北京市2019年中考数学专题练习题精选 提分专练(四)图表的分析与决策

合集下载

北京市2019年中考数学试题(解析版)

北京市2019年中考数学试题(解析版)

2019年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。

1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:用量角器度量角。

解析:由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以,度数应为55°。

2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。

将28 000用科学计数法表示应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。

解析:科学记数的表示形式为10na⨯形式,其中1||10≤<,n为整数,28000=。

故选C。

a3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴比较数的大小。

解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。

4. 内角和为540的多边形是答案:c考点:多边形的内角和。

n-⨯︒,当n=5时,内角和为540°,所以,选C。

解析:多边形的内角和为(2)1805. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。

解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。

6. 如果,那么代数2()b aaa a b--的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平方差公式。

解析:2()b aaa a b--=22a b aa a b--=()()a b a b aa a b-+-=a b+=2。

7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D考点:轴对称图形的辨别。

北京市第四中2019年中考数学冲刺复习专题训图表信息型问题

北京市第四中2019年中考数学冲刺复习专题训图表信息型问题

图表信息型问题例1.今年我省干旱灾情严重,甲地急需要抗旱用水 15 万吨,乙地13 万吨.现有 A、B 两水库各调出 14 万吨水增援甲、乙两地抗旱.从 A 地到甲地 50 千米,到乙地 30 千米;从 B 地到甲地 60 千米,到乙地 45 千米.⑴设从 A 水库调往甲地的水量为x 万吨,达成下表 :⑵请设计一个调运方案,使水的调运量尽可能小.(调运量= 调运水的重量×调运的距离,单位 : 万吨 ?千米)例2. 为了保护水资源,某市拟订一套节水的管理举措,此中对居民生活用水收费作以下规定 :(1)若某用户六月份用水量为 18 吨,求其应缴纳的水费;(2)记该户六月份用水量为 x 吨,缴纳水费 y 元,试列出 y 对于 x 的函数式;(3)若该用户六月份用水量为 40 吨,缴纳花费 y 元的取值范围为 70≤y≤90,试求 m的取值范围 .例 3. 某绿色无公害蔬菜基地有甲、乙两栽种户,他们栽种了A、B 两类蔬菜,两栽种户栽种的两类蔬菜的栽种面积与总收入以下表 :说明 : 不一样栽种户栽种的同类蔬菜每亩均匀收入相等.⑴求 A、B两类蔬菜每亩均匀收入各是多少元?⑵某栽种户准备租20 亩地用来栽种 A、B两类蔬菜,为了使总收入不低于 63000 元,且栽种A类蔬菜的面积多于栽种B类蔬菜的面积(两类蔬菜的栽种面积均为整数),求该栽种户全部租地方案 .例 4. 如图,已知抛物线 P:y=ax 2 +bx+c(a ≠ 0) 与 x 轴交于 A、B两点 ( 点 A 在 x 轴的正半轴上 ) ,与 y 轴交于点 C,矩形 DEFG的一条边 DE在线段 AB上,极点 F、G分别在线段 BC、AC上,抛物线P 上部分点的横坐标对应的纵坐标以下 :(1)求 A、B、C三点的坐标;(2)若点 D 的坐标为 (m,0) ,矩形 DEFG的面积为 S,求 S 与m的函数关系,并指出 m的取值范围;(3)当矩形 DEFG的面积 S 取最大值时,连结 DF并延伸至点M,使 FM=k·DF,若点 M不在抛物线 P 上,求 k 的取值范围 .。

北京市2019年中考数学专题练习题精选 提分专练(四)图表的分析与决策

北京市2019年中考数学专题练习题精选 提分专练(四)图表的分析与决策

提分专练(四) 图表的分析与决策(18年25题,17年25题,16年22题,15年 25题)|类型1| 利用样本估计总体1.[2018·西城一模]某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员;B.书香社区图书整理;C.学编中国结及义卖;D.家风讲解员;E.校内志愿服务.要求:每位学生都从中选择一个项目参加.为了了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E.整理、描述数据:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表正2 2正正选择各志愿服务项目的人数比例统计图图T4-1分析数据、推断结论:a.抽样的40个样本数据(志愿服务项目的编号)的众数是(填A-E的字母代号).b.请你任选A-E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.2.[2018·海淀一模]某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:7783806486907592838185 86 88 62 65 86 97 96 82 7386 84 89 86 92 73 57 77 87 8291 81 86 71 53 72 90 76 68 78整理数据,如下表所示:2018年九年级部分学生的体质健康测试成绩统计表分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比.344图T4-2你能从中得到的结论是 ,你的理由是 . 体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有 名同学参加此项目.|类型2| 图表的分析与决策3.[2018·石景山一模] 某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩(单位:分)如下:图T4-3整理、分析过程如下,请补充完整. (1)按如下分数段整理、描述这两组数据:5(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:(3)若从甲、乙两人中选择一人参加知识竞赛,你会选 (填“甲”或“乙”),理由为 .4.[2018·丰台一模] 第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲 30 60 60 70 60 80 30 90 100 60 60 100 80 60 70 60 60 90 60 60 乙 80 90 40 60 80 80 90 40 80 50 8070 70 70 70 60 80 50 80 80 【整理、描述数据】 按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x ≤100,良好成绩为50<x ≤80,合格成绩为30≤x ≤50) 【分析数据】两组样本数据的平均数、中位数、众数如下表所示:6 6其中a= .【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)参考答案1.解:B项有10人,D项有4人,划记略.选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.分析数据、推断结论a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.b.根据学生选择情况答案分别如下(写出任意两个即可).A:500×20%=100(人).B:500×25%=125(人).C:500×30%=150(人).D:500×10%=50(人).E:500×15%=75(人).2.解:收集数据 C整理、描述数据分析数据、得出结论去年的体质健康测试成绩比今年好.(答案不唯一,合理即可)去年较今年低分更少,高分更多,平均分更高.(答案不唯一,合理即可)703.解:(1)014500(2)1484.581(3)甲理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)7或:乙理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)4.解:【分析数据】80【得出结论】(1)甲 (2)(3)答案不唯一,理由需支撑推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分,说明乙校平均水平高,乙校成绩的中位数75高于甲校成绩的中位数60,说明乙校分数不低于70分的学生比甲校多.88。

2019年北京市中考数学试卷附分析答案

2019年北京市中考数学试卷附分析答案


美元;(结果保留一位小数)
(4)下列推断合理的是

①相比于点 A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加
快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点 B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决
胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.
位长度,得到点 C,若 CO=BO,则 a 的值为( )
A.﹣3
B.﹣2
C.﹣1
D.1
5.(2 分)已知锐角∠AOB,如图,
(1)在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径作 ,交射线 OB 于点 D,
连接 CD;
(2)分别以点 C,D 为圆心,CD 长为半径作弧,交 于点 M,N;
26.(6 分)在平面直角坐标系 xOy 中,抛物线 y=ax2+bx 与 y 轴交于点 A,将点 A 向右 平移 2 个单位长度,得到点 B,点 B 在抛物线上. (1)求点 B 的坐标(用含 a 的式子表示); (2)求抛物线的对称轴;
(3)已知点 P( , ),Q(2,2).若抛物线与线段 PQ 恰有一个公共点,结合函数 图象,求 a 的取值范围. 27.(7 分)已知∠AOB=30°,H 为射线 OA 上一定点,OH h1,P 为射线 OB 上一点, M 为线段 OH 上一动点,连接 PM,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺 时针旋转 150°,得到线段 PN,连接 ON. (1)依题意补全图 1;
组值,如下表:
位置 1 位置 2 位置 3 位置 4 位置 5 位置 6 位置 7 位置 8
PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83

