第三节概率的定义
概率论与数理统计03-第三节-条件概率与全概率公式
第三节 条件概率与全概率公式先由一个简单的例子引入条件概率的概念.内容分布图示★ 概念引入★ 条件概率的定义 ★ 例1 ★ 例2★ 乘法公式★ 例3 ★ 例4 ★ 例5 ★ 例6★ 全概率公式 ★ 例7 ★ 例8 ★ 例9★ 贝叶斯公式 ★ 例10 ★ 例11 ★ 例12★ 例13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-4内容要点:一、 条件概率的概念在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率. 如在事件A 发生的条件下,求事件B 发生的条件概率,记作)|(A B P .定义1 设B A ,是两个事件, 且0)(>A P , 则称)()()|(A P AB P A B P = (1) 为在事件A 发生的条件下,事件B 的条件概率.相应地,把)(B P 称为无条件概率。
一般地,)|(A B P )(B P ≠.注: 1. 用维恩图表达(1)式.若事件A 已发生,则为使B 也发生,试验结果必须是既在A 中又在B 中的样本点,即此点必属于AB .因已知A 已发生,故A 成为计算条件概率)|(A B P 新的样本空间.2. 计算条件概率有两种方法:a) 在缩减的样本空间A 中求事件B 的概率,就得到)|(A B P ;b) 在样本空间S 中,先求事件)(AB P 和)(A P ,再按定义计算)|(A B P 。
二、乘法公式由条件概率的定义立即得到:)0)(()|()()(>=A P A B P A P AB P (2)注意到BA AB =, 及B A ,的对称性可得到:)0)(()|()()(>=B P B A P B P AB P (3)(2)和(3)式都称为乘法公式, 利用它们可计算两个事件同时发生的概率.三、全概率公式全概率公式是概率论中的一个基本公式。
它使一个复杂事件的概率计算问题,可化为在不同情况或不同原因或不同途径下发生的简单事件的概率的求和问题。
第三节 随机事件的概率
第三节 随机事件的概率考试要求1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.[知识排查·微点淘金]知识点1 随机事件的频率与概率(1)频数与频率:在相同的条件S 下进行n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比值f n (A )=n An 为事件A出现的频率.(2)概率:对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率f n (A )稳定在某个常数上,则把这个常数记作P (A ),称为事件A 的概率.[微提醒],频数是一个整数,其取值范围为0≤n A ≤n ,n A ∈N ,因此随机事件A 发生的频率f n (A )=n An的可能取值介于0与1之间,即0≤f n (A )≤1.知识点2 事件的关系与运算定义符号表示包含关系一般地,对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B ) 相等关系 一般地,若A ⊆B 且B ⊆A ,则称事件A 与事件B 相等 A =B 并事件(或和事件) 若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件) A ∪B (或A +B ) 交事件(或积事件) 若某事件发生当且仅当事件A 发生且事件B 发生,则称该事件为事件A 与事件B 的交事件(或积事件) A ∩B 或AB 互斥事件 若A ∩B 为不可能事件,那么称事件A 与事件B 互斥 A ∩B =∅ 对立事件若A ∩B 为不可能事件,而A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,且A ∪B =Ω(Ω为全集)(1)互斥事件具体包括三种不同的情形:①事件A 发生且事件B 不发生;②事件A 不发生且事件B 发生;③事件A 与事件B 都不发生.(2)“事件A 与事件B 是对立事件”是“其概率满足P (A )+P (B )=1”的充分不必要条件,这里一定有事件A 或事件B 中的一个发生,且不会同时发生.知识点3 互斥事件的概率和对立事件的 概率(1)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (2)对立事件的概率若事件A 与事件B 互为对立事件,则A ∪B 为必然事件,P (A ∪B )=1,P (A )=1-P (B ).[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”) (1)事件发生的频率与概率是相同的.(×) (2)在大量重复试验中,概率是频率的稳定值.(√) (3)两个事件的和事件是指两个事件都得发生.(×)(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.(×)2.(链接教材必修3 P 121T 4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )A .至多有一次中靶B .两次都中靶C .只有一次中靶D .两次都不中靶解析:选D “至少有一次中靶”的对立事件是“两次都不中靶”.3.(链接教材必修3 P 121例题)如果从不包括大、小王的52张扑克牌中随机抽取一张,取到黑桃的概率是14,取到梅花的概率是14,则取到红色牌的概率是( )A .18B .14C .12D .34解析:选C 由对立事件的概率公式得P =1-⎝⎛⎭⎫14+14=12.4.(链接教材必修3 P 123A 组T 3)某人进行打靶练习,共射击10次,其中有2次中10 环,有3次中9环,有4次中8环,有1次未中靶.假设此人射击1次,则其中靶的概率约为 ;中10环的概率约为 .答案:910 155.(混淆频率与概率)给出下列三个命题,其中正确的命题有 个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.答案:0一、基础探究点——随机事件的关系(题组练透)1.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件A ,则A 的对立事件是( )A .至多有一件次品B .两件全是正品C .两件全是次品D .至多有一件正品解析:选B 从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件A ,则A 的对立事件是两件全是正品.2.一袋中装有5个大小和形状完全相同的小球,其中红球3个,白球2个,从中任取2个小球,若事件“2个小球全是红球”的概率为310,则概率是710的事件是( )A .恰有一个红球B .两个小球都是白球C .至多有一个红球D .至少有一个红球解析:选C 因为710=1-310,所以概率是710的事件是“2个小球全是红球”的对立事件,应为:“一个红球一个白球”与“两个都是白球”的和事件,即为“至多有一个红球”.3.设条件甲:事件A 与事件B 是对立事件,结论乙:概率满足P (A )+P (B )=1,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若事件A 与事件B 是对立事件,则A ∪B 为必然事件.再由概率的加法公式得P (A )+P (B )=1.投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件.如事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.判断互斥、对立事件的两种方法定义法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.集合法①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.[典例剖析][例1] 某险种的基本保费为a (单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a出险次数 0 1 2 3 4 ≥5 频数605030302010(1)记A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.30,故P (B )的估计值为0.30. (3)由所给数据得:保费 0.85a a 1.25a 1.5a 1.75a 2a 频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a ·0.30+a ·0.25+1.25a ·0.15+1.5a ·0.15+1.75a ·0.10+2a ·0.05=1.1925a .因此,续保人本年度平均保费的估计值为1.1925a . [拓展变式]1.[变结论]若本例的条件不变,试求“一续保人本年度的保费不低于基本保费”的概率的估计值.解:设事件“一续保人本年度的保费不低于基本保费”为E ,事件E 对应于出险次数大于或等于1,由本例知出险次数小于1的频率为0.30,故一年内出险次数大于或等于1的频率为1-0.30=0.70,故P (E )的估计值为0.70.2.[变结论]若本例的条件不变,记F 为事件:“一续保人本年度的保费等于基本保费”.求P (F )的估计值.解:“一续保人本年度的保费等于基本保费”的事件F 发生当且仅当一年内出险次数等于1,其频率为0.25,故P (F )的估计值为0.25.1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.提醒:概率的定义是求一个事件概率的基本方法.[学会用活]1.在投掷一枚硬币的试验中,共投掷了100次,正面朝上的频数为51次,则正面朝上的频率为( )A .49B .0.5C .0.51D .0.49解析:选C 由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51100=0.51.三、综合探究点——互斥、对立事件的概率(多向思维)[典例剖析]思维点1 互斥、对立事件概率的计算[例2] 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.解:解法一:(利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球是红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=512+13=34.