天津市九年级上学期数学期末考试试卷A卷
天津市九年级(上)期末数学试卷
九年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是( )A. x2+1x+1=0B. ax2+bx+c=0C. (x−2)(x+3)=1D. 2x2−2xy+y2=02.下列事件中,是必然事件的是( )A. 掷一次骰子,向上一面的点数是6B. 经过有交通信号灯的路口,遇到红灯C. 任意画一个三角形,其内角和是180∘D. 射击运动员射击一次,命中靶心3.在下列四个图案中,既是轴对称图形,又是中心对称图形是( )A. B. C. D.4.关于x的一元二次方程x2+(k+1)x+k-2=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 根的情况无法判断5.同时抛两个硬币,两个都正面向上的概率是( )A. 12B. 13C. 14D. 346.二次函数y=x2+4x+5的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是( )A. 先向右平移2个单位,再向上平移1个单位B. 先向右平移2个单位,再向下平移1个单位C. 先向左平移2个单位,再向上平移1个单位D. 先向左平移2个单位,再向下平移1个单位7.圆锥的底面面积为16πcm2,母线长为6cm,则这个圆锥的侧面积为( )A. 24cm2B. 24πcm2C. 48cm2D. 48πcm28.一次会议上,每两个参加会议的人互相握了一次手,有人统计一共握了45次手,如果这次会议到会的人数为x人,根据题意可列方程为( )A. x(x+1)=45B. x(x−1)=45C. 2x(x+1)=45D. x(x−1)=45×29.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.若∠DCA=55°,则∠CAO的度数为( )A. 25∘B. 35∘C. 45∘D. 55∘10.一个不透明的盒子里有几个除颜色外其他完全相同的小球,其中有6个红球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A. 15B. 18C. 20D. 2411.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为( )A. 1:2:3B. 3:2:1C. 3:2:1D. 1:2:312.从如图所示的二次函数y=ax2+bx+c的图象中,观察得出下面五条信息:①c<0;②abc>0;③a+b+c>0;④2a+3b=0;⑤c-8b>0.你认为其中正确信息的个数为( )A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,共18.0分)13.关于x的一元二次方程(m-3)x2+x+m2-9=0有一根为0,则m的值为______.14.已知点P关于x轴的对称点为P1(2,3),那么点P关于原点的对称点P2的坐标是______.15.小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题11个,搅匀后从中随机抽取1个题,他抽中综合题的概率是______.16.如图,在⊙O中,弦AB、CD相交于点P,∠A=40°,∠CPB=70°,则∠B的大小为______(度)17.如图,AB为⊙O的直径,P为AB延长线上的一点,PC切⊙O于点C,PC=6,PB=3,则⊙O的直径等于______.18.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为______.三、解答题(本大题共7小题,共66.0分)19.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数.20.某市为响应国家“退耕还林”的号召,改变水土流失严重现状,2016年某地区退耕还林1200亩,计划2018年退耕还林1728亩.求这两年平均每年退耕还林的增长率.21.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,请画树状图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球的标号的和等于6.22.如图,在⊙O中,点C为AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.某宾馆有50个房间供游客居住,当每个房间每天的定价为160元时,房间会全部住满;当每个房间每天定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,房价定为多少时,宾馆利润最大?并求出一天的最大利润是多少?24.已知抛物线y=ax2+bx+2经过A、B、C三点,当x≥0时,其图象如图所示.(1)求抛物线解析式并写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+2当x<0时的图象;(3)利用抛物线y=ax2+bx+2,写出x为何值时,y>0.25.已知AB是⊙O的直径,点C是OA的中点,CD⊥OA交⊙O于点D,连接OD.(1)如图①,求∠AOD的度数;(2)如图②,PD切⊙O于点D,交BA的延长线于点P,过点A作AE∥PD交⊙O 于点E,交DO于点F,若⊙O的半径为4,求AE的长.答案和解析1.【答案】C【解析】解:A、不是整式方程,故A错误;B、ax2+bx+c=0,当a=0时,不是一元二次方程,故B错误;C、(x-2)(x+3)=1是一元二次方程,故此C正确;D、2x2-2xy+y2=0,是二元二次方程,故D错误.故选:C.依据一元二次方程的定义进行解答即可.本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.2.【答案】C【解析】解:A.掷一次骰子,向上一面的点数是6是随机事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.任意画一个三角形,其内角和是180°是必然事件;D.射击运动员射击一次,命中靶心是随机事件;故选:C.必然事件就是一定发生的事件,依据定义即可判断.本题考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】A【解析】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.4.【答案】A【解析】解:∵△=(k+1)2-4(k-2)=(k-1)2+8>0,∴关于x的一元二次方程x2+(k+1)x+k-2=0一定有两个不相等的实数根.故选:A.先计算出判别式得到△=(k-1)2+8>0,然后根据判别式的意义判断根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】C【解析】解:一共有4种情况,两个正面向上的有1种情况,∴这两个正面向上的概率是.故选:C.列举出所有情况,看两个正面向上的情况数占总情况数的多少即可.本题主要考查了等可能事件的概率,属于容易题,用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】C【解析】解:根据题意y=x2+4x+5=(x+2)2+1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向上平移1个单位得到.故选:C.把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.7.【答案】B【解析】解:∵圆锥的底面面积为16πcm2,∴圆锥的半径为4cm,这个圆锥的侧面积=•2π•4•6=24π(cm2).故选:B.根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.本题考查了圆锥的计算:关键是根据圆锥的底面面积,得出圆锥的半径.8.【答案】D【解析】解:设这次会议到会的人数为x人,则每人将与(x-1)人握手,依题意,得:x(x-1)=45,即x(x-1)=45×2.故选:D.设这次会议到会的人数为x人,则每人将与(x-1)人握手,由每两个参加会议的人互相握了一次手且一共握了45次手,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【答案】B【解析】解:如图,连接OC,∵DC是⊙O切线∴OC⊥CD,∴∠DCA+∠ACO=90°,且∠DCA=55°,∴∠ACO=35°∵AO=CO∴∠OAC=∠ACO=35°故选:B.由切线的性质可得OC⊥CD,由等腰三角形的性质可得OAC=∠ACO=35°.本题考查了切线的性质,圆的有关知识,熟练运用切线的性质是本题的关键.10.【答案】C【解析】解:根据题意得=30%,解得n=20,经检验:n=20是原分式方程的解,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故选:C.根据利用频率估计概率得到摸到红球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.11.【答案】B【解析】解:设圆的半径是r,则多边形的半径是r,则内接正三角形的边长是2rsin60°=r,内接正方形的边长是2rsin45°=r,正六边形的边长是r,因而半径相等的圆的内接正三角形、正方形、正六边形的边长之比为::1.故选:B.从中心向边作垂线,构建直角三角形,通过解直角三角形可得.正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.12.【答案】C【解析】解:①由抛物线与y轴的交点可知:c<0,故①正确;②由抛物线的开口方向可知:a>0,->0,∴b<0,∴abc>0,故②正确;③令x=1代入y=ax2+bx+c,∴y=a+b+c<0,故③错误;④由对称轴可知:-=,则2a+3b=0,故④正确⑤如图所示,当x=-2时,y>0.所以4a-2b+c>0,所以-8b+c>0.所以c-8b>0.故⑤正确;综上所述,正确的结论有4个.故选:C.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换的熟练运用.13.【答案】-3【解析】解:把x=0代入方程(m-3)x2+x+m2-9=0得m2-9=0,解得m1=3,m2=-3,而m-3≠0,所以m的值为-3.故答案为-3.把x=0代入方程(m-3)x2+x+m2-9=0得m2-9=0,解得m1=3,m2=-3,然后根据一元二次方程的定义确定m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.14.【答案】(-2,3)【解析】解:∵点P关于x轴的对称点为P1(2,3),∴P(2,-3),∴点P关于原点的对称点P2的坐标是(-2,3),故答案为:(-2,3).首先根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得到P点坐标,再根据两个点关于原点对称时的坐标特点:它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y)即可得到答案.此题主要考查了关于x轴对称的点的坐标特征,以及两个点关于原点对称时的坐标特点,解决问题的关键是熟记坐标变换的特点.15.【答案】1120【解析】解:∵小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题11个,∴他从中随机抽取1道,抽中综合题的概率是:=,故答案为:.由小明在一次班会中参与知识抢答活动,现有语文题4道,数学题5道,综合题11道,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】30【解析】解:∵∠CPB是△APC的外角,∴∠CPB=∠C+∠A;∵∠A=30°,∠CPB=70°,∴∠C=∠CPB-∠A=40°;∴∠B=∠C=30°;故答案为:30.欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠CPB的度数,即可由三角形的外角性质求出∠C的度数,由此得解.此题主要考查了圆周角定理的应用及三角形的外角性质.熟练掌握定理及性质是解题的关键.17.【答案】9【解析】解:∵PC是⊙O切线,∴根据切割线定理可得:CP2=BP•AP,且PC=6,PB=3,∴36=3(3+AB)∴AB=9故答案为:9由切割线定理可得CP2=BP•AP,即可求解.本题考查了切线的性质,切割线定理,熟练运用切割线定理是本题的关键.18.【答案】2-2【解析】解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=-1,∴在Rt△DA′E中,DE==2-.故答案为:2-.利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.19.【答案】解:根据切线的性质得:∠PAC=90°,所以∠PAB=90°-∠BAC=90°-20°=70°,根据切线长定理得PA=PB,所以∠PAB=∠PBA=70°,所以∠P=180°-70°×2=40°.【解析】根据切线长定理得等腰△PAB,运用三角形内角和定理求解即可.此题主要考查了切线长定理和切线的性质,得出PA=PB是解题关键.20.【答案】解:设平均增长率为x,根据题意得:1200(1+x)2=1728,解得x1=0.2=20%,x2=-2.2(舍去).所以平均每年的增长率是20%.故这两年平均每年退耕还林的增长率是10%.【解析】可设这两年平均每年退耕还林的增长率为x,因为2016年退耕还林1200亩,计划2018年退耕还林1728亩,根据增长后的面积=增长前的面积×(1+增长率),则2018年的亩数是1200(1+x)2,即可列方程求出答案.本题考查了一元二次方程的应用.本题只需仔细分析题意,利用方程即可解决问题.读懂题意,找到等量关系准确的列出方程是解题的关键.21.【答案】解:(1)画树状图得:∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴P(两次取出的小球的标号相同)=416=14;(2)∵两次取出的小球的标号的和等于6的有3种情况,∴P(两次取出的小球的标号的和等于6)=316.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球的标号相同情况,再利用概率公式即可求得答案;(2)由(1)可求得两次取出的小球的标号的和等于6的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】(1)证明:如图,连接OA,∵CA=CB,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°-(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE=BC2−CE2=82−42=43,∴AB=2BE=83,∴弦AB的长为83.【解析】(1)连接OA,由=,得CA=CB,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD与⊙O相切;(2)由题意得OC⊥AB,Rt△BCE中,由三角函数得BE=4,即可得出AB的长.本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.23.【答案】解:设每个房间每天的定价增加x元,宾馆所得利润为y元,根据题意,得y=(160+x−20)(50−x10)整理,得y=−110x2+36x+7000其中0≤x≤500,且x是10的倍数当x=−b2a=−362×(−110)=180∴房价定为160+180=340时,宾馆利润最大∴y最大值=4ac−b24a=4×(−110)×7000−3624×(−110)=10240故房价定为340元时,宾馆利润最大,一天的最大利润为10240元【解析】可以设每个房间每天的定价增加x元,宾馆所得利润为y元,则可列方程:,进行求解即可此题考查的是二次函数与一元二次方程的应用,根据题意列出方程,要求最值问题,即可转化为求二次函数的顶点问题.此题求最值也可用配方法进行求解.24.【答案】解:(1)由图象得,B(4,0),C(5,-3)把B(4,0),C(5,-3)代入y=ax2+bx+2中得,16a+4b+2=025a+5b+2=−3,解得,a=−12b=32所以抛物线的解析式为,y=-12x2+32x+2∴h=-b2a=32,k=4ac−b24a=258∴顶点坐标为(32,258).(2)令-12x2+32x+2=0解得,x1=-1,x2=4∴图象与x轴的另一个交点为(-1,0),并依题意画图象.(3)通过观察图象,当-1<x<4时,y>0.【解析】(1)根据题意和图象得到A(0,2)、B(4,0)、C(5,-3),并将B、C两点坐标代入y=ax2+bx+2求得a=-,b=,从而易写出函数解析式的一般式为y=-x2+x+2,进而利用顶点坐标公式(-,)直接写出顶点坐标.(2)令-x2+x+2=0即可求得抛物线与x轴的另一个交点为(-1,0),然后用光滑的曲线将(0,2)和(-1,0)连接即可;(3)观察图象,当y>0时,抛物线的图象在x轴上方,这一段图象对应的x轴的取值在-1到4之间,所以直接写出-1<x<4即可.本题考查了利用待定系数法求二次函数解析式的基本方法,同时也考查了根据抛物线解析式画图象的能力和观察抛物线确定自变量取值范围的能力.25.【答案】解:(1)连接DA,如图1,∵点C是OA的中点,DC⊥OA,∴AD=DO,∵OA=OD,∴OA=OD=AD,∴△AOD是等边三角形,∴∠AOD=60°;(2)连接AD,如图2,∵PD与⊙O相切,∴PD⊥DO,∵AE∥PD,∴AE⊥OD,∵△AOD是等边三角形,∴∠DAO=60°,∴∠FAO=30°,∴FO=12AO=2,AF=42−22=23,∴AE=2AF=43.【解析】(1)证明△AOD是等边三角形,进而求出∠AOD的度数;(2)根据切线的性质求得PD⊥OD,然后根据AE∥PD,求得AE⊥OD,进而求得∠FAO=30°,利用勾股定理即可得出答案.本题考查了切线的性质,30°角的直角三角形的性质等,熟练掌握性质和定理是解题的关键.。
天津市九年级上册期末数学试卷(word解析版)
知,除了小明外,该班其他同学身高的平均数为 172 cm ,方差为 k cm2 ,第二天,小明来 到学校,老师帮他补测了身高,发现他的身高也是 172 cm ,此时全班同学身高的方差为
k ' cm2 ,那么 k ' 与 k 的大小关系是( )
A. k ' k
B. k ' k
C. k ' k
D.无法判断
8.不透明袋子中有 2 个红球和 4 个蓝球,这些球除颜色外无其他差别,从袋子中随机取出 1个球是红球的概率是( )
A. 1 3
B. 1 4
C. 1 5
D. 1 6
9.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )
A.20°
B.40°
C.70°
D.80°
10.如图,PA 是⊙O 的切线,切点为 A,PO 的延长线交⊙O 于点 B,连接 AB,若∠B=
D.4
12.如图,在矩形
中,
,
,若以 为圆心,4 为半径作⊙ .下列四个点
中,在⊙ 外的是( )
A.点
B.点
C.点
D.点
13.已知在△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,CM 是它的中线,以 C 为圆
心,5cm 为半径作⊙C,则点 M 与⊙C 的位置关系为( )
A.点 M 在⊙C 上 B.点 M 在⊙C 内 C.点 M 在⊙C 外 D.点 M 不在⊙C 内
14.下列方程中,是一元二次方程的是( )
A.2x+y=1
B.x2+3xy=6
C.x+ 1 =4 x
D.x2=3x﹣2
15.二次函数 y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;
天津市东丽区九年级上学期期末考试数学考试卷(解析版)(初三)期末考试.doc
天津市东丽区九年级上学期期末考试数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取1个球,则取到的是一个白球的概率为()A. B. C. D.【答案】C【解析】首先根据题目已知条件画出树状图,由图不难得到共有20种等可能的结果,一个白球的有6种情况,结合概率公式,用取到的是一个白球的情况数除以所有的情况数即可解答.本题解析:画树状图,得∵共有20种等可能的结果,取到的是一个白球的有6种情况,∴取到的是一个白球的概率为:P==故选C.点睛:此题考查了概率的计算,需要掌握列举法(列表法或树状图法)求概率的方法;通过画树状图或列表得到所有等可能的结果,并确定取到的是一个白球的结果数;再利用概率的计算公式,用取到的是一个白球的结果数除以所有等可能的结果数即可.【题文】若关于的一元二次方程的一个根是,则的值是()A. B. C. D.【答案】B【解析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一次方程即可.本题解析:把x=1代入x²−x−m=0得1−1−m=0,评卷人得分解得m=0.故选B.【题文】下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.本题解析:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,是中心对称图形D、是中心对称图形,不是轴对称图形,符合题意,点睛:1、此题主要考查了中心对称图形与轴对称图形的概念.解题的关键是掌握它们的基本特征;2、根据轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.可判断哪些图形是轴对称图形;3、根据中心对称图形:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.可判断哪些图形是中心对称图形.只符合这一条的即为答案.【题文】抛物线的顶点坐标是()A. B. C. D.【答案】A【解析】此题给出的解析式就是二次函数的顶点式,由二次函数的顶点式为y=a(x-h) ²+k(a≠0),它的顶点坐标为(h,k)即可求解.本题解析:解:抛物线y=(x+2) ²+3的顶点坐标是(-2, 3)【题文】下列判断中正确的是()A. 长度相等的弧是等弧B. 平分弦的直线也必平分弦所对的两条弧C. 弦的垂直平分线必平分弦所对的两条弧D. 平分一条弧的直线必平分这条弧所对的弦【答案】C【解析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析:A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误。