2019年北京中考数学习题精选:数据的分析含答案

2019年北京中考数学习题精选:数据的分析含答案

2019年北京中考数学习题精选:数据的分析含答案一、选择题1.(2018北京西城区二模)在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好答案:C2、(2018北京丰台区二模)为适应新中考英语听说机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩. 甲、乙两位同学的练习成绩统计结果如图所示:甲同学的练习成绩统计图乙同学的练习成绩统计图下列说法正确的是(A)甲同学的练习成绩的中位数是38分(B)乙同学的练习成绩的众数是15分(C)甲同学的练习成绩比乙同学的练习成绩更稳定(D)甲同学的练习总成绩比乙同学的练习总成绩低答案:A温度(°C )20时18时16时14时12时10时8时403020103、(2018北京东城区二模)七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 答案D4、(2018北京房山区二模)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是A .30,28B .26,26C .31,30D .26,22答案:B5、(2018北京昌平区二模)某九年一贯制学校在六年级和九年级的男生中分别随机抽取40名学生测量他们的身高,将数据分组整理后,绘制的频数分布直方图如下:其中两条纵向虚线上端的数值分别是每个年级抽出的40名男生身高的平均数,根据统计图提供的信息,下列结论不合理的是( )A .六年级40名男生身高的中位数在第153~158cm 组B .可以估计该校九年级男生的平均身高比六年级的平均身高高出18.6cmC .九年级40名男生身高的中位数在第168~173cm 组D .可以估计该校九年级身高不低于158cm 但低于163cm 的男生所占的比例大约是5%答案:A6.(2018北京燕山地区一模)每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。

北京市第四中2019年中考数学冲刺复习专题训方案设计与决策型问题

北京市第四中2019年中考数学冲刺复习专题训方案设计与决策型问题

方案设计与决策型问题例1.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.例2.为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)例3.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B 种造型需甲种花卉5盆,乙种花卉9盆.(l)某个课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?例4.在△ABC中, BC=a,BC边上的高h=2a,沿图中线段DE、CF将△ABC剪开,分成的三块图形恰能拼成正方形CFHG,如图所示.请你解决如下问题:1.请已知:在锐角△A′B′C′中, B′C′=a,B′C′边上的高h=a2你设计两种不同的分割方法,将△A′B′C′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,画出分割线及拼接后的图形.。

【北京市】中考数学习题精选:专练四图表的分析与决策(含解析)

【北京市】中考数学习题精选:专练四图表的分析与决策(含解析)

提分专练(四) 图表的分析与决策(18年25题,17年25题,16年22题,15年25题)|类型1| 利用样本估计总体1.[2018·西城一模] 某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员;B.书香社区图书整理;C.学编中国结及义卖;D.家风讲解员;E.校内志愿服务.要求:每位学生都从中选择一个项目参加.为了了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E.整理、描述数据:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表志愿服务项目划记人数A .纪念馆志愿讲解员 正8 B .书香社区图书整理C .学编中国结及义卖 正正12D .家风讲解员E .校内志愿服务正6 合计4040 选择各志愿服务项目的人数比例统计图图T4-1分析数据、推断结论:a.抽样的40个样本数据(志愿服务项目的编号)的众数是(填A-E的字母代号).b.请你任选A-E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.2.[2018·海淀一模] 某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下: 7783806486907592838185 86 88 62 65 86 97 96 82 7386 84 89 86 92 73 57 77 87 8291 81 86 71 53 72 90 76 68 78整理数据,如下表所示:2018年九年级部分学生的体质健康测试成绩统计表50≤x< 5555≤x<6060≤x<6565≤x<7070≤x<751 12 2 475≤x< 8080≤x<8585≤x<9090≤x<9595≤x<105 5 2分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比.图T4-2你能从中得到的结论是,你的理由是.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有名同学参加此项目.|类型2| 图表的分析与决策3.[2018·石景山一模] 某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩(单位:分)如下:图T4-3 整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x学生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲乙 1 1 4 2 1 1 (2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲83.78613.21乙2483.78246.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙”),理由为.4.[2018·丰台一模] 第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲306060706080309010060 6010080607060 609060 60乙80904060808090408050807070707060 805080 80【整理、描述数据】按如下分数段整理、描述这两组样本数据:成绩x人数学校30≤x≤5050<x≤8080<x≤100甲 2 14 4乙 4 14 2(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50) 【分析数据】两组样本数据的平均数、中位数、众数如下表所示:学校平均数中位数众数甲67 60 60乙70 75 a其中a= .【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)参考答案1.解:B项有10人,D项有4人,划记略.选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.分析数据、推断结论a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.b.根据学生选择情况答案分别如下(写出任意两个即可).A:500×20%=100(人).B:500×25%=125(人).C:500×30%=150(人).D:500×10%=50(人).E:500×15%=75(人).2.解:收集数据 C整理、描述数据80≤x<85 85≤x<908 10分析数据、得出结论去年的体质健康测试成绩比今年好.(答案不唯一,合理即可)去年较今年低分更少,高分更多,平均分更高.(答案不唯一,合理即可)703.解:(1)014500(2)1484.581(3)甲理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)或:乙理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)4.解:【分析数据】80【得出结论】(1)甲(2)(3)答案不唯一,理由需支撑推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分,说明乙校平均水平高,乙校成绩的中位数75高于甲校成绩的中位数60,说明乙校分数不低于70分的学生比甲校多.。

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1032.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .3.正十边形的外角和为()A.180°B.360°C.720°D.1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t0≤t<1010≤t<2020≤t<3030≤t<40t≥40人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【答案】C2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【答案】C3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.【点评】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.【点评】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.【点评】考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.【点评】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图象G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点评】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00确定PC的长度是自变量,PD的长度和AD 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;。

2019年北京市中考数学试题及答案解析

2019年北京市中考数学试题及答案解析

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CDB6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.图3图2图120.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数./万元23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PCCBA交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy中,直线l:()10y kx k=+≠与直线x k=,直线y k=-分别交于点A,B,直线x k=与直线y k=-交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA,,围成的区域(不含边界)为W.∠当2k=时,结合函数图象,求区域W内的整点个数;∠若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC中,AB AC D E ==,分别是AB AC ,的中点.画出备用图图1BAOB ABCDE∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组3x 3x3x(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ; (2)直线1x;(3)1a ≤2.27. 【答案】 (1)见图(2) 在∠OPM中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)∠1P y ≥或12P y ≤; ∠02t<≤BCD E。