(2)取出1球是红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=512+13+16=1112. 解法二:(利用对立事件求概率)(1)由解法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1-16-112=34.(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P (A 1∪A 2∪A 3)=1-P (A 4)=1-112=1112.思维点2 互斥、对立事件与统计的综合[例3] 如图所示,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如表所示:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人.所以用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为 所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的频率 0.1 0.2 0.3 0.2 0.2 选择L 2的频率0.10.40.40.1(3)A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)得P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,P (A 1)>P (A 2),所以甲应选择L 1;P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,P (B 2)>P (B 1), 所以乙应选择L 2.1.求解此类题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P(A)求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.解决与统计知识交汇考查随机事件的概率计算问题时,先读懂图表,提取有关信息,用统计知识求频数,频率,再求概率.[学会用活]2.经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)(方法一)记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E +F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.(方法二)记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.限时规范训练基础夯实练1.某医院治疗一种疾病的治愈率为50%,则下列说法正确的是()A.如果第1位病人没有治愈,那么第2位病人一定能治愈B.2位病人中一定有1位能治愈C.每位病人治愈的可能性是50%D.所有病人中一定有一半的人能治愈解析:选C某医院治疗一种疾病的治愈率为50%,对于A,如果第1位病人没有治愈,那么第2位病人治愈的概率为50%,故A错误;对于B,2位病人中每个人治愈的可能性都是50%,或两人都能治愈,或有1位能治愈,或都不能治愈,故B 错误;对于C ,每位病人治愈的可能性是50%,故C 正确;对于D ,所有病人中每个人治愈的可能性都是50%,但所有病人中不一定有一半的人能治愈,故D 错误.故选C .2.从含有质地均匀且大小相同的2个红球、n 个白球的口袋中随机取出一球,若取得红球的概率是25,则取得白球的概率等于( )A .15B .25C .35D .45解析:选C ∵取得红球与取得白球为对立事件,∴取得白球的概率为P =1-25=35.3.(2021·烟台一中月考)在第3,6,16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车和6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )A .0.20B .0.60C .0.80D .0.12解析:选C “能乘上所需要的车”记为事件A ,则3路或6路车有一辆路过即事件发生.故P (A )=0.20+0.60=0.80.4.设A 与B 是互斥事件,A ,B 的对立事件分别记为A ,B ,则下列说法正确的是( ) A .A 与B 互斥 B .A 与B 互斥 C .P (A +B )=P (A )+P (B )D .P (A +B )=1解析:选C 根据互斥事件的定义可知,A 与B ,A 与B 都有可能同时发生,所以A 与B 互斥,A 与B 互斥是不正确的;P (A +B )=P (A )+P (B )正确;A 与B 既不一定互斥,也不一定对立,所以P (A +B )=1是不正确的.5.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45解析:选D 设[25,30)上的频率为x ,由所有矩形面积之和为1,即x +(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.6.容量为20的样本数据,分组后的频数如下表: 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70] 频数234542的频率为 .解析:数据落在区间[10,40)的频率为2+3+420=920=0.45.答案:0.457.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9600人,则可估计该地区对“键盘侠”持反对态度的有 人.解析:在随机抽取的50人中,持反对态度的频率为1-1450=1825,则可估计该地区对“键盘侠”持反对态度的有9600×1825=6912(人).答案:69128.一只袋子中装有大小相同的7个红玻璃球和3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为 ;至少取得一个红球的概率为 .解析:由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.答案:815 14159.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买三种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从题中统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了两种商品,所以顾客在甲、乙、丙、丁中同时购买三种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理可得,顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.综合提升练10.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A .19B .110C .15D .18解析:选B 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的情况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P =110,故选B .11.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1解析:选C 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一色的概率为1735.12.某城市2020年的空气质量状况如表所示: 污染指数T 30 60 100 110 130 140 概率p1101613730215130时,空气质量为轻微污染,则该城市2020年空气质量达到良或优的概率为 .解析:由题意可知2020年空气质量达到良或优的概率为P =110+16+13=35.答案:3513.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是 ,他属于不超过2个小组的概率是 .解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P =11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P =1-86+7+8+8+10+10+11=1315.答案:35 131514.(2021·沈阳调研)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.=0.025.故所求概率为502000(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-372=0.814.2000(3)增加第五类电影的好评率,减少第二类电影的好评率.创新应用练15.(2021·湖北七市联考)某电子商务公司随机抽取1000名网络购物者进行调查.这1000名购物者2018年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9] 发放金额50100150200(2)以这1000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:x 0.3≤x<0.50.5≤x<0.60.6≤x<0.80.8≤x≤0.9y 50100150200频率0.40.30.280.02 这11000×(50×400+100×300+150×280+200×20)=96.(2)由获得优惠券金额y与购物金额x的对应关系及(1)知P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.。
概率论与数理统计第3讲
3
一般地, 对于A,B两个事件, P(A)>0, 在事件A发 生的条件下事件B发生的概率称为条件概率 条件概率, 条件概率 记为P(B|A).
4
例1 一个家庭中有两个小孩, 已知其中一个是 女孩, 问另一个也是女孩的概率是多少(假定 男生女生是等可能的)? 解 由题意, 样本空间为 Ω={(男,男),(男,女),(女,男),(女,女)} A表示事件"其中一个是女孩", B表示事件"两 个都是女孩", 则有 A={(男,女),(女,男),(女,女)} B={(女,女)} 由于事件A已经发生, 所以这时试验的所有可 能结果只有三种, 而事件B包含的基本事件只 占其中的一种, 所以有P(B|A)=1/3.
