所以()224224416160k k k ∆=+-=+>所以212224k x x k++=,121=x x , 因为2AF BF =,故根据焦半径公式得:()121212AF x x BF =+=+=,即:1221x x =+,所以()22211x x +=,即222210x x +-=,解得212x =或21x =-(舍) 所以12212x x =+=,所以21222452k x x k ++==,即:28k =,解得k =±所以直线l 方程为:)1y x =±-. 【点睛】本题考查抛物线的焦半径公式,过焦点的弦的方程,考查运算求解能力,是中档题.本题解题的关键在于根据2AF BF =,并结合焦半径公式得1221x x =+,进而直线l 方程与抛物线方程联立,利用韦达定理求解.。