1余热回收专用机组原理

合集下载

空压机余热回收系统原理

空压机余热回收系统原理

空压机余热回收系统原理
空压机余热回收系统是一种利用空压机产生的废热,通过热交换器回收和再利用的系统。

它不仅可以提高能源利用率,降低能源消耗,还可以减少热污染,达到节能降耗,环保节能的目的。

空压机启动后,电动机带动压缩机工作,将大量的气体进行压缩,此时空气温度急剧上升,部分能量被转化为热能,而且热量还会随着空气向外散发。

这就是空压机产生的废热。

因此,空压机余热回收系统的原理就是通过热交换器将空压机产生的废热回收,并用于其他用途。

具体如下:
第一步:进气口
首先,空气从外部进入空压机系统的进气口,进入压缩机的气缸。

第二步:压缩
在气缸中,进入的空气被压缩,并且产生废热。

第三步:废热回收
然后,废热通过热交换器被回收,将被回收的热量传递给其他需求热量的系统,比如加热水,提高水温等。

第四步:空气冷却
热能被回收后,剩余的高温空气进入后冷器,被冷却至温度下降。

在这里,水和空气进行热量交换。

这是通过空气和水之间的热量传导实
现的。

第五步:后处理
处理后,产生的水可以进一步用于其他目的。

通过空压机余热回收系统,废热被回收并提供给其他用途,同时减少环境污染。

其中的热交换器可以实现高效能量传递,以此实现节能降耗的目的。

空压机余热回收系统既能保证生产的高效进行,又实现了环保减排。

这种技术可以在多个领域得到应用,是当前节约能源、提高效率的重要手段之一。

余热回收的原理

余热回收的原理

余热回收的原理
余热回收是一种将工业过程中产生的余热转化为可利用能源的技术。

其原理是通过各种热交换设备将废热从一个系统传递到另一个系统,以便在后者中利用该热能。

具体来说,余热回收系统主要包括以下几个步骤:
1. 收集烟气:在工业过程中产生的烟气经过烟囱排出,余热回收系统会将这些烟气收集起来。

2. 余热传递:通过热交换设备,如热交换器或换热器,将烟气中的热能传递给另一个流体或系统。

这些设备通常会利用烟气和新流体之间的温度差来实现热能传递。

3. 热能利用:在接收到热能的另一个系统中,热能可以用于发电、供热、蒸汽发生等多种用途。

具体使用方式取决于系统的设计和所需的能量类型。

余热回收系统的效率取决于多个因素,如信息流体的温度差、换热设备的热传导效率以及热能的利用效率等。

在工业过程中,有效地回收和利用余热可以显著提高能源利用效率,降低能源消耗和成本,同时减少环境污染。

空调余热回收原理

空调余热回收原理

空调余热回收原理空调系统在工作时会产生大量的余热,这些余热如果能够被有效回收利用,不仅可以节约能源,还能减少对环境的影响。

空调余热回收技术就是一种能够实现这一目标的技术,它通过一系列的工艺和装置,将空调系统产生的余热进行回收和利用,从而提高能源利用效率,降低能源消耗。

首先,空调余热回收原理的核心在于热交换。

在空调系统中,冷凝器和蒸发器是两个重要的部件,它们分别用于散热和吸热。

在工作过程中,冷凝器会产生大量的余热,而蒸发器则需要吸收热量来实现制冷效果。

通过合理设计和布置,可以将冷凝器产生的余热传递给蒸发器,从而减少对外界能源的依赖。

这种热交换的原理是空调余热回收技术的基础。

其次,空调余热回收原理还涉及到余热的储存和利用。

在空调系统中,余热的产生和利用往往是不匹配的,因为产生余热的时间和地点与需要余热的时间和地点并不完全一致。

因此,需要通过储热装置来将余热暂时储存起来,待需要时再进行释放和利用。

这就需要设计合理的储热系统,以确保余热能够在需要时得到有效利用。

最后,空调余热回收原理还需要考虑系统的稳定性和安全性。

在实际应用中,空调系统的稳定性和安全性是至关重要的,任何一点失误都可能导致系统的故障和安全事故。

因此,在设计和应用空调余热回收技术时,需要充分考虑系统的稳定性和安全性,采取相应的措施来确保系统的正常运行和安全使用。

综上所述,空调余热回收原理是一项能够有效节约能源、减少环境污染的重要技术。

通过热交换、余热储存和系统稳定性等方面的考虑,可以实现空调系统余热的有效回收和利用,从而为节能减排做出贡献。

随着科技的不断进步和创新,相信空调余热回收技术将在未来得到更广泛的应用和推广。

余热回收原理

余热回收原理

余热回收原理
余热回收是一种节能环保的技术,通过对工业生产中产生的废热进行回收利用,可以降低能源消耗、减少环境污染,实现可持续发展。

余热回收原理是基于热力学的基本原理,通过热交换设备将废热转化为可用热能,实现能量的再利用。

首先,余热回收的原理基于热力学第一定律,即能量守恒定律。

