人教版初中数学二次函数解析

合集下载

九年级数学上册22.1.1二次函数说课稿

九年级数学上册22.1.1二次函数说课稿

九年级数学上册二次函数讲课稿(一)一、教材剖析:1、教材所处的地位:二次函数是人教版初中数学九年级(上册)第 22 章的内容,在此以前,学生在八年级已经学过了函数及一次函数的内容,关于函数已经有了初步的认识。

从一次函数的学习来看,学习一种函数大概包含以下内容:经过详细实例认识这类函数;研究这类函数的图象和性质,利用这类函数解决实质问题;研究这类函数与相应方程不等式的关系。

本章“二次函数” 的学习也是从以上几个方面睁开的。

本节课的主要内容在于使学生认识并认识两个变量之间的二次函数的关系,为二次函数的后续学习确定基础2、教课目的要求:(1)学生经历从实质问题中抽象出两个变量之间的二次函数关系的过程,进一步体验怎样用数学的方法描绘变量之间的数目关系;(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;(3)知道实质问题中存在的二次函数关系中,多自变量的取值范围的要求。

(4)把数学识题和实质问题相联系,使学生初步领会数学与人类生活的密切联系及对人类历史发展的作用。

3、教课要点和难点本着课程标准,在吃透教材基础上,我确定了以下的教课要点、难点:要点:(1)二次函数的观点(2)能够表示简单变量之间的二次函数关系.难点:详细的剖析、确定实质问题中函数关系式二.教法、学法剖析:下边,为了讲清要点、难点,使学生能达到本节设定的教课目的,我再从教法和学法上说说:1、教法研究教课中教师应该裸露观点的再创建过程,鼓舞学生不只要动口、动脑,并且要着手,学生经过自己亲自的实践活动,形成自己的经验、猜想,产生对结论的感知,这不单让学生对所学内容留下了深刻的印象,并且能力获取培育,素质得以提高,充足地调换学生学习的热忱,让学生学会主动学习,学会研究问题的方法,培育学生的能力。

本节课的设计坚持以学生为主体,充足发挥学生的主观能动性。

教课过程中,着重学生研究能力的培育。

还讲堂给学生,让学生去亲自体验知识的产生过程,拓展学生的创建性思想。

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

人教版九年级数学22章二次函数全章教案

人教版九年级数学22章二次函数全章教案

第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。

二次函数是描述现实世界变量之间关系的重要的数学模型。

二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。

二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。

和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。

本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。

函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。

学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。

二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。

本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。

(二)本章课时安排本章教学时间约需15课时 ,具体安排如下:22.1节 二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动 小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。

人教版初中数学九年级上册第二十二章22.1.4用待定系数法求二次函数解析式

人教版初中数学九年级上册第二十二章22.1.4用待定系数法求二次函数解析式
表达式. 一设、二代、三解、四还原
解:设这个二次函数的解析式为y=a(x+2)2+1, 把点(1,-8)代入上式得:a(1+2)2+1=-8, 解得 a=-1.
∴所求的二次函数的表达式是y=-(x+2)2+1.
用顶点式求二次函数解析式
知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤 : ①设函数表达式是y=a(x-h)2+k; ②先代入顶点坐标,得到关于a的一元一次方程; ③将另一点的坐标代入原方程求出a值; ④a用数值换掉,写出函数表达式.
∴所求的二次函数的表达式是y=(x+3)(x+1), 即y=x2+4x+3.
用交点法求二次函数解析式
知道抛物线与x轴的两个交点,求解析式的方法叫做交点法. 其步骤是: ①设函数表达式是y=a(x-x1)(x-x2); ②先把两交点的横坐标x1,x2代入到表达式中,得到关于a的一 元一次方程; ③将方程的解代入原方程求出a值; ④a用数值换掉,写出函数表达式.
用一般式求二次函数解析式
【例3】一个二次函数的图象经过(0,1),(2,4),(3,10)三点,
求这个二次函数的表达式. 一设、二代、三解、四还原
解:设这个二次函数的解析式是y=ax2+bx+c,由于这个函数经
过点(0,1),可得c=1.又由于其图象经过(2,4),(3,10)两点,
可得
4a+2b+1=4,
用顶点式求二次函数解析式
1.一个二次函数的图象经点(0,1),它的顶点坐标为(8,9),求
这个二次函数的表达式.
解:设函数表达式为:y=a(x-8)2+9.
把点(0,1)代入上式得:0=a(0-8)2+9.

2024(人教版)数学九年级上册 第22章 二次函数 教材解读课件

2024(人教版)数学九年级上册 第22章 二次函数 教材解读课件

针内对容训分练析
本章学情分析:
“二次函数”这一章是在学习一次函数的基础上,具体研究的第二个函数模型,是应用研 究函数性质的一般方法去研究函数的第二次实践,对学生而言,即学习了新的函数模型,又增 强了对函数研究方法的掌握,为后续研究其他函数积累宝贵经验。二次函数的学习过程充满着 观察、分析、抽象、概括等方法,蕴含着从特殊到一般,数形结合、函数的思想,因此学习二 次函数是学生认识函数的又一次飞跃。
一是让学生体会生活中处处有数学,数学源于生活、又服务于生活的教学 理念,体会数学就在我们身边的道理;
二是从简单的实际问题入手,激发学生学习数学的兴趣。
针内对容训分练析
第二课时二次函数y=ax2的图象和性质内容解析 本节课类比一次函数的研究方法,先通过观察函数图象,认识函数特征,
从而得出函数的性质。对于二次函数y=ax2的研究分别从a>0,a<0两种情况 入手,在具体的研究过程中,始终是从特殊到一般,例如a>0时,a从具体的 数字1开始,再到12,2等;在每一次具体的函数研究过程中,都是从图象入 手.本节课从形状、开口方向、开口大小、对称性、顶点、增减性对二次函数y =ax2(a>0)的图象特征进行研究,从而得到二次函数y=ax2(a>0)的性 质.此外,a<0的情况又是类比a>0的学习方法开展研究,最终经历以上探究 过程,得出二次函数y=ax2的图象特征和性质.
以现实生活为背景,通过对投掷、跳水、跳远、拱桥、隧道等抛物线的探究, 建立合理的平面直角坐标系,利用待定系数法确定二次函数的表达式是解决此类问 题的关键.
通过探究矩形面积与矩形一边长两个变量之间的关系,让学生体会运用函数观 点解决实际问题的作用,初步体验建立函数模型的过程和方法.
针内对容训分练析
第九 十课时 实际问题与二次函数内容解析 利用二次函数解决销售利润问题的方法:(1)读懂题意;(2)借助销售问题中

二次函数y=ax^2+bx+c(a≠0)的图象与性质-2023年新九年级数学(人教版)(解析版)

二次函数y=ax^2+bx+c(a≠0)的图象与性质-2023年新九年级数学(人教版)(解析版)