(完整版)2019年北京市中考数学试题及答案解析,推荐文档

(完整版)2019年北京市中考数学试题及答案解析,推荐文档

2019 年北京市中考数学试卷一、选择题(本题共 16 分,每小题 2 分)第 1-8 题均有四个选项,符合题意的选项只有一个.1.4 月 24 日是中国航天日,1970 年的这一天,我国自行设计、制造的第一颗人造地球卫 星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近 点 439 000 米.将 439 000 用科学记数法表示应为(A) 0.439´ 106(B) 4.39´106(C) 4.39´ 105(D) 439´ 1032. 下列倡导节约的图案中,是轴对称图形的是(A) (B) (C) (D) 3. 正十边形的外角和为(A)180 (B) 360 (C)720 (D)1440 4. 在数轴上,点 A,B 在原点 O 的两侧,分别表示数 a,2,将点 A 向右平移 1 个单位长度,得到点 C.若 CO=BO,则 a 的值为(A)- 3 (B) - 2 (C) - 1 (D)15. 已知锐角∠AOB如图, (1) 在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径 作 ,交射线 OB 于点 D,连接 CD;O(2) 分别以点 C,D 为圆心,CD 长为半径作弧,交 于1P MA CDBN Q点 M,N;(3) 连接 OM,MN.根据以上作图过程及所作图形,下列结论中错误的是(A)∠COM=∠COD (B)若 OM=MN,则∠AOB=20°(C)MN∥CD(D)MN=3CD 6. 2m n 如果 m n 1,那么代数式 m2 1 m2 n2的值为(A) 3 (B) 1 (C)1 (D)311 7. 用三个不等式 a b , ab 0 , a b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A)0 (B)1 (C)2 (D)38. 某校共有 200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳 动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.人数 时间0≤t<10 10≤t<20 20≤t<30 30≤t<40t≥40学生 性男7别女8学初中段高中31252926253630432844112万万万万万万万万万万/万万30 24.5 25.525 20 15 10 50万 万万万27.0 21.8万 万 万 万万万 万万万万下面有四个推断:①这 200 名学生参加公益劳动时间的平均数一定在 24.5-25.5 之间 ②这 200 名学生参加公益劳动时间的中位数在 20-30 之间 ③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20-30 之间 ④这 200 名学生中的高中生参加公益劳动时间的中位数可能在 20-30 之间 所有合理推断的序号是(A)①③(B)②④(C)①②③(D)①②③④二、填空题(本题共 16 分,每小题 2 分)x 19. 若分式 x 的值为 0,则 x 的值为.10. 如图,已知! ABC ,通过测量、计算得! ABC 的面积约为一位小数)cm2.(结果保留11. 在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)3CAB万 10万万PAB万 12万万①长方体②圆柱第11题图③圆锥12. 如图所示的网格是正方形网格,则 PAB+PBA=网格线交点).°(点 A,B,P 是y k113. 在平面直角坐标系 xOy 中,点 A a,ba 0,b 0在双曲线x 上.点y k2A 关于 x 轴的对称点 B 在双曲线x 上,则 k1 k2 的值为.14. 把图 1 中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图 2,图 3 所示的正方形,则图 1 中菱形的面积为.5 1万1万2万315.小天想要计算一组数据 92,90,94,86,99,85 的方差 s02 .在计算平均数的过程中,将这组数据中的每一个数都减去 90,得到一组新数据 2,0,4, 4,9, 5.记这组新数4s2 s2据的方差为 1 , 则 1s2 0 . (填“ ”,“ ”或“ ”)16.在矩形 ABCD 中,M,N,P,Q 分别为边 AB,BC,CD,DA 上的点(不与端点重合) .对于任意矩形 ABCD,下面四个结论中,①存在无数个四边形 MNPQ 是平行四边形;②存在无数个四边形 MNPQ 是矩形;③存在无数个四边形 MNPQ 是菱形;④至少存在一个四边形 MNPQ 是正方形. 所有正确结论的序号是 .三、解答题(本题共 68 分,第 17-21 题,每小题 5 分,第 22-24 题,每小题 6 分,第 25 题 5 分,第 26 题 6 分,第 27-28 题,每小题 7 分)解答应写出文字说明、演算步骤或证明过程. 4 302 sin 601 ()117.计算:4.4(x 1) x 2, x 7 x. 18. 解不等式组: 319. 关于 x 的方程 x2 2x 2m 1 0 有实数根,且 m 为正整数,求 m 的值及此时方程的根.20. 如图,在菱形 ABCD 中,AC 为对角线,点 E,F 分别在 AB,AD 上,BE=DF,连接5EF. (1) 求证:AC⊥EF;(2) 延长 EF 交 CD 的延长线于点 G,连接 BD 交 AC 于点1BO,若 BD=4,tanG= 2 ,求 AO 的长.AEFDC21. 国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得 分排名前 40 的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a. 国家创新指数得分的频数分布直方图(数据分成 7 组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);万万万万万万 万 12 9 8 62 130 40 50 60 70 80 90 100 万万万万万万万万b. 国家创新指数得分在 60≤x<70 这一组的是: 61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:6万万万万万万万100 90 80 70 60 50 40 3001 2 34 5A 67l1 B89l2 C10 11 万万万万万万万万/万万d.中国的国家创新指数得分为 69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1) 中国的国家创新指数得分排名世界第;(2) 在 40 个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1 的上方.请在图中用“ ”圈出代表中国的点;(3) 在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4) 下列推断合理的是.①相比于点 A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快 建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点 B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜 全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22. 在平面内,给定不在同一直线上的点 A,B,C,如图所示.点 O 到点 A,B,C 的距离均等于 a(a 为常数),到点 O 的距离等于 a 的所有点组成图形 G, ABC 的平分线交7图形 G 于点 D,连接 AD,CD. (1) 求证:AD=CD;(2) 过点 D 作 DE BA,垂足为 E,作 DF BC,垂足为 F,延长 DF 交图形 G 于点M,连接 CM.若 AD=CM,求直线 DE 与图形 G 的公共点个数.ABC23. 小云想用 7 天的时间背诵若干首诗词,背诵计划如下:①将诗词分成 4 组,第 i 组有 xi 首,i =1,2,3,4;②对于第 i 组诗词,第 i 天背诵第一遍,第( i +1)天背诵第二遍,第( i +3 )天背诵第 三遍,三遍后完成背诵,其它天无需背诵, i 1,2,3,4;第 1天 第 2天 第 3天 第 4天 第 5天 第 6天 第 7天第 1 组 x1x1x1第 2组x2x2x2第 3组第 4组x4x4x4③每天最多背诵 14 首,最少背诵 4 首.8解答下列问题:(1) 填入 x3 补全上表;(2) 若 x1 4 , x2 3 , x3 4 ,则 x4 的所有可能取值为;(3)7 天后,小云背诵的诗词最多为首.24. 如图,P 是 与弦 AB 所围成的图形的外部的一定点,C 是 交弦 AB 于点 D.上一动点,连接 PCC ADPB小腾根据学习函数的经验,对线段 PC,PD,AD 的长度之间的关系进行了探 究. 下面是小腾的探究过程,请补充完整:(1) 对于点 C 在 组值,如下表:上的不同位置,画图、测量,得到了线段 PC,PD,AD 的长度 的几位置 1 位置 2 位置 3 位置 4 位置 5 位置 6 位置 7 位置 89PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm 0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在 PC,PD,AD 的长度这三个量中,确定 的长度都是这个自变量的函数;的长度是自变量,的长度和(2) 在同一平面直角坐标系 xOy 中,画出(1)中所确定的函数的图象;y/cm6 54 321O1 2 3 4 5 6 x/cm(3) 结合函数图象,解决问题:当 PC=2PD 时,AD 的长度约为cm.25.在平面直角坐标系 xOy 中,直线 l: y kx 1k 0与直线 x k ,直线y k 分别交于点 A,B,直线 x k 与直线 y k 交于点C .(1) 求直线l 与 y 轴的交点坐标;(2) 横、纵坐标都是整数的点叫做整点.记线段 AB,,C CA 围成的区域(不含边界) 为W .10①当k = 2 时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy中,抛物线y =ax2 +bx -1a 与y 轴交于点A,将点 A 向右平移2 个单位长度,得到点B,点 B 在抛物线上.(1)求点B 的坐标(用含a的式子表示);(2)求抛物线的对称轴;1 1P( 2 , -a ) Q(2, 2)(3)已知点,.若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知∠AOB = 30︒,H 为射线OA 上一定点,OH =+1,P 为射线OB 上一点,3DE M 为线段 OH 上一动点,连接 PM ,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺时针旋转150︒ ,得到线段 PN ,连接 ON .(1) 依题意补全图 1;(2) 求证: ∠OMP = ∠OPN ;(3) 点 M 关于点 H 的对称点为 Q ,连接 QP .写出一个 OP 的值,使得对于任意的点 M总有 ON=QP ,并证明.BOHA O A万 1万万万28. 在△ABC 中,D ,E 分别是! ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.ABCD E( ) ( ) (1) 如图,在 Rt △ABC 中, AB = AC = 2 2,,E 分别是 AB ,AC 的中点.画出△ABC 的最长的中内弧 ,并直接写出此时 的长;ABCA 0, 2 ,B 0,0 (2) 在平面直角坐标系中,已知点D ,E 分别是 AB ,AC 的中点.t = 1C (4t ,0)(t > 0),在△ABC 中,①若2 ,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上, 直接写出 t 的取值范围.2019 年北京市中考数学答案参考答案与试题解析一. 选择题.题号 1 2 3 4 5 6 7 8 答案 C C B A D D D C二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】2 3+318.【答案】x < 219.【答案】m=1,此方程的根为x1=x2= 120.【答案】(1)证明:∵四边形ABCD 为菱形∴AB=AD,AC 平分∠BAD∵BE=DF∴ AB -BE =AD -DF∴AE=AF∴△AEF 是等腰三角形∵AC 平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】∵BD 平分∠ABC∴ ∠ABD =∠CBD∴AD=CD(2)直线DE 与图形G 的公共点个数为1.23.【答案】(1)如下图第 1 天第2 天第3 天第 4 天第 5 天第 6 天第7 天第1 组第2 组第3 组x3x3x3第4 组(2)4,5,6(3)2324.【答案】(1)AD,PC,PD;(3)2.29 或者 3.9825.【答案】(1)(0,1)(2)①6 个② -1 ≤k < 0 或k =-226.【答案】B(2, -1 )(1)a ;(2)直线x =1;a≤-1(3)(2.3)27.D E【答案】(1)见图(2)在△OPM 中, ∠OMP =180︒ - ∠POM - ∠OPM = 150︒ - ∠OPM∠OPN = ∠MPN - ∠OPM∴∠OMP = ∠OPN = 150︒ - ∠OPM(3)OP=2.28.【答案】(1)如图:BCl = n r = 180 1= 180 180(2)1y ≤y P≥1或P 2 ;①② 0 <t ≤ 2At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance ofcontinuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!“”“”。

