新人教版初中数学九年级上册《22.1.4二次函数y=ax2+bx+c的图象和性质》公开课导学案_2

合集下载

人教版九年级数学上册22.1.4二次函数y=ax2+bx+c的图象和性质

人教版九年级数学上册22.1.4二次函数y=ax2+bx+c的图象和性质

初中数学试卷22.1.4二次函数y=ax 2+bx+c 的图象和性质预习要点:1.一般地,二次函数y=ax 2+bx+c 可以通过化成y=a (x-h )2+k 的形式,即y=a(x+b 2a )2+4ac-b 24a .因此,抛物线y=ax 2+bx+c 的对称轴是,顶点是.2.从二次函数y=ax 2+bx+c 的图象可以看出: (1)如果a >0,当x <- b2a 时,y 随x 的增大而,当x >- b2a时,y 随x的增大而;(2)如果a <0,当x <- b2a 时,y 随x 的增大而,当x >- b2a时,y 随x的增大而.3.求二次函数的解析式y=ax 2+bx+c,需求出 的值.由已知条件(如二次函数图象上三个点的坐标)列出关于 的方程组,求出的值,就可以写出二次函数的解析式.4.(2016•益阳)关于抛物线y=x 2−2x+1,下列说法错误的是( )A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x=1D .当x >1时,y 随x 的增大而减小5.(2016•怀化)二次函数y=x 2+2x −3的开口方向、顶点坐标分别是( ) A .开口向上,顶点坐标为(−1,−4) B .开口向下,顶点坐标为(1,4) C .开口向上,顶点坐标为(1,4) D .开口向下,顶点坐标为(−1,−4)6.(2016•广州)对于二次函数y=−14 x 2+x −4,下列说法正确的是( ) A .当x >0时,y 随x 的增大而增大 B .当x=2时,y 有最大值−3 C .图象的顶点坐标为(−2,−7)D .图象与x 轴有两个交点7.(2016•齐齐哈尔)如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=−1,x 2=3;③3a+c >0④当y >0时,x 的取值范围是−1≤x <3⑤当x <0时,y 随x 增大而增大其中结论正确的个数是( )A .4个B .3个C .2个D .1个 8.已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( ) A .y=2x 2+x+2B .y=x 2+3x+2C .y=x 2−2x+3D .y=x 2−3x+29.已知二次函数的图象如图所示,则这个二次函数的表达式为( )A .y=x 2−2x+3B .y=x 2−2x −3C .y=x 2+2x −3D .y=x 2+2x+310.(2016•枣庄模拟)如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (−3,0),对称轴为x=−1.给出四个结论:①b 2>4ac ;②2a+b=0;③a −b+c=0;④5a <b .其中正确结论是.11.若二次函数y=ax2+bx+c的图象经过原点,则c的值为.12.抛物线y=−x2+3x−3与y轴的交点坐标为.13.若函数y=2x2−4x+m有最小值是3,则m= .14.抛物线y=ax2+bx+c(a≠0)如图,回答:(1)这个二次函数的表达式是;(2)当x= 时,y=3;(3)根据图象回答:当时,y>0.15.已知抛物线y=ax2+bx+c的形状与抛物线y=x2的形状相同,最高点坐标为(2,−3),则抛物线的解析式是.同步小题12道一.选择题1.二次函数y=−x2−2x+5的顶点坐标、对称轴分别是()A.(1,6),x=1 B.(−1,6),x=1C.(−1,6),x=−1 D.(1,6),x=−12.一次函数y=ax+b(ab≠0)的图象不经过第二象限,则抛物线y=ax2+bx的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限3.抛物线y=x2−8x+m的顶点在x轴上,则m等于()A.−16 B.−4 C.8 D.164.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A .a >0,c >0B .a <0,c >0C .a >0,c <0D .a <0,c <05.已知函数y=x 2+3x+a −2的图象过原点,则a 的值为( ) A .2B .−2C .−3D .06.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y=2(x+1)2+8 B .y=18(x+1)2−8 C .y=29 (x −1)2+8 D .y=2(x −1)2−8二.填空题7.抛物线y=2x 2−6x −1的对称轴为.8.(2016春•重庆校级月考)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:①abc >0;②a >b ;③a −b+c >0;④4ac −8a >b 2,其中正确的是 (填序号)9.抛物线y=ax 2+bx+c 开口向上,对称轴是直线x=1,A (−2,y 1),B (0,y 2),C (2,y 3)在该抛物线上,则y 1,y 2,y 3大小的关系是 .10.已知二次函数y=ax 2+bx+c 的图象经过A (−1,−1)、B (0,2)、C (1,3);则二次函数的解析式 .三.解答题11.已知抛物线的解析式为y=x 2−2x −3,请确定该抛物线的开口方向,对称轴和顶点坐标.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出开口方向,顶点坐标和对称轴.12.二次函数y=ax 2+bx+c 的图象如图所示,以下结论,正确的有哪些?并说明理由.(1)3a+b >0;(2)0<b <a+1;(3)b+2a >0;(4)−14 <a <−18 . 答案: 预习要点:1.配方 x=- b 2a (- b 2a ,4ac-b 24a )2.(1)减小 增大 (2)增大 减小 3.a ,b ,c a ,b ,c a ,b ,c4.【分析】根据抛物线的解析式画出抛物线的图象,根据二次函数的性质结合二次函数的图象,逐项分析四个选项,即可得出结论.【解答】解:画出抛物线y=x 2−2x+1的图象,如图所示.A 、∵a=1,∴抛物线开口向上,A正确;B 、∵令x 2−2x+1=0,△=(−2)2−4×1×1=0,∴该抛物线与x 轴有两个重合的交点,B 正确;C 、∵−b 2a =−−22×1=1,∴该抛物线对称轴是直线x=1,C 正确;D 、∵抛物线开口向上,且抛物线的对称轴为x=1,∴当x >1时,y 随x 的增大而增大,D 不正确. 故选D5.【分析】根据a >0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.【解答】解:∵二次函数y=x 2+2x −3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x 2+2x −3=(x+1)2−4,∴顶点坐标为(−1,−4).故选A .6.【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=−14 x 2+x −4可化为y=−14 (x −2)2−3,又∵a=−14 <0∴当x=2时,二次函数y=−14 x 2+x −4的最大值为−3. 故选B7.