二次函数y=ax 2+bx+c(a ≠0)的图象与性质【知识梳理】一、二次函数与之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是.要点诠释:加以记忆和运用.2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 二、二次函数的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.2(0)y ax bx c a =++≠=−+≠2()(0)y a x h k a 2()y a x h k =−+2()y a x h k =−+2()y a x h k =−+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++−+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a −⎛⎫=++⎪⎝⎭2()y a x h k =−+2b h a =−244ac b k a−=2y ax bx c =++2b x a =−24,24b ac b aa ⎛⎫−− ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,三、二次函数的图象与性质 1.二次函数图象与性质向上 向下直线 直线 2y ax bx c =++2(0)y ax bx c a =++≠20()y ax bx c a =++≠2b x a=−b x =−2.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当值的情况.20()y ax bx c a =++≠2(0)y ax bx c a =++≠2bx a=−244ac b y a−=最值222y ax bx c =++最大值211y ax bx c =++最小值【考点剖析】题型一、二次函数的图象与性质例1.求抛物线的对称轴和顶点坐标. 【答案与解析】 解法1(配方法):.∴ 顶点坐标为,对称轴为直线. 解法2(公式法):∵ ,,,∴ 11122()2b x a=−=−=⨯−,. ∴ 顶点坐标为,对称轴为直线. 解法3(代入法):∵ ,,, ∴ . 将代入解析式中得,. ∴ 顶点坐标为,对称轴为直线. 【总结升华】所给二次函数关系是一般式,求此类抛物线的顶点有三种方法:(1)利用配方法将一般式化成顶点式;(2)用顶点公式直接代入求解;(3)利用公式先求顶点的横坐标,然后代入2(0)y ax bx c a =++≠2142y x x =−+−2221114(2)4(211)4222y x x x x x x =−+−=−−−=−−+−−211(1)422x =−−+−217(1)22x =−−−71,2⎛⎫−⎪⎝⎭1x =12a =−1b =4c =−2214(4)147214242ac b a ⎛⎫⨯−⨯−− ⎪−⎝⎭==−⎛⎫⨯− ⎪⎝⎭71,2⎛⎫−⎪⎝⎭1x =12a =−1b =4c =−111222bx a=−=−=⎛⎫⨯− ⎪⎝⎭1x =21711422y =−⨯+−=−71,2⎛⎫−⎪⎝⎭1x =24,24b ac b aa ⎛⎫−− ⎪⎝⎭解析式求出纵坐标.这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 【变式1】把一般式化为顶点式. (1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标. 【答案】(1)向下;x=2;D (2,2). (2)C (0,-6);A (1,0);B (3,0).例2.二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .【思路点拨】由y=ax 2+bx +c 的图象判断出a >0,b >0,于是得到一次函数y=ax +b 的图象经过一,二,四象限,即可得到结论. 【答案】A .【解析】解:∵y=ax 2+bx +c 的图象的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0,∴一次函数y=ax +b 的图象经过一,二,三象限.2286y x x =−+−故选A .【总结升华】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可 以判断a 、b 的取值范围.【变式1】 抛物线与y 轴交于(0,3)点: (1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小? 【答案与解析】(1)由抛物线与y 轴交于(0,3)可得m =3. ∴ 抛物线解析式为,如图所示.(2)由得,. ∴ 抛物线与x 轴的交点为(-1,0)、(3,0). ∵ , ∴ 抛物线的顶点坐标为(1,4).(3)由图象可知:当-1<x <3时,抛物线在x 轴上方. (4)由图象可知:当x ≥1时,y 的值随x 值的增大而减小.【总结升华】研究函数问题一般都应与图象结合起来,借助于图象的直观性求解更形象与简洁. (1)将点(0,3)代入解析式中便可求出m 的值,然后用描点法或五点作图法画抛物线; (2)令y =0可求抛物线与x 轴的交点,利用配方法或公式法可求抛物线顶点的坐标; (3)、(4)均可利用图象回答,注意形数结合的思想,2(1)y x m x m =−+−+2(1)y x m x m =−+−+223y x x =−++2230x x −++=11x =−23x =2223(1)4y x x x =−++=−−+【变式2】某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A. -11 B. -2 C. 1 D. -5 【答案】D.提示:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上, 把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x 2+1 x=2时y=﹣11,故选:D .题型二、二次函数的最值例3.求二次函数的最小值. 【答案与解析】解法1(配方法):∵,∴ 当x =-3时,. 解法2(公式法):∵ ,b =3, ∴ 当时,.解法3(判别式法):∵ ,∴ .2(0)y ax bx c a =++≠211322y x x =++2221111(6)(639)2222y x x x x =++=++−+21(3)42x =+−4y =−最小102a =>12c =331222b x a =−=−=−⨯22114341922414242ac b y a ⨯⨯−−−====−⨯最小211322y x x =++26(12)0x x y ++−=∵ x 是实数,∴ △=62-4(1-2y)≥0,∴ y ≥-4. ∴ y 有最小值-4,此时,即x =-3.【总结升华】在求二次函数最值时,可以从配方法、公式法、判别式法三个角度考虑,根据个人熟练程度 灵活去选择.【变式1】用总长60m 的篱笆围成矩形场地.矩形面积S 随矩形一边长L 的变化而变化.当L 是多少时,矩形场地的面积S 最大? 【答案】(0<L <30).(m )时,场地的面积S 最大,为225m 2.【变式2】分别在下列范围内求函数的最大值或最小值. (1)0<x <2; (2)2≤x ≤3. 【答案与解析】∵ , ∴ 顶点坐标为(1,-4).(1)∵ x =1在0<x <2范围内,且a =1>0, ∴ 当x =1时y 有最小值,.∵ x =1是0<x <2范围的中点,在x =1两侧图象左右对称,端点处取不到,不存在最大值. (2)∵ x =1不在2≤x ≤3范围内(如图所示),又因为函数(2≤x ≤3)的图象是 抛物线的一部分,且当2≤x ≤3时,y 随x 的增大而增大,∴ 当x =3时,;当x =2时,.2690x x ++=(30)S L L =−2(30)L L =−−2(15)225L =−−+15L ∴=223y x x =−−2223(1)4y x x x =−−=−−4y =−最小值223y x x =−−223y x x =−−232330y =−⨯−=最大值222233y =−⨯−=−最小值【总结升华】先求出抛物线的顶点坐标,然后看顶点的横坐标是否在所规定的自变量的取 值范围内,根据不同情况求解,也可画出图象,借助于图象的直观性求解,如图所示,2≤x ≤3为图中实线 部分,易看出x =3时,;x =2时,.题型三、二次函数性质的综合应用例4.已知二次函数的图象过点P(2,1). (1)求证:; (2)求bc 的最大值. 【答案与解析】(1)∵ 的图象过点P(2,1), ∴ 1=4+2b+c+1,∴ c=-2b-4.(2). ∴ 当时,bc 有最大值.最大值为2.【总结升华】(1)将点P(2,1)代入函数关系式,建立b 、c 的关系即可. (2)利用(1)中b 与c 的关系,用b 表示bc ,利用函数性质求解. 【变式1】如图是二次函数y=ax 2+bx+c 的图象,下列结论: ①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c<0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1; ④使y≤3成立的x 的取值范围是x≥0. 其中正确的个数有( )223y x x =−−0y =最大值3y =−最小值2(0)y ax bx c a =++≠21y x bx c =+++24c b =−−21y x bx c =+++22(24)2(2(1)2bc b b b b b =−−=−+=−++1b =−A.1个B.2个C.3个D.4个【答案】B.提示:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.【变式2】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤【思路点拨】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【答案】D.【解析】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,,∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a >;故④正确 ⑤∵a >0,∴b ﹣c >0,即b >c ;故⑤正确; 故选:D .【总结升华】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用. 【变式3】一条抛物线经过A (2,0)和B (6,0),最高点C 的纵坐标是1. (1)求这条抛物线的解析式,并用描点法画出抛物线;(2)设抛物线的对称轴与轴的交点为D ,抛物线与y 轴的交点为E ,请你在抛物线上另找一点P(除点A 、B 、C 、E 外),先求点C 、A 、E 、P 分别到点D 的距离,再求这些点分别到直线的距离; (3)观察(2)的计算结果,你发现这条抛物线上的点具有何种规律?请用文字写出这个规律. 【答案与解析】(1)由已知可得抛物线的对称轴是. ∴ 最高点C 的坐标为(4,1).则 解得∴ 所求抛物线的解析式为. 列表:描点、连线,如图所示:2y ax bx c =++x 2y =4x =420,3660,164 1.a b c b c a b c ++=⎧⎪++=⎨⎪++=⎩1,42,3.a b c ⎧=−⎪⎪=⎨⎪=−⎪⎩21234y x x =−+−(2)取点(-2,-8)为所要找的点P ,如图所示,运用勾股定理求得ED =5,PD =10, 观察图象知AD =2,CD =1,点E 、P 、A 、C 到直线y =2的距离分别是5、10、2、1. (3)抛物线上任一点到点D 的距离等于该点到直线y =2的距离.【总结升华】(1)描点画图时,应先确定抛物线的对称轴,然后以对称轴为参照,左右对称取点. (2)计算两点之间的距离应构造两直角边分别平行于两坐标轴的直角三角形,然后运用勾股定理求得.【过关检测】一、单选题1.(2021春·广东江门·九年级台山市新宁中学校考期中)将抛物线22()1y x =−+向左平移1个单位长度,向下平移2个单位得到抛物线的解析式为( ) A .2(1)3y x =−+ B .2=(3)1y x −− C .2(1)1y x =−− D .2(1)1y x =+−【答案】C【分析】根据抛物线平移的法则:左加右减,上加下减即可得到答案.