七年级下学期期中综合检测题
人教版数学七年级下学期《期中检测试卷》有答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。
人教版生物七年级下学期《期中检测试题》含答案
人教版生物七年级下期中测试卷一.单选题1.关于人类起源和发展的叙述中,你认为错误的观点是( )A.人类起源于森林古猿B.直立行走,制造工具和产生语言是人类发展的重要过程C.人类在进化发展过程中适应环境的能力越来越强D.“东非人”时代的古人类能使用工具并能制造复杂工具2.2005年8月,“国际黑猩猩基因测序与分析联盟”宣布,黑猩猩与人类在基因上的相似程度达到96%以上。
这个事例说明()A.人类和黑猩猩有较近的亲缘关系B.生物具有遗传和变异的特性C.人类和黑猩猩的共同祖先是森林古猿D.人类是由黑猩猩经过漫长的年代进化而来的3.下列关于受精作用的说法不正确的是()A.精子和卵细胞结合形成受精卵的过程叫受精作用B.人的精子和卵细胞结合的场所是子宫C.受精作用中,精子和卵细胞的细胞核相融合D.一般情况下,卵巢一次只排一个卵细胞,只有一个精子与卵细胞结合。
4.以下属于青春期发育特点的是()①身高突增②形成性器官③心脏和肺功能增强④神经系统功能增强⑤性器官迅速发育A.①②③④B.②③④⑤C.①②③⑤D.①③④⑤5.糖类是人体的主要供能物质。
下列食物中主要为我们提供糖类的是()A.B.C.D.6.为了促进儿童骨骼的发育,除了给儿童多补充含钙、磷多的食物,还应补充( )A.维生素A B.维生素B C.维生素C D.维生素D7.下图所示消化系统局部结构中,内表面积最大的器官是( )A.①B.②C.③D.④8.我国营养学家将食物按照每日摄取量,形象地设计成五级平衡膳食宝塔,如下表所示。
下面的叙述正确的是()A.要合理膳食,日摄取量最多的食物是Ⅱ类食物B.某人每天刷牙时牙龈易出血,他应多摄取V类食物C.处在发育时期的青少年应适当多摄取Ⅲ、Ⅳ食物D.I类食物在人体内消化的主要场所是口腔9.人们对饮食与健康关系的说法中,正确的是()A.半期考复习阶段学习任务重、时间紧,早餐可以不吃饭B.为了增加食欲,煮菜时要大量增加食盐量和辛辣物质C.某同学牙龈经常出血,他认为多吃蔬菜和水果对缓解此症状无益处D.膳食要科学、安排要合理,做到一日三餐,按时就餐10.当肋间肌和膈肌收缩时,外界,气管,肺泡内的气压关系是()A.外界>气管>肺泡B.气管>肺泡>外界C.外界>肺泡>气管D.肺泡>气管>外界11.如图是模拟人体膈的升降与呼吸关系的装置,有关描述正确的是()A.装置中编号3模拟肺B.装置中编号4模拟横膈膜C.手向下拉4,小气球2变小D.手向下拉4,模拟的是呼气过程12.图一为呼吸系统的组成示意图,图二为肺泡与毛细血管之间的气体交换示意图.图二中a、b代表的主要气体成分分别为( )A.氧气、二氧化碳B.二氧化碳、氧气C.氧气、氧气D.二氧化碳、二氧化碳13.人体呼出的气体中,增多的二氧化碳来自()A.气管和支气管B.肺泡C.血液D.全身的组织细胞14.用显微镜观察血涂片,在同一视野中所见到数目最多的细胞是()A.白细胞B.红细胞C.血小板D.淋巴细胞15.小王的手指不慎划破出血,血液中与止血和避免发炎有关的成分分别是()A.血小板、血浆B.血小板、白细胞C.红细胞、血浆D.白细胞、血浆16.如图表示的是人体不同出血情况,下列描述正确的是()A.①为静脉出血B.②为毛细血管出血C.③为动脉出血D.针对③进行止血时要在小臂的位置止血17.A、B、C分别代表人体的三类血管,箭头代表血流方向,血流相关描述错误的是()A.A是静脉;B是动脉;C是毛细血管B.B管壁较同级的A管壁厚,弹性较同级的A管壁大C.血液流经C后,某些物质含量会发生变化D.若A、B都是参与肺循环的血管,则B中流的是动脉血18.体循环是从哪里开始的( )A.左心房B.左心室C.右心房D.右心室19.中医常通过“切脉”来推知体内各器官的健康状况,“切脉”常见的部位是()A.股动脉B.桡动脉C.颈动脉D.肱动脉20.在无同型血的紧急情况下,危险性最大的人的血型是()A.A型B.B型C.AB型D.O型二、填空题21.《妈妈听我说》是一则大型真人纪实节目。
山东省聊城市东阿县2023-2024学年七年级下学期期中语文试题(原卷版+解析版)
2023—2024学年度第二学期期中检测七年级语文试题(时间120分钟满分123分)青少年时期是一段美好的时光,青少年应珍惜时间,刻苦学习,不断充实自己。
1.试题共8页,满分123分(含3分书写),考试时间120分钟。
2.将姓名、学校、班级、考号填写在试题和答题卡指定的位置。
3.试题答案全部写在答题卡上,完全按照答题卡中的“注意事项”答题。
愿你放松心情,放飞思维,充分发挥,争取交一份圆满的答卷。
一、书写(3分)风字如面,写一笔好字,赏心悦目,让我们一起在文字中徜徉吧……1.根据卷面的书写情况评分,请你在答题时努力做到书写正确、规范、整洁。
二、积累与运用(25分)今年,我们将迎来中华人民共和国成立75周年。
学校开展“天下”语文综合性学习活动。
请你积极参加并完成以下任务。
活动中,小语同学写下了一段随笔,请你帮他完成下面小题。
①历史的星空,因有众多杰出的人物而光辉灿烂。
他们中有替父从军、勤劳孝顺、爱国勇敢的花木兰,她在国家危难之时甲;有充满爱国热情的诗人、学者、民主战士闻一多,他钻研古jí,钻得锲而不舍,在祖国紧急的生死关头乙;有隐姓埋名28年的“两弹元勋”邓稼先,他为人民、为国家鞠躬尽瘁,死而后已;还有最可爱的志愿军战士,他们坚韧刚强,淳朴谦逊,勇处疆场抛头颅、洒热血……②他们是历史星空中最闪耀的星星,绽放出斑lán的生命之光。
他们都是丙的英雄。
③阅读这些英雄故事,能唤醒我们对理想的憧憬与追求,能让我们感受到他们的非凡气质。
1. 小语有两个字暂用拼音代替,两个加点字不确定读音。
请你帮他选出正确的一项()A. 籍qiè cuì斓B. 籍qì suì澜C. 籍qì cuì斓D. 藉qiè cuì斓2. 在甲、乙、丙三处依次填入成语最恰当的一项是()A. 锋芒毕露至死不懈鲜为人知B. 深恶痛绝锲而不舍可歌可泣C. 气冲斗牛沥尽心血妇孺皆知D. 挺身而出拍案而起当之无愧3. 下列说法不正确的一项是()A. 语段中的在是连词:最是副词,表示程度。
人教版数学七年级下学期《期中考试题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四2.4的平方根是( )A. 2B. ±2C. 2D. 2± 3.实数﹣2,0.31••,3π,0.1010010001,38中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A 68︒ B. 60︒ C. 102︒ D. 112︒5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣B. (2,1)﹣﹣C. ()3,1﹣D. (1,)2﹣ 6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4 7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A. 90°B. 108°C. 100°D. 80° 8.下列说法错误的是( ) A. 4=2±± B. 64算术平方根是4 C. 330a a +-= D. 110x x -+-≥,则x =19.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3二、填空题11.2-的绝对值是________.12.、是实数230x y +-=,则xy =________.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________.16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.三、解答题17.计算:(13316648-(2)333521|1228- 18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= 19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.答案与解析一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四[答案]D[解析]试题分析:根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A(2,-3)位于第四象限,故答案选D . 考点:平面直角坐标系中各象限点的特征.2.4的平方根是( )A. 2B. ±2C.D. [答案]B[解析][分析]根据平方根的定义即可求得答案.[详解]解:∵(±2)2=4,∴4的平方根是±2. 故选:B .[点睛]本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.,0.31••,3π,0.1010010001中,无理数有( )个 A. 1B. 2C. 3D. 4 [答案]B[解析][分析]利用无理数的定义判断即可.[详解]解:在实数2-(无理数),0.31••(有理数),3π(无理数),0.1010010001(有理数),382=(有理数)中,无理数有2个,故选:B . [点睛]此题考查了无理数,弄清无理数的定义是解本题的关键.4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A. 68︒B. 60︒C. 102︒D. 112︒[答案]D[解析][分析] 根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.[详解]∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .[点睛]本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ [答案]C[解析][分析] 直接利用已知点得出原点位置进而建立平面直角坐标系,即可得出答案.[详解]解:建立直角坐标系如图所示:则G 点坐标为:(-3,1).故选:C .[点睛]此题主要考查了点的坐标,正确得出原点位置是解题关键.6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4[答案]C[解析][分析]根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.[详解]解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.[点睛]此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 度数为( )A. 90°B. 108°C. 100°D. 80°[答案]C[解析][分析] 在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可.[详解]过E 作出BA 平行线EF,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD,BC ∥DE,∠ABC=180°-∠BCD =180°-110°=70°,∠AED=∠AEF+∠DEF=30°+70°=100° [点睛]本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 8.下列说法错误的是( ) A. 4=2±±B. 64的算术平方根是4C. 330a a -=D. 110x x --≥,则x =1 [答案]B[解析][分析]根据平方根、算术平方根、立方根的概念对选项逐一判定即可.[详解]A .4=2±±,正确;B .64的算术平方根是8,错误;C 330a a -,正确;D 110x x --≥,则x =1,正确; 故选:B .[点睛]本题考查了平方根、算数平方根,立方根的概念,理解概念内容是解题的关键. 9.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)[答案]D[解析][分析] 根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.[详解]解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:D .[点睛]此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3[答案]B[解析][分析]根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.[详解]解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.[点睛]本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题11.的绝对值是________.[答案[解析][分析]根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.[详解]解:根据负数的绝对值是它的相反数,得=.[点睛]此题主要考查绝对值的意义,熟练掌握,即可解题.=,则xy=________.12.、是实数0[答案]-6[解析][分析]根据算术平方根的非负性即可求出与的值.y-=,[详解]解:由题意可知:20x+=,30y=x2∴=-,3xy6-故答案为:6[点睛]本题考查非负数的性质,解题的关键是熟练运用算术平方根的定义.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.[答案]11[解析][分析] 根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.[详解]解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得: 则1115524351511222ABC S .故答案为:11[点睛]此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.[答案]1[解析][分析]分类讨论:当231n n ,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . [详解]解:因为23n ﹣与1n ﹣是整数的平方根,当231n n 时,解得2n =,所以22(1)(21)1x n ; 当2310n n ,解得43n =,所以241(1)(1)39x n . x 是整数, 1x ∴=,故答案为1.[点睛]本题考查了平方根的应用,若一个数的平方等于,那么这个数叫的平方根,记作(0)a a ±.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________. [答案](32, [解析][分析]连接AB 交轴于M ,点M 即为所求; [详解]解:如图示,连接AB 交轴于M ,则MB MA +的值最小.设直线AB 的解析式为y kx b =+,根据坐标1(1,)A ﹣,(3,3)B , 则有331k b k b +=⎧⎨+=-⎩, 解得23k b =⎧⎨=-⎩, 直线AB 的解析式为23yx ,令0y =,得到32x, 32(M ,故本题答案为:(32,.[点睛]本题考查了坐标与图形的性质,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题. 16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.[答案]4[解析][分析]到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.[详解]解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.[点睛]本题主要考查了到直线的距离等于定长的点的集合.三、解答题17.计算:(13316648-(2)333521|1228- [答案](1)12;(2)2.[解析][分析](1)直接利用算术平方根以及立方根的性质化简得出答案;(2)直接利用绝对值的性质以及立方根的性质进而得出答案.[详解]解:3316648-44248=+12=;(2)333521|12|28 33221222=.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= [答案](1)12311,44x x ==-;(2)32x =-. [解析][分析](1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.[详解]解:(1)216(1)49x 249(1)16x 714x , 12311,44x x ==-. (2)38(1)125x 3125(1)8x 512x 32x =-. [点睛]本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 [答案]7[解析][分析]本题应先解不等式组确定a 整数值,再将a 值代入关于x 、y 的二元一次方程组中求解,最后求得22x xy y -+的值.[详解]解:解不等式513(1)a a ->+得:a >2 解不等式131722a a 得:a <4 所以不等式组的解集是:2<a <4所以a 的整数值为3.把a=3代入方程组27234ax y x y ,得327234x y x y解得12x y =-⎧⎨=⎩, 所以222212112472x xy y .[点睛]本题考查了一元一次不等式组、不等式组的特殊解、代数求值的综合运用,熟悉基本运算方法、运算法则是解题的关键.20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.[答案](1)见解析;(2)5;(3)存在;点的坐标为(0,5)或(0,3)-.[解析][分析](1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.详解]解:(1)描点如图:(2)依题意,得AB∥x轴,且AB3(2)5=--=,∴S△ABC1525 2=⨯⨯=;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,-3).[点睛]本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积是解题的关键.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.[答案](1)见解析(2)见解析[解析][分析](1)证明∠COD+∠COE=90°即可.(2)证明∠1+∠2=90°即可.[详解]证明:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠COD=12∠AOC,∠COE=12∠COB,∴∠DOE=∠COD+∠COE=12(∠AOC+∠COB)=90°,∴OD⊥OE.(2)∵AB∥CD,∴∠A+∠C=180°,∵∠1=∠B,∠2=∠D,∠A+2∠1=180°,∠C+2∠2=180°,∴∠1+∠2=90°,∴∠DEB=90°,∴DE⊥BE.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?[答案](1)m=0,n=3;(2)y=120﹣12x,z=60﹣23x;(3)Q=180﹣16x;当x=90时,Q最小,此时按三种裁法分别裁90张、75张、0张.