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷及答案解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103解:将439000用科学记数法表示为4.39×105.故选:C.2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.正十边形的外角和为()A.180°B.360°C.720°D.1440°解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.已知锐角∠AOB,如图,̂,交射线OB于点D,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ连接CD;̂于点M,N;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA =∠AOB =∠BON =13∠MON =20°,故B 选项正确; 设∠MOA =∠AOB =∠BON =α, 则∠OCD =∠OCM =180°−α2, ∴∠MCD =180°﹣α, 又∵∠CMN =12∠CON =α, ∴∠MCD +∠CMN =180°, ∴MN ∥CD ,故C 选项正确;∵MC +CD +DN >MN ,且CM =CD =DN , ∴3CD >MN ,故D 选项错误; 故选:D .6.如果m +n =1,那么代数式(2m+n m −mn+1m)•(m 2﹣n 2)的值为( ) A .﹣3 B .﹣1C .1D .3解:原式=2m+n+m−n m(m−n)•(m +n )(m ﹣n )=3mm(m−n)•(m +n )(m ﹣n )=3(m +n ), 当m +n =1时,原式=3. 故选:D .7.用三个不等式a >b ,ab >0,1a<1b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A .0B .1C .2D .3解:①若a >b ,ab >0,则1a<1b;真命题: 理由:∵a >b ,ab >0, ∴a >b >0,或b <a <0, ∴1a<1b ;②若ab >0,1a<1b,则a >b ,真命题;理由:∵ab >0, ∴a 、b 同号, ∵1a<1b,∴a>b;③若a>b,1a <1b,则ab>0,真命题;理由:∵a>b,1a <1b,∴a、b同号,∴ab>0∴组成真命题的个数为3个;故选:D.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间 所有合理推断的序号是( ) A .①③B .②④C .①②③D .①②③④解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为 15,60,51,62,12,则中位数在20﹣30 之间,故②正确.③由统计表计算可得,初中学段栏0≤t <10 的人数在 0﹣15 之间,当人数为 0 时中位数在 20﹣30 之间;当人数为 15 时,中位数在 20﹣30 之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为 0﹣15,35,15,18,1,当0≤t <10时间段人数为 0 时,中位数在 10﹣20 之间;当 0≤t <10时间段人数为 15 时,中位数在 10﹣20 之间,故④错误. 故选:C .二、填空题(本题共16分,每小题2分) 9.分式x−1x的值为0,则x 的值是 1 .解:∵分式x−1x的值为0,∴x ﹣1=0且x ≠0, ∴x =1. 故答案为1.10.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为 1.9 cm 2.(结果保留一位小数)解:过点C 作CD ⊥AB 的延长线于点D ,如图所示. 经过测量,AB =2.2cm ,CD =1.7cm ,∴S △ABC =12AB •CD =12×2.2×1.7≈1.9(cm 2).故答案为:1.9.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=k1x上,点A关于x轴的对称点B在双曲线y=k2x,则k1+k2的值为0.解:∵点A (a ,b )(a >0,b >0)在双曲线y =k1x 上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称, ∴B (a ,﹣b )∵点B 在双曲线y =k2x 上,∴k 2=﹣ab ;∴k 1+k 2=ab +(﹣ab )=0; 故答案为:0.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 12 .解:如图1所示: ∵四边形ABCD 是菱形, ∴OA =OC ,OB =OD ,AC ⊥BD , 设OA =x ,OB =y , 由题意得:{x +y =5x −y =1,解得:{x =3y =2,∴AC =2OA =6,BD =2OB =4, ∴菱形ABCD 的面积=12AC ×BD =12×6×4=12; 故答案为:12.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB =AD ,∴四边形ABCD 是正方形,当四边形ABCD 为正方形时,四边形MNPQ 是正方形,故错误; 故答案为:①②③.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|−√3|﹣(4﹣π)0+2sin60°+(14)﹣1.解:原式=√3−1+2×√32+4=√3−1+√3+4=3+2√3. 18.(5分)解不等式组:{4(x −1)<x +2x+73>x解:{4(x −1)<x +2①x+73>x②,解①得:x <2, 解②得x <72,则不等式组的解集为x <2.19.(5分)关于x 的方程x 2﹣2x +2m ﹣1=0有实数根,且m 为正整数,求m 的值及此时方程的根.解:∵关于x 的方程x 2﹣2x +2m ﹣1=0有实数根, ∴b 2﹣4ac =4﹣4(2m ﹣1)≥0, 解得:m ≤1, ∵m 为正整数, ∴m =1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=12,求AO的长.(1)证明:连接BD,交AC于O,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,OA=OC,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠CDO,∴tan G=tan∠CDO=OCOD=12,∴OC=12OD,∵BD=4,∴OD=2,∴OC=1,∴OA=OC=1.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,̂=CD̂,∴AD∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,̂=CD̂,∵AD∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入x 3补全上表;(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为 4,5,6 ; (3)7天后,小云背诵的诗词最多为 23 首. 