【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=−2a ,然后根据x=−1时函数值为负数可得到3a+c <0,则可对③进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断. 【解答】解:∵抛物线与x 轴有2个交点,∴b 2−4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(−1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=−1,x 2=3,所以②正确;∵x=−b2a =1,即b=−2a ,而x=−1时,y <0,即a −b+c <0,∴a+2a+c <0,所以③错误;∵抛物线与x 轴的两点坐标为(−1,0),(3,0),∴当−1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B8.【分析】本题已知了抛物线上三点的坐标,可直接用待定系数法求解.【解答】解:设这个二次函数的解析式是y=ax 2+bx+c ,把(1,0)、(2,0)和(0,2)代入得:⎩⎪⎨⎪⎧ a +b +c =0 4a +2b +c =0 c =2 ,解之得⎩⎪⎨⎪⎧ a =1b =−3c =2 ;所以该函数的解析式是y=x 2−3x+2.故选D9.【分析】根据题意,把抛物线经过的三点代入函数的表达式,列出方程组,解出各系数则可.【解答】解:根据题意,图象与y 轴交于负半轴,故c 为负数,又四个选项中,B 、C 的c 为−3,符合题意,故设二次函数的表达式为y=ax 2+bx+c ,抛物线过(−1,0),(0,−3),(3,0),所以⎩⎪⎨⎪⎧a −b +c =0 c =−3 9a +3b +c =0 ,解得a=1,b=−2,c=−3,这个二次函数的表达式为y=x2−2x −3. 故选B半轴上,又∵二次函数的图象是抛物线,∴与x 轴有两个交点,∴b 2−4ac >0,即b 2>4ac ,故①正确;②∵抛物线的开口向下,∴a <0,∵与y 轴的交点在y 轴的正半轴上,∴c最大值,由图象可知y ≠0,故③错误;④把x=1,x=−3代入解析式得a+b+c=0,9a −3b+c=0,两边相加整理得5a −b=−c <0,即5a <b ,故④正确. 答案:①④11.【解答】解:把(0,0)代入得c=0. 答案:0.12.【分析】把x=0代入抛物线y=−x 2+3x −3,即得抛物线y=−x 2+3x −3与y 轴的交点. 【解答】解:∵当x=0时,抛物线y=−x 2+3x −3与y 轴相交,∴把x=0代入y=−x 2+3x −3,求得y=−3,∴抛物线y=−x 2+3x −3与y 轴的交点坐标为(0,−3). 答案:(0,−3).13.【分析】首先用配方法将一般式化为顶点式,顶点纵坐标即为最小值,列方程求解. 【解答】解:∵y=2x 2−4x+m=2(x −1)2+m −2,∴m −2=3,解得m=5,答案:5.14.【分析】(1)已知顶点坐标和函数图象经过原点,故设抛物线解析式为y=a (x −1)2−1(a ≠0),然后把原点坐标代入来求a 的值;(2)把y=3代入(1)中函数关系进行解答相应的x 的值;(3)根据图示直接填空.【解答】解:(1)如图,抛物线的顶点坐标是(1,−1).故设抛物线解析式为y=a (x −1)2−1(a ≠0),又∵抛物线经过点(0,0),∴0=a (0−1)2−1,解得,a=1.故抛物线的解析式为:y=(x−1)2−1.故填:y=(x−1)2−1;(2)由(1)知,y=(x−1)2−1,当y=3时,3=(x−1)2−1,解得,x=3或x=−1.故填:3或−1;(3)根据图示知,当x<0或x >2时,y>0.故填:x<0或x>2.15.【分析】根据y=ax2+bx+c的形状与y=x2形状相同,且有最高点,可确定函数图象开口向下,且a=−1,由顶点坐标写出其顶点式,再整理成一般式即可.【解答】解:∵y=ax2+bx+c的形状与y=x2形状相同,且有最高点(2,−3),∴抛物线的解析式是y=−(x−2)2−3=−x2+4x−7,答案:y=−x2+4x−7.同步小题12道1.【分析】将二次函数的一般式配方为顶点式,可求顶点坐标及对称轴.【解答】解:∵y=−x2−2x+5=−(x+1)2+6,∴抛物线的顶点坐标为(−1,6),对称轴为x=−1.故选C2.【解答】解:∵一次函数y=ax+b(ab≠0)的图象不经过第二象限,∴a>0,b<0,∴故选D3.【分析】顶点在x轴上,所以顶点的纵坐标是0.根据顶点公式即可求得m的值.故选D4.【分析】首先根据开口方向确定a的符号,再依据与y轴的交点的纵坐标即可判断c的正负,由此解决问题.【解答】解:∵图象开口方向向上,∴a>0;∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,c<0.故选:C5.【分析】直接把原点坐标代入二次函数解析式得到关于a的方程,然后解方程即可.【解答】解:把(0,0)代入y=x2+3x+a−2得a−2=0,解得a=2.故选A.6.【分析】顶点式:y=a(x−h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.【解答】解:由图知道,抛物线的顶点坐标是(1,−8)故二次函数的解析式为y=2(x−1)2−8.故选D可.8.【解答】解:∵抛物线的开口朝下,∴a <0;∵抛物线与y 轴交点在y 的正半轴,∴c立;∵c >0,0>b >a ,∴abc >0,即①成立;∵当x=−1时,抛物线上的点在x 轴上方,答案:①③.9.【分析】根据抛物线的性质,抛物线上的点离对称轴越远,对应的函数值就越大,由x 取−2、0、2时,x 取−2时所对应的点离对称轴最远,x 取0与2时所对应的点离对称轴一样近,即可得到答案.【解答】解:∵抛物线y=ax 2+bx+c 开口向上,对称轴是直线x=1,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x 取−2时所对应的点离对称轴最远,x 取0与2时所对应的点离对称轴一样近,∴y 1>y 2=y 3.故答案是:y 1>y 2=y 3.10.【分析】根据点A ,B ,C 在二次函数y=ax 2+bx+c 的图象上,点的坐标满足方程的关系,将A (−1,−1)、B (0,2)、C (1,3)代入y=ax 2+bx+c 得a=−1,b=2,c=2.从而得出二次函数的解析式为y=−x 2+2x+2.【解答】解:设二次函数的解析式为y=ax 2+bx+c ,∵点A ,B ,C 在二次函数y=ax 2+bx+c 的图象上,∴将A (−1,−1)、B (0,2)、C (1,3)代入二次函数的解析式为y=ax 2+bx+c ,得⎩⎪⎨⎪⎧ a −b +c =−1 c =2 a +b +c =3,解得,a=−1,b=2,c=2.∴二次函数的解析式为y=−x 2+2x+2. 答案:y=−x 2+2x+2.11.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出开口方向,顶点坐标和对称轴.解:∵y=x 2−2x −3,∴y=(x −1)2−4,∵a=1>0,∴该抛物线的开口方向上,∴对称轴和顶点坐标分别为:x=1,(1,−4)12.【分析】根据图象与坐标轴交点即可确定对称轴的位置以及解析式,进而分别得出答案.a−b+c>0,∵图象经过(0,1),∴c=1,∴a−b+1>0,∴a+1>b,∵对称轴在x轴正半轴,∴a,b异号,∵图象开口向下,∴a<0,∴b>0,∴0<b<a+1,此选项正确;(3)。