【详解】解:将抛物线22()1y x =−+向左平移1个单位,再向下平移2个单位,得到抛物线的解析式为22211211()()y x x =−++−=−−,故选:C .【点睛】本题考查了二次函数图象的平移,根据函数图象的平移法则:左加右减,上加下减进行平移,是解题的关键.2.(2023·上海·九年级假期作业)如图,已知二次函数()2y a x m =+与一次函数y ax m =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .【答案】A【分析】利用二次函数和一次函数图象的性质“二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.”逐项判断即可. 【详解】解:A 、由抛物线可知0a >,0m >,由直线知0a >,0m >,∴A 正确; B 、由抛物线可知0a >,0m <,由直线知0a >,0m >,∴B 错误; C 、由抛物线可知a<0,0m >,由直线知a<0,0m <,∴C 错误; D 、由抛物线可知a<0,0m <,由直线知a<0,0m >,∴D 错误; 故选:A .【点睛】本题考查二次函数及一次函数的图象的性质.熟练掌握二次函数和一次函数的图象的性质是解答本题的关键.【答案】A【分析】根据抛物线开口向上,与y 轴交与y 轴负半轴,得到00a c ><,,根据抛物线对称轴为直线1x =,得到20b a =−<,由此即可判断A ;根据当1x =时,0y <,即可判断B ;根据当=1x −时,0y =,即可判断C 、D .【详解】解:∵抛物线开口向上,与y 轴交与y 轴负半轴, ∴00a c ><,,∵抛物线对称轴为直线1x =,∴12b a −=, ∴20b a =−<,∴0abc >,故A 结论正确,符合题意; ∵当1x =时,0y <,∴0a b c ++<,故B 结论错误,不符合题意; ∵当=1x −时,0y =, ∴0a b c −+=,∴02bb c −−+=,b a c =+∴32b c =,故C 、D 结论错误,不符合题意; 故选A .【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的性质等等,熟知相关知识是解题的关键.【答案】D【分析】根据已知条件可得出20ax kx a −−=,再利用根与系数的关系,分情况讨论即可求出答案.【详解】解:抛物线()20y ax a a =−≠与直线y kx =交于()11,A x y ,()22,B x y 两点,2kx ax a =−∴, 20ax kx a −−=∴.12kx x a ∴+=,<0k a ∴.当>0a ,0<k 时,直线y ax k =+经过第一、三、四象限,当0<a ,>0k 时,直线y ax k =+经过第一、二、四象限, 综上所述,y ax k =+一定经过一、四象限. 故选:D .【点睛】本题考查了二次函数与系数的关系,解题的关键在于熟练掌握根与系数关系公式.5.(2023·浙江·九年级假期作业)已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过点(1,0)−,其对称轴为直线1x =.有下列结论:①0abc <;②80a c +<;③若抛物线经过点(2,)t −,则关于x 的一元二次方程20(0)ax bx c t a ++−=≠的两根分别为2−,4,其中正确结论的个数是( ) A .0 B .1C .2D .3【答案】D【分析】根据已知条件得出a<0,2b a =−0>,根据抛物线经过点(1,0)−,得出230c b a a a a =−=−−=−>,即可判断①,根据3c a =−代入②即可判断;根据对称性可得抛物线也经过点()4,t ,即可判断③【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过点(1,0)−,其对称轴为直线1x =. ∴a<0,12b x a =−=,0a b c −+=则2b a =−0>,∴230c b a a a a =−=−−=−> ∴<0abc ,故①正确;∵88350a c a a a +=−=<,故②正确, ∵抛物线经过点(2,)t −,∴根据抛物线的对称性,抛物线也经过点()4,t ,∴抛物线2y ax bx c =++与直线y t =的交点坐标为(2,)t −和()4,t , ∴一元二次方程20(0)ax bx c t a ++−=≠的两根分别为2−,4,故③正确.故选:D .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与系数之间的关系是解答的关键.6.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数,)0a ≠上的点,现有以下四个结论:①该抛物线的对称轴是直线2x =−;②点()0,3在抛物线上;③若122x x >>−,则12y y >;④若12y y =,则122x x +=−其中,正确结论的个数为( ) A .1个 B .2个C .3个D .4个【答案】B【分析】根据对称轴公式4222b ax a a =−=−=−可判断①;当0x =时,3y =,可判断②;根据抛物线的增减性,分两种情况计算可判断③;利用对称点的坐标得到1222+=−x x ,可以判断④.【详解】解:∵抛物线243y ax ax =++(a 是常数,)0a ≠, ∴4222b ax a a =−=−=−,故①正确; 当0x =时,3y =, ∴点()0,3在抛物线上,故②正确; 当0a >时,12y y >, 当0a <时,12y y <,故③错误;根据对称点的坐标得到1222+=−x x ,124x x +=−,故④错误. 故选B .【点睛】本题考查了抛物线的对称性,增减性,熟练掌握抛物线的性质是解题的关键.A .4个B .3个C .2个D .1个【答案】B【分析】抛物线2y ax bx c =++经过点(1,0)(,0)A B m −、,且12m <<,,可以得到0a >,1022b a <−<,从而可以得到b 的正负情况,从而可以判断①;继而可得出b a −<,则0a b +>,即可判断②;由图象可知,当1x =−时,0y =,即0a b c −+=,所以有a c b +=,从而可得出0a c <<−,即可判断③;利用12512332⎛⎫−−=− ⎪⎝⎭,再根据1022b a <−<,所以252332b b a a ⎛⎫⎛⎫−−−<−− ⎪ ⎪⎝⎭⎝⎭,从而可得12y y <,即可判断④. 【详解】解 :∵抛物线2y ax bx c =++的图象开口向上, ∴0a >,∵抛物线2y ax bx c =++经过点(1,0)(,0)A B m −、,且12m <<, ∴1022b a <−<,∴0b <,故①正确; ∵1022b a <−<,0a >,∴b a −<∴0a b +>,故②正确;由图象可知,当1x =−时,0y =,即0a b c −+<, ∴a c b += ∵0a >,0b <, ∴0a c <<−,故③正确;∵12512332⎛⎫−−=− ⎪⎝⎭,又∵1022b a <−<,∴252332b b a a ⎛⎫⎛⎫−−−<−− ⎪ ⎪⎝⎭⎝⎭,∵抛物线2y ax bx c =++的图象开口向上,∴12y y <,故④错误. ∴正确的有①②③共3个, 故选:B .【点睛】本题考查二次函数图象与系数的关系,二次函数的性质,熟练掌握根据二次函数图象性质是解题的关键.A .1个B .2个【答案】A【分析】根据抛物线的开口方向、对称轴、与y 轴的交点,即可判断a b c 、、的大小,从而即可判断①,根据对称轴和经过()10−,,得到45b a c a =−=−,,代入进行求解即可判断②④,根据当2x =时二次函数取得最大值,即可判断③.【详解】解:抛物线的开口向下,<0a ∴,抛物线的对称轴为直线22b x a =−=,>0b ∴,抛物线交y 轴正半轴,0c ∴>,<0abc ∴,故①错误,抛物线的对称轴为直线22b x a =−=,4b a ∴=−,图像过点()10−,,0a b c ∴−+=,5c a ∴=−,()42452470a cb a a a a ∴+−=−−⨯−=<,42a c b ∴+<,故②错误,当2x =时,函数由最大值42a b c ++, 242a b c am bm c ∴++≥++,∴()42a b m am b +≥+(m 为常数),故③错误,()()323425121020b c a a a a a −=⨯−−⨯−=−+=−>,320b c ∴−>,故④正确,综上所述,正确的个数为1, 故选:A .【点睛】本题主要考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质,采用数形结合的思想解题,是解题的关键.9.(2023·安徽六安·校考二模)已知抛物线2y ax bx c =++和直线2y x c =+分别交于A 点和B 点,则抛物线()22y b x ax =−−的图象可能是( )A .B .C .D .【答案】C【分析】求出求出交点A 、B 的坐标,根据已知图象确定,a 与A 点的横坐标的正负,进而推断新抛物线2(2)y b x ax =−−的图象的开口方向,对称轴位置,从而确定答案.【详解】解:由22ax bx c x c ++=+,得(2)0x ax b +−=,解得,0x =或2b x a −=,抛物线2y ax bx c =++和直线2y x c =+分别交于A 点和B 点,(0,)B c ∴,A 的横坐标为:2ba −,抛物线2y ax bx c =++的开口向上,交点A 在第三象限内,0a ∴>,20ba −<,抛物线2(2)y b x ax =−−中,0a −<,对称轴202bx a −=<,∴此抛物线的开口向下,对称轴在y 轴的左边,符合此条件的图象是C , 故选:C .【点睛】本题主要考查了二次函数的图象与系数的关系,一次函数的图象与性质,关键是由已知条件确定a 和A 点横坐标的取值.A . . . .【答案】A【分析】根据函数图像的开口大小与y 轴的交点位置以及对称轴的位置进行判断即可. 【详解】解:设21111y a x b x c =++,22222y a x b x c =++,由图像知,10a >,10b <,10c <,20a <,20b >,20c >,21c c >,∴120c c +>,∵函数1y 的图像开口大于函数2y 的图像开口,∴12a a <,∴120a a +<, ∵121222b ba a −>−>, ∴221101b a b a >>>−,∴21b b <−,∴120b b +<,∴()121202b b a a +−>+,∵()()()212121212y y y a a x b b x c c =+=+++++,∴函数12y y y =+的图像是抛物线,开口向下,对称轴在y 轴的右侧,与y 轴的交点在y 轴的正半轴上, A .图像开口向下,对称轴在y 轴的右侧,与y 轴的交点在y 轴的正半轴上,故此选项符合题意; B .图像开口向上,故此选项不符合题意;C .图像对称轴在y 轴的左侧,故此选项不符合题意;D .图像开口向上,故此选项不符合题意. 故选:A .【点睛】本题考查二次函数的图像与性质,不等式的性质.熟练掌握二次函数的性质是解题的关键.注意:二次函数()20y ax bx c a =++≠的a越大,图像开口越小.二、填空题11.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =−++>,若点(,3)P m 在该函数的图象上,且0m ≠,则m 的值为________. 【答案】2【分析】将点(,3)P m 代入函数解析式求解即可.【详解】解:点(,3)P m 在223y ax ax =−++上,∴2323am am =−++,(2)0am m −−=,解得:2,0m m ==(舍去) 故答案为:2.【点睛】题目主要考查二次函数图象上的点的特点,理解题意正确求解是解题关键.12.(2022秋·甘肃平凉·九年级校考阶段练习)函数()=−−2y 2x 31的图象可由函数22y x =的图象沿x 轴向_______平移_______个单位,再沿y 轴向_______平移_______个单位得到. 【答案】 右 3 下 1【分析】根据二次函数图象“上加下减,左加右减”的平移规律进行求解即可. 【详解】解:函数()=−−2y 2x 31的图象可由函数22y x =的图象沿x 轴向右平移3个单位,再沿y 轴向下平移1个单位得到,故答案为:右,3,下,1.【点睛】本题主要考查了二次函数图象的平移,熟知二次函数图象的平移规律是解题的关键.13.