解:(1)第1天 第2天 第3天第4天 第5天第6天 第7天 第1组 x 1 x 1 x 1 第2组 x 2 x 2 x 2 第3组 x 3 x 3 x 3 第4组x 4x 4x 4(2)∵每天最多背诵14首,最少背诵4首, ∴x 1≥4,x 3≥4,x 4≥4, ∴x 1+x 3≥8①, ∵x 1+x 3+x 4≤14②, 把①代入②得,x 4≤6, ∴4≤x 4≤6,∴x 4的所有可能取值为4,5,6, 故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首, ∴由第2天,第3天,第4天,第5天得,x 1+x 2≤14①,x 2+x 3≤14②,x 1+x 3+x 4=14③,x 2+x 4≤14④, ①+②+2③+④≤70得,x 1+x 2+x 2+x 3+2(x 1+x 3+x 4)+x 2+x 4≤70, ∴3(x 1+x 2+x 3+x 4)≤70, ∴x 1+x 2+x 3+x 4≤703, ∴x 1+x 2+x 3+x 4≤2313,∴7天后,小云背诵的诗词最多为23首, 故答案为:23.24.(6分)如图,P 是AB̂与弦AB 所围成的图形的外部的一定点,C 是AB ̂上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:̂上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几(1)对于点C在AB组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 2.3和4cm.解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC =2PD ,从图和表格可以看出位置4和位置6符合要求, 即AD 的长度为2.3和4.0.25.(5分)在平面直角坐标系xOy 中,直线l :y =kx +1(k ≠0)与直线x =k ,直线y =﹣k 分别交于点A ,B ,直线x =k 与直线y =﹣k 交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W .①当k =2时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围. 解:(1)令x =0,y =1,∴直线l 与y 轴的交点坐标(0,1); (2)由题意,A (k ,k 2+1),B (−k−1k,﹣k ),C (k ,﹣k ),①当k =2时,A (2,5),B (−32,﹣2),C (2,﹣2),在W 区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2); ②当k >0时,区域内必含有坐标原点,故不符合题意;当k <0时,W 内点的横坐标在﹣1到0之间,故﹣1≤k <0时W 内无整点;当﹣2≤k <﹣1时,W 内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为M (﹣1,﹣k )和N (﹣1,﹣k +1),MN =1;当k 不为整数时,其上必有整点,但k =﹣2时,只有两个边界点为整点,故W 内无整点; 当k ≤﹣2时,横坐标为﹣2的边界点为(﹣2,﹣k )和(﹣2,﹣2k +1),线段长度为﹣k +1>3,故必有整点.综上所述:﹣1≤k <0或k =﹣2时,W 内没有整数点;26.(6分)在平面直角坐标系xOy 中,抛物线y =ax 2+bx −1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点P (12,−1a),Q (2,2).若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围. 解:(1)A (0,−1a)点A 向右平移2个单位长度,得到点B (2,−1a ); (2)A 与B 关于对称轴x =1对称, ∴抛物线对称轴x =1; (3)∵对称轴x =1, ∴b =﹣2a , ∴y =ax 2﹣2ax −1a , ①a >0时,当x =2时,y =−1a <2, 当y =−1a时,x =0或x =2, ∴函数与PQ 无交点; ②a <0时,当y =2时,ax 2﹣2ax −1a=2, x =a+|a+1|a 或x =a−|a+1|a 当a−|a+1|a≤2时,a ≤−12;∴当a ≤−12时,抛物线与线段PQ 恰有一个公共点;27.(7分)已知∠AOB =30°,H 为射线OA 上一定点,OH =√3+1,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=12OP=1∴OD=√OP2−PD2=√3∵OH =√3+1 ∴DH =OH ﹣OD =1 ∵∠OMP =∠OPN∴180°﹣∠OMP =180°﹣∠OPN 即∠PMD =∠NPC 在△PDM 与△NCP 中 {∠PDM =∠NCP ∠PMD =∠NPC PM =NP∴△PDM ≌△NCP (AAS ) ∴PD =NC ,DM =CP设DM =CP =x ,则OC =OP +PC =2+x ,MH =MD +DH =x +1 ∵点M 关于点H 的对称点为Q ∴HQ =MH =x +1∴DQ =DH +HQ =1+x +1=2+x ∴OC =DQ在△OCN 与△QDP 中 {OC =QD∠OCN =∠QDP =90°NC =PD∴△OCN ≌△QDP (SAS ) ∴ON =QP28.(7分)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ̂上的所有点都在△ABC 的内部或边上,则称DÊ为△ABC 的中内弧.例如,图1中DE ̂是△ABC 的一条中内弧.(1)如图2,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点,画出△ABC的最长的中内弧DÊ,并直接写出此时DE ̂的长; (2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ̂所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧DÊ,使得DE ̂所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.解:(1)如图2,以DE 为直径的半圆弧DÊ,就是△ABC 的最长的中内弧DE ̂, 连接DE ,∵∠A =90°,AB =AC =2√2,D ,E 分别是AB ,AC 的中点,∴BC =AC sinB =2√2sin45°=4,DE =12BC =12×4=2,∴弧DE ̂=12×2π=π; (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG ⊥AC 交FP 于G ,①当t =12时,C (2,0),∴D (0,1),E (1,1),F (12,1), 设P (12,m )由三角形中内弧定义可知,圆心在线段DE 上方射线FP 上均可,∴m ≥1, ∵OA =OC ,∠AOC =90°∴∠ACO =45°,∵DE ∥OC∴∠AED =∠ACO =45°作EG ⊥AC 交直线FP 于G ,FG =EF =12根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求; ∴m ≤12综上所述,m ≤12或m ≥1.②如图4,设圆心P 在AC 上,∵P 在DE 中垂线上,∴P 为AE 中点,作PM ⊥OC 于M ,则PM =32, ∴P (t ,32), ∵DE ∥BC∴∠ADE =∠AOB =90°∴AE =√AD 2+DE 2=√12+(2t)2=√4t 2+1, ∵PD =PE ,∴∠AED =∠PDE∵∠AED +∠DAE =∠PDE +∠ADP =90°, ∴∠DAE =∠ADP∴AP =PD =PE =12AE由三角形中内弧定义知,PD ≤PM∴12AE ≤32,AE ≤3,即2+1≤3,解得:t ≤√2, ∵t >0∴0<t ≤√2.如图5,设圆心P 在BC 上,则P (t ,0) PD =PE =√OD 2+OP 2=√t 2+1,PC =3t ,CE =12AC =12√OA 2+OC 2=√4t 2+1 由三角形中内弧定义知,∠PEC ≤90°, ∴PE 2+CE 2≥PC 2即(√t 2+1)2+(√4t 2+1)2≥(3t )2,∵t >0 ∴0<t ≤√22;综上所述,t 的取值范围为:0<t ≤√2.。