九年级数学上册 22.1.4 二次函数y=ax2+bx+c的图象和性质课件 (新版)新人教版

九年级数学上册 22.1.4 二次函数y=ax2+bx+c的图象和性质课件 (新版)新人教版
1.顶点(dǐngdiǎn)坐标与对称轴
2.位置(wèi zhi)与开口方向
3.增减性与最值
根据图形填表:
抛物线
顶点坐标 对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x b 时,最小值为 4ac b2
2a
4a 第十九页,共21页。
在对称轴的左侧,y随着x的增大而增大. 在对称轴 的右侧, y随着x的增大而减小.
当x b 时,最大值为 4ac b2
y=a(x+k)2+k(a≠0)的 顶点都在
(B)
A.直线y = x上 B.直线y = - x上
C.x轴上
D.y轴上
()
3.若二次函数y=ax2 + 4x+a-1的最小值是2,则aA的值是
4
B. -1
C. 3
D.4或-1
4.若二次函数 y=ax2 + b x +
轴的一个交点为(1,0B),则下列
c
第二十一页,共21页。
y 3x 12 2 … 29 14 5 2 5 14 29 …
4.画对称轴,描点,连线:作出二次函数(hánshù)y=3(x1)2+2的图象.
第三页,共21页。

人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质

人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质

二次函数c bx ax y ++=2的图象和性质要点链接★二次函数y=ax ²+bx+c 可配方为:224()24b ac b y a x a a-=++,其顶点坐标为( , ),对称轴直线是 . ★求抛物线顶点和对称轴的方法:(1)直接代入顶点公式24(,)24b ac b a a --,对称轴公式2bx a=- (2)将函数y=ax ²+bx+c 配方成y=a (x-h )²+k 的形式得到顶点坐标和对称轴. ★a 、b 、c 与图象的关系:1.a 正负决定抛物线的 :a >0时, ;a <0时, .|a |决定抛物线的开口大小:|a |越大,则 ,|a |越小,则 .2.a 、b 同时决定 :①当b =0时,对称轴是 ;②左同右异,即当a 、b 同号时,对称轴在 ;当a 、b 异号时,对称轴在 .3.c 决定抛物线与y 轴 :①当c >0时,抛物线与y 轴交点在 ;②当c <0时,抛物线与y 轴交点在 ;③当c =0时,抛物线经过 . 题型一 直接利用c bx ax y ++=2获取图象信息例1 下列对于二次函数x x y -=2的图象描述正确的是( )A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的 【变式训练1】对于二次函数12842--=x x y 下列说法正确的是( ) A.图象开口向下 B.顶点坐标是(-1,3) C.当0<x 时,y 随x 的增大而减小 D.图象的对称轴是直线1-=x题型二 确定抛物线c bx ax y ++=2的解析式 角度a 利用平移规律确定抛物线的解析式例2 把抛物线322+-=x x y 沿x 轴向右平移2个单位长度,得到抛物线的解析式为 角度b 利用待定系数法确定抛物线的解析式例3 抛物线c bx ax y ++=2经过A (-2,4),B (6,4)两点,且顶点在x 轴上,则抛物线的解析式为 .【变式训练2】若函数k h x a y +-=2)(的图象经过原点,最小值为-8且形状与抛物线3222+--=x x y 相同,则此函数的解析式为 ;题型三 根据抛物线c bx ax y ++=2确定a 、b 、c 的关系例4 已知二次函数y=ax ²+bx+c (a≠0)的图象如图所示,有下列结论:①0<abc ;②c a b -<;③b c 32<;④)1)((≠+<+m b am m b a .其中正确的结论是 (只填序号)例4图 变式3图【变式训练3】已知二次函数y=ax ²+bx+c (a ≠0)的图象如图,现有下列结论:①abc >0;②0<++c b a ;③b =2a ;④a+b >0.其中正确的结论是 (只填序号). 题型四 二次函数y=ax ²+bx+c 与一次函数的双图象问题例5 一次函数y=ax+b (a ≠0)与二次函数y=ax ²+bx+c 在同一坐标系中的图象可能是( )题型五 二次函数y=ax ²+bx+c 的实际应用例6 某小说中有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度增长量y 是温度x 的二次函数,有下列说法: ①该植物在0℃时,每天高度增长量最大;②该植物在-6℃时,每天高度增长量仍能保持在20mm 以上;③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长,其中正确的有( )A.0个B.1个C.2个D.3个【变式训练4】某学校开展了多场足球比赛,在某场比赛中,一个足球被从地面上向上踢出,它距离地面的高度h (m )可以用公式t v t h 025+-=表示,其中)(s t 表示足球被踢出后经过的时间,)/(0s m v 是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( )A.5m/sB.10m/sC.20m/sD.40m/s题型六 二次函数的动态问题例7 如图,已知关于x 的二次函数y=x ²+bx+c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D.