(2023·浙江·九年级假期作业)如果三点()111,P y ,()223,P y 和()334,Py 在抛物线26y x x c =−++的图象上,那1y ,2y ,3y 之间的大小关系是______ . 【答案】231y y y >>/132y y y <<【分析】先求出抛物线的对称轴和开口方向,根据二次函数的性质比较即可. 【详解】解:抛物线26y x x c =−++的开口向下,对称轴是直线632x =−=−,∴当3x >时,y 随x 的增大而减小,()111,P y 关于称轴是直线3x =的对称点是()15,y , 345<<,231y y y ∴>>.故答案为:231y y y >>.【点睛】本题考查了二次函数图象上点的坐标特征和二次函数的性质,能熟记二次函数的性质是解此题的关键.【答案】②③④【分析】由图,0a >,0c <,02ba −>,得0b <,推知0a bc −<;由2OB OC =知(2,0)B c −,代入2y ax bx c =++,得20(2)(2)a c b c c =-+-+,化简得241b ac −=;将()2,0A −代入2y ax bx c =++得,420a b c −+=,由对称轴得22b ac a =+,解得14a =;将14a =代入241b ac −=得21c b =−. 【详解】解:由图,0a >,0c <,02b a −>,∴0b <∴0a b −>,0a bc −<,故①错误;(0,)C c ,由2OB OC =知(2,0)B c −,代入2y ax bx c =++,得20(2)(2)a c b c c =-+-+,2420ac bc c −+=,化简得,241b ac −=,故②正确; 将()2,0A −代入2y ax bx c =++得,420a b c −+=, 对称轴1(22)22b x c a =-=--,得22b ac a =+,代入上式得,42(22)0a c ac a +-+=,解得14a =,故③正确;将14a =代入241b ac −=得21c b =−,故④正确;综上分析可知,正确的是②③④. 故答案为:②③④.【点睛】本题考查二次函数图象性质,运用数形结合思想,理解图象与方程的联系是解题的关键.【答案】210 【分析】先求出()02C ,,()24D ,,如图所示,作点C 关于x 轴的对称点E ,连接EP DE 、,则()02E −,,然后证明当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE ,利用勾股定理求出DE 的长即可得到答案.【详解】解:在21222y x x =−++中,当0x =时,2y =,∴()02C ,;∵抛物线解析式为()2211222422y x x x =−++=−−+,∴()24D ,;如图所示,作点C 关于x 轴的对称点E ,连接EP DE 、,则()02E −,,∴PE CP =,∴CP DP PE DP +=+,∴当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE ,∴CP DP +的最小值==故答案为:.【点睛】本题主要考查了二次函数与几何综合,正确作出辅助线确定当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE 是解题的关键.16.(2021春·广东广州·九年级广州市育才中学校考阶段练习)关于二次函数223y x ax =−−在22x −≤≤的取值范围内,函数y 的最小值(用含a 的式子表示),下列结论:①当2a <−时,函数y 的最小值14a +;②当2a >时,函数y 的最小值是14a −;③22a −≤≤时,函数y 的最小值是23a −−;④当22a −≤≤,函数y 的最小值23a −+.其中正确的有___(填序号即可). 【答案】①②③【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据22x −≤≤,即可得到相应的最值,从而可以解答本题.【详解】解:二次函数223y x ax =−−, ∴抛物线开口向上,对称轴为直线221ax a −=−=⨯,①当2a <−时,2x =−时,函数有最小值,函数y 的最小值是44314y a a =+−=+,故①正确; ②当2a >时,2x =时,函数有最小值,函数y 的最小值是44314y a a =−−=−,故②正确;③当22a −≤≤时,x a =时,函数有最小值,函数y 的最小值是222233y a a a =−−=−−;故③正确;④当22a −≤≤时,x a =时,函数有最小值,函数y 的最小值是222233y a a a =−−=−−;故④错误;故答案为:①②③.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确二次函数的性质,求出相应的最值.【答案】()2212y x =+−或()2212y x =−+−【分析】根据抛物线的图象与系数之间的关系得出1h =−,2k =−,2a =±,即可得出结果. 【详解】解:设这条抛物线的解析式为:()2y a x h k=−+,∵这条抛物线与抛物线()21122y x =−+−的顶点坐标相同,∴1h =−,2k =−,又∵这条抛物线与抛物线223y x =+形状相同,∴2=a ,即2a =±,∴这条抛物线的解析式为:()2212y x =+−或()2212y x =−+−,故答案为:()2212y x =+−或()2212y x =−+−.【点睛】本题考查二次函数的图象与系数的关系,熟记二次函数的性质是解题的关键.【答案】178(,)55和33(,)55− 【分析】先根据题意画出图形,先求出D 点坐标,当E 点在线段BC 上时:DEB ∠是△DCE 的外角,2DEB DCB ∠=∠,而DEB DCE CDE ∠=∠+∠,所以此时DCE CDE ∠=∠,有CE DE =,可求出BC 所在直线的解析式5y x =−+,设E 点(,5)−+a a 坐标,再根据两点距离公式,CE DE =,得到关于a 的方程,求解a 的值,即可求出E 点坐标;当E 点在线段CB 的延长线上时,根据题中条件,可以证明222BC BD DC +=,得到DBC ∠为直角三角形,延长EB 至E ',取BE BE '=,此时,2DE E DEE DCB ''∠=∠=∠,从而证明E '是要找的点,应为OC OB =,OCB 为等腰直角三角形, 点E 和E '关于B 点对称,可以根据E 点坐标求出E '点坐标.【详解】解:在265y x x =−+中,当0x =时,5y =,则有()05C ,,令0y =,则有2650x x −+=,解得:121,6x x ==, ∴()()1050A B ,,,,根据D 点坐标,有226253m =−⨯+=−所以D 点坐标()23−,设BC 所在直线解析式为y kx b =+,其过点()0,5C 、()5,0B有550b k b =⎧⎨+=⎩, 解得15k b =−⎧⎨=⎩∴BC 所在直线的解析式为:5y x =−+ 当E 点在线段BC 上时,设(,5)E a a −+ DEB DCE CDE ∠=∠+∠而2DEB DCB ∠=∠ ∴DCE CDE ∠=∠∴CE DE =因为:(,5)E a a −+,(0,5)C ,(2,3)D −=解得:175a =,855a −+=所以E 点的坐标为:178(,)55 当E 在CB 的延长线上时,在BDC 中,222(52)318BD =−+=,2225550BC =+=,222(53)268DC =++= ∴222BD BC DC +=∴BD BC ⊥如图延长EB 至E ',取BE BE '=,则有DEE '为等腰三角形,DE DE =', ∴DEE DE E ''∠=∠ 又∵2DEB DCB ∠=∠ ∴2DE E DCB '∠=∠ 则E '为符合题意的点, ∵5OC OB == ∴45OBC ∠=E '的横坐标:17335(5)55+−=,纵坐标为85−;综上E 点的坐标为:178(,)55或338(,)55−,故答案为:17855⎛⎫ ⎪⎝⎭,或33855⎛⎫− ⎪⎝⎭, 【点睛】本题考查了二次函数与一次函数综合应用,熟练掌握一次函数根二次函数的图象和性质,分情况找到E 点的位置,是求解此题的关键.三、解答题19.(2023·上海·九年级假期作业)已知二次函数2y ax bx c =++的图像经过点()()()10401M N P −−,、,、,12三点,求这个二次函数的解析式.【答案】2268y x x =−−【分析】根据题意设二次函数解析式为(1)(4)y a x x =+−,然后将()1P −,12代入求解即可.【详解】解:∵二次函数的图象经过点()()1040M N −,、,,∴设二次函数解析式为:(1)(4)y a x x =+−, 把()1P −,12代入,可得()1223a −=⨯⨯−,解得:2a =.∴这个二次函数的解析式为:2268y x x =−−. 【点睛】掌握待定系数法求二次函数解析式是解答本题的关键.20.(2023·上海·九年级假期作业)已知一个二次函数23y x bx =−++的图象经过点()14A ,. (1)求b 的值;(2)求抛物线关于x 轴对称的抛物线的解析式. 【答案】(1)2b =(2)2=23y x x −−【分析】(1)把()14A ,代入二次函数解析式即可求出b 的值;(2)根据轴对称的性质可得抛物线223y x x =−++关于x 轴对称的图象横坐标不变,纵坐标互为相反数,然后可得答案.【详解】(1)解:∵二次函数的图象经过点()14A ,,∴把点()14A ,代入得2413b =−++,解得:2b =;(2)解:由(1)可知二次函数解析式为223y x x =−++,∵抛物线223y x x =−++关于x 轴对称的图象横坐标不变,纵坐标互为相反数,∴所得抛物线解析式为223y x x −=−++,即2=23y x x −−.【点睛】本题考查了待定系数法,二次函数的图象与几何变换,熟练掌握轴对称的性质是解题的关键.(1)若1a =−,画出该抛物线图象,并结合图象写出(2)(),Pm t 为抛物线上的一点,若P 【答案】(1)画图见解析,1x ≤− (2)2m =±【分析】(1)利用五点作图法画出图象,然后根据图象求解即可; (2)首先求出(),P m t '−−,然后将(),P m t 和(),P m t '−−代入()2240y ax ax a a =+−≠求解即可.【详解】(1)将1a =−代入()2240y ax ax a a =+−≠得,224y x x =−−+, ∴列表如下:∴如图所示,将以上5点在坐标系中描出,然后用平滑的曲线连接.∴由图象可得,当y 随x 的增大而增大时,1x ≤−; (2)∵(),P m t ,点P 关于原点的对称点为P ',∴(),P m t '−−,∵(),P m t 和(),P m t '−−都在抛物线上,∴222424am am a t am am a t ⎧+−=⎨−−=−⎩①②,∴+①②得,2280am a −=,∴解得2m =±.【点睛】本题主要考查了五点作图法,二次函数的性质,关于原点对称的点的坐标特点,熟知二次函数的相关知识是解题的关键.(1)求抛物线的表达式和顶点坐标;(2)在直线1x =上找一点P ,使PA PC +的和最小,并求出点P 的坐标;(3)将线段AC 沿x 轴向右平移a 个单位长度,若线段AC 与抛物线有唯一交点,请直接写出a 的取值范围.【答案】(1)抛物线的表达式为2142y x x =−++,抛物线的顶点坐标为91,2⎛⎫ ⎪⎝⎭(2)()1,3(3)26a ≤≤【分析】(1)根据对称轴得出1b =,再将点代入确定解析式,即可确定顶点坐标;(2)连接BC ,交直线1x =于点P ,点P 即为所求,连接AP ,利用两点之间线段最短得出PA PC +的和最小,由待定系数法确定直线BC 的表达式为4y x =−+,即可确定点P 的坐标;(3)根据题意得:点C 的运动轨迹为射线CD ,点A 的运动轨迹为射线AB ,若线段AC 与抛物线有唯一交点,则线段AC 在线段,m n 间平移(含线段,m n ),由抛物线的对称性得212CD =⨯=,()2216AB =⨯+=,即可求解.【详解】(1)解:∵抛物线的对称轴为直线1x =,∴1122b⎛−⎫ ⎝⨯⎪⎭=−,解得1b =. ∴212y x x c=−++. 把点()2,0A −代入,得()212202c −⨯−−+=,解得4c =.∴抛物线的表达式为2142y x x =−++.把1x =代入2142y x x =−++,得191422y =−++=, ∴抛物线的顶点坐标为91,2⎛⎫⎪⎝⎭.(2)如图1,连接BC ,交直线1x =于点P ,点P 即为所求.。