2019年北京市中考数学试卷(含答案与解析)

2019年北京市中考数学试卷(含答案与解析)

数学试卷 第1页(共22数学试卷 第2页(共22页)绝密★启用前2019年北京市高级中等学校招生考试数 学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( ) A .60.43910⨯B .64.3910⨯C .54.3910⨯D .343910⨯ 2.下列倡导节约的图案中,是轴对称图形的是( )AB CD3.正十边形的外角和为( )A .180︒B .360︒C .720︒D .1440︒4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A .3-B .2-C .1-D .15.已知锐角AOB ∠如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .COM COD ∠=∠B .若OM MN =,则20AOB ︒∠=C .MN CD ∥D .3MN CD =6.如果1m n +=,那么代数式()22221m nm n m m mn +⎛⎫+⋅- ⎪-⎝⎭的值为( )A .3-B .1-C .1D .37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公下面有四个推断:学生类别5毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A .①③B .②④C .①②③D .①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为 .10.如图,已知ABC △,通过测量、计算得ABC △的面积约为 2cm .(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是 .(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠=+ 。

2019年北京市中考数学试题 含答案

2019年北京市中考数学试题 含答案

2019年北京市中考数学试题含答案2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点米。

将用科学记数法表示应为 4.39×10^5.(B)2.下列倡导节约的图案中,是轴对称图形的是(C)3.正十边形的外角和为 360°。

(B)4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C。

若CO=BO,则a的值为 1.(C)5.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN。

根据以上作图过程及所作图形,下列结论中错误的是(B)若OM=MN,则∠AOB=20°。

6.如果m+n=1,那么代数式(2m+n)/(2-mn)的值为(C)1.7.用三个不等式a>b,ab>1,ab<0中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(B)1.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分。

人数时间t<≤1010≤t<2020≤t<30 30≤t<40 t≥40男7312548女82926811初中10253630学生类别高中30203244人均参加公益劳动时间/小时24.525.527.021.8下面有四个推断:1.男生参加公益劳动的人数比女生多。

(正确)2.初中生参加公益劳动时间的平均值高于高中生。

(错误)3.学生参加公益劳动的总人数超过100人。

(正确)4.女生参加公益劳动的总时间多于男生。

2019年北京中考数学习题精选:统计图表

2019年北京中考数学习题精选:统计图表

一、选择题1、(2018北京朝阳区二模)小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:人28~35次的人数最多35~42次21次的有15人(A)①②(B)②③(C)③④(D)④答案:B2.(2018北京通州区一模)答案:B3.(2018北京平谷区中考统一练习)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③B.②③C.②④ D.③④答案C4.(2018北京丰台区一模)太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是(A)截至2017年底,我国光伏发电累计装机容量为13 078万千瓦(B)2013-2017年,我国光伏发电新增装机容量逐年增加(C)2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦(D)2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%答案B5.(2018北京海淀区第二学期练习)在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.2015-2017年中国在线教育用户规模统计图用户规模/万人14426137646月12月12月6月(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理...的是A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%答案B6.(2018北京延庆区初三统一练习)下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理...的是A.与2016年相比,2017年我国国内生产总值有所增长;B.2013-2016年,我国国内生产总值的增长率逐年降低;C.2013-2017年,我国国内生产总值的平均增长率约为6.7% ;D.2016-2017年比2014-2015年我国国内生产总值增长的多.优良轻度污染中度污染重度污染严重污染1月1月1月1月1月根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年1月B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别 答案:D8. (2018北京房山区一模)某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是A. 该班学生一周锻炼时间的中位数是11亿元2013-2017年国内生产总值及其增长速度B. 该班学生共有44人C.该班学生一周锻炼时间的众数是10D.该班学生一周锻炼12小时的有9人 答案A9.(2018北京怀柔区一模)下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( ) A. 9月毛衣的销量最低,10月衬衫的销量最高 B.与10月相比,11月时,毛衣的销量有所增长, 衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右 答案C10. (2018北京门头沟区初三综合练习)下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是 A .2011-2014年最高温度呈上升趋势; B .2014年出现了这6年的最高温度; C .2011-2015年的温差成下降趋势; D .2016年的温差最大.答案C11.(2018北京市大兴区检测)自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是 A .统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况 B .我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年——毛衣的销量 ……衬衫的销量温度50北京市2011-2016年气温变化情况最高气温最低气温的32.1%C .2011年我国发明专利申请量占世界发明专利申请量的比重是28%D .2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长 答案C12.(2018北京市朝阳区综合练习(一)) “享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.第六届和第八届北京国际电影节﹒电影市场“项目创投”申报类型统计表 根据统计图提供的信息,下列推断合理..的是 (A )两届相比较,所占比例最稳定的是动作冒险(含战争)类 (B )两届相比较,所占比例增长最多的是剧情类(C )第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类 答案A 二、填空题13、(2018北京昌平区二模)近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是2014-2017年新能源汽车生产和销售的情况:根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 万量,你的预估理由是 .数量(万辆)152535455565758525元10元18元30%50%答案: 答案不唯一(只要理由合理均可给分)14、(2018北京东城区二模)每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 . 答案: 120 ;3 00015、(2018北京朝阳区二模)鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.答案:答案不唯一,理由须支撑推断的合理性. 16、(2018北京房山区二模)某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为__________元.答案: 1717.(2018北京通州区一模)答案:三、解答题 18.(2018北京市朝阳区一模)北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市 2012—2017年污水处理率统计表:(1)用折线图将2012—2017年北京市污水处理率表示出来,并在图中标明相应的数据; (2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为 %, 说明你的预估理由: .解:(1)图略. ………………………………………………………………3分 (2)预估理由须包含统计图表中提供的信息,且支撑预估的数据.……5分 19.(2018北京顺义区初三练习)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次 “汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66, 62,68,89,86,93,97,100,73,76,80, 77,81,86,89,82,85,71,68,74,98, 90,97,100,84,87,73,65,92,96,60.请根据所给信息,解答下列问题:(1)a =,b= , c = ,d = ;频数成绩x /分121086401009080706021416(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人? 解:(1)a = 14 ,b = 0.35 , c = 12 ,d = 0.3 ;………… 2分(2)补全频数分布直方图如下:…………………… 4分 (3)估计参加这次比赛的600名学生中成绩“优”等的约有180人.……… 5分20. (2018北京市朝阳区综合练习(一))水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整. 收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数: 甲 26 32 40 51 44 74 44 63 73 74 81 54 6241 33 54 43 34 51 63 64 73 64 54 33 乙 27 35 46 55 48 36 47 68 82 48 57 66 7527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据 按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据 两组样本数据的平均数、众数和方差如下表所示:得出结论 a .估计乙大棚产量优秀的秧苗数为 株;b .可以推断出 大棚的小西红柿秧苗品种更适应市场需求,理由为 .(至少从两个不同的角度说明推断的合理性)解:整理、描述数据 按如下分组整理、描述这两组样本数据161426070809010004681012成绩x /分频数…2分得出结论a.估计乙大棚产量优秀的秧苗数为 84 株;…………………………3分b.答案不唯一,理由须支撑推断的合理性. …………………5分21、(2018北京东城区二模)十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a ,全国森林覆盖率21.63%记为b ,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a 和b 的式子表示).解:(1)四;---------------------------------------------------------------------1分(2)如图:---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分22、(2018北京丰台区二模)某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习. 学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史. 为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据 学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是___________;(填序号)① 选择七年级1班、2班各15名学生作为调查对象 ② 选择机器人社团的30名学生作为调查对象③ 选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A ,C ,D ,D ,G ,G ,F ,E ,B ,G ,C ,C ,G ,D ,B ,A ,G ,F ,F ,A , G ,B ,F ,G ,E ,G ,A ,B ,G ,G整理、描述数据 整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表 某校七年级学生喜欢的课程领域统计图分析数据、推断结论 请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是__________(填A-G 的字母代号),估计全年级大约有_________名学生喜欢这个课程领域.答案.收集数据 抽样调查对象选择合理的是③. ………………………1分 整理、描述数据 如下: ………………………4分某校七年级学生喜欢的课程领域统计表 某校七年级学生喜欢的课程领域统计图EF CDGAB分析数据、推断结论 G ,60. ………………………6分 23.(2018北京西城区二模)阅读下列材料: 材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.”尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.4分图3(2)答案不唯一,预估理由合理,支撑预估数据即可.……………………… 6分。