在工业生产中,许多生产过程会产生大量的废热,比如高温废气、热水等。

这些废热如果直接排放到大气中会造成能源的浪费和环境的污染。

而通过余热回收技术,这些废热可以被有效地回收利用,实现能量的再利用,符合能量守恒的原理。

其次,余热回收的原理还基于热力学第二定律,即熵增原理。

根据热力学第二
定律,热能不可能从低温物体自发地传递到高温物体,但可以通过外界的辅助来实现。

余热回收技术利用热交换设备,将高温废热传递给工作物质,使其温度升高,然后再将工作物质的热能转化为可用能源,实现能量的再利用。

此外,余热回收的原理还涉及热传递和热工艺的知识。

在余热回收系统中,热
交换设备起着至关重要的作用,它可以通过换热面积的设计和传热介质的选择,实现废热的高效回收。

同时,热工艺的优化也可以提高余热回收的效率,比如在工业炉窑的设计中,合理利用燃烧废气的余热,可以提高炉窑的热效率,降低能源消耗。

总之,余热回收原理是基于热力学的基本原理,通过热交换设备将废热转化为
可用热能,实现能量的再利用。

在当前能源紧缺和环境污染日益严重的背景下,余热回收技术具有重要的意义,可以为工业生产带来经济和环保的双重效益。

因此,我们应该加大对余热回收技术的研发和推广,推动工业生产向更加节能环保的方向发展。

空调余热回收原理

空调余热回收原理

空调余热回收原理
空调系统在运行过程中会产生大量的余热,如果这部分余热能
够得到有效回收利用,不仅可以节约能源,还可以降低环境污染。

空调余热回收原理是指通过一定的技术手段,将空调系统产生的余
热进行回收利用,从而达到节能环保的目的。

首先,空调余热回收原理涉及到的关键技术是热交换技术。


交换技术是通过在空调系统中设置热交换器,将室内空气和室外空
气进行热量交换,从而实现余热回收。

在冬季,室内空气经过热交
换器与室外空气进行热量交换,从而提高室内空气的温度;在夏季,室内空气经过热交换器与室外空气进行热量交换,从而降低室内空
气的温度。

这样一来,就可以减少空调系统的能耗,实现节能效果。

其次,空调余热回收原理还涉及到的关键技术是热泵技术。


泵技术是指利用热泵循环原理,将低温热量转化为高温热量,从而
实现余热的回收利用。

通过热泵技术,可以将室内空气中的余热转
化为热水或者热风,用于供暖或者热水使用,从而实现能源的再利用。

此外,空调余热回收原理还可以通过热媒介传递技术来实现。

热媒介传递技术是指利用热媒介(如水或者空气)来传递余热,实现能源的再利用。

通过在空调系统中设置热媒介传递装置,可以将室内空气中的余热传递给其他系统或者设备,从而实现能源的共享利用。

综上所述,空调余热回收原理是通过热交换技术、热泵技术和热媒介传递技术等手段,将空调系统产生的余热进行回收利用,从而实现节能环保的目的。

随着节能环保意识的不断提高,空调余热回收技术将会得到越来越广泛的应用,为建设资源节约型社会做出贡献。

空调机组热回收原理

空调机组热回收原理

空调机组热回收原理
空调机组热回收原理是利用热回收设备将冷却负荷产生的废热回收利用,达到节能减排的目的。

热回收一般分为两种方式:热回收和冷热回收。

热回收方式是将冷却剂在冷却负荷装置中传输的热量通过换热管道传递给房间或者其他需要取暖的区域,以实现能源的利用。

这种方式一般适用于冬季或者需要供暖的地区。

冷热回收方式是将决点机组(热泵)从冷空气中吸热并释放给暖气系统,从而减少能源消耗。

例如,空调机组可以通过冷凝热交换器将空气中的废热回收使用,然后利用这部分热能进行供热。

热回收原理的关键在于换热技术。

一般来说,空调机组的换热器可以根据不同的工作条件和需要,采用不同的热传导方式,如管道冷却、间接冷却或者直接冷却。

此外,还可以通过调整换热器的结构和工艺参数,提高换热效率,以达到更好的热回收效果。

总的来说,空调机组的热回收原理是通过回收和再利用废热,将之转化为可再生的热能,以达到节能和减排的目的。

这种技术不仅可以减少能源消耗,还可以提高整体系统的效率,对于可持续发展和环境保护具有重要意义。

热回收机组工作原理

热回收机组工作原理

热回收机组工作原理热回收机组是一种能够利用废热进行能量回收的设备,其工作原理主要包括热回收、传热和能量转换三个过程。

本文将详细介绍热回收机组的工作原理及其应用。

一、热回收过程热回收是指将废热转化为可利用的热能的过程。

热回收机组通常通过热交换器实现热回收。

热交换器是一种能够实现热能传递的设备,通过将废热与工作介质进行热交换,将废热中的热能转移到工作介质中。

常用的热交换器包括板式热交换器、壳管式热交换器等。

在热回收过程中,废热和工作介质分别通过不同的通道流动,热交换器将两者之间的热能传递实现。