(1)求二次函数的解析式.(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在,请求出点P 的坐标.(3)有一个动点M 从点A 出发,以每秒1个单位长度的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M ,N 运动到何处时,△MNB 的面积最大,试求出最大面积.【变式训练5】如图,已知抛物线y=x²+bx+c过点A(1,0),C(0,-3).(1)求此抛物线对应的函数解析式,并确定其顶点.(2)在抛物线上存在一动点P,使△ABP的面积为10,请求出点P的坐标.中考演练考法一 二次函数c bx ax y ++=2的图象和性质例1.(2018成都)关于二次函数1422-+=x x y ,下列说法正确的是( ) A.图象与y 轴的交点坐标为(0,1) B.图象的对称轴在y 轴的右侧 C.当0<x 时,y 的值随x 值的增大而减小 D.y 的最小值为-3【变式训练1】(2018攀枝花)抛物线222+-=x x y 的顶点坐标为( ) A.(1,1) B.(-1,1) C.(1,3) D.(-1,3) 考法二 求二次函数的解析式 例2.(2018宁波)已知抛物线c bx x y ++-=221经过点)23,0(),0,1(. (1)求该抛物线的函数解析式; (2)将抛物线c bx x y ++-=221平移,使其顶点恰好落在原点,写出一种平移的方法及平移后的函数解析式.【变式训练2】(2018乌鲁木齐)把抛物线3422+-=x x y 向左平移1个单位长度,得到抛物线的解析式为 .【变式训练3】(2018湖州)已知抛物线)0(32≠-+=a bx ax y 经过点)0,3(),0,1(-,求b a ,的值考法三 抛物线c bx ax y ++=2与一次函数的双图象问题例3.(2017阜新)二次函数c bx ax y ++=2的图象如图所示,则一次函数c ax y +=的图象可能是( )【变式训练4】(2018德州)函数122+-=x ax y 和a ax y -=(a 是常数且0≠a )在同一平面直角坐标系中的图象可能是( )考法四 二次函数c bx ax y ++=2的图象与c b a ,,的关系例4.(2018日照)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列结论:①0<abc ;②02<-b a ;③22)(c a b +>;④若点),1(),,3(21y y -都在抛物线上,则有21y y >.其中正确的结论有( )A.4个B.3个C.2个D.1个例4图 变式5图【变式训练5】(2017遵义)如图,抛物线c bx ax y ++=2经过点(-1,0),对称轴为l ,有下列结论:①0>abc ;②0=+-c b a ;③02<+c a ;④0<+b a .其中,所有正确的结论是( )A.①③B.②③C.②④D.②③④考法五 二次函数的综合应用例5.(2018宁夏)如图,抛物线c bx x y ++-=231经过点)0,33(A 和点B (0,3),且这个抛物线的对称轴为直线l ,顶点为C.(1)求抛物线的解析式;(2)连接AB 、AC 、BC ,求△ABC 的面积.【变式训练6】(2018南通)在平面直角坐标系xOy 中,已知抛物线k k x k x y 25)1(222-+--=(k 为常数).(1)若抛物线经过点),1(2k ,求k 的值;(2)若抛物线经过点),2(1y k 和点),2(2y ,且21y y >,求k 的取值范围;(3)若将抛物线向右平移1个单位长度得到新的抛物线,当1≤x ≤2时,新抛物线对应的函数有最小值23-,求k 的值.课后作业1.用配方法将二次函数982--=x x y 化为k h x a y +-=2)(的形式为( )A.7)4(2+-=x yB.25)4(2--=x yC.7)4(2++=x yD.25)4(2-+=x y2.如图,二次函数bx ax y +=2的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数b x b a y +-=)(的图象大致是( )3.如图,抛物线c bx ax y ++=2的对称轴为直线x=1,且过点(3,0),有下列结论:①0>abc ;②a-b+c <0;③3a-c >0.其中正确结论的个数有( ) A.1 B.2 C.3 D.44.二次函数342++=x x y 的图象是由c bx ax y ++=2的图象向右平移1个单位长度,再向下平移2个单位长度得到的,则=a ,=b ,=c . 5.已知抛物线y=ax ²+bx+c 的图象如图,则|a-b+c |+|2a+b |= .6.已知如图,抛物线y=ax ²+bx+c 经过A (1,0),B (5,0),C (0,5)三点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标、对称轴;(3)若过点C 的直线与抛物线交于点E (4,m ),连接CB ,BE ,并求出△CBE 的面积.人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质7.如图,已知抛物线过点A(4,0),B(-2,0),C(0,-4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC上段上的一个动点,当图中阴影部分的面积最小时,求点M的坐标.11 / 11。