[解析][详解](1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板, 按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B 型板材块长为160cm >150cm ,所以无法裁出4块B 型板;∴m=0,n=3;(2)由题意得:共需用A 型板材240块、B 型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x ,z=60﹣23x ; (3)由题意,得Q=x+y+z=x+120﹣12x+60﹣23x . 整理,得Q=180﹣16x . 由题意,得11200226003x x ⎧-⎪⎪⎨⎪-⎪⎩, 解得x≤90.[注:0≤x≤90且x 是6的整数倍]由一次函数的性质可知,当x=90时,Q 最小.由(2)知,y=120﹣12x=120﹣12×90=75, z=60﹣23x=60﹣23×90=0; 故此时按三种裁法分别裁90张、75张、0张.考点:一次函数的应用.23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=[答案](1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.[解析][分析](1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;[详解]解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ ,1EBP EBQ ,2132BPD EBP .②如图4中,连接EH .180C CEB CBE,A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,A B F C D E G540[点睛]本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.[答案](1)A (0,3),B (4,0);(2)E 的坐标为(0,72-);(3)∠COF+∠OFP=3∠CPF . [解析][分析](1)根据非负数的性质分别求出a 、b,得到答案; (2)构造矩形,根据三角形的面积是13,利用割补法求出m,再根据平移的性质,求出直线DC 的解析式,则可求出点E 的坐标;(3)作HP ∥AB 交AD 于H,OG ∥AB 交FP 于G,设∠OFP=x,∠PCD=y,根据平行线的性质、三角形的外角的性质计算即可.[详解]解:(1)由题意得,a-3=0,b-4=0, 解得,a=3,b=4, 则A (0,3),B (4,0); (2)如图1所示,∵∆ABC 的面积等于13,根据A,B,C 三点的坐标, 可得:111324232422413222m m ,(m<0) 解得,m=-2,则点C 的坐标为(-2,-2),根据平移规律,则有点D 的坐标为(2,-5),设直线CD 的解析式为:y=cx+d ,2225cd c d ,解得3472c d , ∴CD 的解析式为:3742yx , ∴CD 与y 轴的交点E 的坐标为(0,72- ); (3)如图2所示,作HP ∥AB 交AD 于H ,OG ∥AB 交FP 于G ,设∠OFP=x,∠PCD=y,则∠BFP=x,∠PCB=2y,∵HP∥AB,OG∥AB,∴∠HPC=∠PCD=y,∠OPF=∠OFP=x,∴∠CPF=x+y,又∵∠COF=∠PCB +∠CPF +∠OFP =2y+(x+y)+ x =2x+3y,∴∠COF+∠OFP=3x+3y=3∠CPF.[点睛]本题考查的是非负数的性质、坐标与图形的关系、待定系数法求函数解析式以及平行线的性质,掌握待定系数法求函数解析式的一般步骤、平移规律是解题的关键.。
浙教版数学七年级下学期《期中检测卷》含答案
浙 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列计算错误的是( ) A .224235a a a += B .3226(3)9ab a b = C .236()x x =D .23a a a =2.对于有理数x ,y 定义新运算:*5x y ax by =+-,其中a ,b 为常数.已知1*29=-,(3)*32-=-,则(a b -=)A .1-B .1C .2-D .23.如图,说法正确的是( )A .A ∠和1∠是同位角B .A ∠和2∠是内错角C .A ∠和3∠是同旁内角D .A ∠和B ∠是同旁内角4.若6a b +=,4ab =,则22a ab b -+的值为( ) A .32B .12-C .28D .245.若||2017||3(2018)(4)2018m n m x n y ---++=是关于x ,y 的二元一次方程,则( ) A .2018m =±,4n =± B .2018m =-,4n =± C .2018m =±,4n =- D .2018m =-,4n = 6.下列各式能用平方差公式计算的是( ) A .(3)()a b a b +- B .(3)(3)a b a b +-- C .(3)(3)a b a b ---+D .(3)(3)a b a b -+-7.如图,直线//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分AEF ∠,如果132∠=︒,那么2∠的度数是( )A .64︒B .68︒C .58︒D .60︒8.下列说法: ①两点之间,线段最短; ②同旁内角互补;③若AC BC =,则点C 是线段AB 的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有( ) A .1个B .2个C .3个D .4个9.若22(1)4x k x --+是完全平方式,则k 的值为( ) A .1±B .3±C .1-或3D .1或32-10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )A .50B .60C .70D .80二.填空题(共8小题,每题3分,满分24分)11.一种植物果实像一个微笑的无花果,质量只有0.000000076克,该质量请用科学记数法表示 克. 12.若23x y +=,用含x 的代数式表示y ,则y = . 13.如果等式3(23)1a a +-=,则使等式成立的a 的值是 .14.若关于x ,y 的方程组220x y my x y -=+⎧⎨-=⎩的解是负整数,则整数m 的值是 .15.如图,已知//AB DE ,75ABC ∠=︒,150CDE ∠=︒,则BCD ∠的度数为 .16.如图a 是长方形纸带,20DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是 度.17.某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物的利润率是11%,两种货物共获利315元,如果设该公司购进这两种货物所用的费用分别为x 元,y 元,则列出的方程组是 . 18.若21a a +=,则(5)(6)a a -+= . 三.解答题(共8小题) 19.计算:(1)20190211( 3.14)()2π--+-+;(2)462322(2)x y x xy --. 20.解下列方程:(1)430210x y x y -=⎧⎨-=-⎩(2)134342x y x y ⎧-=⎪⎨⎪-=⎩. 21.先化简,再求值:22[2()(2)(2)3]()a b a b a b a a b --+-+÷-,其中3a =-,2b =. 22.在下面的括号内,填上推理的根据,如图,AF AC ⊥,CD AC ⊥,点B ,E 分别在AC ,DF 上,且//BE CD . 求证:F BED ∠=∠. 证明:AF AC ⊥,CD AC ⊥,90A ∴∠=︒,90(C ∠=︒ ). 180A C ∴∠+∠=︒,//(AF CD ∴ ).又//BE CD .//(AF BE ∴ ). (F BED ∴∠=∠ ).23.如图,在每个小正方形边长都为1的方格纸中,长方形ABCD 的四个顶点都在方格纸的格点上(每个小正方形的顶点叫格点).(1)将长方形ABCD 向上平移5格,请在图中画出平移后的长方形1111A B C D ;(点1A 的对应点为点A ,1B 的对应点为点B ,1C 的对应点为点C ,1D 的对应点为点D .)(2)将长方形ABCD 向左平移6格,请在图中画出平移后的长方形2222A B C D (点2A 的对应点为点A ,2B 的对应点为点B ,2C 的对应点为点C ,2D 的对应点为点D .) (3)连接12A A 、12D D 并直接写出四边形1221A A D D 的面积.24.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A 、B 品牌矿泉水各多少箱? (2)全部销售完600箱矿泉水,该超市共获得多少利润?25.数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.26.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:2:1BAM BAN ∠∠=. (1)填空:BAN ∠= ︒;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且120ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列计算错误的是( ) A .2a 2+3a 2=5a 4 B .(3ab 3)2=9a 2b 6 C .(x 2)3=x 6D .a •a 2=a 3[分析]直接利用积的乘方运算法则以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则分别化简得出答案.[解析]A 、2a 2+3a 2=5a 2,符合题意; B 、(3ab 3)2=9a 2b 6,正确,不合题意; C 、(x 2)3=x 6,正确,不合题意; D 、a •a 2=a 3,正确,不合题意; 故选:A .2.