北京市2019年中考数学专题练习题精选提分专练二反比例函数与一次函数综合

北京市2019年中考数学专题练习题精选提分专练二反比例函数与一次函数综合

提分专练(二) 反比例函数与一次函数综合(18年23题,17年23题,15年23题)(限时:20分钟)|类型1| 确定点的坐标1.[2018·怀柔一模]在平面直角坐标系xOy中,一次函数y=kx+b的图象与y轴交于点B(0,1),与反比例函数y=的图象交于点A(3,-2).(1)求反比例函数表达式和一次函数表达式;(2)若点C是y轴上一点,且BC=BA,直接写出点C的坐标.图T2-12.[2018·平谷一模]如图T2-2,在平面直角坐标系xOy中,函数y=(k≠0)的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连接OA,点P是函数y=(k≠0)的图象上一点,且满足OP=OA,直接写出点P的坐标(点A除外).图T2-23.[2018·门头沟一模]如图T2-3,在平面直角坐标系xOy中的第一象限内,反比例函数图象过点A(2,1)和另一动点B(x,y).(1)求此函数表达式;(2)如果y>1,写出x的取值范围;(3)直线AB与坐标轴交于点P,如果PB=AB,直接写出点P的坐标.图T2-3|类型2| 与面积有关的计算4.[2018·延庆一模]在平面直角坐标系xOy中,直线y=kx+b(k≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=(m≠0)的图象在第一象限交于点P(1,3),连接OP.(1)求反比例函数y=(m≠0)的表达式;(2)若△AOB的面积是△POB的面积的2倍,求直线y=kx+b的表达式.图T2-45.[2018·石景山一模]在平面直角坐标系xOy中,函数y=(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.6.[2018·朝阳一模]如图T2-5,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=的图象在第四象限交于点C,CD⊥x轴于点D,tan∠OAB=2,OA=2, OD=1.(1)求该反比例函数的表达式;(2)点M是这个反比例函数图象上的点,过点M作MN⊥y轴,垂足为点N,连接OM,AN,如果S△ABN=2S△OMN,直接写出点M的坐标.图T2-5|类型3| 确定参数的取值范围7.[2018·顺义一模]如图T2-6,在平面直角坐标系xOy中,直线y=2x+4与双曲线y=(k≠0)相交于A(-3,a),B两点.(1)求k的值;(2)过点P(0,m)作直线l,使直线l与y轴垂直,直线l与直线AB交于点M,与双曲线y=交于点N,若点P在点M与点N之间,直接写出m的取值范围.图T2-68.[2018·大兴一模]如图T2-7,点A是直线y=2x与反比例函数y=(x>0,m为常数)的图象的交点.过点A作x轴的垂线,垂足为B,且OB=2.(1)求点A的坐标及m的值;(2)已知点P(0,n)(0<n≤8),过点P作平行于x轴的直线,交直线y=2x于点C(x1,y1),交反比例函数y=的图象于点D(x2,y2),交垂线AB于点E(x3,y3).若x2<x3<x1,结合函数的图象,直接写出x1+x2+x3的取值范围.图T2-7参考答案1.解:(1)∵双曲线y=过A(3,-2),将A(3,-2)的坐标代入y=,解得:m=-6.∴所求反比例函数表达式为:y=-.∵点A(3,-2),点B(0,1)在直线y=kx+b上,∴b=1,-2=3k+1.∴k=-1,∴所求一次函数表达式为y=-x+1.(2)C(0,3+1)或C(0,1-3).2.解:(1)∵直线y=x+1经过点A(1,a),∴a=2.∴A(1,2).∵函数y=(k≠0)的图象经过点A(1,2),∴k=2.(2)点P的坐标为(2,1),(-1,-2),(-2,-1).3.解:(1)设反比例函数表达式为y=(k≠0),∵此函数图象过A(2,1),∴1=,解得k=2,∴此函数表达式为y=.(2)0<x<2.(3)P(0,3)或P(6,0).4.解:(1)y=.(2)如图,作PE⊥y轴于点E.∵S△AOB=2S△POB,∴OA=2PE=2,∴A(2,0).将A(2,0)的坐标,P(1,3)的坐标分别代入y=kx+b, 可得∴∴直线AB的表达式为:y=-3x+6.同理:如图,直线AB的表达式为:y=x+2.综上:直线AB的表达式为y=-3x+6或y=x+2.5.解:(1)∵函数y=(x>0)的图象过点A(3,a-2),∴a-2=,解得a=3.∵直线l1:y=x+b过点A(3,1),∴b=-2.(2)设直线y=x-2与x轴交于点D,则D(2,0), 直线y=-x+m与x轴交于点B(m,0),与直线y=x-2交于点C,.①当S△ABC=S△BCD+S△ABD=6时,如图①.可得(2-m)2+(2-m)×1=6,解得m=-2或m=8(舍).②当S△ABC=S△BCD-S△ABD=6时,如图②.可得(m-2)2-(m-2)×1=6,解得m=8或m=-2(舍).综上所述,当m≥8或m≤-2时,S△ABC≥6.6.解:(1)∵AO=2,OD=1,∴AD=AO+OD=3.∵CD⊥x轴于点D,∴∠ADC=90°.在Rt△ADC中,CD=AD·tan∠OAB=6.∴C(1,-6).∴该反比例函数的表达式是y=-.(2)设点M坐标为(x,y),则MN=|x|,ON=|y|, ∴S△OMN=·ON·MN=|xy|=|k|=3,S△ABN=2S△OMN=6=BN·OA=·BN·2=BN,∴BN=6.在Rt△AOB中,tan∠OAB===2,∴OB=4,∴B(0,-4),∴N1(0,-10),N2(0,2).∴点M的坐标为(-3,2)或,-10.7.解:(1)∵点A(-3,a)在直线y=2x+4上, ∴a=2×(-3)+4=-2,∴点A的坐标为(-3,-2).∵点A(-3,-2)在双曲线y=上,∴-2=,∴k=6.(2)m的取值范围是0<m<4.8.解:(1)由题意得,点A的横坐标是2, 由点A在正比例函数y=2x的图象上, 得点A的坐标为(2,4).又∵点A在反比例函数y=的图象上, ∴4=,∴m=9.(2)6<x1+x2+x3≤7.。