20
例5 已知某厂家的一批产品共100件, 其中有5 件废品. 为慎重起见, 某采购员对产品进行不 放回的抽样检查, 如果在被他抽查的5件产品 中至少有一件是废品, 则他拒绝购买这一产品. 求采购员拒绝购买这批产品的概率. 解设 Ai={被抽查的第i件产品是废品}, i=1,2,3,4,5, A={采购员拒绝购买}, 5 则 A= A
17
例3 活到50岁的概率为0.90718, 活到51岁的概 率为0.90135. 问现在已经50岁的人, 能够活到 51岁的概率是多少? 解 记A={活到50岁}, B={活到51岁}. 则B⊂A. 因此, AB=B. 要求P(B|A). 因为P(A)=0.90718, P(B)=0.90135, P(AB)=P(B)=0.90135, 从而 P ( AB ) 0.90135 P ( B | A) = = ≈ 0.99357 P ( A) 0.90718 由此可知, 该城市的人在50岁到51岁之间死亡 的概率约为0.00643. 在平均意义下, 该年龄段 中每千个人中约有6.43人死亡. 18
条件概率、全概公式、贝叶斯公式
P(AB 3 36 1 ) P(A| B) = = = 。 P(B ) 6 36 2 解法2: 解法 P(A| B) = 3 = 1。 6 2
在B发生后的 发生后的 缩减样本空间 中计算
设某种动物由出生算起活到20年以上的 例2: 设某种动物由出生算起活到 年以上的 概率为0.8,活到25年以上的概率为 年以上的概率为0.4。 概率为 ,活到 年以上的概率为 。问 现年20岁的这种动物 它能活到25岁以上的 岁的这种动物, 现年 岁的这种动物,它能活到 岁以上的 概率是多少? 概率是多少? 能活20年以上 能活25年以上 解:设A={能活 年以上 B={能活 年以上 设 能活 年以上}, 能活 年以上}, 所求为P(B|A) 。 所求为 依题意, 依题意, P(A)=0.8, P(B)=0.4, ,
“先抽的人当然要比后抽的人抽到的人机会大。” 先抽的人当然要比后抽的人抽到的人机会大。 先抽的人当然要比后抽的人抽到的人机会大
我们用A 表示“ 个人抽到入场券 个人抽到入场券” 我们用 i表示“第i个人抽到入场券”, i=1,2,3,4,5。 = 。 表示“ 个人未抽到入场券 个人未抽到入场券” 则 A “第i个人未抽到入场券”, 表示 i 显然,P(A1)=1/5,P( A)=4/5, 显然, , , 1= 也就是说, 也就是说, 个人抽到入场券的概率是1/5。 第1个人抽到入场券的概率是 。 个人抽到入场券的概率是
乙两厂共同生产1000个零件,其中 个零件, 例3: 甲、乙两厂共同生产 个零件 其中300 件是乙厂生产的。而在这300个零件中,有189个 个零件中, 件是乙厂生产的。而在这 个零件中 个 是标准件,现从这1000个零件中任取一个,问这 个零件中任取一个, 是标准件,现从这 个零件中任取一个 个零件是乙厂生产的标准件的概率是多少? 个零件是乙厂生产的标准件的概率是多少? 零件是乙厂生产}, 设B={零件是乙厂生产 , 零件是乙厂生产 A={是标准件 , 是标准件}, 是标准件 所求为P(AB)。 。 所求为
概率的含义教案及教学说明(新)1
§25.3概率的含义(一)东莞市东华初级中学冯婷婷华东师大版数学九年级(上) 第二十五章第三节教材分析概率的含义(一)是华师大版九年级数学上册第25章第三节第一课时,概率在日常生活中、科学预测中有着非常重要而广泛的应用,因此它是整个初中数学的一个重点,也是数学研究的一个重要分支.按照教学内容交叉编排、螺旋上升的方式,统计与概率的内容已经由简单到复杂,由低层次的展开到高层次的综合,得到了不断的深化.本节在学生已有的实验概率的知识基础上,首先引出概率的计算;通过问题1,介绍如何从频率的角度解释某一个具体的概率值,通过本节的学习,为后面概率的计算和沟通实验概率与理论概率作了准备.学情分析(1)到本册为止,除了概率的公理化定义外,已经介绍了两种和初步接触了一种研究事件发生可能性大小的途径:主观概率、实验概率和根据树状图等理性分析预测概率;(2)在经过前四册概率知识的学习后,九年级学生已经具有一定的动手实验能力和归纳概括能力;(3)学生希望老师能创设便于观察和思考的学习环境,也希望结合具有现实背景的素材,获得数学概念,掌握解决问题的技能与方法.设计理念为了充分调动学生学习的积极性,变主动学习为主动愉快学习,使数学课变得生动、有趣、高效,在教学中主要采用启导式教学法;采用“以学生为主体,以问题为中心,以活动为基础,以培养学生提出问题和解决问题为目标”进行教学,把启发、诱导贯穿教学始终,通过真实、熟悉的情景,激发学生的学习动机,尽力唤起学生的求知欲望,促使他们动脑、动手、动口,积极参与学习活动全过程,在老师的指导下生动地、主动地、富有个性地开展学习活动.教学目标知识目标: 1.理解概率定义和简单的计算2.充分利用学生已有的对实验概率的经验,从频率的角度去解释某一个具体的概率值含义能力目标:通过活动,帮助学生感受到数学与现实生活的联系,提高用数学知识来解决实际问题的能力情感目标: 1.培养学生实事求是的态度及勇于探索的精神2.培养学生交流与合作的协作精神教学重点 1.通过回顾以往实验,引出概率的定义和计算公式2.通过学生对已有实验的经验去体会某一概率值的含义教学难点从实验中某事件发生的频率去理解某一概率值的含义教学方法采用“以学生为主体,以问题为中心,以活动为基础,以培养学生提出问题和解决问题为目标”的“引导发现法”和“探索讨论法”.教学手段采用多媒体教学教学基本流程教学过程问题问题设计意图 师生活动一 .回顾实验已做过的抛掷一枚普通硬币的实验(电脑演示) 问题1:在抛掷一枚这个实验中“出现反面”的机会是多少?这个机会还表示什么?问题2:投掷手中一枚普通的正六面体骰子,有几个等可能的结果及掷得6的结果?通过回顾实验,学生很容易答出,抛掷一枚普通硬币仅有两个可能的结果:“出现正面”和“出现反面”.这两个结果发生的机会相等,“出现反面”的机会为50%.50%还表示“出现反面”这个事件发生的可能性的大小.通过回顾画树状图分析某事件的等可能结果及关注的结果 师:提出问题,引导学生回忆、观察做过的实验· 生:观察、叙述这一实验频率的稳定值·及画树状图来分析某事件的等可能结果和关注的结果二 .归纳定义 概率的定义:表示一个事件发生的可能性大小的数,叫做该事件的概率· 例如,抛掷一枚硬币,“出现反面”的概率为21,记为:P (出现反面)=21 读作:出现反面的概率等于21写一写,读一读:你投掷手中一枚普通的正六面体骰子,“出现数字1”的概率是多少?解:(116P 出现数字)= 读作:“出现数字1”的概率为16通过具体的简单实验,得到概率的定义,学生经历了从特殊到一般的探索过程,降低了学习的难度,消除了学习新知的畏惧心态.师:分析学生的解释,引出概率含义的正确理解.生:思考、讨论、叙述自己的理解.三 .从学过的实验频率初步体会概率含义⑴.合作填表:⑵ .归纳总结:提出三个问题:1.频率和概率的关系是什么?2.除实验外我们还有哪种方法可以得到概率?3.理论分析概率的关键是什么?通过三个问题的总结,学生发现理论分析概率的关键:(1)要清楚我们关注的是发生哪个或哪些结果(2)要清楚所有机会均等的结果. (1)、(2)两种结果个数之比就是关注的结果发生的概率.P(关注结果)关注的结果个数=所有机会均等的结果的个数三个问题的提出,为学生归纳概率公式指明了方向,在三个问题的指导下,发现理论分析概率的关键就是1.要清楚我们关注的是发生哪个或哪些结果2.要清楚所有机会均等的结果;进而得到概率的一般公式,达到沟通实验概率和理论概率的目的;进一步强化对概率含义的正确理解.师:然后将学生每四人分为一组,选出组长做好记录,类比学习,四人合作完成将后面四个实验填写·生:完成后,小组长发表结论,师生共同分析判断,得到正确答案.首先让学生观察课本124页表25.3.1已填好的三个简单实验,引导学生发现图表中所填内容和要求的联系,特别是发现“所有机会均等的结果”就是要将包括关注的结果在内的所有机会均等的结果都罗列出来.师:帮助学生回忆上节课的试验,引导学生观察、归纳和总结·最后归纳总结频率与概率的区别与联系的书面文字·生:尝试归纳、概括频率与概率的区别与联系,并发表自己的意见四. 设计实验,从频率角度解释概率值含义 议一议:某俱乐部举办了一次掷一个骰子的游戏,每掷一次付款0.1元,若掷中“6”则奖1元,小明想,我只要掷6次,就有一次掷中6,小明的想法对吗?