对于有理数x ,y 定义新运算:x *y =ax +by ﹣5,其中a ,b 为常数.已知1*2=﹣9,(﹣3)*3=﹣2,则a ﹣b =( ) A .﹣1B .1C .﹣2D .2[分析]根据新定义列出方程组,然后利用加减消元法求出a 、b 的值,再相减即可. [解析]根据题意得,{a +2b −5=−9−3a +3b −5=−2,化简得,{a +2b =−4①a −b =−1②,①﹣②得,3b =﹣3, 解得b =﹣1,把b =﹣1代入②得,a ﹣(﹣1)=﹣1, 解得a =﹣2,∴a ﹣b =﹣2﹣(﹣1)=﹣1. 故选:A .3.如图,说法正确的是( )A.∠A和∠1是同位角B.∠A和∠2是内错角C.∠A和∠3是同旁内角D.∠A和∠B是同旁内角[分析]根据同位角、内错角和同旁内角的定义判断即可.[解析]∵∠A和∠1是内错角,∠A和∠2不是同位角、内错角和同旁内角,∠A和∠3是同位角,∠A和∠B 是同旁内角,∴D选项正确,故选:D.4.若a+b=6,ab=4,则a2﹣ab+b2的值为()A.32B.﹣12C.28D.24[分析]根据a+b=6,ab=4,应用完全平方公式,求出a2﹣ab+b2的值为多少即可.[解析]∵a+b=6,ab=4,∴a2﹣ab+b2=(a+b)2﹣3ab=36﹣3×4=36﹣12=24故选:D.5.若(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4B.m=﹣2018,n=±4C.m=±2018,n=﹣4D.m=﹣2018,n=4[分析]依据二元一次方程的定义求解即可.[解析]∵(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,∴{m−2018≠0 |m|−2017=1 n+4≠0|n|−3=1,解得:m=﹣2018、n=4,故选:D.6.下列各式能用平方差公式计算的是()A.(3a+b)(a﹣b)B.(3a+b)(﹣3a﹣b)C.(﹣3a﹣b)(﹣3a+b)D.(﹣3a+b)(3a﹣b)[分析]平方差公式为(a+b)(a﹣b)=a2﹣b2,根据平方差公式逐个判断即可.[解析]A、不能用平方差公式,故本选项不符合题意;B、不能用平方差公式,故本选项不符合题意;C、能用平方差公式,故本选项符合题意;D、不能用平方差公式,故本选项不符合题意;故选:C.7.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°[分析]根据平行线的性质“两直线平行,内错角相等”得到∠1=∠AEG,再利用角平分线的性质推出∠AEF =2∠1,再根据平行线的性质“两直线平行,内错角相等”就可求出∠2的度数.[解析]∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°.∴∠2=64°.故选:A.8.下列说法:①两点之间,线段最短;②同旁内角互补;③若AC=BC,则点C是线段AB的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有()A.1个B.2个C.3个D.4个[分析]依据线段的性质,平行线的性质,中点的定义以及平行公理进行判断,即可得到结论.[解析]①两点之间,线段最短,正确;②同旁内角互补,错误;③若AC=BC,则点C是线段AB的中点,错误;④经过一点有且只有一条直线与这条直线平行,错误;故选:A.9.若x2﹣2(k﹣1)x+4是完全平方式,则k的值为()A.±1B.±3C.﹣1或3D.1或﹣32[分析]利用完全平方公式的结构特征判断即可确定出k的值.[解析]∵x2﹣2(k﹣1)x+4是完全平方式,∴﹣2(k﹣1)=±4,解得:k=﹣1或3,故选:C.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()A.50B.60C.70D.80[分析]设小长方形的长为x,宽为y,观察图形即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据长方形的面积公式即可得出每个小正方形的面积.[解析]设小长方形的长为x,宽为y,根据题意得:{3x =5yx +2=2y ,解得:{x =10y =6,∴xy =10×6=60. 故选:B . 二.填空题(共8小题)11.一种植物果实像一个微笑的无花果,质量只有0.000000076克,该质量请用科学记数法表示 7.6×10﹣8克.[分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. [解析]0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.12.若2x +y =3,用含x 的代数式表示y ,则y = 3﹣2x .[分析]把方程2x ﹣y =1写成用含x 的代数式表示y ,需要进行移项即得. [解析]移项得: y =3﹣2x ,故答案为:y =3﹣2x .13.如果等式(2a ﹣3)a +3=1,则使等式成立的a 的值是 1或2或﹣3 . [分析]直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案. [解析]∵(2a ﹣3)a +3=1,∴a +3=0或2a ﹣3=1或2a ﹣3=﹣1且a +3为偶数, 解得:a =﹣3,a =2,a =1. 故答案为:﹣3或2或1.14.若关于x ,y 的方程组{x −y =my +2x −2y =0的解是负整数,则整数m 的值是 3或2 .[分析]先解方程组用含m 的代数式表示出方程组的解,根据方程组有正整数解得出m 的值. [解析]解方程组{x −y =my +2x −2y =0得:{x =41−m y =21−m∵解是负整数,∴1﹣m =﹣2,1﹣m =﹣1∴m=3或2,故答案为:3或2.15.如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为45°.[分析]根据两直线平行,内错角相等以及三角形外角和定理即可解答.[解析]反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=75°,∴∠CMD=180°﹣∠BMD=105°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE﹣∠CMD=150°﹣105°=45°.故答案为:45°.16.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是120度.[分析]解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.[解析]根据图示可知∠CFE=180°﹣3×20°=120°.故答案为:120°.17.某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物的利润率是11%,两种货物共获利315元,如果设该公司购进这两种货物所用的费用分别为x元,y元,则列出的方程组是.[分析]设该公司购进这两种货物所用的费用分别为x元,y元,根据这两种货物的进货费用及销售后的利润,即可得出关于x ,y 的二元一次方程组,此题得解.[解析]设该公司购进这两种货物所用的费用分别为x 元,y 元,依题意,得:{x +y =300010%x +11%y =315. 故答案为:{x +y =300010%x +11%y =315. 18.若a 2+a =1,则(a ﹣5)(a +6)= ﹣29 .[分析]直接利用多项式乘法化简进而把已知代入求出答案.[解析]∵a 2+a =1,∴(a ﹣5)(a +6)=a 2+a ﹣30=1﹣30=﹣29.故答案为:﹣29.三.解答题(共8小题)19.计算:(1)﹣12019+(π﹣3.14)0+(12)﹣2; (2)2x 4y 6﹣x 2•(﹣2xy 3)2.[分析](1)根据实数运算法则进行计算;(2)运用整式运算法则解答.[解析](1)原式=﹣1+1+4=4;(2)原式=2x 4y 6﹣x 2•4x 2y 6=2x 4y 6﹣4x 4y 6=﹣2x 4y 6.20.解下列方程:(1){4x −y =30x −2y =−10(2){x 3−y 4=13x −4y =2.[分析](1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.[解答](1){4x −y =30①x −2y =−10②解:①×2﹣②得7x =70,解得:x =10,将x =10代入②得 10﹣2y =﹣10,解得:y =10,则原方程组的解为{x =10y =10; (2)方程组整理得:{4x −3y =12①3x −4y =2②, 解:①×4﹣②×3得7x =42,解得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4. 21.先化简,再求值:[2(a ﹣b )2﹣(2a +b )(2a ﹣b )+3a 2]÷(a ﹣b ),其中a =﹣3,b =2.[分析]原式中括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并后约分得到最简结果,将a 与b 的值代入计算即可求出值.[解析]原式=[2(a 2﹣2ab +b 2)﹣(4a 2﹣b 2)+3a 2]÷(a ﹣b )=(2a 2﹣4ab +2b 2﹣4a 2+b 2+3a 2)÷(a ﹣b )=(a 2﹣4ab +3b 2)÷(a ﹣b )=(a ﹣b )(a ﹣3b )÷(a ﹣b )=a ﹣3b ,当a =﹣3,b =2时,原式=﹣3﹣3×2=﹣3﹣6=﹣9.22.在下面的括号内,填上推理的根据,如图,AF ⊥AC ,CD ⊥AC ,点B ,E 分别在AC ,DF 上,且BE ∥CD .求证:∠F =∠BED .