最新人教版初中数学九年级上册《22.1.4(第1课时)》精品教学课件

最新人教版初中数学九年级上册《22.1.4(第1课时)》精品教学课件

次函数的性质填空:
x=0时, y=c.
x b1
2a1 y
x b2 2a2
a1 _>__ 0 b1_>__ 0 c1_>__ 0
a2_>__ 0 b2_<__ 0
c2_=__ 0
对称轴在y轴 左侧,x<0
O
x 开口向上,a>0
x b1 <0 2a1
x b2 >0
2a2 对称轴在y轴 右侧,x>0
探究新知 【思考4】 如何画二次函数y 1 x2 6x 21的图象?
2
x
…3 4 5 6 7 8
y 1 (x 6)2 +3 …
2
7.5
5
3.5
3
3.5 5
y
方法一:描点法
10
1. 利用图象的对称性列表
9… 7.5 …
2.然后描点画图,得到 图象如右图.
5
y
1 2
x2
-
6x
21
O
5
10 x
1 [(x2 12x 62 ) 62 42] 2
1 [(x 6)2 6] 2
1 (x 6)2 3. 2
探究新知
y 1 x2 6x 21 2
(1)“提”:提出二次项系数;

(2)“配”:括号内配成完全平方;

(3)“化”:化成顶点式.
y 1 (x 6)2 3 2
【提示】配方后的表达式通常称 为配方式或顶点式.
(2) y 5x2 80x 319; 直线x=8 8, 1
(3)
y
2
x
1 2
x
2
;
直线x=1.25
5 4
,
9 8
(4) y x 12 x.

人教版九年级数学上册22.1.4二次函数y=ax2+bx+c的图像和性质(共53张PPT)

人教版九年级数学上册22.1.4二次函数y=ax2+bx+c的图像和性质(共53张PPT)

|个单
位,
向上平移 |个4单a4ca位-b。2 |
b
2a >0
4ac-b2 4a
<0
由y=ax2
向左平移
|
b 2a
|个单
位,
向下平移 |个4单a4ca位-b。2 |
b
2a <0
4ac-b2 4a
>0
由y=ax2
向右平移
|
b 2a
|个单
位,
向上平移 |个4单a4ca位-b。2 |
都是 (-
b 2a