人教版初中数学第二十二章二次函数知识点

人教版初中数学第二十二章二次函数知识点

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.二次函数的概念:一般地,形如y ax 2bx c (a,b,c是常数,a0)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数,而b,c 可以为零.二次函数的定义域是全体实数.a 02.二次函数 y ax 2 bx c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c是常数,a是二次项系数,b是一次项系数,c是常数项.22.1.2 二次函数y ax 2的图象和性质1. 二次函数基本形式:y ax 2的性质:a 的绝对值越大,抛物线的开口越小.a 的符号开口方向顶点坐标对称轴性质x0时,y随x的增大而增大;x 0时,y随x a0向上0 ,0y轴x0时,y有最小值 0.的增大而减小;x0时,y随x的增大而减小;x 0时,y随x a0向下0 ,0y轴x0时,y有最大值 0.的增大而增大;例 1.若抛物线y=ax2经过 P( 1,﹣ 2),则它也经过()A .( 2,1) B.(﹣ 1, 2) C.( 1, 2) D.(﹣ 1,﹣ 2)【答案】【解析】试题解析:∵抛物线y=ax 2经过点 P( 1, -2),∴x=-1 时的函数值也是 -2,即它也经过点( -1, -2).故选 D.考点:二次函数图象上点的坐标特征.例 2.若点 (2,-1) 在抛物线y ax2上,那么,当x=2 时, y=_________【答案】 -1【解析】试题分析:先把 (2, -1)直接代入yax2即可得到解析式,再把x=2 代入即可 .由题意得 4a 1 ,a 1,则 y1x 2,44当 x 2 时,y 14 1. 4考点:本题考查的是二次函数点评:解答本题的关键是掌握二次函数图象上的点适合这个二次函数的关系式.2. y ax 2 c 的性质:上加下减 .a 的符号开口方向顶点坐标对称轴性质x0时,y随x的增大而增大;x0 时,y随a0向上0 ,c y轴x 的增大而减小;x 0 时,y有最小值c.x0 时,y随x的增大而减小;x 0 时,y a0向下0 ,c y 轴x 0 时,y有最大值c.随 x 的增大而增大;例 1.若抛物线 y=ax 2+c 经过点 P ( l,- 2),则它也经过()A.P1(- 1,- 2 ) B .P2(- l, 2 )C. P3( l , 2)D. P4( 2, 1)【答案】 A【解析】试题分析:因为抛物线y=ax2 +c 经过点 P ( l ,- 2),且对称轴是y 轴,所以点 P ( l ,- 2)的对称点是(-1,-2),所以 P1(- 1,- 2)在抛物线上,故选: A.考点:抛物线的性质 .例 2.已知函数 y=ax+b 经过( 1, 3),( 0,﹣ 2),则 a﹣ b=()A.﹣ 1B.﹣ 3C. 3D. 7【答案】 D.【解析】试题分析:∵函数y=ax+b 经过( 1, 3),(0,﹣ 2),a b 3a5∴,解得b .b22∴ a﹣ b=5+2=7 .故选 D.考点: 1.直线上点的坐标与方程的关系;2.求代数式的值.例 3.两条直线 y1= ax+b 与 y2= bx+ a 在同一坐标系中的图象可能是下图中的()【答案】无正确答案【解析】分析:首先根据两个一次函数的图象,分别考虑a,b 的值,看看是否矛盾即可.解: A 、由 y1的图象可知, a< 0, b< 0;由 y2的图象可知, a>0,b<0 ,两结论矛盾,故错误;B、由 y1的图象可知, a>0, b> 0;由 y2的图象可知, a> 0, b<0 ,两结论相矛盾,故错误;C、由 y1的图象可知, a>0,b<0;由 y2的图象可知, a< 0, b< 0,两结论相矛盾,故错误;D、由 y1的图象可知, a>0, b> 0;由 y2的图象可知, a<0, b<0 ,两结论相矛盾,故错误.故无正确答案.点评:此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当 k> 0, b> 0,函数 y=kx+b 的图象经过第一、二、三象限;②当 k> 0, b< 0,函数 y=kx+b 的图象经过第一、三、四象限;③当 k< 0, b> 0 时,函数y=kx+b 的图象经过第一、二、四象限;④当 k< 0, b< 0 时,函数y=kx+b 的图象经过第二、三、四象限.22.1.3 二次函数y a x h2k 的图象和性质左加右减 .a 的符号开口方向顶点坐标对称轴性质h,0x h 时,y随x的增大而增大;x h 时,ya0向上X=hx h 时,y有最小值 0 .随 x 的增大而减小;a0h,0x h 时,y随x的增大而减小;x h 时,y向下X=hx h 时,y有最大值 0 .随 x 的增大而增大;2y a x hk 的性质:a 的符号开口方向顶点坐标对称轴性质h,k x h 时,y随x的增大而增大;x h 时,ya0向上X=hx h 时,y有最小值 k .随 x 的增大而减小;h,k x h 时,y随x的增大而减小;x h 时,ya0向下X=hx h 时,y有最大值 k .随 x 的增大而增大;例 1.将二次函数y=x2﹣ 2x﹣ 3化成 y= ( x﹣ h)2+k 形式,则 h+k 结果为()A.﹣ 5 B.5C. 3D.﹣3【答案】 D.【解析】试题分析: y=x 2-2x-3= ( x2-2x+1 ) -1-3= ( x-1)2-4.则h=1 ,k=-4 ,∴ h+k=-3 .故选 D.考点 : 二次函数的三种形式.例2.把二次函数 y=x2+6x+4 配方成 y=a( x-h)2+k 的形式,得 y=___ ,它的顶点坐标是 ___.【答案】( x+3)2-5,( -3, -5)【解析】试题分析: y= x2 +6x+4= ( x + 3)2-5 ,则顶点坐标为(-3,- 5).考点:二次函数的顶点式.3y 1 x23x4配方成y a x k2+h的形式,并写出它的图象的顶点坐标、对称轴.例.把二次函数2=(-)【答案】y=顶点坐标(3,-),对称轴方程x= 3【解析】试题分析: y= x2﹣ 3x+4=(x﹣3)2﹣,则顶点坐标( 3,﹣),对称轴方程 x=3 ,考点:二次函数的图像及性质1、二次函数图象的平移( 1)平移步骤:方法一:( 1)将抛物线解析式转化成顶点式2h ,k ;y a x hk ,确定其顶点坐标 (2)保持抛物线 y ax 2 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:向上 (k>0)【或向下 ( k<0)】平移 |k|个单位y=ax2y=ax 2+k向右 (h>0) 【或左 ( h<0)】 向右 (h>0) 【或左 (h<0) 】 向右 (h>0) 【或左 ( h<0) 】平移 |k| 个单位平移 |k|个单位平移 |k| 个单位向上 (k>0) 【或下 (k<0)】平移 |k|个单位y=a (x-h)2向上 (k>0)【或下 (k<0)】平移 |k|个单位y=a( x-h)2+k( 2)平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移”.概括成八个字 “左加右减,上加下减 ”.方法二:( 1) yax 2 bx c 沿 y 轴平移 :向上(下)平移m 个单位, yax 2 bxc 变成yax 2 bx cm (或 y ax 2 bx c m )2 y ax2 bxc沿轴平移:向左(右)平移m 个单位, y ax2bx c变成( )ya( x m)2b(x m) c (或ya( x m) 2 b( x m) c )例 1.将二次函数 y = x 2 的图象向下平移一个单位,则平移以后的二次函数的解析式为()A . y = x 2- 1B . y = x 2+ 1C . y =(x -1) 2D . y = (x + 1)2【答案】 A【解析】直接根据上加下减的原则进行解答即可,将二次函数y =x 2 的图象向下平移一个单位,则平移以后的二次函数的解析式为: y = x 2- 1.故选 A.例 2.将二次函数y=x 2 的图象向右平移 1 个单位,再向上平移2 个单位后,所得图象的函数表达式是2B . y=(x+1) 2+2A . y=(x – 1)+22D . y=(x+1) 2–2C . y=(x – 1)– 2【答案】 A .【解析】试题分析:原抛物线的顶点为( 0,0),向右平移 1 个单位,再向上平移 2 个单位,那么新抛物线的顶点为(1,2).可设新抛物线的解析式为y= ( x﹣ h)2+k ,代入得 y= ( x﹣ 1)2+2.故选 A.考点:二次函数图象与几何变换.例 3.将二次函数y x2的图象如何平移可得到y x 2 4 x 3 的图象()A .向右平移 2 个单位,向上平移一个单位B.向右平移 2 个单位,向下平移一个单位C.向左平移 2 个单位,向下平移一个单位D.向左平移 2 个单位,向上平移一个单位【答案】 C【解析】 y x24x 3 ( x 2) 21,根据二次函数的平移性质得:向左平移 2 个单位,向下平移一个单位.故选C.例 4.已知点 P(﹣ 1,m)在二次函数y=x 2﹣1 的图象上,则m 的值为;平移此二次函数的图象,使点P 与坐标原点重合,则平移后的函数图象所对应的解析式为.【答案】 0, y=x 2﹣ 2x.【解析】∵点 P(﹣ 1, m)在二次函数y=x2﹣1 的图象上,∴(﹣ 1)2﹣ 1=m,解得 m=0,平移方法为向右平移 1 个单位,平移后的抛物线的二次函数的顶点坐标为(1,﹣ 1),平移后的函数图象所对应的解析式为y=( x﹣ 1)2﹣1=x 2﹣ 2x,即y=x 2﹣ 2x.故答案为: 0, y=x 2﹣ 2x.2、二次函数y a x2k 与 y ax2bx c 的比较h从解析式上看,y a x h 2ax2bxc是两种不同的表达形式,后者通过配方可以得到前者,即k 与 y2b2b,k4ac b2y a x b4ac,其中 h.2a4a2a4a3、二次函数y ax2bx c 图象的画法五点绘图法:利用配方法将二次函数y ax2bx c 化为顶点式y a(x h)2k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点0,c 、以及 0 ,c 关于对称轴对称的点2h,c、与x轴的交点x1,0 ,x2,0 (若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.4、二次函数y ax2bx c 的性质b ,4ac 21. 当 a0 时,抛物线开口向上,对称轴为x b,顶点坐标为b.2a2a4a当 x b时, y 随x的增大而减小;当x b时, y 随x的增大而增大;当x b时, y 有最小值2a 2 a 2 a4ac b2.4a2b时, y 随x的增2. 当 a0 时,抛物线开口向下,对称轴为x b,顶点坐标为 b ,4ac b.当x2a2a4a2a大而增大;当x b时, y 随x的增大而减小;当xb时, y 有最大值4acb2.2a2a4a例 1.当 a < 0 时,方程 ax2+bx+c=0 无实数根,则二次函数y=ax2 +bx+c 的图像一定在()A 、 x 轴上方B、 x 轴下方C、 y 轴右侧D、 y 轴左侧【答案】 B【解析】试题分析:∵方程 ax2+bx+c=0 无实数根,∴ b2 +4ac<0,即函数图形与 x 轴没有交点又∵a < 0,∴二次函数 y=ax 2+bx+c 的图像一定在 x 轴下方故选 B.考点:二次函数的性质例 2.