证明:∵AF ⊥AC ,CD ⊥AC ,∴∠A =90°,∠C =90°( 垂线的定义 ).∴∠A +∠C =180°,∴AF ∥CD ( 同旁内角互补,两直线平行 ).又∵BE ∥CD .∴AF ∥BE ( 平行于同一条直线的两直线平行 ).∴∠F=∠BED(两直线平行,同位角相等).[分析]由AF⊥AC,CD⊥AC可得出∠A=90°,∠C=90°,进而可得出∠A+∠C=180°,利用“同旁内角互补,两直线平行”可证出AF∥CD,结合BE∥CD可得出AF∥BE,再利用“两直线平行,同位角相等”可证出∠F=∠BED.[解答]证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).故答案为:垂线的定义;同旁内角互补,两直线平行;平行于同一条直线的两直线平行;两直线平行,同位角相等.23.如图,在每个小正方形边长都为1的方格纸中,长方形ABCD的四个顶点都在方格纸的格点上(每个小正方形的顶点叫格点).(1)将长方形ABCD向上平移5格,请在图中画出平移后的长方形A1B1C1D1;(点A1的对应点为点A,B1的对应点为点B,C1的对应点为点C,D1的对应点为点D.)(2)将长方形ABCD向左平移6格,请在图中画出平移后的长方形A2B2C2D2(点A2的对应点为点A,B2的对应点为点B,C2的对应点为点C,D2的对应点为点D.)(3)连接A1A2、D1D2并直接写出四边形A1A2D2D1的面积.[分析](1)依据平移的方向和距离,即可得到平移后的长方形A 1B 1C 1D 1;(2)依据平移的方向和距离,即可得到平移后的长方形A 2B 2C 2D 2;(3)依据四边形A 1A 2D 2D 1为平行四边形,运用公式即可得到其面积.[解析](1)如图所示,A 1B 1C 1D 1即为所求;(2)如图所示,A 2B 2C 2D 2即为所求;(3)四边形A 1A 2D 2D 1的面积=4×5=20.24.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A 、B 品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?类别/单价成本价(元/箱 销售价(元/箱) A 品牌20 32 B 品牌 35 50[分析](1)设该超市进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,根据总价=单价×数量结合该超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总利润=每箱利润×数量,即可求出该超市销售万600箱矿泉水获得的利润.[解析](1)设该超市进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,依题意,得:{x +y =60020x +35y =15000,解得:{x =400y =200. 答:该超市进A 品牌矿泉水400箱,B 品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.25.数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.[分析](1)①的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2),②的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2)所以①+②的面积=a 2﹣b 2,所以(a +b )(a ﹣b )=a 2﹣b 2.(2)①+②的面积=(a ﹣b )b =ab ﹣b 2,③+④的面积=(a ﹣b )a =a 2﹣ab ,所以①+②+③+④=a 2﹣b 2;则(a +b )(a ﹣b )=a 2﹣b 2.[解析](1)①的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2), ②的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2),∴①+②的面积=a 2﹣b 2;①+②的面积=大正方形的面积﹣小正方形的面积=a 2﹣b 2,∴(a +b )(a ﹣b )=a 2﹣b 2.(2)①+②的面积=(a ﹣b )b =ab ﹣b 2,③+④的面积=(a ﹣b )a =a 2﹣ab ,∴①+②+③+④=a 2﹣b 2;①+②+③+④的面积=大正方形的面积﹣小正方形的面积=a2﹣b2,∴(a+b)(a﹣b)=a2﹣b2.26.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=60°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.[分析](1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.[解析](1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×13=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.。
人教版数学七年级下册《期中检测卷》(含答案)
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。
河南省洛阳市伊川县2022-2023学年七年级下学期期中数学试题(含答案)
2022-2023学年第二学期期中质量调研检测七年级数学试卷注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)1.方程3x -2x =7的解是()A .x =4B .x =-4C .x =7D .x =-72.二元一次方程5a -11b =21的解的情况为( )A .有且只有一解B .有无数解C .无解D .有且只有两解3.解方程时,去分母正确的是( )A .B .C .D .4.2021年5月,由中国航天科技集团研制的天问一号探测器的着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区。
中国航天器首次奔赴火星,就“毫发无损”地顺利出现在遥远的红色星球上,完成了人类航天史上的一次壮举。
火星与地球的最近距离约为5500万千米,该数据用科学计数法可表示为( )A .千米B .千米C .千米D .千米5.如图,,∠ACB =90°,∠MAC =35°,则∠CBN 的度数是()A .35°B .45°C .55°D .65°6.已知线段AB =4,在直线AB 上作线段BC ,使得BC =2,若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或37.如图是由四个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()232353x x-=-()323523x x -=⨯-()3235235x x -=⨯-⨯()52332315x x -=⨯-⨯()32352315x x -=⨯-⨯85.510⨯75.510⨯90.5510⨯80.5510⨯AM BN ∥A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同8.已知x ,y 的方程组与有相同的解,则a 和b 的值为( )A .a =2,b =-3B .a =4,b =-6C .a =-2,b =3D .a =-4,b =69.用数轴表示不等式组的解集是( )A .B .C .D .10.洛书被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。
人教版数学七年级下学期《期中检测试题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= 2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米 3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm 4.如图,若AB ∥CD ,则∠A 、∠E 、∠D 之间是( )A. ∠A +∠E +∠D =180°B. ∠A +∠E -∠D =180°C. ∠A -∠E +∠D =180°D. ∠A +∠E +∠D =270°5.在方程组2131x y y z -=⎧⎨=+⎩,231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,123xy x y =⎧⎨+=⎩,111y x y ⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有( )个.A 2 B. 3 C. 4 D. 56.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角 7.时钟显示为8:30时,时针与分针所夹锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30° 9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 2010.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩ 11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. 11910813x y y x x y =⎧⎨+-+=⎩()() B. 10891311y x x y x y +=+⎧⎨+=⎩C. 91181013x y x y y x ()()=⎧⎨+-+=⎩D. 91110813x y y x x y =⎧⎨+-+=⎩()() 二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.14.