(此问题原型为课本P126页问题1)问题1:在抛掷一枚普通的六面体骰子这实验中,掷得“6”得概率等于61表示什么意思?有同学说它表示每6次就有1次掷出“6”,你同意吗?思考:①已知掷得“6”的概率等于61,那么不是“6”(也就是1~5)的概率等于多少呢?这个概率值又表示什么意思?②我们知道,掷得“6”的概率等于61也表示:如果重复投掷骰子很多次的话,那么实验中掷得“6”的频率会逐渐稳定到61附近·这与“平均每6次有1次掷出‘6’”互相矛盾吗?思考1的解决让学生理解同一事件中所有关注结果的概率和为1,学会从频率角度解释概率值;思考2的解决让学生理解这两种说法其实是一回事,达到实验概率和理论概率的统一. 师:提出问题,引导学生讨论,讲出自己的想法,肯定正确的,指出错误的地方,用试验来验证.生:思考、讨论、叙述自己的理解通过做投掷骰子实验(或模拟实验),一旦掷到“6”,就算完成了一次实验,然后数一数你投掷了几次才得到“6”的.看看能否发现什么.通过自我设计模拟实验,培养学生用所学的知识解决问题的能力,体验解决问题策略的多样性,发展实践能力和创新能力师:提出问题,引导学生讨论,讲出自己的想法,肯定正确的,指出错误的地方,用试验来验证生:思考、讨论、叙述自己的理解生:(四人小组合作交流完成)五.当堂训练(分层练习)A 组1.掷一枚普通正六面体骰子,求出下列事件出现的概率:P (掷得点数是6) = 61 ;P (掷得点数小于7)= 1 ; P (掷得点数为5或3)= 31;P (掷得点数大于6)= 0 . 2.甲产品合格率为98,乙产品的合格率为80,你认为买哪一种产品更可靠? 3.阿强在一次抽奖活动中,只抽了一张,就中了一等奖,能不能说这次抽奖活动的中奖率为百分之百?为什么? 4.从一副扑克牌(除去大小王)中任抽一张· P (抽到红心) = ? P (抽到黑桃) = ? P (抽到红心3)= ? P (抽到5)= ? 5.有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4·现将它们的背面朝上,从中任意摸到一张卡片,则: p (摸到1号卡片)= ? p (摸到2号卡片)= ? p (摸到3号卡片)= ? p (摸到4号卡片)= ? 6. 任意翻一下日历,翻出1月6日的概率为 ·翻出4月31日的概率为 ________. B 组 1. 某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会·如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被等分成20个扇形)·甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元购物券的概率分别是多少?2.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏设置了如图所示的翻奖牌,如果只能在9个数字中选中一个翻牌,试求以下事件的概率(1)得到书籍;(2)得到奖励;(3)什么奖励也没有当堂训练分为A 、B 、C 三组练习,其中A 组练习以基础知识为主,让多数学生都有收获,感受到成功的喜悦.B 组练习的设计,联系生活实际,训练学生的基本技能,让学生感受到概率与实际生活的联系.C 组练习,设计一道摸球游戏的开放题,目的是培养学生合作,探究,创新的能力.1 2 3 4 5 6 789奖牌正面 一架显微镜 一套丛书 谢谢参与 一张唱片 两张球票 一本小说 一个随身听一副球拍一套文具奖牌反面卧室书房饭厅客厅C 组1. 用4个除颜色外完全相同的球设计一个摸球游戏. (1)使摸到白球的概率为 21 ,摸到红球的概率为21(2)使摸到白球的概率为 21 ,摸到红球和黄球的概率都是41 .你能用8个除颜色外完全相同的球分别设计满足如上条件的游戏吗?设计A 、B 、C 三组练习,可以让学生从会做的题开始做起,让每个学生都有可以做的题目,都有做不完的题目,使不同程度的学生通过例题,练习,习题得到不同程度的发展. 六.小结归纳到此为止,学生已基本掌握好本节课主要内容,并能简单应用,达到了教学目标;为了再现本节课重点、难点,突出关键,使学生对所学知识有一个完整的印象,从四点作出小结:①概率的定义②获得概率的两种方法:实验观察和理论分析 ③会用概率公式解决实际问题 ④从频率角度解释概率值的含义七.布置作业(A 组)1.从一副52张的扑克牌(除去大小王)中任抽一张. P (抽到红心) = ; P (抽到不是红心)= ; P (抽到红心3)= ; P (抽到5)= .(B 组)2.如图是小明家的平面示意图,某天,马小虎不慎把文具盒丢在下面四个房间中的某个房间中,房间里铺满了相同 的地砖.问文具盒丢在哪个房间内的概率最大?(C 组)3.如图是一个转盘,小颖认为转盘上共有三种颜色, 所以自由转动这个转盘,指针停在红色、黄色、或蓝色区域的概率都是31,你认为呢 ?八、板书设计板书分为三块,一个为定义公式,一个为例题,一个为投影区·九.评价设计评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学.1=经常 2=一般 3=很少思维的创造性 (用不同方法解决问题、独立思考) 1=经常 2=一般 3=很少 思维的条理性(能表达自己的意见、解决问题的过程清楚、有计划) 1=经常 2=一般 3=很少 是否善于与人合作和积|极表达意见) 1=经常 2=一般 3=很少 是否自信(提出和别人不同的问题、大胆尝试并表达自己想法) 1=经常 2=一般 3=很少 积极(举手发言、提出问题并询问、讨论与交流以、阅读课外读物) 1=参与有关的活动2=初步理解 3=真正理解并掌握知识技能掌握情况(概率含义、解决问题) 说 明321 项 目【教案设计说明】:一.关于教学内容本课时是华东师大版义务教育课程标准实验教科书《数学》九年级(上)第25章第3节概率含义第一课时,主要是探究概率的含义和介绍如何从频率的角度解释某一具体的概率值……二.关于教学方法为了充分调动学生学习的积极性,变主动学习为主动愉快学习,使数学课变得生动、有趣、高效,在教学中主要采用启导式教学法;采用“以学生为主体,以问题为中心,以活动为基础,以培养学生提出问题和解决问题为目标”进行教学,把启发、诱导贯穿教学始终,通过真实、熟悉的情景,激发学生的学习动机,尽力唤起学生的求知欲望,促使他们动脑、动手、动口,积极参与学习活动全过程,在老师的指导下生动地、主动地、富有个性地开展学习活动.三.关于教学手段在教学手段方面我选择多媒体辅助教学的方式,多媒体为教师进行教学演示和学生的观察与发现提供了平台,借助投影、计算机辅助教学,通过有声、有色、有动感的画面,提高学生学习的兴趣,在美的熏陶中主动愉快地获取知识,提高教学效益,使信息技术与数学教学有机整合,真正为教学服务.四.关于教学设计为了达成教学目标,强化重点、突破难点,我把引导学习活动分为实验回顾、学习新知、当堂训练、小结归纳、课后巩固等阶段.五.思考的几个问题1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.2、防止过于追求教学的情境化倾向,怎样把握一个度.3、怎样应对学生“动”起来后提出来的各种令教师始料不及的问题,防止学习秩序失控.。
第三节条件概率及相关公式
定理:设P ( B) > 0, 则条件概率P ( i B ) 满足概
1.非负性:对任一事件A,有0 ≤ P ( A B ) ≤ 1
率的公理化定义中的三个条件:
2.规范性:P ( Ω B ) = 1
3.可列可加性:对可列无限多个互不相容 的 事 件 A 1 , A2 , ⋯ ⋯ An , ⋯ ⋯
有 P ∪ Ak B = ∑ P ( Ak B ) k =1 k =1
=
P ( AB ) 6 8 6 ∴ P ( A B) = = = 7 P (B) 7 8
7 P ( B) = 8
3 3 6 + = 8 8 8
练习3:
设某厂生产的灯泡能使用1000小时以上的 概率为0.9,能使用1500小时以上的概率为 0.3,如果有一个灯泡已经了使用1000小时
没有损坏,
求它能使用1500小时以上的概率.
P ( AB) P( B | A) = P ( A)
为事件 发生的条件下事件 发生的条件概率 事件A发生的条件下事件 发生的条件概率. 事件 发生的条件下事件B发生的条件概率
“条件概率”是“概率”吗? 条件概率” 概率” 1.何时 P(A|B)=P(A)? 1.何时 2.何时 2.何时 P(A|B)>P(A)? 3.何时 3.何时 P(A|B)<P(A)?