天津市重点中学九年级上学期期末考试数学试卷及答案解析(共五套)
天津市重点中学九年级上学期期末考试数学试卷(一)一、单选题1、下列各点中关于原点对称的两个点是()A、(﹣5,0)和(0,5)B、(2,﹣1)和(1,﹣2)C、(5,0)和(0,﹣5)D、(﹣2,﹣1)和(2,1)2、如图由圆形组成的四个图形中,可以看做是中心对称图形的有()A、4个B、3个C、2个D、1个3、已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A、0B、1C、2D、44、如图,DE∥BC,且AD=4,DB=2,DE=3.5,则BC的长度为()A、5.5B、5.25C、6.5D、75、如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A的度数为()A、40°B、35°C、30°D、25°6、从一副扑克牌中随机抽取一张,它恰好是Q的概率为()A、B、C、D、7、下列叙述正确的是()A、任意两个正方形一定是相似的B、任意两个矩形一定是相似的C、任意两个菱形一定是相似的D、任意两个等腰梯形一定是相似的8、观察下列两个三位数的特点,猜想其中积的结果最大的是()A、901×999B、922×978C、950×950D、961×9399、正六边形的周长为6mm,则它的面积为()A、mm2B、mm2C、3mm2D、6mm210、数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A、勾股定理B、勾股定理是逆定理C、直径所对的圆周角是直角D、90°的圆周角所对的弦是直径11、75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()A、6cmB、7cmC、8cmD、9cm12、如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1, y1)和Q(x2, y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A、①B、②C、③D、①②③都不对二、填空题13、已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直线AB的距离是________14、将点P(3,4)绕原点逆时针旋转90°,得到的点P的对应点的坐标为________15、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为________16、已知二次函数y=x2+bx+5(b为常数),若在函数值y=1的情况下,只有一个自变量x的值与其对应,则此时b的值为________17、如图,AB与CD相交于点O,且∠OAD=∠OCB,延长AD、CB交于点P,那么图中的相似三角形的对数为________18、如图,在每个小正方形的边长为1的网格中,点A,B均在格点上,即AB=4,点E为线段AB上的动点.若使得BE=,则的值为________ ;请你在网格中,用无刻度的直尺,找到点E的位置,并简要说明此位置是如何找到的(不要求证明)________三、解答题19、已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.20、在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.21、如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.22、如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.23、某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.(I)分析:根据问题中的数量关系.用含x的式子填表:24、在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).25、如图,已知Rt△ABC中,∠C=90°,AC=8.BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中,请你用t表示P、Q两点间的距离,并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式.答案解析部分一、单选题1、【答案】D【考点】关于原点对称的点的坐标【解析】【解答】解:A、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故A错误;B、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故B错误;C、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.2、【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:第一、二、四个图形是中心对称图形,共3个,故选:B.【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.3、【答案】C【考点】抛物线与x轴的交点【解析】【解答】解:当y=0时,x2﹣x=0,解得x1=0,x2=2,则抛物线与x轴的两交点坐标为(0,0),(2,0),所以抛物线与x轴的两个交点间的距离为2.故选C.【分析】根据解方程x2﹣x=0抛物线与x轴的两交点坐标,然后利用两点间的距离公式求出两交点间的距离.4、【答案】B【考点】相似三角形的判定与性质【解析】【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=4,DB=2,DE=3.5,∴∴BC=5.25,故选B.【分析】根据相似三角形的判定得出△ADE∽△ABC,得出比例式,代入求出即可.5、【答案】B【考点】切线的性质【解析】【解答】解:∵PC与⊙O相切于点C,∴OC⊥CP,∵∠P=20°,∴∠COB=70°,∵OA=OC,∴∠A=35°.故选B.【分析】根据题意,可知∠COB=70°,OA=OC,即可推出∠A=35°.6、【答案】B【考点】概率公式【解析】【解答】解:一副扑克牌共有54张,其中只有4张Q,∴从一副扑克牌中随机抽出一张牌,得到Q的概率是=;故选B.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.7、【答案】A【考点】相似图形【解析】【解答】解:A、任意两个正方形,对应边成比例,对应角都是直角,一定相等,所以一定相似,故本选项正确;B、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误;C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误;D、任意两个等腰梯形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.故选A.【分析】根据对应边成比例,对应角相等的图形是相似图形,对各选项分析判断后利用排除法求解.8、【答案】C【考点】平方差公式【解析】【解答】解:∵901×999=(950﹣49)(950+49))=9502﹣49,922×978=(950﹣28)(950+28)=9502﹣282,950×950=9502,961×939=(950+11)(950﹣11)=9502﹣112,∴950×950最大,故选C.【分析】根据平方差公式计算即可判断.9、【答案】B【考点】正多边形和圆【解析】【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6mm,∴BC=6÷6=1mm,∴OB=BC=1mm,∴BM=BC=mm,∴OM==mm,=×BC×OM=×1×=mm2,∴S△OBC∴该六边形的面积为:×6=mm2,故选B.【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6mm,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.10、【答案】C【考点】圆周角定理【解析】【解答】解:∵AB是直径,∴∠ACB是直角.则∠ACB是直角的依据是:直径所对的圆周角是直角.故选C.【分析】由AB是直径,根据直径所对的圆周角是直角即可判定∠ACB是直角.11、【答案】A【考点】弧长的计算【解析】【解答】解:∵75°的圆心角所对的弧长是2.5πcm,由L=,∴2.5π=,解得:r=6,故选:A.【分析】根据弧长公式L=,将n=75,L=2.5π,代入即可求得半径长.12、【答案】C【考点】抛物线与x轴的交点【解析】【解答】解:当a<x<b时,y>0,所以①错误;当a=﹣1时,A点坐标为(﹣1,0),把A(﹣1,0)代入y=﹣x2+2x+m+1得﹣1﹣2+m+1=0,解得m=2,则抛物线解析式为y=﹣x2+2x+3,解方程﹣x2+2x+3=0得x 1=﹣1,x2=3,则B(3,0),即b=3,所以②错误;抛物线的对称轴为直线x=﹣=1,因为x1<1<x2,所以点P和点Q在对称轴两侧,点P到直线x=1的距离为1﹣x1,点Q到直线x=1的距离为x2﹣1,则x2﹣1﹣(1﹣x1)=x2+x1﹣2,而x1+x2>2,所以x2﹣1﹣(1﹣x1)>0,所以点Q到对称轴的距离比点P到对称轴的距离要大,所以y1>y2,所以③正确.故选C.【分析】观察函数图象可直接得到抛物线在x轴上方所对应的自变量的范围,从而可对①进行判断;把A点坐标代入y=﹣x2+2x+m+1中求出m,确定抛物线解析式,再通过解方程﹣x2+2x+3=0得到B点坐标,从而可对②进行判断;先确定抛物线的对称轴为直线x=1,则点P和点Q在对称轴两侧,所以点P到直线x=1的距离为1﹣x1,点Q到直线x=1的距离为x2﹣1,然后比较点Q点对称轴的距离和点P点对称轴的距离的大小,再根据二次函数的性质可对③进行判断.二、填空题13、【答案】5【考点】切线的性质【解析】【解答】解:∵⊙O的直径是10,∴⊙O的半径是5,∵直线AB与⊙O相切,∴点O到AB的距离等于圆的半径,是5.故答案为:5.【分析】根据圆的切线的性质:圆心到切线的距离等于圆的半径,求出圆的半径即可.14、【答案】(﹣4,3)【考点】坐标与图形变化-旋转【解析】【解答】解:如图,过点P作PA⊥x轴于点A,作PB⊥y轴于点B,过点P′作PA′⊥y轴于点A′,作PB′⊥x轴于点B′,∵点P(3,4),∴PA=4,PB=3,∵点P(3,4)绕坐标原点逆时针旋转90°得到点P′,∴P′A′=PA=4,P′B′=PB=3,∴点P′的坐标是(﹣4,3).故答案为:(﹣4,3).【分析】作出图形,过点P作PA⊥x轴于点A,作PB⊥y轴于点B,过点P′作PA′⊥y轴于点A′,作PB′⊥x轴于点B′,根据点A的坐标求出PA、PB的长度,根据旋转变换只改把图形的位置,不改变图形的形状与大小求出P′A′、P′B′的长度,即可得解.15、【答案】6【考点】位似变换【解析】【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AB:DE=2:3,∴DE=6.故答案为:6.【分析】位似图形就是特殊的相似图形,位似比等于相似比.利用相似三角形的性质即可求解.16、【答案】±4【考点】二次函数的性质【解析】【解答】解:由题意得,x2+bx+5=1有两个相等的实数根,所以△=b2﹣16=0,解得,b=±4.故答案为±4.【分析】根据在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等的实数根,求此时b的值即可.17、【答案】2【考点】相似三角形的判定【解析】【解答】解:如图,∵在△ABP与△CDP中,∠BAP=∠DCP,∠APB=∠CPD,∴△ABP∽△CDP,∴∠ABP=∠CDP,∴∠ADO=∠CBO,又∵∠OAD=∠OCB,∴△OAD∽△OCB,综上所述,图中的相似三角形有2对:△ABP∽△CDP,△OAD∽△OCB.故答案是:2.【分析】利用两角法推知图中的相似三角形即可.18、【答案】①在B所在横线的上边第9条线上找到格点F,连接BF,BF交F下距离是5的横线与BF的交点是G,过G作GE∥AF交AB于点E,点E就是所求【考点】作图—基本作图【解析】【解答】解:AE=AB﹣BE=4﹣=,则找到E的方法:在B所在横线的上边第9条线上找到格点F,连接BF,BF交F 下距离是5的横线与BF的交点是G,过G作GE∥AF交AB于点E,点E就是所求.【分析】首先求得AE的长,即可求得的值,根据平行线分线段成比例定理即可作出E的位置.三、解答题19、【答案】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.【考点】二次函数的性质【解析】【分析】(1)把抛物线解析式化为顶点式即可得出对称轴和顶点坐标;(2)利用描点法画出图象,根据图象利用数形结合的方法确定当x>2时,y的取值范围即可.20、【答案】解:(1)P(两数相同)=.(2)P(两数和大于10)=.【考点】列表法与树状图法【解析】【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.21、【答案】证明:(1)∵DE⊥AB,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE,∴=,∴=,∴AD=4.【考点】相似三角形的判定与性质【解析】【分析】(1)求出∠EDA=∠C=90°,根据相似三角形的判定得出相似即可;(2)根据相似得出比例式,代入求出即可.22、【答案】解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OE=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.【考点】垂径定理,切线的性质【解析】【分析】首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD 中,过A,D两点的⊙O与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF﹣OE=8﹣x,利用勾股定理即可得:(8﹣x)2+36=x2,继而求得答案.23、【答案】解:(Ⅰ)35﹣x,50+2x;(Ⅱ)根据题意,每天的销售额y=(35﹣x)(50+2x),(0<x<35)配方得y=﹣2(x﹣5)2+1800,∵a<0,∴当x=5时,y取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为l 800元.【考点】二次函数的应用【解析】【分析】(I)现在的售价为每件35元,则每件商品降价x元,每件售价为(35﹣x)元;多买2x件,即每天售量为(50+2x)件;(Ⅱ)每天的销售额=每件售价×每天售量,即y=(35﹣x)(50+2x),配方后得到y=﹣2(x﹣5)2+1800,根据二次函数的性质得到当x=5时,y取得最大值1800.24、【答案】解:(1)∵点A(3,0),B(0,4),得OA=3,OB=4,∴在Rt△AOB中,由勾股定理,得AB==5,根据题意,有DA=OA=3.如图①,过点D作DM⊥x轴于点M,则MD∥OB,∴△ADM∽△ABO.有得,∴OM=,∴MD=,∴点D的坐标为(,).(2)如图②,由已知,得∠CAB=α,AC=AB,∴∠ABC=∠ACB,∴在△ABC中,∴α=180°﹣2∠ABC,∵BC∥x轴,得∠OBC=90°,∴∠ABC=90°﹣∠ABO=90°﹣β,∴α=2β;(3)若顺时针旋转,如图,过点D作DE⊥OA于E,过点C作CF⊥OA于F,∵∠AOD=∠ABO=β,∴tan∠AOD==,设DE=3x,OE=4x,则AE=4x﹣3,在Rt△ADE中,AD2=AE2+DE2,∴9=9x2+(4x﹣3)2,∴x=,∴D(,),∴直线AD的解析式为:y=x﹣,∵直线CD与直线AD垂直,且过点D,∴设y=﹣x+b,把D(,)代入得,=﹣×+b,解得b=4,∵互相垂直的两条直线的斜率的积等于﹣1,∴直线CD的解析式为y=﹣X+4.同理可得直线CD的另一个解析式为y=x﹣4.【考点】待定系数法求一次函数解析式,相似三角形的判定与性质【解析】【分析】(1)过点D作DM⊥x轴于点M,求证△ADM∽△ABO,根据相似比求AM的长度,推出OM和MD的长度即可;(2)根据等腰三角形的性质,推出α=180°﹣2∠ABC,结合已知条件推出∠ABC=90°﹣∠ABO=90°﹣β,即α=2β;(3)做过点D作DM⊥x轴于点M,根据勾股定理和△OAB∽△OMD,推出D点的横坐标和纵坐标,然后求出C点坐标,就很容易得到CD的解析式了.25、【答案】解:(Ⅰ)分两种情况考虑:当Q在AB边上时,过Q作QE⊥AC,交AC于点E,连接PQ,如图1所示:∵∠C=90°,∴QE∥BC,∴△ABC∽△AQE,∴在Rt△ABC中,AC=8,BC=6,根据勾股定理得:AB=10,∵AQ=2t,AP=t,∴==,整理得:PE=t,QE=t,根据勾股定理得:PQ2=QE2+PE2,整理得:PQ=t;当Q在BC边上时,连接PQ,如图2所示:由AB+BQ=2t,AB=10,得到BQ=2t﹣10,CQ=BC﹣BQ=6﹣(2t﹣10)=16﹣2t,由AP=t,AC=8,得到PC=8﹣t,根据勾股定理得:PQ==,当Q与B重合时,PQ的值最大,则当t=5时,PQ最大值为3;(Ⅱ)分两种情况考虑:当Q在AB边上时,如图1,△ABC被直线PQ扫过的面积为S△AQP,此时S=AP•QE=t•t=t2(0<t≤5);当Q在BC边上时,△ABC被直线PQ扫过的面积为S四边形ABQP,此时S=S△ABC ﹣S△PQC=×8×6﹣(8﹣t)(16﹣2t)=﹣t2+16t﹣40(5<t≤8).综上,经过t秒的运动,△ABC被直线PQ扫过的面积S与时间t的函数关系式为.【考点】一次函数图象与几何变换【解析】【分析】(Ⅰ)分Q在AB边上与Q在BC边上,分别如图1和图2所示,表示出PQ的长,当Q与B重合时,PQ取得最大值,求出即可;(Ⅱ)分两种情况考虑:当Q在AB边上时,如图1,△ABC被直线PQ扫过的面积为S△AQP ;当Q在BC边上时,△ABC被直线PQ扫过的面积为S四边形ABQP,分别表示出S与t的函数关系式即可.天津市重点中学九年级上学期期末考试数学试卷(二)一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A. B.C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB 于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O 为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C 的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE :S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C 的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x 轴上,若四边形ABCD为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×( 2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x <1时,函数图象在对称轴的左边,y 随x 的增大而增大.故选B .8.如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积为( )A .π﹣1B .2π﹣1C .π﹣1D .π﹣2【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【解答】解:在Rt△ACB 中,AB==2,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB 中,CD 垂直平分AB ,CD=BD=, ∴D 为半圆的中点,S 阴影部分=S 扇形ACB ﹣S △ADC =π×22﹣×()2=π﹣1. 故选A .9.已知两点A (5,6)、B (7,2),先将线段AB 向左平移一个单位,再以原点O 为位似中心,在第一象限内将其缩小为原来的得到线段CD ,则点A 的对应点C 的坐标为( )A .(2,3)B .(3,1)C .(2,1)D .(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE :S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE :S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE :S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C 的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH= CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.。