已知二次函数y=ax2+bx+c 的图象如图,则a、 b、 c 满足()A、 a< 0, b< 0,c> 0 C、 a< 0, b> 0, c> 0B、a< 0, b<0, c< 0 D 、a> 0, b<0, c> 0【答案】 A 【解析】试题分析:由于开口向下可以判断a< 0,由与 y 轴交于正半轴得到c> 0,又由于对称轴x=-b<0,可以得到b<2a0,所以可以找到结果.试题解析:根据二次函数图象的性质,∵开口向下,∴a< 0,∵与 y 轴交于正半轴,∴c> 0,又∵对称轴x=-b<0,2a∴b< 0,所以 A 正确.考点:二次函数图象与系数的关系.例 3.已知二次函数 y=ax2+bx+c 的图象如图,其对称轴 x= ﹣ 1,给出下列结果:①b2> 4ac;② abc> 0;③ 2a+b=0;④ a+b+c> 0;⑤ a﹣ b+c< 0,则正确的结论是()A. ①②③④B.②④⑤C.②③④D.①④⑤【答案】D【解析】试题分析:根据抛物线与x 轴有两个交点,可得△=b2﹣ 4ac> 0,即b2> 4ac,故①正确;根据抛物线对称轴为x= ﹣b< 0,与y 轴交于负半轴,因此可知ab> 0, c< 0, abc< 0,故②错误;根据抛物线对称轴为x= ﹣2ab=﹣ 1,∴ 2a﹣b=0 ,故③错误;2a当x=1 时, y> 0,即 a+b+c> 0,故④正确;当x= ﹣ 1 时,y<0,即 a﹣ b+c<0,故⑤正确;正确的是①④⑤.故选 D.考点:二次函数图象与系数的关系例 4.如果二次函数y= ax2+bx+c (a≠0)的图象如图所示,那么()A. a< 0, b> 0,c> 0 B. a> 0, b< 0, c> 0 C. a> 0, b> 0, c< 0 D. a> 0, b< 0,c< 0 【答案】 D【解析】试题分析:因为抛物线开口向上,所以a> 0,又对称轴在y 轴右侧,所以b>0,所以b<0,又因为抛物线与y 2a轴的交点在x 轴下方,所以c<0,所以 a> 0, b< 0, c< 0,故选: D.考点:抛物线的性质.例 5.已知抛物线y=ax2 +bx+c 与 x 轴的公共点是(﹣ 4,0),(2,0),则这条抛物线的对称轴是直线.【答案】 x=-1.【解析】试题分析:因为点(-4,0)和( 2, 0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=x1x2求解即可.2试题解析:∵抛物线与x 轴的交点为(-4,0),( 2, 0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x=考点:抛物线与x 轴的交点.4221,即x=-1.5、二次函数解析式的表示方法1.一般式: y2bx c (a, b ,c为常数, a0 );ax2.顶点式: y a( x2k (a, h , k 为常数, a0 );h)3.两根式: y a( x x1)( x x2 ) ( a 0 , x1, x2是抛物线与x轴两交点的横坐标) .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b24ac 0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化 .6、二次函数的图象与各项系数之间的关系1.二次项系数 a二次函数y ax2bx c中,a作为二次项系数,显然a0 .⑴当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵当 a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口的大小.2.一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴在 a0 的前提下,当 b0 时,b0,即抛物线的对称轴在y 轴左侧;2a当 b0 时,b0,即抛物线的对称轴就是y 轴;2a当 b0 时,b0,即抛物线对称轴在 y 轴的右侧.2a⑵在 a0 的前提下,结论刚好与上述相反,即当 b0时,b0,即抛物线的对称轴在y 轴右侧;2a当 b0时,b0,即抛物线的对称轴就是y 轴;2a当 b0时,b0,即抛物线对称轴在 y 轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴x b0 ,概括的说就是“左同右在 y 轴左边则ab 0,在 y 轴的右侧则ab2a异”总结:3.常数项 c⑴当 c0 时,抛物线与y 轴的交点在x轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当 c0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当 c0 时,抛物线与y 轴的交点在x轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y 轴交点的位置.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与 x 轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.7、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于 x 轴对称y2bx c 关于x轴对称后,得到的解析式是y2bx c ;ax axy a x h 2y a x h2 k 关于x轴对称后,得到的解析式是k ;2.关于 y 轴对称y ax2bx c 关于y轴对称后,得到的解析式是y ax2bx c ;y a x h 2y a x h2 k 关于y轴对称后,得到的解析式是k ;3.关于原点对称y ax2bx c 关于原点对称后,得到的解析式是y ax2bx c ;y a x h2y a x h2 k 关于原点对称后,得到的解析式是k ;4. 关于顶点对称(即:抛物线绕顶点旋转180 °)y ax2bx c 关于顶点对称后,得到的解析式是y ax2bx c b2;2ay a x h 2y a x h2 k 关于顶点对称后,得到的解析式是k .5. 关于点m,n 对称y a x 22k hk 关于点m,n 对称后,得到的解析式是 y a x h 2m2n根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.22.2 二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax2bx c 0 是二次函数y ax2bx c 当函数值y 0 时的特殊情况.图象与 x 轴的交点个数:① 当b 24ac 0 时,图象与x 轴交于两点1,02,0( x1x2),其中的x1,x2是一元二次方程A x,B xax 2bx c 0 a 0 的两根.这两点间的距离 AB x2 x1b24ac .a②当0 时,图象与x 轴只有一个交点;③ 当0时,图象与 x 轴没有交点.1'当 a0 时,图象落在x 轴的上方,无论x 为任何实数,都有y0 ;2'当 a0 时,图象落在x 轴的下方,无论x 为任何实数,都有y0 .2. 抛物线 y2bx c 的图象与y轴一定相交,交点坐标为 (0 , c) ;ax3.二次函数常用解题方法总结:⑴求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y2c 中a, b ,c的符号,或由二次函数中 a ,b, c 的符号判断图象ax bx的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2ax bx c(a 0) 本身就是所含字母x的二次函数;下面以a0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点例.已知函数 y3x2 6 x k (k 为常数)的图象经过点A(.,y1),B(1.1, y2),10 8C(2,y3),则有()A .y1<y2<y3B.y1>y2>y3C.y3>y1>y2D.y1>y3>y2【答案】 C【解析】试题分析:因为函数y3x26x k 的对称轴是 x b6 1 ,且抛物线开口向上,所以可以画出函数图2a6象的草图,观察图象可得:y3>y1>y2,故选:C.考点:二次函数的性质、二次函数图象上点的坐标特点.例 2.已知二次函数y=x 2+ 2mx + 2,当 x> 2 时, y 的值随 x 的增大而增大,则实数m 的取值范围是.【答案】 m≥-2.【解析】试题分析:根据二次函数的性质,利用二次函数的对称轴不大于 2 列式计算即可得解.试题解析:抛物线的对称轴为直线x=- 2m=-m ,2 1∵当 x> 2 时, y 的值随 x 值的增大而增大,∴-m≤2,解得 m≥-2.考点:二次函数的性质.例 3.函数y x2bx c 的图象经过点(1, 2),则 b-c 的值为.【答案】 1【解析】试题分析:把点(1, 2)代入y x2bx c ,得:1 b c 2 ,所以 b c 1 .考点:函数图象上的点.例4.已知抛物线 y=ax2+bx+3 的对称轴是直线 x=1 .( 1)求证: 2a+b=0;( 2)若关于 x 的方程 ax2+bx ﹣ 8=0 的一个根为 4,求方程的另一个根.【答案】( 1)见解析;( 2) x=- 2【解析】试题分析:直接利用对称轴公式代入求出即可;根据( 1)中所求,再将 x=4 代入方程求出 a, b 的值,进而解方程得出即可.试题解析:( 1)证明:∵对称轴是直线x=1= ﹣b,∴ b=-2a∴ 2a+b=0;2a(2)∵ ax2+bx﹣ 8=0 的一个根为 4,∴ 16a+4b﹣ 8=0 ,∵ b= ﹣ 2a,∴ 16a﹣ 8a﹣ 8=0 ,解得: a=1,则 b=﹣ 2,∴ a x2 +bx ﹣ 8=0 为:x2﹣ 2x ﹣ 8=0,则( x﹣ 4)( x+2 ) =0,解得:x1 =4,x2 =﹣ 2,故方程的另一个根为:﹣2.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x 轴的交点例 5.已知函数y x2bx1的图象经过点(3, 2).( 1)求这个函数的解析式;( 2)当x 0时,求使y 2 的x的取值范围.【答案】( 1)y x22x1;(2)x 3 .【解析】试题分析:( 1)把( 3, 2)代入函数解析式求出 b 的值,即可确定出解析式;( 2)利用二次函数的性质求出满足题意x 的范围即可.试题解析:( 1)∵函数y x2bx 1的图象经过点(3, 2),∴9 3b1 2 ,解得: b 2 ,则函数解析式为: y x22x1;( 2)当x 3时,y 2 ,根据二次函数性质当x 3时, y2,则当 x0时,使 y 2的x的取值范围是x 3.考点:待定系数法求二次函数解析式.22.3 实际问题与二次函数例 1.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是()【答案】 C【解析】试题分析: A 、对于一次函数 a< 0,对于二次函数 a> 0,则不正确; B 、对于一次函数 b< 0,对于二次函数 b> 0,则不正确; C、正确; D、对于一次函数 b< 0,对于二次函数 b> 0,则不正确.考点:函数图象例 2.学生校服原来每套的售价是100 元,后经连续两次降价,现在的售价是81 元,则平均每次降价的百分数是()A.9%B.8.5%C. 9.5% D .10%【答案】D.【解析】试题分析:设平均每次降价的百分数是x,根据等量关系“校服原来每套的售价是100 元×( 1-下降率)2=每套校服现在的售价是81 元”,列出方程100( 1-x)2 = 81元,解得x 即可,故答案选 D .考点:一元二次方程的应用.。