计算:()()32p p -⋅-=________15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.16.如果方程组45x by ax =⎧⎨+=⎩解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ 21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON 互余的角: .(2)若∠AOC=52∠FOM ,求∠MOD 与∠AON 的度数.24.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?答案与解析一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= [答案]D[解析][分析]根据幂的运算性质,对四个选项进行判断即可.[详解]解: A.(-1)0=1,∴A 错误; B.11(1)11--==--,∴B 错误; C .()()()22221a aa a -÷-=÷-=-,∴C 错误. D .3331222a a a -=⋅=,∴D 正确. 故选D . [点睛]此题主要考查了零指数幂和负整数指数幂,关键是掌握负整数指数为正整数指数倒数;任何非0数的0次幂等于1.2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米[答案]B[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]0.000035米=3.5×10-5米;故选B .[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线的距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm [答案]D[详解]解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线的距离≤PC,即点P到直线的距离不大于3cm.故选:D.4.如图,若AB∥CD,则∠A、∠E、∠D之间的是( )A ∠A+∠E+∠D=180° B. ∠A+∠E-∠D=180°C. ∠A-∠E+∠D=180° D. ∠A+∠E+∠D=270°[答案]B[解析][分析]作EF∥AB,则EF∥CD∥AB,根据平行线的性质即可求解.[详解]作EF∥AB,则EF∥CD∥AB,∴∠A+∠AEF=180°,∠D=∠DEF,又∠AED=∠AEF+∠DEF,故∠A+∠E-∠D=180°选B.[点睛]此题主要考查平行线的性质,解题的关键是熟知平行线的性质.5.在方程组2131x yy z-=⎧⎨=+⎩,231xy x=⎧⎨-=⎩,35x yx y+=⎧⎨-=⎩,123xyx y=⎧⎨+=⎩,111yx y⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有()个.A. 2B. 3C. 4D. 5 [答案]A[解析]根据二元一次方程组的定义逐一分析即可.[详解]2131x y y z -=⎧⎨=+⎩含有三个未知数,故不是二元一次方程组; 231x y x =⎧⎨-=⎩是二元一次方程组; 035x y x y +=⎧⎨-=⎩是二元一次方程组; 123xy x y =⎧⎨+=⎩中1xy =是二元二次方程,故该方程组不是二元一次方程组; 111y x y ⎧=⎪⎨⎪+=⎩中11y =不是整式方程,故该方程组不是二元一次方程组; 综上,是二元一次方程组的只有231x y x =⎧⎨-=⎩和035x y x y +=⎧⎨-=⎩. 故选:A .[点睛]本题考查二元一次方程组的定义,要求熟悉二元一次方程组的形式及其特点:含有2个未知数,最高次项的次数是1的整式方程.6.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角[答案]D[解析][分析] 根据内错角、同位角以及同旁内角的定义进行判断即可.[详解]解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选D .[点睛]本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.7.时钟显示为8:30时,时针与分针所夹的锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒[答案]C[解析][分析]根据钟面平均分成2份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.[详解]解:钟面每份是30°,8点30分时针与分针相距2.5份,8点30分时,时钟的时针与分针所夹的锐角是30°×2.5=75°,故选:C .[点睛]本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数等于钟面角.8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30°[答案]C[解析] [详解]解:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB ∥CD ,∴∠2=∠D=40°. 故选C .[点睛]本题考查平行线的性质.9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 20[答案]B[解析][分析]运用同底数幂的除法进行分解22n 3=33-÷m n m ,把值代入求职即可;[详解]由题可得()222n 3=33=33-÷÷m n m m n , 把35m =,34n =代入上式得:原式=22554=254=4÷÷. 故答案选B .[点睛]本题主要考查了整式乘法中幂的运算性质逆运算公式,准确应用公式是解题的关键. 10.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩[答案]C[解析][分析]将2012+a 和2013-b 分别看作整体,则可分别对应x ,y 的值,分别解方程即可求得结果.[详解]解:令 2012+=a m ,2013-=b n ,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩可化为23345m n m n -=⎧⎨+=⎩, ∵方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩, ∴方程组23345m n m n -=⎧⎨+=⎩的解是 2.20.4m n =⎧⎨=-⎩, 即2012 2.220130.4a b +=⎧⎨-=-⎩, 解得:2009.82012.6a b =-⎧⎨=⎩, 故选:C .[点睛]本题考查了二元一次方程组的解,掌握整体思想的运用是解题的关键.11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠[答案]C[解析][分析]根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.[详解]解:A 、∵∠CAB =∠EAD =90°,∴∠1=∠CAB−∠2,∠3=∠EAD−∠2,∴∠1=∠3;故该选项正确,B 、∵∠2=30°,∴∠1=90°−30°=60°,∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ;故该选项正确,C 、∵∠2=30°,∴∠3=90°−30°=60°,∵∠B =45°,∴BC 不平行于AD ;故该选项错误;D 、由AC ∥DE 可得∠4=∠C ;故该选项正确,故选:C.[点睛]此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D91110813 x yy x x y=⎧⎨+-+=⎩()()[答案]D[解析][分析]根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.[详解]设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选D.[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.[答案]120°[解析][分析]根据余角和补角概念计算即可.[详解]∵∠1=30°,∴∠1的余角=90°﹣∠1=90°﹣30°=60°,则∠1的余角的补角=180°﹣∠1的余角=180°﹣60°=120°.故答案为:120°.[点睛]本题考查了余角和补角,解答本题的关键是熟练掌握互余两角之和等于90°,互补两角之和等于180°.14.计算:()()32p p-⋅-=________[答案]p 5[解析][分析]根据同底数幂的乘法法则解答即可.[详解]解:原式=-p 3·(-p 2)=p 5.故答案为:p 5.[点睛]本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.[答案]100︒或60︒[解析][分析]先画图形,注意先画较大的角,分情况:当OC 在AOB ∠的内部时,当OC 在AOB ∠的外部时,从而利用角的和差可得答案.[详解]解:当OC 在AOB ∠的内部时,如图,此时:60,BOC AOB AOC ∠=∠-∠=︒当OC 在AOB ∠的外部时,如图,此时:100.BOC AOB AOC ∠=∠+∠=︒故答案为:100︒或60︒[点睛]本题考查是角的和差运算,画好符合题意的图形是解题的关键.16.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. [答案]1[解析][分析]根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.