九年级上册天津数学期末试卷测试卷(含答案解析)
九年级上册天津数学期末试卷测试卷(含答案解析)一、选择题1.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .10 C .3 D .10 2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:3 3.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1) 4.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( )A .m=-2B .m>-2C .m≥-2D .m≤-25.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°6.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 8.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间9.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C 10D 31010.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2 B .a >2 C .a <﹣2 D .a >﹣2 11.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252B .25C .251D 52二、填空题13.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 14.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 15.抛物线2(-1)3y x =+的顶点坐标是______.16.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .17.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.18.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.19.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.20.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.21.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.22.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.23.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.24.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.三、解答题25.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒26.如图,四边形OABC 为矩形,OA =4,OC=5,正比例函数y=2x 的图像交AB 于点D ,连接DC ,动点Q 从D 点出发沿DC 向终点C 运动,动点P 从C 点出发沿CO 向终点O 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s .(1)求点D 的坐标;(2)若PQ ∥OD ,求此时t 的值? (3)是否存在时刻某个t ,使S △DOP =52S △PCQ ?若存在,请求出t 的值,若不存在,请说明理由;(4)当t 为何值时,△DPQ 是以DQ 为腰的等腰三角形? 27.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 28.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.29.如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=10,AC=1,求⊙O的半径.30.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?31.A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.32.对于实数a,b,我们可以用{}max,a b表示a,b两数中较大的数,例如{}max3,13-=,{}max2,22=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.(1)设1y x=,21 =yx ,则函数1max,y xx⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, 22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).4.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.A解析:A 【解析】 【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可. 【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3), ∴-3=1-m+n , ∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3. ∴代数式mn +1有最小值-3. 故选A. 【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.8.D解析:D 【解析】 【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解. 【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++ ∵1a =-,抛物线开口向下;∴选项A 错误; ∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误; 令0y =,得2320x x -++=,解得:1x =,2x =∵3102--<,方程20ax bx c ++=的负根在0与-1之间; 故选:D . 【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.9.C解析:C 【解析】 【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案. 【详解】 tan A =BCAC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C . 【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.10.B解析:B 【解析】 【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论. 【详解】∵1a =,2b =-,1c a =-, 由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2, 故选:B . 【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.11.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x 2−2x =5,配方得:x 2−2x +1=6,即(x−1)2=6.故选:A .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 二、填空题13.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:(表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.14.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】 先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 15.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.16.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c 1=4,c 2=﹣4(舍去),∴线段c =4cm .故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.17.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴s inA=. 解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.18.140°. 【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC 的内切圆的圆心,∴OB 、OC 为∠ABC 和∠ACB 的角平分线,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°.故答案为:140°【点睛】 本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.19.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:3352+或3352-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP =∠APH =45°,∴AH =HP ,在Rt △AHB 中,AB 2=AH 2+BH 2,∴16=AH 2+(AH )2,∴AH AH , 若点P 在CD 的右侧,同理可得AH =2,综上所述:AH . 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.20.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB长度的范围.21.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.22.2023【解析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.23.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴==−1±2, ∵1x <0,∴1x =−1-2<0, ∵-4≤-3,∴3222-≤-≤-, ∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.24.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P ∽△BA2B3,△BB1Q ∽△BB2A2,再得到PB1和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B ,∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】 本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.三、解答题25.(1)x 1=-1,x 2=4;(2)原式=12 【解析】【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)234x x -=(x+1)(x-4)=0∴x 1=-1,x 2=4;(2)原式2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.26.(1)D (2,4);(2)52t =;(3)存在,t 的值为2 ;(4)当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形 【解析】【分析】(1)由题意得出点D 的纵坐标为4,求出y=2x 中y=4时x 的值即可得;(2)由PQ ∥OD 证△CPQ ∽△COD ,得CQ CP CD CO=,即555t t -=,解之可得; (3)分别过点Q 、D 作QE ⊥OC ,DF ⊥OC 交OC 与点E 、F ,对于直线y=2x ,令y=4求出x 的值,确定出D 坐标,进而求出BD ,BC 的长,利用勾股定理求出CD 的长,利用两对角相等的三角形相似得到三角形CQE 与三角形CDF 相似,由相似得比例表示出QE ,由底PC ,高QE 表示出三角形PQC 面积,再表示出三角形ODP 面积,依据S △DOP =52S △PCQ 列出关于t 的方程,解之可得; (4)由三角形CQE 与三角形CDF 相似,利用相似得比例表示出CE ,PE ,进而利用勾股定理表示出PQ 2,DP 2,以及DQ ,分两种情况考虑:①当DQ=DP ;②当DQ=PQ ,求出t 的值即可.【详解】解:(1)∵OA =4∴把4y =代入2y x =得2x =∴D (2,4).(2)在矩形OABC 中,OA =4,OC=5∴AB =OC =5,BC =OA =4∴BD =3,DC =5由题意知:DQ =PC =t∴OP =CQ =5-t∵PQ ∥OD∴CQ CP CD CO = ∴555t t -= ∴52t = . (3)分别过点Q 、D 作QE ⊥OC , DF ⊥OC 交OC 与点E 、F则DF =OA =4∴DF ∥QE∴△CQE ∽△CDF∴QE CQ DF CD=∴545QE t -= ∴455t QE -=() ∵ S △DOP =52S △PCQ ∴151********t t =t ()()--⨯⨯⨯ ∴12t =,25t =当t =5时,点P 与点O 重合,不构成三角形,应舍去∴t 的值为2.(4)∵△CQE ∽△CDF∴QE CQ DF CD= ∴4(5)5QE t =- 38(5)355PE t t t =--=- ∴222216(5)816(3)16252555t PQ t t t -=+-=-+ 2224(3)DP t =+-2DQ t =①当DQ PQ =时,221616255t t t =-+, 解之得:1225511t ,t == ②当DQ DP =时,2224(3)t t +-=解之得:256t = 答:当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形. 【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.27.2a 1-, -23. 【解析】【分析】先求出程x 2+x ﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x 2+x ﹣2=0,∴(x-1)(x+2)=0,∴x 1=1,x 2=-2,原式=()()211a a a +-•1a a +=2a 1-,∵a 是方程x 2+x ﹣2=0的解,∴a =1(没有意义舍去)或a =﹣2, 则原式=﹣23. 【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.28.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,x=4,52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m =﹣1,故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan ∠OCB =OB CO =13,设HM =BM =x ,则CM =3x , BC =BM+CM =4x 10x =104, CH 10x =52,则点H(0,12), 同直线AC 的表达式的求法可得直线BH (Q )的表达式为:y =﹣12x+12…②, 联立①②并解得:﹣x2﹣2x+3=﹣12x+12,解得x=1(舍去)或﹣52,故点Q(﹣52,74).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.29.(1)详见解析;(2)⊙O的半径是13.【解析】【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3, ∵OD ⊥BC ,OD 过O ,∴BD =DC =12BC =132⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB ()22131 1.52+=, 即⊙O 13. 【点睛】 此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.30.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.31.(1)29;(2)59. 【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29; (2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59. 考点:列表法与树状图法.32.(1)D ;(2)见解析;20x -<<或2x >;(3)40t -<<.【解析】 【分析】 (1)根据函数解析式,分别比较1x ≤- ,10x -<<,01x <≤,1x >时,x 与1x的大小,可得函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像; (2)根据{}max ,a b 的定义,当0x <时,()22x -+图像在()22x --图像之上,当0x =时,()22x --的图像与()22x -+的图像交于y 轴,当0x >时,()22x --的图像在()22x -+之上,由此可画出函数()(){}22max 2,2y x x =---+的图像; (3)由(2)中图像结合解析式()22x --与()22x -+可得t 的取值范围.【详解】(1)当1x ≤-时,1x x ≤, 当10x -<<时,1x x >, 当01x <≤时,1x x <, 当1x >时,1x x> ∴函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像为故选:D .(2)函数()(){}22max 2,2y x x =---+的图像如图中粗实线所示:令()2=02x -+得,2x =-,故A 点坐标为(-2,0),令()2=02x --得,2x =,故B 点坐标为(2,0),观察图像可知当20x -<<或2x >时,y 随x 的增大而减小;故答案为:20x -<<或2x >;(3)将0x =分别代入()()2212, =22y x y x =---+,得12==4y y -,故C(0,-4), 由图可知,当40t -<<时,函数()(){}22max 2,2y x x =---+的图像与y t =有4个不同的交点.故答案为:40t -<<.【点睛】本题通过定义新函数综合考查一次函数、反比例函数与二次函数的图像与性质,关键是理解新函数的定义,结合解析式和图像进行求解.。
【5套打包】天津市初三九年级数学上期末考试测试卷(含答案)