人教版初中九年级数学上册第二十二章《二次函数》知识点总结(含答案解析)(1)

人教版初中九年级数学上册第二十二章《二次函数》知识点总结(含答案解析)(1)

一、选择题1.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .3x y =⎧⎨=⎩D .43x y =⎧⎨=⎩A 解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键. 2.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8C .4D .3C解析:C 【分析】由二次函数的性质可先确定出a 的范围,再由二次函数的性质可确定出a 的范围,解分式方程确定出a 的取值范围,从而可确定出a 的取值,可求得答案. 【详解】 解:∵二次函数2112y x ax =-+, ∴抛物线开口向上,对称轴为x =a , ∴当x <a 时,y 随x 的增大而减小,∵当x≤1时,y 随x 的增大而减小, ∴a≥1, 解分式方程4311x ax x ++=--可得x =72a -, ∵关于x 的分式方程4311x ax x++=--有正整数解, ∵x≠1,∴满足条件的a 的值为1,3,∴所有满足条件的整数a 的值之和是1+3=4, 故选:C . 【点睛】本题考查了二次函数的性质、分式方程的解,通过解分式方程以及二次函数的性质,找出a 的值是解题的关键.3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B 【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确. 【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2ba=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误; 综上,正确的有①②④. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键. 4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x << D .2.00 2.01x <<D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( )A .3B .2C .1D .0A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断. 【详解】 解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5, ∴y 2>y 1>y 3, 故选C. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.7.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>A解析:A 【分析】根据二次函数的对称性、增减性即可得. 【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小, 抛物线2(1)y x =-+的对称轴为1x =-,∴0x =时的函数值与2x =-时的函数值相等,即为1y ,∴点()10y ,在此抛物线上,又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A . 【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键. 8.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x = B .22(-1)-3y x = C .2(21)-3y x =+ D .22(1)-3y x =+B解析:B 【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可. 【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B 【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.9.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键. 10.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-D解析:D 【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可. 【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0),∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3, ∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022,当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3). 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.二、填空题11.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac ab ->;其中正确的结论有_________.①③【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为由图像可得开口向下则有对称轴为直线即由此可进行求解问题【详解】解:由二次函数二次函数的图像与x 轴交于点A (30)对称轴为直线x =1可得抛物线解析:①③ 【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为()1,0-,由图像可得开口向下,则有0a <,240b ac ->,对称轴为直线1x =,即20a b +=,由此可进行求解问题.【详解】解:由二次函数二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,可得抛物线与x 的另一个交点坐标为()1,0-,开口向下,即0a <,当1x ≤时,y 随x 的增大而增大, ∴当1x <-时,y <0,故正确;∵对称轴为直线1x =,即20a b +=,0a <, ∴300a b a a +=+=<,故②错误;设抛物线的解析式为()()13y a x x =+-,则223y ax ax a =--,令x=0时,则有y=-3a ,∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点), ∴233a ≤-≤,解得:213a -≤≤-,故③正确; ∵23c ≤≤,240b ac ->,由248ac b a ->得248ac a b ->, ∵0a <,∴224b c a-<,∴20c -<,∴2c <,与23c ≤≤矛盾,故④错误; 所以正确的结论有①③; 故答案为①③. 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.【分析】根据二次函数的对称性求出二次函数图象与轴的另一个交点再写出x 轴下方部分的x 的取值范围即可【详解】由图可知对称轴为直线所以二次函数图象与x 轴的另一个交点坐标为(0)由图象可知:函数值大于0的的 解析:13x【分析】根据二次函数的对称性求出二次函数图象与x 轴的另一个交点,再写出x 轴下方部分的x 的取值范围即可. 【详解】由图可知,对称轴为直线1x =,所以,二次函数图象与x 轴的另一个交点坐标为(1-,0), 由图象可知:函数值大于0的x 的取值范围为:13x ,所以,220x x m -++>的解集为13x .故答案为:13x .【点睛】本题考查了二次函数与不等式,主要利用了二次函数的对称性以及数形结合的思想,难点在于先求出函数图象与x 轴的另一个交点坐标. 13.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.2013【分析】分别过B1B2B3作y 轴的垂线垂足分别为ABC 设A0A1=aA1A2=bA2A3=c 则AB1=aBB2=bCB3=c 再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013 【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C , 设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 2211312233BA BB b b ==⨯=,则23,22b B b a ⎛⎫+ ⎪ ⎪⎝⎭, 3331233CA c ===,则33,2c B a b ⎫++⎪⎪⎝⎭,在正011A B A △中,13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 代入223y x =中,得223234a a =⨯,解得1a =,即011A A =, 在正122A B A △中,23,122b B b ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =, 在正233A B A △中,33,322c B c ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =, …,依此类推由此可得201220132013A B A △的边长2013=.故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.14.已知抛物线y =x 2+9的最小值是y =_____.9【分析】直接利用二次函数的最值问题求解【详解】解:∵y =x2+9∴当x =0时y 有最小值最小值为9故答案为:9【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h 当a >0时x=ky 有解析:9【分析】直接利用二次函数的最值问题求解.【详解】解:∵y =x 2+9,∴当x =0时,y 有最小值,最小值为9.故答案为:9.【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h ,当a >0时,x=k ,y 有最小值h ;当a <0时,x=k ,y 有最大值h .15.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 16.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时 解析:>【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小.【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x >﹣1时,y 随x 的增大而减小,∵1<2,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.17.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.18.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=,∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键.19.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____. ()【分析】根据抛物线y =x2﹣3x+2与x 轴交于AB 两点与y 轴交于点C 得A (10)B (20)C (02)过点B 作BM ⊥BC 交CD 延长线于点M 过点M 作MG ⊥x 轴于点G 易证等腰直角三角形OCB ∽等腰直角解析:(715,24) 【分析】 根据抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,得A (1,0),B (2,0),C (0,2),过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,易证等腰直角三角形OCB ∽等腰直角三角形GBM ,可得M (8,6),再求得直线CM 的解析式为y =12x +2,联立直线和抛物线,解方程组即可得点D 的坐标. 【详解】 解:∵抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,∴解得A (1,0),B (2,0),C (0,2),∴OB =OC∴∠OBC =45°,如图,过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,∴∠COB =∠MGB =90°∴∠CBO +∠MBG =90°∴∠MBG =45°∴MG =BG∴等腰直角三角形OCB ∽等腰直角三角形GBM ∴BC BM =OC BG ∵tan ∠DCB =MB BC =3 ∴123BG= ∴BG =6∴MG =6 ∴M (8,6)设直线CM 解析式为y =kx +b ,把C (0,2),M (8,6)代入,解得k =12,b =2 所以直线CM 的解析式为y =12x +2 联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24) 故答案为(715,24). 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.20.抛物线y =x²-x 的顶点坐标是________【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?解析:(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 .【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 .【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到:(10+x )(40-x )=600,解之得:x=10或x=20,因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ),配方得:()215625y x =--+,∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元.【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.22.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件.设每件涨价(0)x x ≥元. (1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得纯利润(纯利润=毛利润-经营费用)最大,超市对该商品售价为______元,最大纯利润为______元.解析:(1)50010y x =-;(2)2104005000w x x =-++,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)75,5000.【分析】(1)根据每件涨价x 元,每周销量就减少10x 件即可得;(2)根据“毛利润=(每件的售价-每件的成本)⨯销售量”可得w 与x 的函数关系式,再根据二次函数的性质即可得;(3)设一周销售获得的纯利润为Q 元,先根据纯利润的计算公式求出Q 与x 的函数关系式,再利用二次函数的性质求解即可得.【详解】(1)由题意,每件涨价x 元,每周销量就减少10x 件,则50010y x =-;(2)由题意得:(5040)(10)(50010)w x y x x =+-=+-,整理得:2104005000w x x =-++,将此二次函数的解析式化成顶点式为210(20)9000w x =--+,由二次函数的性质可知,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)设一周销售获得的纯利润为Q 元,则220%(50)1040050000.2(50)(50010)Q w x y x x x x =-+=-++-+-,整理得:28400Q x x =-+,即28(25)5000Q x =--+,由二次函数的性质可知,当25x =时,Q 取得最大值,最大值为5000,则此时该商品售价为50502575x +=+=(元),故答案为:75,5000.【点睛】本题考查了一次函数与二次函数的应用、二次函数的性质,熟练掌握二次函数的性质是解题关键.23.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标解析:(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.24.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示.(1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式;(2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?解析:(1)1802y x =-+;(2)215048002w x x =-++ ;(3)当x=50时,w 的最大值为6050.【分析】 (1)由图像可得坐标()()12,74,28,66,设y kx b =+,然后代入求解即可; (2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解.【详解】解:(1))由图像可得坐标()()12,74,28,66,则设y kx b =+,把点()()12,74,28,66代入得:12742866k b k b +=⎧⎨+=⎩,解得:1280k b ⎧=-⎪⎨⎪=⎩, ∴1802y x =-+; (2)由(1)及题意得:()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++; (3)由(2)得:()221150480050605022w x x x =-++=--+, ∴102a =-<,开口向下,对称轴为直线50x =, ∴当50x ≤时,y 随x 的增大而增大,当50x ≥时,y 随x 的增大而减小,∴当50x =时,w 取最大,最大值为6050.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键. 25.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.解析:(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤ 【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m-=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.26.已知抛物线的顶点为()1,4-,且过点()2,5-.(1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).解析:(1)()214y x =--或223y x x =--; (2)1x <-或3x > 【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.27.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A 距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B 处,实心球的落地点为C . (1)如图,已知AD CD ⊥于D ,以D 为原点,CD 所在直线为x 轴建立平面直角坐标系,在图中画出坐标系,点B 的坐标为________;(2)小明此次投掷的成绩是多少米?解析:(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】 (1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭ 得21625(3)99a =-+解得19a =- 2125(3)99y x =--+ 0y =时,18x =,22x =-(舍)答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键28.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 解析:(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.。

人教版初中数学九年级上册第二十二章22.1.2二次函数的图象与性质

人教版初中数学九年级上册第二十二章22.1.2二次函数的图象与性质
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数的图象.
y x2, y 1 x2, y 2x2 2
对比抛物线, y=x2和y=-x2.它 们关于x轴对称吗? 一般地,抛物线 y=ax2和y=-ax2呢?
函数y的值最小,最小值是 0 ,抛物线y=2x2在x轴
的 上 方(除顶点外)。
(2)抛物线
y
2 3
x2
在x轴的
下 方(除顶点外),
当 x〈 0 时,y随着x的 增大而增大 ;
当 x 〉0 时,y随着x的 增大而减小 ,
当 x = 0 时,函数y的值最大,最大值是 0 ,
当 x
0 时,y<0.
6、若抛物线 y 6x2上点P的坐标为
当x>0时,

y随着x的增大而增大。
y随着x的增大而减小。
极值
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来, |a|越大,
抛物线的开口就越小. |a|越小, 抛物线的开口就越大.
耐心填一填
1、函数y=4x2的图象的开口向上,对称轴是 y轴 ,顶点是 (0; ,0) 2、函数y=-3x2的图象的开口向下 ,对称轴 是 y轴 ,顶点是 _(_0_,0)
y x2
y x2
在同一坐标系内,抛物线 y ax2与抛物线 y ax2 是关 于x轴对称的.
y=ax2 (a≠0)
a>0
a<0

初中数学人教版第二十二章二次函数的知识点和典型例题

初中数学人教版第二十二章二次函数的知识点和典型例题

初中数学人教版第二十二章二次函数的知识点和典型例题初中数学人教版第二十二章二次函数的知识点和典型例题: ✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++〔a b c ,,是常数,0a ≠〕的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. ➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法➢ 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕; ➢ 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;➢ 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. ➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.✧ 二次函数2y ax bx c =++图象的画法➢ 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.➢ 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.✧ 二次函数2ax y =的性质=+y ax c=-的性质:y a x h=-+的性质y a x h k✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.➢ a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.➢ 对称轴:平行于y 轴〔或重合〕的直线记作2bx a=-.特别地,y 轴记作直线0=x .➢ 顶点坐标:),(ab ac a b 4422--➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 ➢ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a的大小决定开口的大小.➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结:➢ 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(ab ac a b 4422--,对称轴是直线a b x 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.图像上三点或三对x 、y 的值,通常选择一般式.➢ 顶点式:()k h x a y +-=2.图像的顶点或对称轴,通常选择顶点式. ➢ 交点式:图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.✧ 直线与抛物线的交点➢ y 轴与抛物线c bx ax y ++=2得交点为(0, c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点〔顶点在x 轴上〕⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,那么横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点. ➢ 抛物线与x 轴两交点之间的距离:假设抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; ➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; ➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.➢ 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- ➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞.概括成八个字“左加右减,上加下减〞.✧ 根据条件确定二次函数表达式的几种根本思路。