[详解]解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.[点睛]此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)[答案]①④[解析][分析]根据平行线的性质定理与判定定理,即可解答.[详解]∵∠B=∠AGH ,∴GH ∥BC ,即①正确;∴∠1=∠MGH ,又∵∠1=∠2,∴∠2=∠MGH ,∴DE ∥GF ,∵GF ⊥AB ,∴DE ⊥AB ,即④正确;∠D=∠F ,HE 平分∠AHG ,都不一定成立;故答案为:①④.[点睛]此题考查平行线的性质定理与判定定理,解题的关键是熟记平行线的性质定理与判定定理.18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ [答案][解析][分析]按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.[详解]222322333()()x x x x x x x xx--=-⋅÷-⋅= 故答案为: [点睛]本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+[答案](1)0;(2)9x ;(3)53422492x y x y x y -+-;(4)34+x[解析][分析](1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算,合并即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以多项式法则计算即可得到结果;(4)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果. [详解]解:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ 819=--+0=;(2)()52632x x x x -÷+⋅1092x x x =-÷+992x x =-+9x =;(3)232213112346x y x y x y ⎛⎫-⋅-+ ⎪⎝⎭ 232222131121212346x y x y x y x y x y =-⋅+⋅-⋅ 53422492x y x y x y =-+-;(4)()()221x x x +-+ ()()()222x x x x =++-+2244x x x x =++--34x =+;[点睛]此题考查了整式的混合运算,零指数幂、负整数指数幂,熟练掌握运算法则及公式是解本题的关键. 20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ [答案](1)32x y =⎧⎨=⎩;(2)312x y =⎧⎪⎨=⎪⎩[解析][分析](1)利用代入消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.[详解]解:(1)128x y x y =+⎧⎨+=⎩①②, 把①式代入②中,得:()218y y ++=,解这个方程得:y=2,把y=2代入①中,得x=3,所以方程组的解为32x y =⎧⎨=⎩; (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩, 原方程组可变为:3283210x y x y -=⎧⎨+=⎩①②, ①+②得:6x=18,解这个方程得:x=3,把x=3代入①中,得: y=12, 所以方程组的解为312x y =⎧⎪⎨=⎪⎩. [点睛]此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.[答案]见解析[解析][分析]因为∠ADB=∠EFB ,由同位角相等证明AD ∥EF ,则有∠1=∠E ,∠2=∠3,又因为∠3=∠1,所以有∠1=∠2,故AD 平分∠BAC .[详解]证明:∵AD BC ⊥于点,EF BC ⊥于点(已知),∴90EFC ADC ∠=∠=︒(垂直定义),∴ EF AD ∥(同位角相等,两直线平行),∴1E ∠=∠(两直线平行,同位角相等),32∠=∠(两直线平行,内错角相等).又∵3E ∠=∠(已知),∴12∠=∠(等量代换),∴AD 平分BAC ∠(角平分线定义).[点睛]此题是一道把平行线性质和判定、角平分线的定义结合求解的综合题.有利于培养学生综合运用数学知识的能力.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.[答案](1)平行,理由见解析;(2)∠ACB=42°.[解析][分析](1)根据两直线平行、同旁内角互补求出∠ABF ,得到∠ABC ,根据内错角相等、两直线平行证明;(2)根据两直线平行、同旁内角互补求出∠DCE ,计算即可.[详解]解:(1)平行,理由如下:∵//EF AB ,130EFB ∠=︒,∴18013050ABF ∠=︒-︒=︒,∵20CBF ∠=︒,∴70CBA ABF CBF ∠=∠+∠=︒,∵70DCB ∠=︒,∴∠CBA =∠DCB ,∴//CD AB ;(2)∵//EF AB ,68CEF ∠=︒,∴68A ∠=︒,由(1)知://CD AB ,∴180ACD A ∠+∠=︒,∴180********ACD A ∠=︒-∠=︒-︒=︒,又∵70DCB ∠=︒,∴1127042ACB ACD DCB ∠=∠-∠=︒-︒=︒.[点睛]本题考查的是平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON互余的角:.(2)若∠AOC=52∠FOM,求∠MOD与∠AON的度数.[答案](1)∠FOM,∠MOD,∠CON;(2)20°,70°[解析][分析](1)根据垂直的定义可得∠BOF=∠AOF=90°,由角平分线的定义和对顶角相等可得与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,用含x的式子表示出∠FOD和∠AOC的度数,然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,据此列方程求解,再由(1)中∠MOD与∠AON互余可得出∠AON的度数.[详解]解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠BOM+∠FOM=90°,又∠BOM=∠AON,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM,又∵∠DOM=∠CON,∴与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,∵OM平分∠FOD,∴∠MOD=∠FOM=x°,∴∠FOD=2x°,∠AOC=52∠FOM=5x2°,又∵FO⊥BO,∠AOC=∠BOD, ∴∠FOD+∠AOC=90°,即2x+5x2=90,解得:x=20.即∠MOD=20°,由(1)可知∠MOD与∠AON互余,∴∠AON=90°-∠MOD=90°-20°=70°.故∠MOD的度数为20°,∠AON的度数为70°.[点睛]本题考查了垂直的定义,角的平分线的定义,余角的定义与性质以及对顶角相等,正确理解相关概念是关键.24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.[答案]20°[解析][分析]推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.[详解]∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.[点睛]本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?[答案]货主应该付运输费735元.[解析]试题分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.试题解析:设甲、乙两种货车每辆每次分别运货x吨、y吨,根据题意,得2315.5, {5635.x yx y+=+=解这个方程组,得4 {2.5 xy==则所运货物有3×4+5×2.5=24.5(吨),所以货主应该付运输费为24.5×30=735(元).答:货主应该付运输费735元.[点睛]应根据条件和问题知道应设的未知量是直接未知数还是间接未知数.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.列出方程组,再求解.选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?[答案]7[解析][分析]设报11的人心想的数是a ,用b ,c ,d 到i 分别表示顺指针其余8个小朋友所想的数,通过图可以分别表示出各字母之间的代数式,最后通过整合代数式列出方程,解方程即可.[详解]解:设、、、、、f 、、、分别表示9个小朋友所想的数,则有:248a c c =⨯-=-,21632b d d =⨯-=-,224c e e =⨯-=-,21326d f f =⨯-=-,2612e g g =⨯-=-,2128f h h =⨯-=-,2714g i i =⨯-=-,21021h a a =⨯-=-,21122i b b =⨯-=-,整合884441214a c e e g a =-=-+=+=+-==- 可得7a =,∴报11的人心想的数是7,故答案为:7.[点睛]正确理解题意,用方程的思想解决问题.要注意代数式的表示方法.。
浙教版七年级下学期数学《期中检测试卷》附答案
17.计算:(1) (2)
[答案](1) . (2)
[解析]
试题分析:(1)直接利用单项式乘以单项式运算法则求出答案;
(2)直接利用积的乘方运算法则以及同底数幂的乘法运算法则化简,进而合并同类项即可得出答案.