+ C 2 m −1
m 4 m −1
2 = 3
C
因为在B已发生的条件下,A1与A2互为对立
事件,故在取得的m个球是同一颜色的条
件下,球全是白色的条件概率为:
2 1 P ( A 2 B ) = 1 − P A2 B = 1 − P ( A1 B ) = 1 − = 3 3
第三节 事件的条件概率和三个基本公式
∵ B ⊂ A ∴ B = BA .
P( B ) = P( BA) = P( A) ⋅ P( B A) = 0.96 × 0.75 = 0.72 ,
即一等品率为72%. 即一等品率为 %.
8
Hale Waihona Puke 一场精彩的足球赛将要举行, 一场精彩的足球赛将要举行, 5个球迷好不容易才搞到一张入场券 个球迷好不容易才搞到一张入场券. 个球迷好不容易才搞到一张入场券 大家都想去,只好用抽签的方法来解决 只好用抽签的方法来解决. 大家都想去 只好用抽签的方法来解决
P( A B ) ≥ 0 ;
P( B) = 1;
是两两不相容的事件, (3) 可列可加性 设 A ,⋯, An ⋯是两两不相容的事件,则 1
∞ ∞ P ∪ Ai B = ∑ P( Ai B ) i =1 i =1
并由此推出条件概率的其它性质: 并由此推出条件概率的其它性质:
0.1 = 0.25 . = 0.4
7
某厂产品的废品率为4%,而合格品在中有75% %,而合格品在中有 例2 某厂产品的废品率为 %,而合格品在中有 %是 一等品,求一等品率. 一等品,求一等品率. :合格品; :一等品, 解 记A:合格品;B:一等品, 由题意 , P( A) = 1 − 4% = 96% , P( B A) = 75% ,
P ( B ) = P ( A)P ( B A) + P ( A )P ( B A )
a a −1 b a a = ⋅ + ⋅ . = a + b a + b−1 a + b a + b−1 a + b
可以想见,第三次 第四次… 可以想见 , 第三 次 、 第四次 … 摸出白球的概率仍为
概率定义与性质
二.条件概率与乘法公式 (The conditional probability and multiplication rule) 定义 1:设 A、B 为两个随机事件,且 P(A)>0,称在已知 A 发生 的前提下事件 B 发生的概率为事件 B 发生的条件概率,记为 P(B|A)。
考虑下面例子,设盒中有 3 个红球,4 个白球,现不放回地 每次取 1 球,连续取两次。则(1)第 1 次取得红球的概率
P(A)= 3 7
(2)第 1 次取得红球且第 2 次取得白球的概率
P(AB)= 3 4 2; 76 7
而(3)条件概率P(B | A) 4 2。因此有 63
P(AB)=P(A)P(B|A) 。这公式对一般任意两个随机事件 A、B 总是成立的,称其为概 率乘法公式。并且当 P(A)>0 时,得到条件概率公式:
上公式一般情况下不成立。如 A、B 互斥, P(A)=0.5,P(B)=0.3,左= P(B)=0.3,右=-0.2 二、古典概型
在概率计算中,比较常见的是所谓古典概型概率计算。为 此,首先定义等概完备事件组的概念。
定义 3:若事件 A1, A2 ,..., An满足 (1)事件 A1, A2 ,..., An发生的概率相等(等可能性); (2)在每次试验中,事件 A1, A2 ,..., An至少有一个发生(完备性); (3)在每次试验中,事件 A1, A2 ,..., An只能发生其中之一(互斥性), 称事件 A1, A2 ,..., An构成等概完备事件组,也称等概基本事件组。
概率定义与性质
定义 1:在相同的条件下,重复进行大量的试验,若事件 A 发 生的频率(frequency)稳定地逼近某常数 p,称 p 为事件 A 发生 的概率(probability),记为 P(A),即 p=P(A)。
第三节连续型随机变量及其概率密度
则称X服从0 1分布.
这时X的分布函数为:
F(x)
1
0, x p,0
0, x
1,
1, x 1.
2. 二项分布:若随机变量 X所有可能取值为 0,1,,n,且分布律为:
P(X
k)
C
k n
pk qnk,k
0,1,,n,0
p
1,q
1
p,
则称X服从二项分布, 记为:X~B(n,p). 3. 泊松分布:若随机变量 X所有可能取值为 0,1,2,,且分布律为:
2
Acos
xdx
2 A sin
x
2
0
2 A,
2A 1,
(2) (3)
P(0 X
当x
2
时4,) F
( x042)故12coAsxxdf12x(.t)d12t
sin
x
4
0
x
0dt
2 4
.
0.
当
2
x
2
时,
F
(
x)
2 0dt
x
2
1 2
cos
tdt
1 2
(sin
x
1).
当x
2
时,F
6
三、几种常见的连续型分布
1. 均匀分布:设X的概率密度为
f
(
x)
b
1
a
,
a x b,
0, 其它.
则称X在区间[a,b]上服从均匀分布,记为 X~U[a,b].
0, x a,
易求X的分布函数为
F
(
x
)
x b
a a
,a
1, x
概率的进一步认识知识点中
概率的进一步认识知识点中
一、什么是概率
概率是一个变量,表示件事情发生的机率大小。
概率是数学中一种量度,也是一个抽象的概念,包含了多个事件的发生机率。
如果在一系列实验中,一个事件发生的次数越多,那么这种事件发生的可能性就越大,它具有一定的发生概率。
二、概率的定义
概率可以定义为一种事件发生的可能性,它可以通过实验测定和理论计算,可以量化描述一个事件的发生机率,用于计算任何事件是否发生。
常见的概率有绝对概率和相对概率。
绝对概率可以通过实验测定,就是一次实验中其中一种事件出现的频率与实验次数的比值,可用来测定当前实验中发生的概率。
而相对概率,是一种统计和概率比较的方法,它通过比较和计算两个事件发生概率的大小,来测定其中一个事件发生的概率。
三、概率的意义
概率是实际生活中一种重要的概念,它可以用来帮助我们确定事件发生的可能性,指导我们预测未来的情况,以及帮助我们分析从一些随机事件中受益。
此外,它对风险评估和经济分析也很有帮助。
四、概率的应用
概率可以应用于社会科学,金融学,数学,工程学,数据科学,生物学,医学等领域,常用于人们分析不确定的环境,了解系统变换,估计风险。
第三节条件概率全概率公式
第三节条件概率全概率公式条件概率、全概率公式是概率论中两个重要的概念和方法。
在实际问题中,我们常常需要考虑一些事件发生的条件下,另一个事件发生的概率,即条件概率。
而全概率公式则是一种根据一组互斥事件的概率可以计算出其他事件概率的方法。
本节将详细介绍条件概率和全概率公式的概念、性质以及应用。
一、条件概率条件概率是指在一个已知事件B发生的条件下,事件A发生的概率。
记为P(A,B),读作“A在B下的概率”。
其计算公式为:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率具有以下性质:1.非负性:对于任意的事件A和B,有P(A,B)≥0。
2.规范性:当P(B)>0时,有P(B,B)=13.直积性:对于任意的事件A和B,有P(A∩B)=P(B)×P(A,B)。
4.反转性:若P(B)>0,有P(A,B)=P(A∩B)/P(B)=P(B,A)×P(A)/P(B)。
条件概率在实际应用中非常重要。