最新人教版九年级数学上册期末考试试题(含答案)一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如果2m=3n(n≠0),那么下列比例式中正确的是 (A)(B) (C) (D)2.将抛物线2y x 向下平移2个单位长度,得到的抛物线为(A) y=x 2+2 (B)y=x 2-2 (C)y=(x-2)2 (D) y=(x+2)2 3.在Rt △ABC 中,∠C= 90°,,若AC=1,AB=2,则cosA 的值为 (A)21(B)22 (C)23 (D)25 4.如图,AB 是圆O 的弦,OD ⊥AB 于点C ,交圆O 于点D ,若AB=6,OC=1,则圆O 的半径为(A)5(B)22(C)10(D)375.如图,将△ABO 的三边扩大一倍得到△CED (顶点均在格点上),它们是以点P 为位似中心的位似图形,则点P 的坐标是(A) (0,3) (B) (0,0) (C) (0,2) (D) (0,-3)6.在平行四边形ABCD 中,E 是AD 上一点,AC, BE 交于点O ,若AE:ED= 1:2,OE=2,则OB 的长为(A) 4 (B) 5 (C) 6 (D) 77.如图,在平面直角坐标系xOy中,二次函数y=ax2 +bx+1的图象经过点A, B,对系数a和b判断正确的是(A) a>0,b>0 (B) a<0,b<0(C) a>0,b<0 (D) a<0,b>08.如图,等边三角形和正方形的边长均为a,点B,C,D, E在同一直线上,点C与点D重合.△ABC 以每秒1个单位长度的速度沿BE向右匀速运动.当点C与点E重合时停止运动.设△ABC的运动时间为t秒,△ABC与正方形DEFG重叠部分的面积为S,则下列图象中,能表示S 与t的函数关系的图象大致是二、填空题(本题共16分,每小题2分)9.如图,△ABC∽△A'B'C', AH, A'H'分别为△ABC和△A'B'C'对应边上的高,若AB:A'B'=2:3,则AH:A'H'=__________.10.请写出一个反比例函数的表达式,满足条件“当x>0时,y随x的增大而增大”,则此函数的表达式可以为__________.11.如图,圆O是正方形ABCD的外接圆,若E是上一点,则∠DEC=______________°.12.如图,DE是△ABC的中位线,若△ADE的面积为1,则四边形DBCE的面积为__________.13.走进中国科技馆,同学们会在数学区发现截面为“莱洛三角形”的轮子,如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧,则组成的封闭图形就是“莱洛三角形”若AB=3,则此“莱洛三角形”的周长为______________.14.如图,在平面直角坐标系xOy中,函数y==(x> 0)的图象经过点A, B, AC⊥x轴于点C, BD ⊥y轴于点D,连接OA, OB,则△OAC与△OBD的面积之和为____________.15.如图,某中学综合楼入口处有两级台阶,台阶高AD= BE= 15cm,,深DE=30cm,在台阶处加装一段斜坡作为无障碍通道,设台阶起点为A,斜坡的起点为C,若斜坡CB的坡度i=1:9,则AC的长为____________.cm.2下面有四个论断:①抛物线y= ax2+ bx+c(a≠0)的顶点为(2,-3);②b2- 4ac=0;③关于x的方程ax2 +bx+c=-2的解为x1=1,x2=3;④m=-3.其中,正确的有____________________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28 题,每小题7分)解答应写出文字说明,演算步骤或证明过程.17.下面是小飞设计的“过圆外一点作圆的切线”的尺规作图过程.已知: P为外一点,求作:经过点P的的切线.作法:如图,①连接OP,作线段OP 的垂直平分线交OP 于点A; ②以点A 为圆心,OA 的长为半径作圆,交于B, C 两点;③作直线PB, PC .所以直线PB,PC 就是所求作的切线. 根据小飞设计的尺规作图过程,(1)使用直尺和圆规补全图形(保留作图痕迹);(2)完成下面的证明(说明:括号里填写推理的依据).证明:连接OB, OC, ∵PO 为圆A 的直径,∴∠PBO=∠PCO =______(_______________ ). ∴PB ⊥OB,PC ⊥OC . ∴PB, PC 为的切线(_________________).18.计算: 3tan30° + sin45°-2sin 60° . 19.如图,在Rt △ABC 中,∠ABC=90°,cosA=32,AB=4,过点C 作CD //AB ,且CD=2,连接BD ,求BD 的长.20.如图,△ABC的高AD, BE 交于点F.写出图中所有与△AFE相似的三角形,并选择一个进行证明.21.如图,在平面直角坐标系xOy中,二次函数y=x2 + bx+c的图象与x轴,y 轴的交点分别为(1,0)和(0,-3).(1)求此二次函数的表达式;(2)结合函数图象,直接写出当y>-3时,x的取值范围.22.某数学小组在郊外水平空地上对无人机进行测高实验,以便与遥控器显示的高度数据进行对比.如图,在E处测得无人机C的仰角∠CAB=45°,在D处测得无人机C的仰角∠CBA= 30°,已知测角仪的高AE= BD=1m, E, D两处相距50m,请根据数据计算无人机C的高(结果精确到0.1m,参考数据: ≈1.41,≈1.73).23.在平面直角坐标系xOy 中,一次函数y=21x+b 的图象经过点A(43),与反比例函数y==(k≠0)图象的一个交点为B(2,n) .(1)求一次函数与反比例函数的表达式;(2)若点P 在x 轴上,且PB= AB ,则点P 的坐标是________________.24.小明用篱笆围出一块周长为12m 的矩形空地做生物试验,已知矩形的一边长为x (单位: m),面积为y (单位: m 2).(1)求y 与x 的函数表达式,并写出自变量x 的取值范围: (2)当x 为何值时,矩形的面积最大?并求出此最大面积. 25.如图,AB 是的直径,C 为AB 延长线上一点,过点C 作的切线CD ,D 为切点,点F 是的中点,连接OF 并延长交CD 于点E,连接BD, BF .(1)求证: BD // OE; (2)若OE =3,tanC=43,求的半径.26. 在平面直角坐标系xOy 中,直线)0(≠+=k b kx y 与抛物线a ax ax y 342+-=的对称交于点A (m ,-1),点A 关于x 轴的对称点恰为抛物线的顶点。
天津市九年级上册期末数学试题(word版,含解析)
天津市九年级上册期末数学试题(word 版,含解析)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 4.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)5.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠. B .m 1=.C .m 1≥D . m 0≠.6.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011 B .2015C .2019D .20207.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .408.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.59.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =10.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>11.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变 12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60 C .80 D .100 13.二次函数y =x 2﹣2x +1与x 轴的交点个数是( )A .0B .1C .2D .314.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度15.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.已知∠A =60°,则tan A =_____.18.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.19.若a 是方程223x x =+的一个根,则代数式263a a -的值是______. 20.若a b b -=23,则ab的值为________. 21.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;22.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________23.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).24.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .25.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.26.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 27.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.28.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.30.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.三、解答题31.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.32.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 33.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.34.已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9), (1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程), 35.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.38.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.39.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据面积比为相似比的平方即可求得结果. 【详解】解:∵两个相似多边形的面积比为4:9, ∴它们的周长比为4923. 故选B. 【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.D【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.C解析:C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.4.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标.解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).5.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.7.C解析:C 【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.8.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C .【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..9.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90°∴△ABC ≌△ADE (AAS )∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得,CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2,解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a=10a 2 =25x 2. 故选C .【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.10.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.11.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .14.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.15.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.二、填空题16.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.19.9【解析】【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 20.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.21.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45 BCAB=,∵AB=10,∴BC=8,∴6AC===,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴1AC BCCE CD=,即1684CE=,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.22.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E2【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:22m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.23.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.24.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.25.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.26.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.27.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.28.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.29.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.30.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m =12(1﹣2)2+1=112,n =12(4﹣2)2+1=3,∴A (1,112),B (4,3),过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,112),∴AC =4﹣1=3.∵曲线段AB 扫过的面积为12(图中的阴影部分),∴AC •AA ′=3AA ′=12,∴AA ′=4,即将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y =12(x ﹣2)2+5.故答案为y =0.5(x ﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA ′是解题的关键.三、解答题31.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以QR QHAR PH= =0.6,设Q[n,0.6(n+1)],代入y=mx+m中,mn+m=0.6(n+1),m(n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y2=(x-1-m)2+0.6m-4,所以点D由点C向右平移m个单位,再向上平移0.6m个单位所得,过D作y轴的平行线,交x轴与K,再作CT⊥KD,交KD延长线与T,所以KD QRSK AR==0.6,所以tan∠KSD=tan∠QAR,所以∠KSD=∠QAR,所以AQ∥CS,即CD∥PQ.因为AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD,所以四边形CDPQ为平行四边形.【点睛】。
2022-2023学年天津市第九十中学九年级上学期期末考试数学试卷含答案
【19题答案】(1) ;(2)
【20题答案】(1) , = ;(2)
【21题答案】当 时,这个苗圃园的面积有最大值,最大值是 平方米
【22题答案】(1)见解析(2)
【23题答案】(1)
(2)降价18元时,每天销售“冰墩墩”的利润最大,最大利润为2420元
(1)如图①,当点Байду номын сангаас为OA中点时, ,求点 坐标;
(2)若旋转后点 落 OB上,设OD=t.
①如图②,若旋转后 与矩形OABC的重合部分为四边形. 交BC于点N, 交BC于点M,试用含有t的式子表示线段 的长,并直接写出t的取值范围;
②若 与矩形OABC的重叠部分的面积为S,当 时,试用含有t的式子表示S(直接写出结果即可).
【24题答案】(1)
(2)① ,其中t 取值范围为 ;②
【25题答案】(Ⅰ) ;对称轴为直线 ;(Ⅱ) ;(Ⅲ)点M的坐标为 , , , .
九十中学2022—2023学年第一学期期末考试九年级—数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
【1题答案】C
【2题答案】A
【3题答案】B
【4题答案】D
【5题答案】B
【6题答案】D
【7题答案】A
【8题答案】C
【9题答案】D
【10题答案】B
(1)线段 的长度等于______;
(2)请借助无刻度的直尺,在给定的网格中先确定圆心 ,再作 的平分线 交 于点 .在下面的横线上简要说明点 和点 的位置是如何找到的._____________.
三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)
天津市第二十中学2023-2024学年九年级上学期期末数学试题
天津市第二十中学2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....下列说法正确的是()“任意的一个三角形,其内角和是是必然事件“购买1张彩票,中奖”是不可能事件.抛掷一枚质地均匀的硬币10次,有次正面朝上,说明正面朝上的概率是0.3.某射击运动员射击了九次都没有中靶,故他射击的第十次也一定不中靶.不透明袋子中装有个球,其中有5个红球和4个黑球,这些球除颜色外无其他差别,从袋子中随机取出个球,则它是红球的概率是()29.134959.如图,在直角坐标系中,有两点A (6(6,0).以原点为位似中心,相似比,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为()(2,1)(3,3)(3,1)若点()12,A y -,B 都在反比例函数2y =A....的直径,按以下步骤作图:(1)分别以A,B为圆心,大于AO长为半径作弧,两弧交于点P,连接于点C;(2)分别以A,C为圆心,大于12AC长为半径作弧,两弧交于点Q,连接交于点D;(3)连接AD BD BC BD,,,与OC交于点EABC∠BC∥二、填空题18.如图,在每个小正方形的边长为点A 在网格线上,且52AC =(1)求出该圆的半径(2)在圆上有一点P ,使得出点P ,并简要说明点P 的位置是如何找到的(不要求证明)三、解答题19.(1)小敏与小霞两位同学解方程你认为他们的解法中是否有正确的?如果有,指出哪位同学的解法正确;如果没有,写出正确的解法.小敏:两边同除以()3x -,得,33x =-,则6x =.小霞:移项,得提取公因式,得则(1)则AB的长为m,BC的长为(2)若花圃的面积为1202m,求花圃一边(3)花圃的面积能达到130m(2)如图②,过点C 作DB 的垂线,交DB 的延长线于点E ,连接OD .若2ABD CDB ∠=∠,20ODC ∠=︒,求DCE ∠的大小.22.如图,AB 是O 的直径,F 为O 上一点,AC 平分FAB ∠交O 于点C .过点C 作CD AF ⊥交AF 的延长线于点D .(1)求证:CD 是O 的切线.(2)若613DC AB ==,,求AF 的长.(1)第一象限抛物线的顶点坐标为,与x轴交点(2)求第一象限水柱所在抛物线的函数表达式;(3)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高师傅站立时必须在离水池中心多少米以内?请说明理由.A,,24.如图,在平面直角坐标系中,已知()20B为x轴上一点,现在以B为旋转中心,将PB(1)①PBM∠=;②求证:PBM为等边三角形;(2)当PA x⊥轴,B(223+,0)时,求AM的长;(3)当点B的坐标为()50,时,求线段AM的最大值(直接写出结果即可)。
九年级上册天津数学期末试卷测试卷(含答案解析)