2019年北京市中考数学试卷

2019年北京市中考数学试卷

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.(2分)(2019•北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()×106×106×105D.439×1032.(2分)(2019•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.3.(2分)(2019•北京)正十边形的外角和为()A.180°B.360°C.720°D.1440°4.(2分)(2019•北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.(2分)(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.(2分)(2019•北京)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.(2分)(2019•北京)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.(2分)(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<1010≤t<2020≤t<3030≤t<40t≥40时间t人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①﹣②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.(2分)(2019•北京)分式的值为0,则x的值是.10.(2分)(2019•北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.(2分)(2019•北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.(2分)(2019•北京)如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.(2分)(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.(2分)(2019•北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.(2分)(2019•北京)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.(2分)(2019•北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)(2019•北京)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)(2019•北京)解不等式组:19.(5分)(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m 的值及此时方程的根.20.(5分)(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD 上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)(2019•北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)(2019•北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)(2019•北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cmPD/cmAD/cm在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)(2019•北京)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.(2分)(2019•北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()×106×106×105D.439×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将439000用科学记数法表示×105.故选:C.2.(2分)(2019•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.(2分)(2019•北京)正十边形的外角和为()A.180°B.360°C.720°D.1440°【考点】多边形内角与外角.【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.(2分)(2019•北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【考点】数轴.【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.(2分)(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【考点】全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图.【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.6.(2分)(2019•北京)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【考点】分式的化简求值.【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.7.(2分)(2019•北京)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【考点】命题与定理.【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.8.(2分)(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<1010≤t<2020≤t<3030≤t<40t≥40时间t人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①﹣②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【考点】频数(率)分布表;频数(率)分布直方图;算术平均数;中位数.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①××103)÷﹣②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)(2019•北京)分式的值为0,则x的值是1.【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.10.(2分)(2019•北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)【考点】三角形的面积.【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,ABcm,CDcm,∴S△ABC=AB•CD=××≈cm2).11.(2分)(2019•北京)在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.(2分)(2019•北京)如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【考点】勾股定理;勾股定理的逆定理.【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.13.(2分)(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【考点】反比例函数的性质;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B 关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.(2分)(2019•北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【考点】菱形的性质;正方形的性质.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.15.(2分)(2019•北京)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【考点】算术平均数;方差.【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.(2分)(2019•北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【考点】平行四边形的判定与性质;菱形的判定与性质;矩形的判定与性质;正方形的判定.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)(2019•北京)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.(5分)(2019•北京)解不等式组:【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为x<2.19.(5分)(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m 的值及此时方程的根.【考点】根的判别式.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD 上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【考点】全等三角形的判定与性质;菱形的性质;解直角三角形.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.21.(5分)(2019•北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【考点】近似数和有效数字;用样本估计总体;频数(率)分布直方图.【分析】(2)根据中国在虚线l1(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)(2019•北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【考点】角平分线的性质;圆周角定理;三角形的外接圆与外心.【分析】(1)利用圆的定义得到图形G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)(2019•北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【考点】规律型:数字的变化类.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.【解答】解:(1)第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.24.(6分)(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cmPD/cmAD/cm在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.【考点】动点问题的函数图象.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD 为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD25.(5分)(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.【考点】一次函数图象上点的坐标特征.【分析】(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;【解答】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=﹣k+1,则有k2+2k=0,∴k=﹣2,当0>k≥﹣1时,W内没有整数点,∴当0>k≥﹣1或k=﹣2时W内没有整数点;26.(6分)(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提分专练(四) 图表的分析与决策
(18年25题,17年25题,16年22题,15年 25题)
|类型1| 利用样本估计总体
1.[2018·西城一模]某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员;B.书香社区图书整理;C.学编中国结及义卖;D.家风讲解员;E.校内志愿服务.要求:每位学生都从中选择一个项目参加.为了了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:
收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).
B,E,B,A,E,C,C,C,B,B,
A,C,E,D,B,A,B,E,C,A,
D,D,B,B,C,C,A,A,E,B,
C,B,D,C,A,C,C,A,C,E.
整理、描述数据:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.
选择各志愿服务项目的人数统计表

2 2
正正
选择各志愿服务项目的人数比例统计图
图T4-1
分析数据、推断结论:
a.抽样的40个样本数据(志愿服务项目的编号)的众数是(填A-E的字母代号).
b.请你任选A-E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.
2.[2018·海淀一模]某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.
收集数据
调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是(填字母);
A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本
B.抽取各班体育成绩较好的共40名学生的体质健康测试成绩组成样本
C.从年级中按学号随机选取男女生各20名学生的体质健康测试成绩组成样本
整理、描述数据
抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:
77838064869075928381
85 86 88 62 65 86 97 96 82 73
86 84 89 86 92 73 57 77 87 82
91 81 86 71 53 72 90 76 68 78
整理数据,如下表所示:
2018年九年级部分学生的体质健康测试成绩统计表
分析数据、得出结论
调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比.
3
4
4
图T4-2
你能从中得到的结论是 ,你的理由是 . 体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有 名同学参加此项目.
|类型2| 图表的分析与决策
3.[2018·石景山一模] 某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩(单位:分)如下
:
图T4-3
整理、分析过程如下,请补充完整. (1)按如下分数段整理、描述这两组数据:
5
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选 (填“甲”或“乙”),理由为 .
4.[2018·丰台一模] 第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 【收集数据】
从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:
甲 30 60 60 70 60 80 30 90 100 60 60 100 80 60 70 60 60 90 60 60 乙 80 90 40 60 80 80 90 40 80 50 80
70 70 70 70 60 80 50 80 80 【整理、描述数据】 按如下分数段整理、描述这两组样本数据:
(说明:优秀成绩为80<x ≤100,良好成绩为50<x ≤80,合格成绩为30≤x ≤50) 【分析数据】两组样本数据的平均数、中位数、众数如下表所示:
6 6
其中a= .
【得出结论】
(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是校的学生;(填“甲”或“乙”)
(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为;
(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)
参考答案
1.解:B项有10人,D项有4人,划记略.
选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.
分析数据、推断结论
a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.
b.根据学生选择情况答案分别如下(写出任意两个即可).
A:500×20%=100(人).
B:500×25%=125(人).
C:500×30%=150(人).
D:500×10%=50(人).
E:500×15%=75(人).
2.解:收集数据 C
整理、描述数据
分析数据、得出结论
去年的体质健康测试成绩比今年好.(答案不唯一,合理即可)去年较今年低分更少,高分更多,平均分更高.(答案不唯一,合理即可)
70
3.解:(1)014500
(2)1484.581
(3)甲理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)
7
或:乙理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
4.解:【分析数据】80
【得出结论】(1)甲 (2)
(3)答案不唯一,理由需支撑推断结论.
如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分,说明乙校平均水平高,乙校成绩的中位数75高于甲校成绩的中位数60,说明乙校分数不低于70分的学生比甲校多.
8
8。

相关文档
最新文档