4ac-b2 4a
=a(x+ b
2a
)2+4
ac 4
a
b
2
\识记
因此,抛物线y=ax2+bx+c 的对称轴是
x=- b 顶点坐标是(- b ,4ac b 2 )
2a
2a
4a
yax2 bxc图象的画法.
步骤:1.利用配方法或公式法把yax2 bxc
化为yaxh2 k 的形式。
2.确定抛物线的开口方向、对称轴 及顶点坐标。 3.在对称轴的两侧以顶点为中心左 右对称描点画图。
22.1.4 二次函数 y=ax2+bx+c 的图象和性质
a>0,在对称轴
y ax2
左侧,y都随x 的增大而减小,
a>0, 在对称轴右
yax2 c 开口 侧,y都随 x的
向上; 增大而增大.;
yaxh2
a<0,在对称轴 左侧,y都随x
a<0, 的增大而增大,
yaxh2k
开口 向下.
在对称轴右 侧,y都随 x的
95.二 次 函 y数 ax2bxc的 图 象 开 口 向 图 象 经(过 1,2点 )(1,0)且 与 y轴 相 交 于 负

数学人教版九年级上册22.1.4二次函数y=ax2 bx c的图像与性质.1.4二次函数y=ax2 bx c的图像与性质(胪中王伟

数学人教版九年级上册22.1.4二次函数y=ax2 bx c的图像与性质.1.4二次函数y=ax2 bx c的图像与性质(胪中王伟

向上
向下
直线x=–3 直线x=1
活动2:创设情Leabharlann ,导入新课思考:我们已经知道二次函数y=a(x-h)2+k的图象和性质,容 1 2 y x 6x21 能否利用这些知识来讨论二次函数 的图象和性 2 质? 即怎样把函数 y 1x2 6x21 转化成 y=a(x-h) 2+k的形式? 2
ax bx c • 一般地,我们可以用配方法将 y 配方成
2
2 b b ac b b 2b b 2 2 24 a ( x x ) c a x x () () c a ( x ) a a 2 a 2 a 4 a a2 2
由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以 通过平移得到。
草图略
y
1 2 (x 4 x) 1 2
1 2 1 ( x 4 x 4 ) ×4 1 2 2 1 ( x 2)2 3 2
对称轴为直线x=-2 顶点坐标为(-2,-3) 当x=-2时,y最小值=-3
草图略
活动3:探究新知
22.1.4 二次函数
2 y ax bx c 的图像
y x2 6x21 2 1 2 12 x 21 提取二次项系数 x 2 1 2 1 x 12x 36 ×36 21 配方 2 2 配方后的表达 1 2 . 整理 x6 3 式通常称为配 2 方式或顶点式
用配方法。 1




1 2 描点、连线,画出函数 y x 6 3 2
二次本节课我们学习了哪些知识? 函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴

人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》

人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》

人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析《二次函数y=ax^2+bx+c的图象和性质》这一节是人教版数学九年级上册的教学内容。

本节课的主要内容是让学生了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。

通过本节课的学习,学生能够掌握二次函数图象的特点,理解二次函数的性质,并能够运用这些性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了二次函数的定义和一般形式,对二次函数有了初步的认识。