九年级上册天津数学期末试卷测试卷(含答案解析)一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .33.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .14.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( ) A .⊙O 上 B .⊙O 外C .⊙O 内5.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( )A .k >-1B .k≥-1C .k <-1D .k≤-1 6.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)7.若25x y =,则x y y+的值为( ) A .25 B .72C .57D .758.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .229.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .610.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x11.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x >C .0x <D .0x > 12.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=二、填空题13.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.14.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .15.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;16.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.17.抛物线21(5)33y x =--+的顶点坐标是_______.18.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).19.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm=,扇形的圆心角120θ=,则该圆锥的母线长l为___cm.20.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.21.如图,ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径,且AE=4,若CD=1,AD=3,则AB的长为______.22.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.23.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S>甲乙,则队员身高比较整齐的球队是_____.24.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.三、解答题25.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=45时,y=10;x=55时,y=90.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?26.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).27.某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量y (件)与销售单价x(元/件)的关系如下表:x元/件⋯15202530⋯()件⋯550500450400⋯y()设这种产品在这段时间内的销售利润为w(元),解答下列问题:(1)如y是x的一次函数,求y与x的函数关系式;(2)求销售利润w与销售单价x之间的函数关系式;(3)求当x为何值时,w的值最大?最大是多少?28.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?29.如图,BD、CE是ABC的高.∽;(1)求证:ACE ABD(2)若BD =8,AD =6,DE =5,求BC 的长.30.如图甲,在△ABC 中,∠ACB=90°,AC=4cm ,BC=3cm .如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm/s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题: (1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值,S 的最大值是多少; (2)如图乙,连接PC ,将△PQC 沿QC 翻折,得到四边形PQP′C ,当四边形PQP′C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形.31.如图①,在矩形ABCD 中,BC =60cm .动点P 以6cm /s 的速度在矩形ABCD 的边上沿A →D 的方向匀速运动,动点Q 在矩形ABCD 的边上沿A →B →C 的方向匀速运动.P 、Q 两点同时出发,当点P 到达终点D 时,点Q 立即停止运动.设运动的时间为t (s ),△PDQ 的面积为S (cm 2),S 与t 的函数图象如图②所示. (1)AB = cm ,点Q 的运动速度为 cm /s ;(2)在点P 、Q 出发的同时,点O 也从CD 的中点出发,以4cm /s 的速度沿CD 的垂直平分线向左匀速运动,以点O 为圆心的⊙O 始终与边AD 、BC 相切,当点P 到达终点D 时,运动同时停止.①当点O 在QD 上时,求t 的值;②当PQ 与⊙O 有公共点时,求t 的取值范围.32.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.B解析:B 【解析】 【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P 点应该在以BC 为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.3.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.4.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.5.C解析:C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.6.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.7.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.8.C解析:C【解析】【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是12⨯,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.9.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.10.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.11.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.二、填空题13.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.14.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n °,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 15.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.16.【解析】【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 17.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 18.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC=AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则12AC BC =,正确理解黄金分割的定义是解题的关键. 19.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 20.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°21.【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴5AB =故答案为:5【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.22.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.23.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S>甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量24.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中AB ADABF DBF DE=⎧⎪∠=∠⎨⎪=⎩∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等边三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°=2,【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题25.(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为1900元.【解析】【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单个利润×销售量-500列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【详解】(1)设y=kx+b,∵x=45时,y=10;x=55时,y=90,∴45110 5590k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)∵售价为x元/千克,进价为30元/千克,日销量y=﹣2x+200,每天支付其他费用500元,∴W=(x﹣30)(﹣2x+200)﹣500=﹣2x2+260x﹣6500,(3)∵W=﹣2x2+260x﹣6500=﹣2(x﹣65)2+1950,∴抛物线的对称轴为x=65,∵-2<0,∴抛物线开口向下,x<65时,y随x的增大而增大,∵30≤x≤60, ∴x =60时,w 有最大值为-2(60-65)2+1950=1900(元),∴当销售单价为60元时,该公司日获利最大为1900元.【点睛】本题考查二次函数和一次函数的综合应用,考查了待定系数法求一次函数解析式及二次函数的性质,熟练掌握二次函数的性质是解题关键.26.该段运河的河宽为303m .【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到33401603x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.27.(1)10700y x =-+;(2)(10)(10700)w x x =--+;(3)当40x =时,w 的值最大,最大值为9000元【解析】【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设y 与x 的函数关系式为y=kx+b把(15,550)、(20,500)代入得5501550020k b k b =+⎧⎨=+⎩解得10700k b =-⎧⎨=⎩∴10700y x =-+(2)∵成本为10元,故每件利润为(x-10)∴销售利润(10)(10700)w x x =--+(3)(10)(10700)w x x =--+=210(40)9000x --+∵-10<0,∴当40x =时,w 的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.28.(1)(30-x );10x ;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x 元,超市平均每天可多售出10x 件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w ,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x 件;(2)设每件商品降价x 元时,利润为w 元根据题意得:w =(30-x )(100+10x )= -10x 2+200x +3000=-10(x -10)2+4000∵-10<0,∴w 有最大值,当x =10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w 关于x 的二次函数解析式是解题的关键.29.(1)见解析;(2)BC =253. 【解析】【分析】(1)BD 、CE 是ABC 的高,可得90ADB AEC ∠=∠=︒,进而可以证明ACE ABD ∽;(2)在Rt ABD 中,8BD =,6AD =,根据勾股定理可得10AB =,结合(1)ACE ABD ∽,对应边成比例,进而证明AED ACB ∽,对应边成比例即可求出BC 的长.【详解】解:(1)证明:BD 、CE 是ABC ∆的高,90ADB AEC ∴∠=∠=︒,A A ∠=∠,ACE ABD ∴∽;(2)在Rt ABD 中,8BD =,6AD =,根据勾股定理,得10AB ==,ACE ABD ∽, ∴AC AE AB AD=, A A ∠=∠,AED ACB ∴∽, ∴DE AD BC AB=, 5DE =,5102563BC ⨯∴==. 【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质. 30.(1)当t 为52秒时,S 最大值为185;(2)2013; (3)52或2513或4013. 【解析】【分析】(1)过点P 作PH ⊥AC 于H ,由△APH ∽△ABC ,得出=PH AP BC AB,从而求出AB ,再根据535PH t -,得出PH=3﹣35t ,则△AQP 的面积为:12AQ•PH=12t (3﹣35t ),最后进行整理即可得出答案;(2)连接PP′交QC 于E ,当四边形PQP′C 为菱形时,得出△APE ∽△ABC ,=AE AP AC AB ,求出AE=﹣45t+4,再根据QE=AE ﹣AQ ,QE=12QC 得出﹣95t+4=﹣12t+2,再求t 即可; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=﹣95t+4,从而求出△APQ 中,分三种情况讨论:①当AQ=AP ,即t=5﹣t ,②当PQ=AQ ,③当PQ=AP ﹣t ,再分别计算即可.【详解】解:(1)如图甲,过点P 作PH ⊥AC 于H ,∵∠C=90°,∴AC ⊥BC ,∴PH ∥BC ,∴△APH ∽△ABC , ∴=PH AP BC AB, ∵AC=4cm ,BC=3cm ,∴AB=5cm , ∴5=35PH t -, ∴PH=3﹣35t , ∴△AQP 的面积为: S=12×AQ×PH=12×t×(3﹣35t )=﹣310(t ﹣52)2+185, ∴当t 为52秒时,S 最大值为185cm2. (2)如图乙,连接PP′,PP′交QC 于E ,当四边形PQP′C 为菱形时,PE 垂直平分QC ,即PE ⊥AC ,QE=EC ,∴△APE ∽△ABC , ∴=AE AP AC AB, ∴AE=(5)4=5AP AC t AB ⋅-⨯=﹣45t+4 QE=AE ﹣AQ ═﹣45t+4﹣t=﹣95t+4, QE=12QC=12(4﹣t )=﹣12t+2, ∴﹣95t+4=﹣12t+2, 解得:t=2013,∵0<2013<4, ∴当四边形PQP′C 为菱形时,t 的值是2013s ; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=AD ﹣AQ=﹣95t+4 ∴PQ=222239=3455PD QD t t ⎛⎫⎛⎫+-++-+ ⎪ ⎪⎝⎭⎝⎭=218t 18t 255-+, 在△APQ 中,①当AQ=AP ,即t=5﹣t 时,解得:t 1=52; ②当PQ=AQ ,即218t 18t 255-+=t 时,解得:t 2=2513,t 3=5; ③当PQ=AP ,即218t 18t 255-+=5﹣t 时,解得:t 4=0,t 5=4013; ∵0<t <4,∴t 3=5,t 4=0不合题意,舍去,∴当t 为52s 或2513s 或4013s 时,△APQ 是等腰三角形.【点睛】本题考查相似形综合题.31.(1)30,6;(2)①457;②15322-≤t ≤15322+.【解析】【分析】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB的长;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OF=12QC可求出t的值;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD 于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,证△QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QP QH可求出t的值;同理,如图2﹣2,当⊙O第二次与PQ相切于点M时,可求出t的值,即可写出t的取值范围.【详解】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,∵AP=6t,∴S△PDQ=12(60﹣6×5)×5a=450,∴a=6,∴AB=5a=30,故答案为:30,6;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=12 QC,即4t=12(90﹣6t),解得,t=457;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD 于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=2QH,∴150﹣20t=302,∴t=1532-;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=2QH,∴20t﹣150=302,∴t=1532+,综上所述,当PQ与⊙O有公共点时,t的取值范围为:15322-≤t≤15322+.【点睛】本题考查了圆和一元一次方程的综合问题,掌握圆切线的性质、解一元一次方程的方法、等腰直角三角形的性质是解题的关键.32.(1)①P 与直线相切.理由见解析;②()1,1P 或()5,3P -;(2)9131,4⎛⎫+- ⎪⎝⎭或9131,4⎛⎫-+- ⎪⎝⎭. 【解析】【分析】(1)①作直线l 的垂线,利用两点之间的距离公式及二次函数图象上点的特征证明线段相等即可;②利用两点之间的距离公式及二次函数图象上点的特征构建方程即可求得答案.(2)利用两点之间的距离公式分别求得各线段的长,根据“和谐点”的定义及二次函数图象上点的特征构建方程即可求得答案.【详解】(1)①P 与直线相切.如图,过P 作PQ ⊥直线l ,垂足为Q ,设()P m n ,.则()2221PB m n =-+,()222PQ n =- 21(1)14n m =--+,即:()2144m n -=- ()()2222221442PB m n n n n PQ ∴=-+=-+=-=PB PQ ∴=P ∴与直线l 相切.②当P 与y 轴相切时PD PB PQ ==∴()222m n =- ,2m n ∴=-,即:2n m =±代入()2144m n -=-化简得:2650m m -+=或2250m m ++=.解得:11m =,25m =. ()1,1P ∴或()5,3P -.(2)已知1P 、3P 的横坐标分别是2,6,代入二次函数的解析式得:1324P ⎛⎫ ⎪⎝⎭,,32164P ⎛⎫- ⎪⎝⎭,, 设()2P mn ,, ∵点B 的坐标为()10,,()2144m n -=-∴154BP ==,3294BP ==,22BP n ===-,依题意得:12323BP BP BP BP ++=,即2132BP BP BP =+, 5292244n -=+,即:1724n -=, ∴254n =(不合题意,舍去)或94n =-, 把94n =-,代入()2144m n -=-得: ()2113m -=直接开平方解得:11m =,21m =,∴()13,T P P 的坐标为:91,4⎫-⎪⎭或91,4⎛⎫- ⎪⎝⎭【点睛】 本题主要考查了两点之间的距离公式二次函数的性质,利用两点之间的距离公式及二次函数图象上点的特征构建方程是解题的关键.。
天津市和平区2022年九年级上学期《数学》期末试题与参考答案
天津市和平区2022年九年级上学期《数学》期末试卷与参考答案一.选择题本大题共12小题,每小题3分,共36分。