废热的温度将逐渐降低,而工作介质的温度将逐渐升高。

通过热交换器,废热中的热能被传递给工作介质。

这样,废热中的热能得以回收利用,减少了能源的浪费。

二、传热过程传热是指热能从一个物体或介质传递到另一个物体或介质的过程。

在热回收机组中,传热主要发生在热交换器中。

而热交换器通过传导、对流和辐射等方式实现热能的传递。

传导是指热能通过物体内部的分子间振动和传递的过程。

在热交换器中,废热和工作介质之间的传热主要通过热交换器的壁面进行。

热交换器的壁面通常采用导热性能较好的材料,如金属等,以提高传热效率。

对流是指热能通过流体的流动传递的过程。

在热回收机组中,废热和工作介质之间的传热也涉及对流传热。

废热和工作介质在热交换器中通过不同的通道流动,流体的对流使得热能能够更快地传递和均匀分布。

辐射是指热能通过电磁波辐射传递的过程。

在热交换器中,辐射传热通常是通过热交换器的壁面进行的。

壁面的辐射传热主要取决于壁面的温度和辐射系数,辐射传热对热能的传递起到了重要的作用。

三、能量转换过程能量转换是指将热能转化为其他形式的能量的过程。

在热回收机组中,热能的转化通常发生在工作介质中。

热能被传递给工作介质后,工作介质的温度升高,从而使其内部的分子动能增加。

工作介质的内能增加,可以用于驱动发电机、驱动机械设备等,实现能量的转化和利用。

热回收机组的工作原理基本上是以上述三个过程相互作用的结果。

中温热回收冷水机组原理

中温热回收冷水机组原理

中温热回收冷水机组原理
中温热回收冷水机组是一种能够回收中温余热并将其转化为冷水的设备。

其原理主要包括以下几个方面:
1. 中温余热回收原理,中温余热回收是通过换热器将工业生产过程中产生的中温余热传递给回收系统。

这些中温余热可以来自于炉窑、烟气、热水等工业生产过程中的废热,通过换热器的传热作用,将中温余热传递给冷水机组。

2. 制冷循环原理,冷水机组通过制冷剂的循环流动来实现制冷的目的。

一般采用蒸发器、压缩机、冷凝器和节流阀等组件,通过制冷剂在这些组件中的相态变化,实现对冷水的制冷作用。

3. 中温余热利用制冷原理,中温余热通过换热器传递给冷水机组中的蒸发器,使得蒸发器内的制冷剂蒸发吸收热量,从而使得冷水机组内的冷水得到制冷。

4. 冷凝与循环,制冷剂在蒸发器中吸收热量后变成低温低压蒸汽,然后被压缩机压缩成高温高压蒸汽,再通过冷凝器散发热量变成高温高压液体,最后通过节流阀减压成低温低压液体重新进入蒸
发器,完成整个制冷循环。

总的来说,中温热回收冷水机组的原理是利用换热器传递中温余热给冷水机组中的蒸发器,通过制冷剂的循环流动和相态变化实现对冷水的制冷作用,从而达到能源回收和冷水制冷的目的。

这种技术在工业生产中可以有效地提高能源利用效率,减少能源消耗和环境污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余热回收机组原理介绍
北京华源泰盟节能设备有限公司
机组原理

名词解释
真空——溴化锂机组的生命 溴化锂溶液——吸湿性 结晶——溴化锂晶体析出 沸点——真空越好,沸点越低 高品位能源 低品位能源

机组原理
蒸汽
急冷水
吸收式循环原理
机组主要部件

机组主体部件

发生器、冷凝器、吸收器、蒸发器 溶液热交换器、视镜、真空压力表


热泵承担基础负荷
整个采暖季热泵稳定运行 最大程度回收工艺余热



尖峰加热器调峰

调节蒸汽量控制热网出水温度
机组运行方式

不考虑调峰:70-80℃ 考虑调峰:110℃

使系统供热能耗降低40% 夏季工况提高系统整体能效

供热首站原理

热网水
串联、逐级升温 升温幅度大


蒸汽
并联 机组驱动热源


汽轮机余热
余热回收机组与其他散热方式并联 保证整体散热量

首站运行方式

热网质调节
热网循环水量不变 根据负荷调节热网出水温度
余热回收机组(HRU)
技术优势

回收余热用于供热
增加热源供热能力 降低供热能耗 减少污染


增大热网供回水温差
增加既有管网输配能力 降低热网循环泵流量 降低新建一次网投资


二次网参数不变,便于改造
基于吸收式换热的余热回收技术
余热回收专用机组(HRU机组) 独特的热泵内部循环 紧凑型设计,集成多台机组逐级升温功能 大幅度升温——突破传统热泵设计

机组动力部件

溶液泵、冷剂泵
电控柜、触摸屏、PLC、变频器等 温度、压力、液位等传感器、电动阀门 引射器、集气箱、阻油器、电磁阀、真空泵
机组电气部件



机组真空部件

技术简介
基于吸收式换热的集中供热技术
基于吸收式换热的余热回收技术 基于吸收式换热的超大温差供热技术 吸收式换热机组(AHE)
相关文档
最新文档