例如,在医学诊断中,我们常常需要计算一些疾病在一些检查结果呈阳性的条件下的概率,以判断该疾病的可能性大小。
全概率公式是指通过一组互斥事件的概率可以计算出另一个事件的概率的方法。
假设事件B1、B2、..、Bn互不相容且构成样本空间S,即B1、B2、..、Bn是一组完备事件,且P(Bi)>0,那么对任意事件A有:P(A)=P(A,B1)×P(B1)+P(A,B2)×P(B2)+...+P(A,Bn)×P(Bn)全概率公式的核心思想是将事件A在各个互斥事件的条件下进行考虑,并加权求和得到事件A的概率。
全概率公式的应用非常广泛。
例如,在市场营销中,一个产品的销量可能受到不同市场环境的影响。
我们可以通过对不同市场环境下产品销售的数据进行分析,运用全概率公式计算出在不同市场环境下产品销售的概率,进而制定相应的营销策略。
小学四年级数学下册知识点:概率
小学四年级数学下册知识点:概率
1. 概率的介绍
- 概率是指事件发生的可能性大小。
- 用数字表示概率,范围从0到1,0表示不可能发生,1表示
一定会发生。
- 概率可以通过实验、统计和推理等方法进行计算。
2. 实验与事件
- 实验是指对某个问题进行观察、测量或测试的过程。
- 在一个实验中,可能出现多个不同的结果或事件。
- 事件是指实验中我们感兴趣的某个结果或发生的情况。
3. 等可能事件
- 等可能事件是指在实验中所有可能结果发生的概率是相等的。
- 例如,抛一枚公平的硬币正面朝上和反面朝上的概率都是1/2。
4. 互斥事件
- 互斥事件是指两个事件不能同时发生的情况。
- 例如,抛一枚公平的硬币正面朝上和反面朝上就是互斥事件。
5. 概率的计算
- 如果事件的发生次数是有限的,概率可以用事件发生的次数除以总实验次数来计算。
- 例如,如果我们抛一枚公平的硬币10次,其中正面朝上的次数是4次,那么正面朝上的概率就是4/10 = 0.4。
- 对于等可能事件,概率还可以用事件发生的次数除以总事件数来计算。
6. 事件的组合
- 多个事件可以组合在一起形成更复杂的事件。
- 对于互斥事件的组合,两个事件同时发生的概率为0。
- 对于非互斥事件的组合,可以通过概率的计算规则来计算。
以上就是小学四年级数学下册中关于概率的基本知识点。
概率论与数理统计 第三节 条件概率与独立性
一、条件概率
4. 条件概率的计算
P ( AB ) 1) 用定义计算 P ( A | B ) P( B)
2)用缩减的样本空间计算
例:A={掷出2点}, B={掷出偶数点} 掷骰子
1 P(A|B) = 3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
一、条件概率
例1 掷两颗均匀骰子,已知第一颗掷出6点,问“掷 出点数之和不小于10”的概率是多少?
一、条件概率
2. 条件概率的定义
设A、B是两个事件,且P(B)>0,则称 P ( AB ) (1) P( A | B) P( B)
为在事件B发生的条件下,事件A的条件概率.
若事件B已发生, 则为使 A 也发生 , 试验结果必须是既在 B 中又在A中的样本点 , 即此 点必属于AB. 由于我们已经知 道B已发生, 故B变成了新的样 本空间 , 于是有(1).
A={取到一等品}, B={取到正品} P(A ) =3/10,
3 10 P ( AB ) 3 P(A|B) 7 10 P( B) 7
一、条件概率
A={取到一等品}, B={取到正品}
P(A)=3/10, P(A|B)=3/7 本例中,计算P(A)时,依据的前提条件是10件 产品中一等品的比例. 计算P(A|B)时,这个前提条件未变,只是加上 “事件B已发生”这个新的条件. 这好象给了我们一个“情报”,使我们得以在 某个缩小了的范围内来考虑问题.
故抓阄与次序无关.
二、乘法公式
练习3 设某光学仪器厂制造的透镜, 第一次落下时 打破的概率为1/2,若第一次落下未打破, 第二次落下 打破的概率为7/10 , 若前两次落下未打破, 第三次落 下打破的概率为9/10.试求透镜落下三次而未打破的 概率.
13条件概率全概公式贝叶斯公式
打破的概率是 7 ,若前两次未打破 , 第三次落下打
破的概率是
9
10 ,试求透镜落下三次未打破的概率 .
10
解 设 Ai 透镜第 i 次落下打破,i 1,2,3 ,
B 透镜落下三次未打破 ,则 B A1A2 A3 .
PB PA1A2 A3 PA1 PA2 | A1 PA3 | A1A2
1
1 2
1
7 10
1
9 10
3 200
.
本题也可以先求 PB ,再由 PB 1 PB 求得 PB .
由于 B A1 A1 A2 A1 A2 A3 并 , 且 A1, A1A2 , A1A2 A3 为两两不相容事件, 故有
PB PA1 A1A2 A1A2 A3
PA1 PA1A2 PA1A2 A3
PB1 PA | B1 PBn PA | Bn n
PBi PA | Bi
i 1
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想是把一个未知的复杂事件 分解为若干个已知的简单事件再求解 , 而这些简单 事件组成一个互不相容事件组 ,使得某个未知事件 A 与这组互不相容事件中至少一个同时发生 ,故在 应用此全概率公式时 ,关键是要找到一个合适的 S 的一个划分.
我们还可以从另一个角度去理解 全概率公式.
某一事件A的发生有各种可能的原因 ,如果A 是由原因Bi (i=1,2,…,n) 所引起,则A发生的概率是
P(ABi)=P(Bi)P(A |Bi)
每一原因都可能导致A发生,故A发 生的概率是各原因引起A发生概率的总和, 即全概率公式.
由此可以形象地把全概率公式看成为“由原 因推结果”,每个原因对结果的发生有一定的“ 作用”,即结果发生的可能性与各种原因的“作 用”大小有关. 全概率公式表达了它们之间的关系
西北工业大学《概率论与数理统计》1-3 随机事件的概率
请同学们思考?
医生在检查完病人的时候摇摇头“你的病很重 , 在十个得这种病的人中只有一个能救活.”当病人
被这个消息吓得够呛时, 医生继续说“但你是幸运的。 因为你找到了我, 我已经看过九个病人了, 他们都死 于此病.”
医生的说法对吗?
二、概率的统计定义
1.定义1.2 nA 在随机试验中,若事件A出现的频率 随 n 着试验次数n的增加,趋于某一常数p ,0 p 1, 则定义事件A的概率为p ,记作P(A)=p . 2. 性质1.1 (概率统计定义的性质) (1) 对任一事件A ,有 0 P ( A) 1;
在N(n≤N)间房中的每一间中,试求下列各事件
的概率: (1) 某指定n间房中各有一人; (2) 恰有n间房,其中各有一人; (3) 某指定房中恰有m (m ≤n)人.
解 1º 先求样本空间所含的样本点总数.
分析
把n个人随机地分到N个房间中去, 每一 种分法就对应着一个样本点(基本事件), 由于每个人都可以住进N间房中的任一 间,所以每一个人有N种分法, n个人共
从上述数据可得
(1) 频率有随机波动性,即对于同样的 n, 所得的
f 不一定相同;
(2) 抛硬币次数 n 较小时, 频率 f 的随机波动幅
度较大, 但随 n 的增大 , 频率 f 呈现出稳定性.
即当 n 逐渐增大时频率 f 总是在 0.5 附近摆动,
且逐渐稳定于 0.5.
实验者
n
2048 4040 12000 24000
成 f n ( A).