1. 下列图形中,可以看作是中心对称图形的是( )A. B.C. D.答案:A答案解析:B 、C 、D 三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A 选项是中心对称图形.故本选项正确.故选:A .2. 对于二次函数y =﹣(x﹣1)2+4,下列说法不正确的是( )A. 开口向下B. 当x>1时,y 随x 的增大而减小C. 函数图象与x 轴交于点(﹣1,0)和(3,0)D. 当x =1时,y 有最小值4答案:D答案解析:,,开口向下,180︒2(1)4y x =--+ 10a =-< ∴故A 说法正确,不合题意;当时,随的增大而减小,故B 说法正确,不合题意;令可得,解得:,,抛物线与轴的交点坐标为和,故C 说法正确,不合题意;∵对称轴为,顶点坐标为,当时,有最大值,最大值为4,故D 不正确,符合题意.故选:D .3. 如图,两个等圆⊙O 1和⊙O 2相交于A 、B 两点,且⊙O 1经过⊙O 2的圆心,则∠O 1AB 的度数为( )A. 45°B. 30°C. 20°D. 15°答案:B 答案解析:连接O 1O 2,AO 2,O 1B,1x …y x 0y =22(1)4230x x x --+=--=11x =-23x =∴x (1,0)-(3,0)1x =(1,4)∴1x =y∵O 1B= O 1A∴ ∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO 2O 1是等边三角形,∴∠AO 2O 1=60°,∴∠O 1AB=∠AO 2O 1 =30°.故选:B .4. 根据下列条件,判断△ABC 与△A´B´C´能相似的条件有( )①∠C=∠C´=90°,∠A=25°,∠B´=65°;②∠C=90°,AC =6cm ,BC =4cm ,,A´C´=9cm ,B´C´=6cm ;③AB=10cm ,BC =12cm ,AC =15cm ,A´B´=150cm ,B´C´=180cm ,A´C´=225cm ;④△ABC 与△A´B´C´是有一个角为80°等腰三角形A 1对B. 2对C. 3对D. 4对答案:C.112112O AB O BA AO O ∠=∠=∠121602=⨯︒90C '∠︒=答案解析:(1)∵∠C=∠C´=90°,∠A=25°.∴∠B=65°.∵∠C=∠C´,∠B=∠B´.∴.(2)∵∠C=90°,AC =6cm ,BC =4cm , ,A´C´=9,B´C´=6.∴,.∴.(3)∵AB=10cm ,BC =12cm ,AC =15cm ,A´B´=150cm ,B´C´=180cm ,A´C´=225cm ;∴.∴.(4)∵没有指明80°的角是顶角还是底角.∴无法判定两三角形相似.∴共有3对.故选:C .5. 如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管的长为( )ABC A B C '''V V ∽90C '∠︒=2=3AC BC A C B C =''''C C ∠∠'=ABC A B C '''V V ∽1==15AB AC BC A B A C B C =''''''ABC A B C '''V V ∽A. B. C. D.答案:A答案解析:由题意可知点(1,3)是抛物线的顶点,∴设这段抛物线的解析式为y=a (x-1)2+3.∵该抛物线过点(3,0),∴0=a(3-1)2+3,解得:a=-.∴y=-(x-1)2+3.∵当x=0时,y=-(0-1)2+3=-+3=,∴水管应长m .故选:A 6. 如图,在△ABC 中,AB =AC ,∠BAC=50°,将△ABC 绕着点A 顺时针方向旋转得△ADE,AB ,CE 相交于点F ,若AD∥CE 时,则∠BAE 的大小是( )9m 419m 839m 1645m 16343434349494A. 20°B. 25°C. 30°D. 35°答案:C 答案解析:∵将△ABC 绕点A 顺时针方向旋转得△ADE,∴∠DAE=∠BAC=50°,AE=AC ,∵AD∥CE,∴∠DAE=∠AEC=50°,∵AE=AC,∴∠AEC=∠ACE=50°,∴∠EAC=180°-50°-50°=80°,∴∠BAE=∠EAC-∠BAC=80°-50°=30°,故选:C .7. 把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为()A. B. C. D. 答案:B答案解析:设四张小图片分别用A ,a ,B ,b表示,画树状图得:12131423由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,∴摸取两张小图片恰好合成一张完整图片的概率为:,故选:B .8. 如图,AB ,BC ,CD 分别与⊙O 相切于E 、F 、G 三点,且AB CD ,BO =3,CO =4,则OF 的长为( )A. 5 B. C. D. 答案:D答案解析:连接OF ,OE ,OG,41123P ==∥95165125∵AB、BC 、CD 分别与相切,∴,,,且,∴OB 平分,OC 平分,∴,,∵,∴,∴,∴,,∴,∴,故选:D .9. 如图,在平行四边形中,F 是上一点,且,连结并延长交的延长线于点G,则的值为( )O e OE AB ⊥OF BC ⊥OG CD ⊥OE OF OG ==ABC ∠BCD ∠12OBC ABC ∠=∠12BCO BCD ∠=∠AB CD ∥180ABC BCD ∠+∠=︒119022OBC BCO ABC BCD ∠+∠=∠+∠=︒90BOC ∠=︒5BC ==11··22OBC S OB OC BC OF ∆==341255OF ⨯==ABCD AD 2AF FD =BF CD BE EGA. B.C. D.答案:C答案解析:根据题意,∵四边形是平行四边形,∴AB∥CD,∴△ABF∽△DGF,∴,∴,∴,∴,∵AB∥CD,∴△ABE∽△CGE,∴;故选:C.10. 已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是( )A. B.12132334ABCD2AB AFDG DF==2AB CD DG==3CG CD DG DG=+=23ABCG=23BE ABEG CG==C. D.答案:C答案解析:∵ ,∴函数图象过,排除D ;∵,,∴,排除A ;由选项B 可知,,对称轴,得,与矛盾,排除B ,故选:C .11. 如图,在平面直角坐标系中,△ABC 的顶点A 在第二象限,点B 坐标为(﹣2,0),点C 坐标为(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A´B´C.若点A 的对应点A´的坐标为(2,﹣3),点B 的对应点B´的坐标为(1,0),则点A 坐标为( )A. (﹣3,﹣2) B. (﹣2,)C.(﹣,) D. (﹣,2)0a b c ++=()1,00a b c ++=a b c >>0a >0c >12b x a=-=20b a =-<b c >32523252答案:C答案解析:如图,过点A 作AE⊥x 轴于E ,过点A´作A´F⊥x 轴于F .∵B(-2,0),C (-1,0),B´(1,0),A´(2,-3)∴OB=2,OC=OB´=1,OF=2,A´F=3,∴BC=1,CB´=2,CF=3,∵△ABC∽△A´B´C,∴,∴,∵∠ACE=∠A´CF,∠AEC=∠A´FC=90°,∴△AEC∽△A´FC,∴,∴,∴,∴,故选:C .12AE BC A F CB ''==32AE =12ECAE CF A F '==32EC =52OE EC OC =+=53(,22A -12. 已知二次函数y =﹣(x﹣m)2﹣m+1(m 为常数).①二次函数图象的顶点始终在直线y =﹣x+1上②当x <2时,y 随x 的增大而增大,则m=2③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2 其中,正确结论的个数是()A. 0个B. 1个C. 2个D. 3个答案:B答案解析:①证明: 图象的顶点为(m ,-m+1),设顶点坐标为(x ,y ),则x=m ,y=-m+1,∴y=-x+1,即顶点始终在直线y=-x+1上,①正确;②,对称轴,当时,y 随x 的增大而增大,时,y 随x 的增大而增大,,②不正确;③ 与点 在函数图象上,,,21y x m m =---+()∴10-< x m =∴x m <2x < 2m ∴≥∴()11A x y ,()22B x y ,()()22112211y x m m y x m m ∴=---+=--++,()()221221y y x m x m ∴-=---,∵x 1<x 2,x 1+x 2>2m ,,,∴,③不正确.故选:B .二.填空题本大题共6小题,每小题3分,共18分。
天津市2022年九年级上学期《数学》期末试题与参考答案
天津市2022年九年级上学期《数学》期末试卷与参考答案一、选择题本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有-项是符合题目要求的。
1. 下列函数中,是二次函数的是( )A. B. C. D. 答案:C答案解析:A 、函数右边是分式,不是二次函数,选项不符合题意;B 、函数是反比例函数,不是二次函数,选项不符合题意;C 、函数是二次函数,符合题意;D 、函数是一次函数,选项不符合题意.故选:C2. 下列图形是中心对称图形的是( )A. B.C.D.22y x =-3y x=221y x x =+-2y x =-答案:B答案解析:利用中心对称图形的概念可知:A 、不是中心对称图形,故此选项错误;B 、是中心对称图形,故此选项正确;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项错误;故选:B .3. 已知x=1是关于x 的一元二次方程的一个根,则m 的值是()A. 5B. ﹣5C. ﹣4D. 4答案:D答案解析:把x=1代入方程得:1+m-5=0,解得:m=4.故选:D .4. 如图,点A ,B ,C 都在⊙O 上,若∠BAC=38°,则∠BOC 的度数为()A. 80°B. 76°C. 62°D. 52°答案:B 250x mx +-=250x mx +-=答案解析:∵点A 、B 、C 都在⊙O 上,∠BAC=38°,∴∠BOC=2∠BAC=76°.故选:B .5. 据省统计局公布的数据,合肥市2021年第一季度GDP 总值约为2.4千亿元人民币,若我市第三季度GDP 总值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A. y =2.4(1+2x )B. y =2.4(1-x )2C. y =2.4(1+x )2D. y =2.4+2.4(1+x )+2.4(1+x )2答案:C答案解析:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=2.4(1+x )2.故选:C .6. 对于二次函数的图象,下列说法正确的是( )A. 开口向上B. 当x =2时,y 有最小值是3C. 对称轴是D. 顶点坐标是(-2,3)答案:D 答案解析:,抛物线开口向下,对称轴为直线,顶点坐标为,当时,有最大值3,故、、说法错误,说法正确,故选:.2(2)3y x =-++2x =2(2)3y x =-++ ∴2x =-(2,3)-2x =-A B C D D7. 若关于的方程有实数根,则的取值范围是( )A. B. C. 且 D. 且答案:B答案解析:当k=0时,方程为-6x+9=0,此时方程的解为 ,符合题意;当k≠0时,∵关于的方程有实数根,∴ ,∴ ,又k≠0,∴ 且k≠0,综上所述,当时,关于的方程有实数根.故选:B.8. 若是关于x 的二次函数,则a 的值是( )A. 1B. -5C. -1D. -5或-1答案:B 答案解析:依题意可得解得a=-5故选B .x 2690kx x -+=k 1k <1k ≤1k <0k ≠1k ≤0k ≠32x =x 2690kx x -+=2(6)490k ∆=--g ≥1k ≤1k ≤1k ≤x 2690kx x --=()313a y a x x +=+-+1032a a +≠⎧⎨+=⎩9. 抛物线y =x 2﹣2x﹣a 上有A (﹣4,y 1)、B (2,y 2)两点,则y 1和y 2的大小关系为( )A. y 2<y 1B. y 1<y 2C. y 2<y 1<0D. y 1<y 2<0答案:A答案解析:由题意,抛物线的对称轴为直线,∵抛物线二次项系数为1>0,∴抛物线开口向上,∴抛物线上的点离对称轴直线越远,函数值越大,∵A(﹣4,y 1)与直线距离为,B (2,y 2)与直线的距离为,∴点A 到直线的距离比点B 更远,则,∵原抛物线中待定,则的符号也待定,无法判断正负,∴只能判断出,故选:A .10. 如图,OA 为⊙O 的半径,弦BC⊥OA 于点P .若BC=8,AP=2,则⊙O 的半径长为( )A. 5B. 6C. 10D.的1x =1x =1x =()145--=1x =211-=1x =12y y >a 12y y 、12y y>答案:A答案解析:如图所示,连接OB ,∵,,∴,,∵,∴,解得,,则的半径长为,故选A .11. 如图,正方形OABC 的顶点B 在抛物线y =的第一象限的图象上,若点B 的横坐标与纵坐标之和等于6,则对角线AC 的长为( )A. 2B. C. D. 答案:C BC OA ⊥8BC =142BP PC BC ===222BP OP OB +=2AP =2224(2)OB OB +-=5OB =O e 52x答案解析:设点B (x ,y )∵正方形OABC 的顶点B 在抛物线y =的第一象限的图象上,若点B 的横坐标与纵坐标之和等于6,∴AC=BO,+x=6,解得(舍去),∴B(2,4),=∴AC=故选C .12. 已知二次函数的图象如图所示,有下列结论:①;②;③;④其中,其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个答案:B 答案解析:①由图象可知:,,2x 2x 12x 2x -3==,2y ax bx c =++0abc <a c b +>30a c +<()(+>+a b m am b 1)m ≠0a <0c >,,,故此选项正确;②当时,,故,错误;③根据抛物线的对称性,可知:当时函数值,,且,即,代入得,得,故此选项错误;④当时,的值最大.此时,,而当时,,所以,故,即,(其中,故此选项正确.故①④正确.故选:B .二、填空题本大题共6小题,每小题3分,共18分。
2023-2024学年天津市河西区九年级(上)期末数学试卷及答案解析
2023-2024学年天津市河西区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,岸只有一项是符合题目要求的)1.(3分)已知⊙O的直径为15cm,若直线l与⊙O只有一个交点,那么圆心O到这条直线的距离为()A.7cm B.7.5cm C.8cm D.10cm2.(3分)2sin60°的值等于()A.B.C.D.3.(3分)下列是与中国航天事业相关的图标,可以看作是中心对称图形的是()A.B.C.D.4.(3分)一个等边三角形的边长为2,则这个等边三角形的内切圆半径为()A.B.1C.D.5.(3分)如图,在△ABC中,若∠C=90°,则有()A.B.C.D.6.(3分)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°7.(3分)一元二次方程4x2=5x﹣1的两根之和与两根之积分别为()A.,B.﹣,C.D.8.(3分)抛物线y=x2﹣2x﹣3与x轴的两个交点分别为()A.(3,0)和(﹣1,0)B.(﹣3,0)和(1,0)C.(2,0)和(﹣4,0)D.(4,0)和(﹣2,0)9.(3分)一个扇形的半径为24cm,面积是240πcm2,则扇形的圆心角为()A.300°B.240°C.180°D.150°10.(3分)如图,在△ABC中,∠BAC=120°;将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则下列结论一定正确的是()A.CB=CD B.DE+DC=BC C.AB∥CD D.∠ABC=∠ADC11.(3分)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB'C′,连接B'C并延长交AB于点D,当B′D⊥AB时,的长是()A.B.C.D.12.(3分)如图所示,是我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为100,小正方形面积为4,则图中∠θ的正切值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)将点P(2,6)绕原点顺时针旋转180°,点P的对应点的坐标为.14.(3分)不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.15.(3分)在Rt△ABC中,若∠C=90°,,AC=3,则∠A的度数为.16.(3分)若抛物线y=x2﹣6x+k与x轴没有交点,则实数k的值可以是(写出一个即可).17.(3分)如图,已知正方形ABCD的边长为2,以顶点C、D为圆心,2为半径的两弧交于点E,点F为AB边的中点,连接EF,则EF的长为.18.(3分)如图,在每个小正方形边长为1的网格中,线段AB的端点A,B均落在格点上.(Ⅰ)线段AB的长等于;(Ⅱ)经过点A,B的圆交网格线于点C,在上有一点E,满足,请用无刻度的直尺,在如图所示的网格中,画出点E,并简要说明点E的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:x2﹣6x+9=(5﹣2x)2.20.(8分)学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有5、7、9三张扑克牌,学生乙手中有6、8、10三张扑克牌.每人从手中取出一张牌进行比较,数字小的为本局获胜.(Ⅰ)若每人随机取手中的一张牌进行比赛,请列举出所有情况;(Ⅱ)求学生乙本局获胜的概率.21.(10分)请你结合题意,分别画出示意图,并完成解答:(Ⅰ)在Rt△ABC中,若∠C=90°,若∠A=30°,AC=3,求AB的长;(Ⅱ)在△ABC中,AB=AC=9,BC=6,求∠C的正弦.22.(10分)小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB 的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.23.(10分)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(Ⅰ)求证:FG是⊙O的切线;(Ⅱ)若⊙O的半径长为,BF=3,求BE的长.24.(10分)如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点A出发,以1单位长度/秒的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒.(Ⅰ)当点P运动到AB的中点,求此时x的值和△APQ的面积;(Ⅱ)①当0<x<2时,求y与x之间的函数关系式;②当2<x≤4时,求y与x之间的函数关系式;(Ⅲ)求在运动过程中△APQ面积的最大值.(直接写出结果即可)25.(10分)已知抛物线y=(x﹣n)(x﹣m),其中n,m为常数,且n≠m.(Ⅰ)若n=﹣1,m=3,求抛物线的顶点坐标;(Ⅱ)若抛物线的对称轴为x=2,且抛物线经过点(1,p).请你用含m的式子表示p,并求出p的取值范围;(Ⅲ)若n=1,点M(m,0),抛物线与y轴负半轴交于点G,过点G作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,,点H是EF的中点,当MH的最小值是时,求y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标.2023-2024学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,岸只有一项是符合题目要求的)1.【分析】根据已知直线l与⊙O有唯一的一个交点得出直线与圆相切,即可得出d与r的关系.【解答】解:圆心O到直线l的距离为dcm,∵直线l与⊙O有唯一的一个交点,∴直线与圆相切,∵⊙O的直径为15cm,∴半径为7.5cm,∴d=r=7.5cm.故选:B.【点评】此题主要考查了直线与圆的位置关系,根据已知直线l与⊙O有唯一的一个交点得出直线与圆相切是解决问题的关键.2.【分析】根据特殊锐角三角函数值代入计算即可.【解答】解:2sin60°=2×=,故选:A.【点评】本题考查特殊锐角三角函数值,掌握sin60°的值是正确计算的关键.3.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、B、C都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.【分析】构造内切圆半径,三角形边的一半,圆心和顶点连线形成的直角三角形,利用直角三角形的30度特殊角的三角函数即可求解.【解答】解:如图:过O点作OD⊥AB,则AD=AB=1,∵∠OAD=30°,∴OD=tan30°•AD=.故选:C.【点评】本题考查了三角形的内切圆与内心的计算.解这类题一般都利用过内心向正三角形的一边作垂线,则正三角形的半径、内切圆半径和正三角形边长的一半构成一个直角三角形,解这个直角三角形,可求出相关边长或角.5.【分析】根据锐角三角函数的定义逐项判断即可.【解答】解:已知在△ABC中,若∠C=90°,那么tan A=,则A符合题意;sin A=,则B,D均不符合题意;cos A=,则C不符合题意;故选:A.【点评】本题考查锐角三角函数的定义,此为基础且重要知识点,必须熟练掌握.6.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选:B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.7.【分析】先把方程化为一般式,然后根据根与系数的关系求解.