人教版初中数学九年级上册二次函数重点知识归纳

人教版初中数学九年级上册二次函数重点知识归纳

人教版初中数学九年级上册二次函数重点知识归纳知识点1 二次函数的概念和一般形式1.概念:一般地,形如y=ax2+bx+c(a ,b ,c 是常数,a≠0)的函数,叫做二次函数。

其中, x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。

【注意】(1)自变量x的最高次数是2,a≠0,b,c可以为0;(2)含自变量x 的代数式是整式而不是分式或根式。

2.一般式:y=ax2+bx+c(a ,b ,c 是常数,a≠0)知识点2 二次函数的图像和性质1.二次函数的图像:是一条平滑的曲线叫做抛物线。

2.二次函数图像的画法:①列表;②描点;③连线。

3.二次函数的解析式(4种形式)(1)y = ax 2(a≠0)(2)y = ax 2+k(a,k是常数,a≠0)(3)y = a(x-h)2(a,h是常数,a≠0)(4)y = a(x-h)2+k(a,k,h是常数,a≠04.二次函数的图像和性质:分别从五种图像(4种特殊+1个一般式)和7个性质(顶点特点、开口方向、顶点坐标、对称轴、最值、增减性、形状和大小等7个方面研究)。

如下图:二次函数的图像与性质a <05.图像平移后的解析式:y = a(x-h)2+k(a,k,h是常数,a≠0)平移规则:左加右减,上加下减。

知识点3 用待定系数法求二次函数的解析式:一般式、顶点式、交点式。

(1)已知抛物线上普通的3点的坐标,一般选用一般式;(2)顶点在原点,可设y = ax 2(3)顶点在x轴上,若抛物线与x轴有一个交点,可设y = a(x-h)2;若抛物线与x轴有两个交点,可设y=a(x-x1)(x-x2);(4)顶点在y轴上(或对称轴在y轴上),可设y = ax 2+k;(5)已知顶点(h,k),可设顶点式y = a(x-h)2+k知识点4 二次函数与一元二次方程的关系1. 二次函数与一元二次方程的关系二次函数y=ax2+bx+c(a≠0)的图像与x轴(直线y=0)交点的横坐标就是一元二次方程ax2+bx+c=0的解。

人教版初中数学《26章二次函数》单元教材教学分析

人教版初中数学《26章二次函数》单元教材教学分析
说明
价值作用分析
本章知识的价值作用:动手描点法出二次函数的图像,动脑观察图像得到二次函数的性质(包括开口方向、顶点、对称轴、增减性以及最值问题),体会二次函数与一元二次方程的区别及联系,并会用二次函数解决一些实际问题。
单元目标
单元总目标
掌握并认识二次函数,会用描点法做出二次函数的图像,并会通过图像的到二次函数的性质体会二次函数与一元二次方程的区别及联系,并会用二次函数解决一些实际问题。
重点、难点与关键
1、重点:掌握并认识二次函数,会用描点法做出二次函数的图像,并会通过图像的到二次函数的性质。
2、难点:二次函数与一元二次方程的区别及联系以及二次函数的应用。
教学以及引导式的教学。以多媒体给学生展示二次函数图像的画法以及平移,并通过小组讨论的方式引导学生根据函数图像自己总结二次函数的性质,然后给他们进行归纳。
人教版初中数学《26章二次函数》单元教材教学分析
学段及学科
初中数学
教材版本
人教版
单元名称
《26章二次函数》
单元教材主题内容与价值作用
(一)内容
二次函数的概念、二次函数的图像和性质、二次函数和一元二次方程的关系、二次函数的应用
内容分析
函数是描述现实世界中变化规律的数学模型,二次函数则是一种非常重要的函数,本章知识从现实生活出发,以喷泉喷出的水为例导出二次函数,不仅使学生充分认识到数学和现实生活的联系,并激发学生的求知欲。再通过实例正方体表面积的计算先认识最简单的二次函数,然后逐渐深入到一般形式,经历这种从特殊到一半,从简单到复杂的学习过程,并且在学生原有的知识一次函数的基础上来类比学习,让学生体会知识点时间的联系。
学生思想教育和行为习惯的培养及学习方法
把数学问题和湿巾问题相联系,使学生体会数学与人类生活的密切联系及对人类历史发展的作用。在小组学习的过程中,让学生体会与他人合作的重要性。

人教版数学九年级上册用待定系数法求二次函数的解析式

人教版数学九年级上册用待定系数法求二次函数的解析式

已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式?
一般式: y=ax2+bx+
方法一:设所求的二次函数为 y=a(x-1)2+k
c
顶点式: 方法二:设所求的二次函数为 y=ax2+bx+c
y=a(x-h)2+k
c=-3
依题意得 16a+4b+c=0
b 1 2a
人教版 数学 九年级 上册
y a x2 b x c 一般式
y=a(x-h)2+k 顶点式
我们在确定正比例函数y=kx(k≠0) 和一次函数y=kx+b(k≠0)的关系式时, 分别需要几个点的坐标,列几个方程?
二次函数常用的解析式
一般式 y=ax2+bx+c (a≠0)
顶点式 y=a(x-h)2+k (a≠0)
c=-3
a= 1
∴ 16a+4b+c=5 解得 b=-2
a-b+c=0
c=-3
∴所求二次函数为 y=x2-2x-3
x=0时,y=-3;
一、设
x二=、4代时,y=5;
x三四=、、-1解还时原,y=0;
最x低=1点时为,(y最1值,=--44)
已知抛物线的顶点为(1,-4), 且过点(0,-3),求抛物线的解析式?
∴ a-4=-3, ∴ a=1
∴所求的抛物线解析式为 y=(x-1)2-4
思考:怎样设二次函数关系式
已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式?
一般式: y=ax2+bx+
方法一:设所求的二次函数为 y=a(x-1)2+k

初中数学考点:二次函数易错点讲解

初中数学考点:二次函数易错点讲解

数学考点:二次函数1.二次函数在数学中,二次函数最高次必须为二次,二次函数表示形式为y=ax²+bx+c(a≠0)的多项式函数。

二次函数的图像是一条对称轴平行于y轴的抛物线。

二次函数表达式y=ax²+bx+c的定义是一个二次多项式,因为x的最高次数是2。

如果令二次函数的值等于零,则可得一个二次方程。

该方程的解称为方程的根或函数的零点。

2.二次函数的图象3.二次函数主要特点(1)二次函数图像与X轴交点的情况当△=b²-4ac>0时,函数图像与x轴有两个交点。

当△=b²-4ac=0时,函数图像与x轴只有一个交点。

当△=b²-4ac<0时,函数图像与x轴没有交点。

(2)二次函数图像在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。

如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。

1.如何学习二次函数(1)二次函数对比一次函数学习。

(2)掌握重点。

(3)多做题.熟练度高一些自然简单了。

(4)要举一反三.延伸更多做题技巧。

2.二次函数知识要点(1)要理解函数的意义。

(2)要记住函数的几个表达形式,注意区分。

(3)一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)等的差异性。

(4)联系实际对函数图像的理解。

(5)计算时,看图像时切记取值范围。

(6)随图像理解数字的变化而变化。

二次函数考点及例题二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现,而且综合性很强,一般会综合四边形.三角形.一次函数出现。

3.误区提醒(1)对二次函数概念理解有误,漏掉二次项系数不为0这一限制条件;(2)对二次函数图象和性质存在思维误区;(3)忽略二次函数自变量取值范围;(4)平移抛物线时,弄反方向;(5)二次函数既不是正比例函数也不是反比例函数.1.二次函数的一般式:y=ax²+bx+c(a≠0,a、b、c为常数),顶点坐标为[-b/2a,(4ac-b²)/4a]把三个点代入式子得出一个三元一次方程组,就能解出a、b、c的值。

(完整版)人教版初中数学二次函数知识点汇总

(完整版)人教版初中数学二次函数知识点汇总

二次函数知识点汇总1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系. ①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同. ②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab (即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a b .10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y nkx y 2的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 ac x x a bx x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121 13.二次函数与一元二次方程的关系:(1)一元二次方程c bx ax y ++=2就是二次函数c bx ax y ++=2当函数y 的值为0时的情况. (2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当0=y 时自变量x 的值,即一元二次方程02=++c bx ax 的根.(3)当二次函数c bx ax y ++=2的图象与x 轴有两个交点时,则一元二次方程c bx ax y ++=2有两个不相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴有一个交点时,则一元二次方程02=++c bx ax 有两个相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴没有交点时,则一元二次方程02=++c bx ax 没有实数根 14.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系; 运用二次函数的知识解决实际问题中的最大(小)值.15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学二次函数解析一、选择题1.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1B .12<m ≤1C .1<m ≤2D .1<m <2 【答案】B【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12.此时抛物线解析式为y=12x2﹣2x.当x=1时,得13121122y=⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x=3时,得13923122y=⨯-⨯=-<-.∴点(3,﹣1)符合题意.综上可知:当m=12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=12不符合题.∴m>12.综合①②可得:当12<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.2.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣4【答案】B【解析】【分析】先求出b,确定二次函数解析式,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,﹣1<x<4时﹣4≤y<5,进而求解;【详解】解:∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4,∴二次函数y的取值为﹣4≤y<5,∴﹣4≤t<5;故选:B.【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.3.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a 代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案.【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2b a>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a 代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.4.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ), ∴244ac b a =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.5.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.6.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.7.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==,∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.8.将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =﹣3和x 轴围成的图形的面积S (图中阴影部分)是( )A .5B .6C .7D .8【答案】B【解析】【分析】 B ,C 分别是顶点,A 是抛物线与x 轴的一个交点,连接OC ,AB ,阴影部分的面积就是平行四边形ABCO 的面积.【详解】抛物线y =x 2﹣4x +1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y 轴上,此时顶点B(0,-3),点A 是抛物线与x 轴的一个交点,连接OC ,AB ,如图,阴影部分的面积就是ABCO 的面积,S=2×3=6;故选:B .【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.9.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a -=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫-⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确. 故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.12.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.13.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a=->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.14.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .【答案】C 【解析】试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2b a<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2b a位于y 轴的右侧,故符合题意, D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误.故选C .考点:二次函数的图象;一次函数的图象.15.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.16.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.17.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0B .1C .2D .3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B .本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.18.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .19.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D【解析】【分析】 根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0,∴直线y =ax +hk 中的a <0,hk <0,∴直线y =ax +hk 经过第二、三、四象限,故选:D .【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-,平移的最短距离为152=22⎛⎫--⎪⎝⎭,即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。

相关文档
最新文档