但是,学生对二次函数的图象和性质可能还比较陌生,需要通过本节课的学习来进一步理解和掌握。

同时,学生可能对一些概念和性质的理解还不够深入,需要通过教师的引导和学生的自主探索来加深理解。

三. 教学目标1.了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。

2.能够运用二次函数的性质解决实际问题。

3.培养学生的观察能力、思考能力和解决问题的能力。

四. 教学重难点1.二次函数的图象和性质的理解和掌握。

2.运用二次函数的性质解决实际问题的能力的培养。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索。

2.采用案例分析的教学方法,通过具体的例子来讲解和展示二次函数的性质。

3.采用小组合作的学习方式,让学生在小组内进行讨论和交流,共同解决问题。

六. 教学准备1.准备相关的教学案例和实例,用于讲解和展示二次函数的性质。

2.准备教学课件和板书,用于辅助教学。

七. 教学过程1.导入(5分钟)通过提出问题:“二次函数的图象和性质有哪些?”引导学生思考和探索。

2.呈现(10分钟)通过教学课件和板书,呈现二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。

同时,通过具体的例子来讲解和展示这些性质。

3.操练(10分钟)让学生通过观察和分析一些具体的二次函数图象,来识别和判断其性质。

22.1.4二次函数y=ax2+bx+c的图象和性质

22.1.4二次函数y=ax2+bx+c的图象和性质

1-������ + ������ = -1, 1 + ������ + ������ = 3,
拓展点一
拓展点二
拓展点三
拓展点四
利用待定系数法求二次函数的解析式时,如果已知三个条 件,通常列三元一次方程组求解,如果a,b,c中其中一个已知, 则列二元一次方程组求解.
拓展点一
拓展点二
拓展点三
拓展点四
分析:(1)将A点坐标代入抛物线解析式,求出a的值,即可确定出解 析式; (2)在抛物线解析式中令x=0求出y的值,即OC的长,根据对称轴求 出CD的长,根据抛物线的对称性确定出OB的长,利用梯形面积公式 即可求出梯形COBD的面积. 解:(1)将A(-1,0)代入y=a(x-1)2+4中,得0=4a+4,解得a=-1,则抛物 线解析式为y=-(x-1)2+4. (2)对于抛物线解析式,令x=0,得y=3,即OC=3, ∵抛物线y=-(x-1)2+4的对称轴为直线x=1,∴CD=1. ∵A(-1,0), ∴B(3,0),即OB=3, 1 则S梯形COBD= (1+3)×3=6.
2
������ ������
������ − 4������+c
即 y=ax2+bx+c(一般式)可以配方成 y=a
������ 2 ������ + 2������ 4������������-������ + 4������
2
(顶点式).
由以上可以得出:确定二次函数的顶点,可以先配方,配成顶点式 后,由顶点式 y=a(x-h)2+k,直接得出顶点为(h,k),也可以直接根据顶 点的公式得出顶点为
知识点一

22.1.4二次函数y=ax^2+bx+c的图象和性质(第二课时)(课件)九年级数学上册(人教版)

22.1.4二次函数y=ax^2+bx+c的图象和性质(第二课时)(课件)九年级数学上册(人教版)

C. y=(x-2)2-1
D. y= 1 (x-2)2-1 2
分层作业
3.一抛物线的形状、开口方向与抛物线 y= 1 x2-2x+3 相同,顶点为(-2,1),则此抛物线的解析式为( )
2
A. y= 1 (x-2)2+1
2
B. y= 1 (x+2)2-1
2
C. y= 1 (x+2)2+1
2
D. y= 1 (x-2)2-1
分层作业
【拓展延伸作业】
6.如图,抛物线 y=ax2+bx+c 经过点 A(-1,0),点 B(3,0),且 OB=OC. (1)求抛物线的表达式; (2)如图,点 D 是抛物线的顶点,求△BCD 的面积.
分层作业
解:(1):抛物线 y=ax2+bx+c 经过点 A(-1,0),点 B(3,0),且 OB=OC, ∴OC=OB=3. ∴C(0.3), 设抛物线的解析式为 y=a(x+1)(x-3),将 C(0,3)代入得, -3a=3. ∴a=-1, ∴抛物线的解析式为 y=-(x+1)(x-3)=-x2+2x+3;
∴DE=4-2=2,
∴S△CDB= 1 DE·OB= 1 ×2×3=3
2
2
分层作业
7. 已知二次函数 y=x2+bx+c 的图象经过点(0,-1)和(2,7)
(1)求二次函数解析式及对称轴
(2)若点(-5,y1)(m,y2)是抛物线上不同的两个点,且 y1+y2=28,求 m 的值
解:把(0,-1)和(2,7)分别代入 y=x2+bx+c 可得: (2)把 x=-5 代入二次函数得:y1=14,

人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》

人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》

人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习,而22.1.4《二次函数y=ax^2+bx+c的图象和性质》是这一章的重要内容。

这部分教材主要通过分析二次函数的图象和性质,使学生能够理解和掌握二次函数的基本特征,以及如何运用这些特征解决实际问题。

教材通过详细的理论推导和丰富的例题,引导学生掌握二次函数的顶点坐标、开口方向、对称轴等关键性质,并能够运用这些性质对二次函数进行分析和判断。

二. 学情分析在九年级的学生已经具备了一定的函数基础,他们已经学习了线性函数和一些非线性函数的知识,对函数的概念和性质有一定的理解。

但是,对于二次函数的图象和性质,他们可能还存在一些困惑和误解。

因此,在教学过程中,我需要关注学生的认知基础,通过复习和引导,帮助他们巩固已有的知识,并建立起二次函数图象和性质的知识体系。

三. 说教学目标1.知识与技能:学生能够理解二次函数的图象和性质,并能够运用这些性质解决实际问题。

2.过程与方法:学生通过观察、分析、归纳等方法,探索二次函数的图象和性质,培养他们的抽象思维和解决问题的能力。

3.情感态度与价值观:学生通过学习二次函数的图象和性质,增强对数学的兴趣和自信心,培养他们的探索精神和合作意识。

四. 说教学重难点1.教学重点:学生能够理解和掌握二次函数的图象和性质,并能够运用这些性质解决实际问题。

2.教学难点:学生对于二次函数的顶点坐标、开口方向、对称轴等性质的理解和运用。

五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,通过引导学生观察、分析、归纳等方法,探索二次函数的图象和性质。

同时,我将利用多媒体教学手段,展示二次函数的图象和性质,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过复习一次函数和二次函数的知识,引导学生进入对二次函数图象和性质的学习。