【解答】解:方程4x2=5x﹣1化为一般式为4x2﹣5x+1=0,所以方程4x2=5x﹣1的两个根之和为,两根之积为.故选:A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.8.【分析】依据题意,通过解方程x2﹣2x﹣3=0得到抛物线y=x2﹣2x﹣3与x轴的两个交点坐标.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以抛物线y=x2﹣2x﹣3与x轴的两个交点坐标为(﹣1,0),(3,0).故选:A.【点评】本题主要考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.9.【分析】设扇形的圆心角为n,根据扇形面积公式计算即可.【解答】解:设扇形的圆心角为n,则=240π,解得,n=150°,故选:D.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.10.【分析】由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,则可得出结论.【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠EDC=60°,∴∠CAD=∠EDC=60°,∴∠BAD=60°,∴AB∥CD.故选:C.【点评】本题考查三角形的旋转,解题的关键是掌握旋转的性质及等腰三角形的性质.11.【分析】证明α=30°,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.12.【分析】先由两个正方形的面积分别得出其边长,设AC=BD=a,由勾股定理解得a的值,按照正切函数的定义即可求解.【解答】解:∵大正方形的面积是100,小正方形面积是4,∴大正方形的边长是10,小正方形的边长是2,设AC=BD=a,如图,在Rt△ABD中,由勾股定理得:a2+(2+a)2=100,解得a=6或﹣8(舍去),∴tanθ==.故选:C.【点评】本题考查了勾股定理,明确相关性质及定理是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【解答】解:点P(2,6)绕原点O旋转180°后,P点的对应点与点P关于原点对称,则其坐标为(﹣2,﹣6).故答案为:(﹣2,﹣6).【点评】本题考查的是坐标与图形变化﹣旋转,熟知平面直角坐标系中关于原点对称的两点的坐标特征是解题的关键.14.【分析】用绿球的个数除以球的总数即可.【解答】解:∵不透明袋子中装有9个球,其中有7个绿球、2个白球,∴从袋子中随机取出1个球,则它是绿球的概率是,故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.15.【分析】先根据勾股定理求出AB的长,再由直角三角形的性质即可得出结论.【解答】解:如图,∵∠C=90°,,AC=3,∴AB==2,∵AB=2BC,∴∠A=30°.故答案为:30°.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.16.【分析】根据抛物线y=x2﹣6x+k与x轴没有交点,可以得到Δ<0,从而可以得到k的取值范围.【解答】解:∵抛物线y=x2﹣6x+k与x轴没有交点,∴Δ=(﹣6)2﹣4×1×k<0,解得,k>9,故答案为:10(答案不唯一).【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确Δ<0时,抛物线与x 轴没有交点.17.【分析】延长FE交DC于点H,连接CE,根据题意可得EF∥BC,在Rt△CEH中,根据勾股定理即可求解EH,从而求出EF.【解答】解:延长FE交DC于点H,连接CE,如图:∵E为两弧交于点,点F为AB边的中点,∴EF∥BC,∵C是圆心,E在弧上,∴CE=CB=2,在Rt△CEH中,EH==,∴EF=2﹣,故答案为:2﹣.【点评】本题考查正方形的性质,勾股定理,正确作出辅助线是解题关键.18.【分析】(Ⅰ)利用勾股定理求解;(Ⅱ)取圆与格线的交点P,Q,连接PQ,则PQ是直径,连接AC,AB,得到AC,AB 的中点J,K,取格点W,Z,R,S,连接WR,SZ交于点L.连接KL交PQ于点O,作直线JO交AB于点T,连接CT,延长CT交⊙O于点E,点E即为所求.【解答】解:(1)AB==,故答案为:;(Ⅱ)如图,点E即为所求.步骤:取圆与格线的交点P,Q,连接PQ,则PQ是直径,连接AC,AB,得到ACAB 的中点J,K,取格点W,Z,R,S,连接WR,SZ交于点L.连接KL交PQ于点O,作直线JO交AB于点T,连接CT,延长CT交⊙O于点E,点E即为所求.故答案为:取圆与格线的交点P,Q,连接PQ,则PQ是直径,连接AC,AB,得到ACAB 的中点J,K,取格点W,Z,R,S,连接WR,SZ交于点L.连接KL交PQ于点O,作直线JO交AB于点T,连接CT,延长CT交⊙O于点E,点E即为所求.【点评】本题考查作图﹣复杂作图,勾股定理,垂径定理等知识,解题的关键是学会利用数形结合的思想解决问题,题目比较难.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.【分析】把方程左边化成一个完全平方式,那么将出现两个完全平方式相等,则这两个式子相等或互为相反数,据此即可转化为两个一元一次方程即可求解.【解答】解:∵(x﹣3)2=(5﹣2x)2,∴x﹣3=5﹣2x或x﹣3=2x﹣5解之得:x1=2,x2=.【点评】解一元二次方程的基本思想是降次,把一元二次方程转化为一元一次方程,从而求解.20.【分析】(1)利用树状图展示所有9种等可能的结果数;(2)找出学生乙本局获胜的结果数,然后根据概率公式计算.【解答】解:(1)画树状图为:共有9种等可能的结果数;(2)学生乙本局获胜的结果数为3,所以学生乙本局获胜的概率==.【点评】本题考查了列表法与树状图法,解答本题的关键是利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.21.【分析】(Ⅰ)由锐角的余弦定义得到cos A==,即可求出AB长.(Ⅱ)过A作AH⊥BC于H,由等腰三角形的性质得到CH=BC=3,由勾股定理求出AH==6,即可得到sin C==.【解答】解:(Ⅰ)如图:∵∠C=90°,∠A=30°,∴cos A=cos30°==,∵AC=3,∴AB=2;(Ⅱ)如图:过A作AH⊥BC于H,∵AB=AC,∴CH=BC=3,∴AH==6,∴sin C===【点评】本题考查解直角三角形,勾股定理,关键是掌握锐角三角函数定义.22.【分析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=CD,CB=,可得答案.【解答】解:过点C作CD⊥AB垂足为D.,在Rt△ACD中,tan A=tan45°==1,CD=AD,sin A=sin45°==,AC=CD.在Rt△BCD中,tan B=tan37°=≈0.75,BD=;sin B=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27(m),AC=CD≈1.414×27=38.178≈38.2(m),CB=≈=45.0(m),答:AC的长约为38.2m,CB的长约等于45.0m.【点评】本题考查了解直角三角形的应用,利用线段的和差得出关于CD的方程是解题关键.23.【分析】(1)由等腰三角形的性质可证∠B=∠C=∠OFC,可证OF∥AB,可得结论;(2)由切线的性质可证四边形GFOE是矩形,可得OE=GF=2,由勾股定理可求解.【解答】(1)证明:如图,连接OF,∵AB=AC,∴∠B=∠C,∵OF=OC,∴∠C=∠OFC,∴∠OFC=∠B,∴OF∥AB,∵FG⊥AB,∴FG⊥OF,又∵OF是半径,∴GF是⊙O的切线;(2)解:如图,连接OE,∵⊙O与AB相切于点E,∴OE⊥AB,又∵AB⊥GF,OF⊥GF,∴四边形GFOE是矩形,∴GF=OE=EG=2,在Rt△BFG中,由勾股定理得,BG===1,∴BE=BG+EG=2+1.【点评】本题考查切线的性质和判定,勾股定理,等腰三角形的性质,矩形的判定和性质,锐角三角函数等知识,灵活运用这些性质解决问题是解题的关键.24.【分析】(Ⅰ)由菱形的性质可得AB=BC=2,可证△ABC是等边三角形,可得AB=AC=2,∠BAC=60°,可证△APQ是等边三角形,即可求解;(Ⅱ)①由锐角三角函数可求QH的长,由三角形的面积公式可求解;②由锐角三角函数可求QN的长,由三角形的面积公式可求解;(Ⅲ)由二次函数的性质可求解.【解答】解:(Ⅰ)∵四边形ABCD是菱形,∴AB=BC=2,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=2,∠BAC=60°,∵点P运动到AB的中点,∴AP=BP=1,∴x==1,∴AQ=1,∴AP=AQ=1,∴△APQ是等边三角形,=×12=;∴S△APQ(Ⅱ)①当0≤x≤2时,如图1,过点Q作QH⊥AB于H,由题意可得BP=AQ=x,∵在菱形ABCD中,∠B=60°,AB=2,∴AB=BC=AD=CD,∠B=∠D=60°,∴△ABC和△ADC都是等边三角形,∴AC=AB=2,∠BAC=60°=∠ACD,∵sin∠BAC=,∴HQ=AQ•sin60°=x,∴△APQ的面积=y=(2﹣x)×x=﹣(x﹣1)2+;②当2<x≤4时,如图2,过点Q作QN⊥AC于N,由题意可得AP=CQ=x﹣2,∵sin∠ACD==,∴NQ=(x﹣2),∴△APQ的面积=y=(x﹣2)×(x﹣2)=(x﹣2)2,(Ⅲ)当0≤x≤2时,y=﹣(x﹣1)2+;∴当x=1时,y的最大值为;当2<x≤4时,y=(x﹣2)2,∴当x=4时,y的最大值为,∴△APQ面积的最大值为.【点评】本题是四边形综合题,考查了动点问题的函数图象,菱形的性质,等边三角形的判定和性质,锐角三角函数,二次函数的性质等知识,利用分类讨论思想解决问题是本题的关键.25.【分析】(1)n=﹣1,m=3时,抛物线y=(x+1)(x﹣3)的对称轴为直线x==1,把x=1代入y=(x+1)(x﹣3)即得抛物线的顶点坐标为(1,﹣4);(2)可得=2,n=4﹣m,而抛物线y=(x﹣n)(x﹣m)经过点(1,p),知p=(1﹣n)(1﹣m)=(1﹣4+m)(1﹣m)=﹣m2+4m﹣3=﹣(m﹣2)2+1,有二次函数性质可得答案;(3)求出G(0,m),直线l为y=m,连接GM、GH,由H是EF的中点,得GH=EF=,故点H在以点G为圆心,为半径的圆上,可得MG=﹣m,①当MG≥,即m≤﹣1时,满足条件的点H在线段MG上,有MG﹣GH=﹣m﹣=,m=﹣;可得抛物线解析式为y=(x﹣1)(x+),﹣2m﹣1≤x≤﹣2m即是2≤x≤3,即可知y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(2,);②当MG<,即﹣1<m<0时,满足条件的点N落在线段GM的延长线上,同类可得y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(,﹣).【解答】解:(1)n=﹣1,m=3时,抛物线y=(x+1)(x﹣3)与x轴交点为(﹣1,0),(3,0),∴对称轴为直线x==1,把x=1代入y=(x+1)(x﹣3)得y=2×(﹣2)=﹣4;∴抛物线的顶点坐标为(1,﹣4);(2)∵抛物线y=(x﹣n)(x﹣m)的对称轴为直线x=,∴=2,∴n=4﹣m,∵抛物线y=(x﹣n)(x﹣m)经过点(1,p),∴p=(1﹣n)(1﹣m)=(1﹣4+m)(1﹣m)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∵n≠m,∴m≠2,∴﹣(m﹣2)2+1<1,∴p<1;(3)n=1时,y=(x﹣1)(x﹣m),令x=0得y=m,∴G(0,m),直线l为y=m,连接GM、GH,如图:∵H是EF的中点,∴GH=EF=,∴点H在以点G为圆心,为半径的圆上,∵M(m,0),G(0,m),∴MO=﹣m,GO=﹣m,在Rt△MGO中,MG=﹣m,①当MG≥,即m≤﹣1时,满足条件的点H在线段MG上,此时MH的最小值为MG﹣GH=﹣m﹣=,解得m=﹣;∴抛物线解析式为y=(x﹣1)(x+),﹣2m﹣1≤x≤﹣2m即是2≤x≤3,此时图象在对称轴直线x=﹣右侧,开口向上,当x=2时,y=(2﹣1)×(2+)=;∴y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(2,);②当MG<,即﹣1<m<0时,满足条件的点N落在线段GM的延长线上,此时MH的最小值为HG﹣MG=﹣(﹣m)=,解得m=﹣;∴抛物线解析式为y=(x﹣1)(x+),﹣2m﹣1≤x≤﹣2m即是0≤x≤1,此时图象包含顶点(,﹣),开口向上,∴y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(,﹣);综上所述,y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(2,)或(,﹣).【点评】本题考查二次函数的综合应用,涉及二次函数图象与系数的关系,动点问题等,解题的关键是分类讨论思想的应用。
天津市届九级上期末考试数学试题含答案
初三期末考试数学试卷一、选择题〔3×8=24〕 1. 正六边形的中心角是 A. 30°B. 45°C. 60°D. 360°2. 掷一枚质地均匀的骰子,向上一面的点数为 6 的概率为 1 1 1 1 A.B.C.D.64323. 以下事件中,必然事件是 A. 水在 0℃结冰B. 购置 100 张彩票,中奖C. 三角形的内角和等于 180°D. 随意翻开书,页码是奇数4. 一个圆锥的底面直径是 8cm ,母线长 9cm ,那么它的侧面展开图的面积为 A. 36πcm 2B. 48πcm 2C. 72πcm 2D. 144πcm 25. 如图,正方形的边长为 2,以各边为直径在正方形内画半圆,那么图中阴影局部的面积为 A. π-2B. 2π-4C. 2π-3D. 2π-26. y 是 x 的反比例函数,并且当 x=3 时,y=-6,那么当 x=-2 时,y 的值为 A. -1B. 1C. -9D. 91 7. 假设点〔x 1,y 1〕,〔x 2,y 2〕,〔x 3,y 3〕都是反比例函数 y = 中正确的选项是- 图像上的点,并且 y 1<0<y 2<y 3,那么以下各式xA. x 1<x 3<x 2B. x 3<x 2<x 1C. x 2<x 1<x 3D. x 2<x 3<x 18. 以下说法中,正确的有①周长和面积都相等的两个图形是全等形;②周长和面积都相等的两个三角形是全等三角形;③等腰三角形都相 似;④相似三角形的周长和面积的比都等于相似比 A. 0 个B. 1 个C. 2 个D. 3 个二、填空题〔3×6=18〕9. 在 10 件外观相同的产品中有 2 件不合格,现从中随机抽取 1 件进行检测,抽到不合格产品的概率为10. 如图,以点 O 为位似中心,将△ABC 放大得到△DEF ,假设 AD=OA ,那么△ABC 与△DEF 的面积之比为11. 如图,在平面直角坐标系中,过点 M 〔-3,2〕分别做 x 轴、y 轴的垂线与反比例函数 y A ,B 两点,那么四边形 MAOB 的面积为4的图像交于x12. 如图,在△ABC 中,点 D,E 分别在边 AB,AC 上,∠ADE=∠C,AB=6,AC=4,AD=2,那么 EC=13. 有两把不同的锁和三把钥匙,其中两把钥匙能翻开同一把锁,第三把钥匙能翻开另一把锁,任意取出一把钥匙去开任意的一把锁,一次翻开锁的概率为14. 如图,在 Rt△OAC 中,O 为坐标原点,直角顶点 C 在 x 轴的正半轴上,反比例函数y k 〔k≠0〕x在第一象限的图像经过 OA 的中点 B,交 AC 于点 D,连 OD,假设△OCD∽△ACO,那么直线 OA 的解析式为三、解答题〔58 分〕15. 〔8 分〕如图,点 A 的坐标是〔2,0〕,△ABO 是等边三角形,点 B 在第一象限,假设反比例函数y k 的x图像经过点 B,球这个反比例函数的解析式16. 〔8 分〕如图,如果从半径为 9 的圆形纸片减去1 圆周的一个扇形,将留下的扇形〔阴影局部〕围成一个圆3锥〔接缝处不重叠〕,求这个圆锥的高17. 〔10 分〕如图,在△ABC 中,AB=AC,∠A=36°,CD 平分∠ACB,求证:BC2=BA·BD18. 〔10 分〕某中学方案举办某项活动,需要从学生中选拔主持人,经过比赛,有 2 名男生和 1 名女生成为候选主持人〔I〕某同学认为,如果从 3 名候选主持人中随机选拔 1 名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?〔II〕如果从 3 名候选主持人中随机选拔 2 名主持人,请通过列表或树状图的方法求选拔出的 2 名主持人恰好是1 名男生和 1 名女生的概率19. 〔10 分〕如图,在△ABC 中,AB=AC,点 P、D 分别是 BC,AC 边上的点,且∠APD=∠B,求证:AC·CD=CP·BP20. 〔12 分〕如图,反比例函数y=k 〔k>0,k 是常数〕的图像经过点 A〔1,4〕,点 B〔m,n〕,其中xm>1,AM⊥x 轴,垂足为 M,BN⊥y 轴,垂足为 N,直线 AM 与直线 BN 的交点为 C〔I〕求证:△ACB∽△NOM〔II〕当△ACB 与△NOM 的面积之比为 4:1 时,求点 B 的坐标。
天津市第一中学九年级上册期末测试数学试题(含答案)
天津市第一中学九年级上册期末测试数学试题(含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30° B .45° C .30°或150° D .45°或135° 2.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π3.sin 30°的值为( ) A .3B .32C .12D .224.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或4 5.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-36.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°7.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°8.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( )A .23x y =B .32=y xC .23x y =D .23=y x9.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒10.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣211.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上 B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内12.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75° 13.下列方程中,有两个不相等的实数根的是( )A .x 2﹣x ﹣1=0B .x 2+x +1=0C .x 2+1=0D .x 2+2x +1=014.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A.54B.36C.32D.2715.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252-B.25--D.52-C.251二、填空题16.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.17.已知一组数据:4,4,m,6,6的平均数是5,则这组数据的方差是______.18.二次函数y=x2−4x+5的图象的顶点坐标为.19.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.20.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;21.抛物线y=ax2-4ax+4(a≠0)与y轴交于点A.过点B(0,3)作y轴的垂线l,若抛物线y=ax2-4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且│m│<1,则a的取值范围是______.22.某校五个绿化小组一天的植树的棵数如下:9,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是_____.23.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.24.如图,已知△ABC3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于_____(结果保留根号).25.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 26.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…27.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 29.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.30.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.