2. 性质 设 A 是随机试验 E 的任一事件, 则
(1) 0 f n ( A) 1;
(2) f (Ω) 1, f ( ) 0;
第三节事件的条件概率和三个基本公式
第三节事件的条件概率和三个基本公式在概率论中,事件的条件概率是指在给定另一个事件发生的前提下,其中一事件发生的概率。
条件概率可以用来描述两个事件之间的相关性和依赖关系。
而条件概率的计算可以通过使用三个基本公式:乘法规则、加法规则和全概率公式。
1.乘法规则:乘法规则是最基本的计算条件概率的方法,它描述了两个事件同时发生的概率。
设A和B是两个事件,则A与B的交集(同时发生)的概率可以表示为P(A∩B)。
而A与B同时发生的概率可以表示为事件A发生的概率P(A)乘以事件B在前提A发生的条件下发生的概率P(B,A),可以表示为:P(A∩B)=P(A)*P(B,A)2.加法规则:加法规则用于计算两个事件中至少一个事件发生的概率。
设A和B是两个事件,则A与B的并集(至少一个事件发生)的概率可以表示为P(A∪B)。
而A与B同时发生的概率可以表示为事件A发生的概率P(A)加上事件B发生的概率P(B),再减去事件A与B同时发生的概率P(A∩B),可以表示为:P(A∪B)=P(A)+P(B)-P(A∩B)3.全概率公式:全概率公式用于计算一个事件在多个互斥事件发生情况下的总概率。
设A是一个事件,B1、B2、B3...是事件的一个划分(互斥且完备),则事件A发生的概率可以表示为每个事件Bi发生的概率P(Bi)与事件A在条件Bi下发生的概率P(A,Bi)的乘积之和,可以表示为:P(A)=P(B1)*P(A,B1)+P(B2)*P(A,B2)+P(B3)*P(A,B3)+...通过以上三个基本公式,可以在给定条件下计算事件发生的概率,进而用于推断和分析各种实际问题。
例如,假设有一批产品中有10%的次品,其中80%的次品是由机器A 生产的,20%的次品是由机器B生产的。
现在从产品中随机选择了一个并发现是次品,问这个次品是由机器A生产的概率是多少?解答:设事件A表示选择次品,事件B1表示次品由机器A生产,事件B2表示次品由机器B生产。
第3节 条件概率与独立性
B)P(C
),
P( AC ) P( A)P(C ),
则称事件 A, B, C 两两独立 .
注意 相互独立
两两独立
23
例 一个袋内装有4个球,其中全红、全黑、全白色的 球各一个,另一个是涂有红、黑、白三色的彩球. 从
中任取一个, 记事件A、B、C分别表示取到的球上涂 有红色、黑色、白色. 试判断事件A、B、C两两独立
5
例2 设袋中有7个黑球,3个白球, 不放回摸取两次, 如果已知第一次摸到白球,求第二次也摸到白球的 概率. 若改为放回摸取,结果如何? 解 设A,B分别表示第一、二次摸到白球,则
不放回: P(B | A) 2 . 9
放回: P(B | A) 3 . 10
6
例3 人寿保险公司常常需要知道存活到某一个年龄 段的人在下一年仍然存活的概率.根据统计资料可 知,某城市的人由出生活到50岁的概率为0.90718, 存活到51岁的概率为0.90135。问现在已经50岁的人, 能够活到51岁的概率是多少?
25
四个推论
。
1
若事件
A1 ,
A2, ,
An
(n
2)
相互独立,
则
P( A1 A2 An ) P( A1 )P( A2 ) P( An )
2。 若事件 A1, A2, , An (n 2) 相互独立, 则
其中任意k个事件也相互独立.
。
3
若事件A1
,
A2
,,
An
(n
2)相互独立,
则
将A1
例如, 将一颗均匀骰子连掷两次,
设 A={第二次掷出6点}, B={第一次掷出6点},
显然
概率1-3
三、全概率公式与贝叶斯公式
定义2 Ω 为试验 E 的样本空间,B ,B2 ,…,Bn 是 E 的一组事件 ,若 1 (1) BBj = φ ( i ≠ j ) ( 2) B1 U B2 U…U Bn =Ω i 则称 B ,B2 ,…,Bn 为 Ω的一个划分 1
概率论
定理 2(全概率公式) 设试验 E 的样本空间为 Ω ,B ,B2 ,…,Bn 1 为 Ω 的 个 分 ,且 P( Bi ) > 0 ( i =1,2,…, n) ,则 一 划 P ( A) = P ( B1 ) P ( A | B1 ) + P ( B2 ) P ( A | B2 ) +L+ P ( Bn ) P ( A | Bn )
(1)
非 性 : P( B | A) ≥ 0 负
( 2) ( 3)
∞ ∞ 可 可 性 : 设 B , B2 ,…两 互 , 有P U Bi A = ∑P( Bi A) 列 加 两 斥则 1 i=1 i=1
规 性 : P( Ω A) =1 范
计算条件概率P(B|A)的两种方法: 的两种方法: 计算条件概率 的两种方法 (1)在新样本空间ΩA= A中计算 )在新样本空间Ω 中计算
P( AB) 计算 (2)在原样本空间Ω中,按 P(B | A) = )在原样本空间Ω P( A)
概率论
例 2 3 例 掷两颗均匀骰子,已知第一颗掷出 点,问“掷出点数之和不 掷两颗均匀骰子 已知第一颗掷出6点 问 已知第一颗掷出 小于10”的概率是多少 的概率是多少? 小于 的概率是多少 现有甲乙丙三个犯人,随机选择一个处决,释放两个人, 例 现有甲乙丙三个犯人,随机选择一个处决,释放两个人,典 狱长认为甲乙至少有一个被释放, 狱长认为甲乙至少有一个被释放,从而先释放了甲乙中一 你认为典狱长的做法对三个犯人公平吗? 人,你认为典狱长的做法对三个犯人公平吗? 袋中有2n-1个白球,2n个黑球,随机取 个,发现是同一 个白球, 个黑球 随机取n个 个黑球, 例 袋中有 个白球 种颜色,问这种颜色是黑色的概率? 种颜色,问这种颜色是黑色的概率?
第三节--全概率公式与逆概率公式
上式就是贝叶斯公式,又称为逆概率公式.
医药数理统计方法
贝叶斯公式在实际中有很多应用,它可以帮助 人们确定某结果(事件 B)发生的最可能原因.
该公式于1763年由贝叶斯(Bayes)给出. 它是在 观察到事件B已发生的条件下,寻找导致B发生的每 个原因的概率.
Bayes公式的使用
医药数理统计方法
我们把事件B看作某一过程的结果,
医药数理统计方法
实际中还有下面一类问题,是 “已知结果求原因”
某人从任一箱中任意摸出 一球,发现是红球,求该球是 取自1号箱的概率.
或者问:
1红4白
该球取自哪号箱的可能性
1
2
3
最大?
这一类问题在实际中更为可能性大小.
二、逆概率公式
医药数理统计方法
例3 如果在 例1 中已知抽到的X光片是次品,求该
次品是由甲厂、乙厂、丙厂生产的概率。
解 以A1、A2、A3分别表示取得这盒X光片是由甲厂、
乙厂、丙厂产生的,B 取得的X光片为次品
P
A1
5 10
,P
A2
3 10
,
P
A3
2 10
P
B
|
A1
1 10
,
P
B
A3 '原材来自丙地' B '抽到优等品'
P A1 0.4, P A2 0.35, P A3 0.25
P B | A1 0.65, P B | A2 0.7, P B | A3 0.855
医药数理统计方法
解 P A1 0.4, P A2 0.35, P A3 0.25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 3
.
1. 几何概型: 指满足以下两个条件的 ( 1 ) 样本空间 为可度量的区域;
( 2 ) 向 内投一点, 落在 的任意子区域 成正比, 与 A 的形状及位置无关 .