2.探究:学生分组讨论,观察和分析二次函数的图象,归纳出二次函数的顶点坐标、开口方向、对称轴等性质。

22.1.4二次函数y=ax2+bx+c的图象和性质课件 2024-2025学年人教版数学九上

22.1.4二次函数y=ax2+bx+c的图象和性质课件 2024-2025学年人教版数学九上
【例 1】如图,已知二次函数y=-x2+2x,当-1<x<a时,y随x的增
大而增大,则实数a的取值范围是( B )
A.a>1
B.-1<a≤1
C.a>0
D.-1<a<2
知识讲解
知识点1 二次函数y=ax2+bx+c的图象和性质
【例 2】已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象
面积.
(2)∵该抛物线的对称轴为直线x=
4
=4,
1
A.(-3,-6)
B.(1,-4)
C.(1,-6)
D.(-3,-4)
再将抛物线y=2(x-1)2-5向下平移1个单位所得抛物线的解析式为
y=2(x-1)2-5-1=2(x-1)2-6,
此时二次函数图象的顶点为(1,-6).
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
项目
a
b
字母的符号
图象的特征
确的结论的序号是________;
解析:由抛物线开口向上,得a>0;
由抛物线y轴的交点在负半轴上,得c<0;
由抛物线的顶点在第四象限,得
b
2a
>0,又a>0,所以b<0;
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
【例 4】如图,二次函数y=ax2+bx+c的图象开口向上,图象经过
2
2

b
c
b
b
b
c






2
2
2
y ax bx c a x x a x x
a

人教版九年级数学上册22.1 二次函数的图象和性质 22.1.4 二次函数y=ax2+bx+c的图象和性质②

人教版九年级数学上册22.1  二次函数的图象和性质 22.1.4  二次函数y=ax2+bx+c的图象和性质②

当已知抛物线的顶点坐标或对称 轴和最值时,通常设函数的解析式为 项点式,然后代入另一点的坐标,解 关于a的一元一次方程
(a,x1,x2为 常数,a≠0),其中是抛物 线与x轴两个交点的横坐标
当已知抛物线与x轴的两交点坐标 或一个交点的坐标和对称轴时,通常设 函数的解析式为交点式,然后代入另 一点的坐标,解关于a的一元一次方程
情景引入
请你回忆:确定一次函数的解析式需要函数图象上几 个点的坐标?这几个点需要满足什么条件? 请你猜想:确定二次函数的解析式需要几个点的坐标? 这几个点需要满足什么条件?
1
人教版九年级数学上册 第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax²+bx+c的图象和性质②
15
知识点二:根据 y=a(x -h)2+k(a≠0)求二次函数解析式
学以致用
1.二次函数 y=x²+px+q的最小值是4,且当 x=2时,y=5,则p,q
的值为( ).
A.p=-2,q=15
B.p=-2,q=5或 p=-6,q=13
C.p=-6,q=13
D.p=2,q=-5或 p=6,q=-13
对于二次函数,我们先探究下面问题.
5
知识点一:根据y= ax2 +bx+c(a≠0)求二次函数解析式
新知探究
(1)由几个点的坐标可以确定二次函数?这几个点 应满足什么条件? (2) 如果一个二次函数的图象经过(-1, 10),(1, 4), (2, 7)三 点,能求出这个二次函数的解析式吗?如果能,求出这个 二次函数的解析式.
21
知识点三:根据 y=a(x - x1)(x- x2)(a≠0)求二次函数解析式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

夫子河中学九年级数学总复习导学稿
二次函数的图象与性质
导学细目
1.能通过它们的图象和解析式,正确地说出它们的开口方向,对称轴以及顶点坐标。

2.使学生掌握类比、转化等学习数学的方法。

3.在教学中渗透数形结合的思想。

一、课前预习:
1.二次函数的概念
一般的,形如(a、b、c是常数,)的函数称为二次函数。

2.二次函数的图象与性质
(1)y=ax2、y=ax2+k、y=a(x-h)2、y=a(x-h)2+k的图象性质
(2)y=ax2+bx+c的图象与性质
(3)二次函数y=ax2+bx+c的图象与性质与a、b、c以及b2-4ac的符号的关系
3用待定系数法求二次函数的关系式
二、课中研讨
考点1.二次函数的定义
例1.若y=(m+1)x m²-6m-5是二次函数,则m=()
A.7 B.-1
C.-1或7 D.以上都不对
考点2.二次函数的图象与性质
例2.二次函数y=ax 2+bx+c(a≠0)的图象如图所示:则下
列结论:①abc>0;②b-2a=0;③a+b+c>0;④b 2-4ac>
0;正确的有()
A. 1个
B. 2个
C. 3个
D. 4个
例3.(1)用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k的形式;
(2)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1、y2的大小关系(直接写结果);
考点3.二次函数关系式的求法
例4.已知抛物线经过点A(-5,0),B(1,0),且顶点的纵坐标为9/2,求二次函数的关系式.
三、课后训练
1. 若抛物线y=(1+m)的开口向下,则m的值为()
A. 2
B. -2
C. ±2
D. 1
2. 把二次函数y=x 2-2x-3配方成顶点式为()
A. y=(x-1)2
B. y=(x+1)2-2
C. y=(x+1)2-4
D. y=(x-1)2-4
3. (3分)(2014•青岛)函数y= 与y=﹣kx 2+k(k≠0)在同一直角坐标系中的图象可能是()
A. B.
C. D.
4. 二次函数y=ax 2+bx+c(a≠0)的图象如下图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).
5. 如图,二次函数y=ax 2+bx+c的图象经过A (-1,0),
B(3,0),C(0,3)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数与y轴交于点C,连接AC,BC,求
△ABC的面积.。

相关文档
最新文档