三、解答题31.某校九年级(2)班A 、B 、C 、D 四位同学参加了校篮球队选拔. (1)若从这四人中随杋选取一人,恰好选中B 参加校篮球队的概率是______; (2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B 、C 两位同学参加校篮球队的概率.32.某校举行秋季运动会,甲、乙两人报名参加100 m 比赛,预赛分A 、B 、C 三组进行,运动员通过抽签决定分组. (1)甲分到A 组的概率为 ; (2)求甲、乙恰好分到同一组的概率.33.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?34.如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与边BC 交于点D ,与边AC 交于点E ,连接AD ,且AD 平分∠BAC . (1)试判断BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).35.如图,在矩形ABCD 中,AB=2,E 为BC 上一点,且BE=1,∠AED=90°,将AED 绕点E 顺时针旋转得到A ED ''△,A′E 交AD 于P , D′E 交CD 于Q ,连接PQ ,当点Q 与点C 重合时,AED 停止转动. (1)求线段AD 的长;(2)当点P 与点A 不重合时,试判断PQ 与A D ''的位置关系,并说明理由; (3)求出从开始到停止,线段PQ 的中点M 所经过的路径长.四、压轴题36.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.37.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)38.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).39.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =,求CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意画出图形,连接OA 和OB ,根据勾股定理的逆定理得出∠AOB =90°,再根据圆周角定理和圆内接四边形的性质求出即可. 【详解】 解:如图所示,连接OA ,OB , 则OA =OB =3, ∵AB =2, ∴OA 2+OB 2=AB 2, ∴∠AOB =90°,∴劣弧AB 的度数是90°,优弧AB 的度数是360°﹣90°=270°, ∴弦AB 对的圆周角的度数是45°或135°, 故选:D . 【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数.2.B解析:B 【解析】 【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积. 【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π, 故选:B . 【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.3.C解析:C 【解析】 【分析】直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12故选C 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.4.A解析:A 【解析】 【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可. 【详解】 解:如图所示,∵△ABC 、△ABD 都是直角三角形, ∴A,B,C,D 四点共圆, ∵AC=BC ,∴BAC ABC 45∠∠==︒, ∴ADC ABC 45∠∠==︒, 作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x, ∵AB 52= ∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+, ∴()22257x x =+- 解得,x=3或x=4, ∴AD 232x ==2.故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解.5.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.6.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.7.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.8.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.9.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.10.D解析:D【解析】x 2=4,x =±2.故选D.点睛:本题利用方程左右两边直接开平方求解.11.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】 如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.12.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.13.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.14.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键15.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得42AP == .故选A. 二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为x ,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为x ,故阴影部分的面积为πx 2×80360=29×πx 2=2π, 故解得:x 1=3,x 2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:(表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.18.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 19.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1 解析:12- 【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 20.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.21.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a 的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a 越大,开口越大,从而确定a 的范围.【详解】解:如解析:a>13或a<15-. 【解析】【分析】 先确定抛物线的对称轴,根据开口的大小与a 的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a 越大,开口越大,从而确定a 的范围.【详解】解:如图,观察图形抛物线y=ax 2-4ax+4的对称轴为直线422a x a-=-= , 设抛物线与直线l 交点(靠近y 轴)为(m,3),∵│m│<1,当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.22.2【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:49【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4, ∴飞镖落在阴影部分的概率是49, 故答案为:49. 【点睛】此题考查几何概率,解题关键在于掌握运算法则. 24.【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出A E 的长,根据角的和差解析:34- 【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=3 x.∵AB=2AD,AD=AE,∴AE=12AB=1,∴x+3x=1,解得x=33233-=+.∴S△AEF=12×1×33-=33-.故答案为:334-.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.25.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.26.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.27.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.28.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.29.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°, PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O 的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.30.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题31.(1)14;(2)P (BC 两位同学参加篮球队)16= 【解析】【分析】(1)根据概率公式P m n=(n 次试验中,事件A 出现m 次)计算即可 (2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B 4= 恰好选中B 参加校篮球队的概率是14.(2)列表格如下:∴P(BC两位同学参加篮球队)21 126 ==【点睛】本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.32.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)1 3(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=13.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.33.(1)y=600-5x(0≤x<120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000当y=-5x2+100x+60000=60420时,整理得出:x2-20x+84=0,解得:x1=14,x2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10,∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.34.(1)BC与⊙O相切,理由见解析;(2)23π.【解析】试题分析:(1)连接OD,推出OD BC⊥,根据切线的判定推出即可;(2)连接,DE OE,求出阴影部分的面积=扇形EOD的面积,求出扇形的面积即可.试题解析:(1)BC与O相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,//AC OD∴,90ACD∠=,∴OD⊥BC,∴BC与O相切;(2)连接OE,ED,60BAC OE OA ∠==,,∴△OAE 为等边三角形,60AOE ∴∠=,30ADE ,∴∠= 又1302OAD BAC ∠=∠=, ADE OAD ∴∠=∠,//ED AO ∴,AED AOD S S ∴=,∴阴影部分的面积=S 扇形ODE 60π42π.3603⨯⨯== 35.(1)5;(2)PQ ∥A D '',理由见解析;(35 【解析】【分析】(1)求出AE 5ABE ∽△DEA ,由AD AE AE BE=可求出AD 的长; (2)过点E 作EF ⊥AD 于点F ,证明△PEF ∽△QEC ,再证△EPQ ∽△A'ED',可得出∠EPQ =∠EA'D',则结论得证;(3)由(2)知PQ ∥A ′D ′,取A ′D ′的中点N ,可得出∠PEM 为定值,则点M 的运动路径为线段,即从AD 的中点到DE 的中点,由中位线定理可得出答案.【详解】解:(1)∵AB =2,BE =1,∠B =90°,∴AE 22AB BE +2221+5∵∠AED =90°,∴∠EAD+∠ADE =90°,∵矩形ABCD 中,∠ABC =∠BAD =90°,∴∠BAE+∠EAD =90°,∴∠BAE =∠ADE ,∴△ABE ∽△DEA , ∴AD AE AE BE=,∴55=, ∴AD =5;(2)PQ ∥A ′D ′,理由如下:∵5,5AD AE ==,∠AED =90° ∴22DE DA AE =-=225(5)-=25,∵AD =BC =5,∴EC =BC ﹣BE =5﹣1=4,过点E 作EF ⊥AD 于点F ,则∠FEC =90°,∵∠A'ED'=∠AED =90°,∴∠PEF =∠CEQ ,∵∠C =∠PFE =90°,∴△PEF ∽△QEC ,∴2142EP EF EQ EC ===, ∵51225EA EA ED ED ''===, ∴EP EA EQ ED ''=, ∴PQ ∥A ′D ′;(3)连接EM ,作MN ⊥AE 于N ,由(2)知PQ ∥A ′D ′,∴∠EPQ =∠A ′=∠EAP ,又∵△PEQ 为直角三角形,M 为PQ 中点,∴PM =ME ,∴∠EPQ =∠PEM ,∵∠EPF =∠EAP+∠AEA ′,∠NEM =∠PEM+∠AEA ′∴∠EPF =∠NEM ,又∵∠PFE =∠ENM ﹣90°,∴△PEF ∽△EMN ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市九年级上学期数学期末考试试卷A卷
一、单选题 (共6题;共12分)
1. (2分)二次函数y=2(x-1)-1的顶点是().
A . (1,-1)
B . (1,1)
C . (-1,1)
D . (2,-l)
2. (2分) (2017九上·宝坻月考) 方程的解是()
A .
B . x1=0,x2=-3
C . x1=1,x2=-3
D . x1=1, x2=-37.
3. (2分) (2018九上·武汉期末) 圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()
A . 相离
B . 相切
C . 相交
D . 相交或相切
4. (2分) (2019九上·萧山开学考) 为了考察甲、乙两块地小麦的长势,分别从中抽取10株苗,测得苗高如下(单位:cm):
甲:12,13,14,15,10,16,13,11,15,11;乙:11,16,17,14,13,19,6,8,10,16.
要比较哪块地小麦长得比较整齐,我们应选择的统计量是()
A . 中位数
B . 平均数
C . 众数
D . 方差
5. (2分) (2018八上·无锡期中) 如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF.其中正确的结论个数有.()
A . 4个
B . 3个
C . 2个
D . 1个
6. (2分) (2019·荆门) 抛物线与坐标轴的交点个数为()
A . 0
B . 1
C . 2
D . 3
二、填空题 (共10题;共10分)
7. (1分) (2017九上·岑溪期中) 若,则=________.
8. (1分) (2018九上·建平期末) 在一个不透明的口袋内放入红球8个,黑球4个,黄球n个,这些球除颜色外无任何差别,摇匀后随机摸出一个恰好是黄球的概率为,则放入口袋中的黄球个数是________.
9. (1分) (2019九上·利辛月考) 若点P(-1,m)在抛物线y=x2-mx+3m+5上,则m 的值为________ 。
10. (1分) (2018九上·楚雄期末) 已知(x、y、z均不为零),则
________.
11. (1分) (2018九上·南京期中) 如图,连接正十边形的对角线AC与BD交于点E,则∠AED=________°.
12. (1分) (2017九下·佛冈期中) 已知扇形的半径长6,圆心角为120°,则该扇形的弧长等于________.(结果保留π)
13. (1分)(2018·长宁模拟) 已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF 的面积为36,则△ABC的面积等于________.
14. (1分) (2019九上·中山期末) 已知a是关于x的一元二次方程2x2+x﹣2=0的一个根,则4a2+2a+3=________.
15. (1分) (2019九上·万州期末) 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA =90°,BE⊥AD于点E,且四边形ABCD的面积为12,则BE的长为________.
16. (1分)(2019·信阳模拟) 如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是________.
三、解答题 (共10题;共90分)
17. (10分) (2018九上·海原期中) 解方程
(1) x2﹣7x+6=0
(2)(5x﹣2)2=3(5x﹣2)
(3) 3x2+8x﹣3=0(用配方法)
(4) x2﹣2 x+2=0(用公式法)
18. (5分) (2019九上·余杭期末) 周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽.测量时,他们选择河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点,共线.
已知:,,测得,, .测量示意图如图所示.请根据相关测量信息,求河宽 .
19. (10分)(2017·迁安模拟) 小伟和小欣玩一种抽卡片游戏:将背面完全相同、正面分别写有1,2,3,4的四张卡片背面向上洗匀后,小伟和小欣各自随机抽取一张(不放回).将小伟的数字作为十位数字,小欣的数字作为个位数字,组成一个两位数.如果所组成的两位数为偶数,则小伟胜;否则小欣胜.
(1)当小伟抽取的卡片数字为2时,问两人谁获胜的可能性大?
(2)通过计算判断这个游戏对小伟和小欣是否公平.
20. (10分) (2017八下·蒙城期末) 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:
(1)计算两班的优秀率.
(2)计算两班比赛数据的方差.
(3)根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.
21. (10分) (2018九上·南京期中) 已知关于x的方程x2+ax+a-1=0.
(1)若方程有一个根为1,求a的值及该方程的另一个根;
(2)求证:不论a取何实数,该方程都有实数根.
22. (5分) (2017九上·重庆期中) 悦达汽车4S店“十一”黄金周销售某种型号汽车,该型号汽车的进价为30万元/辆,若黄金周期间销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,黄金周期间销售量不会突破30台.已
知该型号汽车的销售价为32万元/辆,悦达汽车4S店计划黄金周期间销售利润25万元,那么需售出多少辆汽车?(注:销售利润=销售价﹣进价)
23. (5分)(2019·周至模拟) 如图,河对岸有一路灯杆AB,在灯光下,小亮在点D 处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.
24. (10分) (2019九下·温州模拟) 如图,AB 是⊙O 的弦,半径OE⊥ AB ,P 为 AB 的延长线上一点,PC 与⊙O相切于点 C,连结 CE,交 AB 于点 F,连结 OC.
(1)求证:PC=PF.
(2)连接 BE,若∠CEB=30°,半径为 8,tan P = ,求 FB 的长.
25. (15分) (2017八下·海淀期中) 已知四边形中,,,
,,.
(1)求的面积.
(2)若为中点,求线段的长.
26. (10分)(2017·鹤岗) 如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣ x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.
参考答案
一、单选题 (共6题;共12分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
二、填空题 (共10题;共10分)
7、答案:略
8、答案:略
9、答案:略
10、答案:略
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
三、解答题 (共10题;共90分)
17、答案:略
18、答案:略
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略。