随机试验:
A 的可能性与
A 的度量
2. 几何概率: 记 ( ), ( A ) 表示度量,
则P ( A)
0 到 T 时之间任一时刻
故可看作几何型随机试 的, 验
y
T
A
t
o
t
TxBiblioteka A { ( x , y ) 0 x T ,0 y T 且 x y t }
则 P ( A)
( A) ( )
区域A的面积 区域的面积
T (T t )
2
2
T
2
1 (1
(4) 可列可加性:对于互不相容事件
P ( Ak )
k 1 k 1
P ( A k ).
二、 概率的公理化定义
设 1. 概率定义: E 为随机试验, 对应一个实数 P ( A ),满足: 为样本空间, 若对 E 的每个事件 A
(1) 非负性: 对任一事件
A , 0 P ( A ) 1; 有
证:
A B A ( B AB ), 且 A ( B AB ) , P ( A B ) P ( A ) P ( B AB ) P ( A ) P ( B ) P ( A B ). (5) 对任意事件A, P ( A) 1 P ( A). 有
1 . 两封信随机地投入标号 ( 1 ) 前两个信箱各有一封信 ( 2 ) 第二个信箱恰好有一封 ( 3 ) 第一个信箱没有信的概
1
为 1, , , 的 4 个信箱,求 2 3 4 的概率; 信的概率; 率.
率.
2. 从 1, , , 中任取 2 个数, 求两数之和为偶数的概 2 n 1 . 解: ( 1 ) P1
P ( AB ) 1 P ( AB ) 1 0 . 4 0 . 6 .
P
C n1 C n1
2 2
.
Cn
2
第一章 概率论基本概念
第三节 概率的定义
一、 几何概率
例: 在一个陀螺的圆周上均 螺,问陀螺停下时其圆周与 匀地刻上 [ 0, ]上的诸数字, 3 桌面接触点的刻度位于 旋转该陀 [ 1, ]上的概率 . 2
解:
所求概率为:
P
[1, ]的长度 2 [ 0, ]的长度 3
( A) ( )
.
例1 某城市的电话号码由5个数字组成,每个数字可能 是从0-9这十个数字中的任一个,求电话号码由五个不同 数字组成的概率. 从10个不同数字中 5 解 p P10 =0.3024 取5个的排列 5
10
允许重复的排列
3. 几何概率P ( A)的性质: (1) 非负性: 对任一事件 ( 2) 规范性: 对必然事件
t T
)
2
例 2 . 从区间 [ 0, ]中随机任取两个数, 1 ( 1 ) 两个数之和小于
解: 如图,
求下列事件的概率: 0.25.
1.2 ;( 2 ) 两个数之积小于
1 0 .8 1
2 2
( 1 ) 所求概率为:
P
1 2
0 . 68 .
( 2 ) 所求概率为:
P
0 . 25 1 1
P ( Ak )
k 1
P ( A k ).
A k ( k 1, , , , ) 有 2 n
k 1
(4) 可列可加性:对于互不相容事件
P ( Ak )
k 1 k 1
P ( A k ).
指满足以下两个条件的 1. 古典概型:
( 1 ) 样本空间只有有限个样 ( 2 ) 每个样本点出现的可能 本点,
P ( B ) P ( A ) P ( B A ), 故 P ( B A ) P ( B ) P ( A ).
由性质 ( 3 ) 可得:
若A B, P ( A) P ( B ). 则
(4) 对任意事件A, , P ( A B ) P ( A) P ( B ) P ( A B ). B 有
证: A A ,A A , P ( A ) P ( A ) 1, P ( A ) 1 P ( A ). 故
(6) 对于任意 n 个事件A1 , A2 ,, An , 有
n
P ( Ak ) S 1 S 2 S 3 ( 1)
( A) ( )
. 特别,
; g 的面积 G 的面积 v 的体积 V 的体积 .
( 1 ) l 为线段 L 的一段, 则向 L 投点落在 l 内的概率 P ( 2 ) g 为平面图形 ( 3 ) v 为空间图形
l 的长度 L 的长度
G 的一部分, 则向 G 投点落在 g 内的概率 P V 的一部分, 则向 V 投点落在 v 内的概率 P
4 求 ( 1 ) 三个事件至少发生一个
解:( 1 ) 所求概率为: P ( A B C ) P ( A ) P ( B ) P ( C ) P ( AB ) P ( BC )
P ( AC ) P ( ABC ) 5 1 1 1 1 00 0 . 8 4 4 4 8 ( 2 ) 所求概率为:
随机试验:
性相同 ( 称为等可能
),
3. 概率的古典定义:在古典概型中, { , , , }, 设 2 n 1
A { i1, i2, , im }, 则
P ( A)
m n
事件A包含的样本点数 样本点总数
则P ( A)
.
3. 几何概率:记 ( ), ( A ) 表示度量,
2
0 . 25 0 . 25 x
1
dx
1 4
( 1 2 ln 2 ).
3. 几何概率P ( A)的性质: (1) 非负性: 对任一事件 ( 2) 规范性: 对必然事件
n
A , 0 P ( A ) 1; 有 ,有 P ( ) 1;
A 1, 2, , n 有 A A
( 3) 有限可加性: 对于两两互不相容事件 n
A k ( k 1, , , , ) 有 2 n
( 2) 规范性: P ( ) 1; ( 3) 可列可加性: 对于互不相容事件
P ( Ak )
k 1
P ( A k ).
k 1
则称 P ( A )为事件 A 的概率 .
2. 性质: (1) P ( ) 0;
A A ( 2) 有限可加性: 对于两两互不相容事件A1, 2, , n有
P(ABC ) P(A B C ) 1 P(A B C ) 1 2 . 已知 P ( A ) 0 . 7, P ( A B ) 0 . 3 , 求 P ( AB ).
5 8
3 8
.
解:
P ( A B ) P ( A AB ) P ( A ) P ( AB ) P ( AB ) P ( A ) P ( A B ) 0 . 7 0 . 3 0 . 4 .
求 : 至少有一个
3
1 , , 则 P ( A) 3 35 C7 34 . 所求概率为: P ( A ) 1 P ( A ) 35 1 1 例 3. 设 P ( A ) , P ( B ) ,求在下列三种情况下求 P ( A B ). 3 2 1 ( 1 ) AB ;( 2 ) A B ;( 3 ) P ( AB ) . 8
1 2
1 8
3 8
.
例3 在 1 ~ 2000 的整数中随机地取一个 , 问取到的整数既不能 数 被 6 整除 , 也不能被 8 整除的概率是多少 ?
解
设 A 取到的数能被 6 整除 , B 取到的数能被 8 整除 .
所求概率为 P A B P A B 1 P A B
n1
Sn
其中
S1
k 1
n
P ( Ak ), S 2
k 1
1 i j n
P ( Ai A j ), S 3
1 i j k n
P ( Ai A j Ak )
例 2 . 口袋中有 4 个白球, 3 个黑球, 从中任取三球, 白球的概率;
解: 令 A 表示抽取的球全为黑球
n
A , 0 P ( A ) 1; 有 ,有 P ( ) 1;
A 1, 2, , n 有 A A
( 3) 有限可加性: 对于两两互不相容事件 n
P ( Ak )
k 1
P ( A k ).
A k ( k 1, , , , ) 有 2 n
k 1
n
P ( Ak )
k 1
P ( Ak ).
k 1
n
( 3) 设A B, P ( B A) P ( B ) P ( A). 则
( 3) 设A B, P ( B A) P ( B ) P ( A). 则
证:
B A ( B A ), 且 A ( B A ) ,
C3
解:
( 1 ) AB , B A, A B B , P ( A B ) P ( B )
1 2
.
( 2 ) A B , AB B A 1 1 1 P ( AB ) P ( B ) P ( A ) . 2 3 6