6.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()
A.50oB.60oC.75oD.85o
7.关于 、 二元一次方程组 的解也是二元一次方程 的解,则 的值是().
A. B. C. D.
8.已知xa=2,xb=3,则x3a+2b=()
A.17B.72C.24D.36
9.一个角的两边分别和另一个角的两边平行,已知其中一个角是60°,则另一个角的度数是()
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),∠PAC,∠APB,∠PBD之间的关系是否发生改变?请说明理由.
答案与解析
一、选择题(共10个小题,每小题3分,共30分)
1.如图,直线b、c被直线a所截,则∠1与∠2是()
A.同位角B.内错角C.同旁内角D.对顶角
[答案]A
[解析]
直线b,c被直线a所截,∠1与∠2在直线a的同侧,
[详解]如图所示:
∵AD∥BC,
∴∠CBF=∠DEF=30°,
∵AB为折痕,
∴2∠α+∠CBF=180°,
即2∠α+30°=180°,
解得∠α=75°.
故选C.
[点睛]考查了平行线 性质和图形的翻折问题;找到相等的角,利用平角列出方程是解答翻折问题的关键.
7.关于 、 的二元一次方程组 的解也是二元一次方程 的解,则 的值是().
A. B. C. D.
人教版数学七年级下册《期中检测卷》及答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(共10题;共30分)1.如图,AD ∥BC ,点E 在BD 延长线上,若∠ADE=155°,则∠DBC 的度数为( )A. 155°B. 35°C. 45°D. 25° 2.12a 可以写成( ).A. 66a a +B. 26a a ⋅C. 66()a a -⋅D. 12a a ÷ 3.如图所示,已知直线AB 、CD 相较于O ,OE 平分∠COB ,若∠EOB=55°,则∠BOD 的度数是( )A. 20B. 25°C. 30°D. 70°4.在下列运算中,正确的是( )A a 2•a 3=a 5 B. (a 2)3=a 5 C. a 6÷a 2=a 3 D. a 5+a 5=a 10 5.纳米是非常小的长度单位,1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A. 2.51×10-5米B. 25.1×10-6米C. 0.251×10-4米D. 2.51×10-4米 6.计算324()ab a b -⋅的结果正确的是( )A. 56a bB. 56a b -C. 57a bD. 57a b - 7.下列线段中能围成三角形的是( )A. 1,2,3B. 4,5,6C. 5,6,11D. 7,10,18 8.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于( )A. 35°B. 45°C. 55°D. 25°9.如图,∠1的同旁内角共有( )A. 1个B. 2个C. 3个D. 4个10. 如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A. ()2222a b a ab b -=-+B. ()2222a b a ab b +=++ C. 22()()a b a b a b -=+- D. 无法确定 二、填空题(共5题;共20分)11.计算:-(22a -)2=________.12.已知1924162m m ⨯⨯=,则的值是_________ .13.已知实数a 、b 满足a -b =3,ab =2,则a ²+b ²的值为________.14.已知,,是ABC 的三边长,,满足2|7|(1)0a b -+-=,为奇数,则c =________.15.如图,在ABC 中,点是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(共5题;共50分)16.计算:(1)()()102311234--⎛⎫--+-- ⎪⎝⎭ (2)()()()2333364332a a a a a a -⋅+-⋅--÷; (3)()()()()2212x y x y x y x y ++--+-; (4)2202020212019-⨯ 17.已知-x m -2n y m +n 与-3x 5y 6的和是单项式,求22(2)5()2(2)()m n m n m n m n --+--++的值. 18.如图,已知AB∥CD ,60B ∠=︒,CM 平分BCE ∠,90MCN ∠=︒,求DCN ∠的度数.19.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB 的位置关系,并写出合适的理由.20.如图,在△ABC 中,AC=BC,∠C=90∘,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.求证:AB=AC+CD.四、填空题(共5题;共20分)21.若4x 2+2(k-3)x+9完全平方式,则k=______.22.若x ﹣y =a ,xy =a +3,且x 2+y 2=5,则a 值为_____.23.观察下面的解题过程,然后化简:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1化简:(3+1)(32+1)(34+1)(38+1)=_____.24.如图,直线AB ∥CD ∥EF ,则∠α+∠β-∠γ=_______.25.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).五、解答题(共3题;共30分)26.利用我们学过的知识,可以得出下面这个优美的等式:()()()⎡⎤++---=-+-+-⎣⎦2222221a b c ab bc ac a b b c c a 2;该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.⑴.请你证明这个等式;⑵.如果===a 2018,b 2019,c 2020,请你求出 222a b c ab bc ac ++---值.27.如图,已知AM∥BN ,∠A=60°,点P 是射线M 上一动点(与点A 不重合),BC,BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C,D,(1)∠CBD=(2)当点P 运动到某处时,∠ACB=∠ABD ,则此时∠ABC=(3)在点P 运动的过程中,∠APB 与∠ADB 的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.28.(1)如图1,等腰ABC ∆和等腰ADE ∆中,90BAC DAE ∠=∠=︒,,,三点在同一直线上,求证:90BDC ∠=︒;(2)如图2,等腰ABC ∆中,AB AC =,90BAC ∠=︒,是三角形外一点,且90BDC ∠=︒,求证:45ADB ∠=︒;(3)如图3,等边ABC ∆中,是形外一点,且60BDC ∠=︒,①ADB ∠的度数为 ;②DA ,DB ,DC 之间关系是 .答案与解析一、单选题(共10题;共30分)1.如图,AD ∥BC ,点E 在BD 延长线上,若∠ADE=155°,则∠DBC 的度数为( )A. 155°B. 35°C. 45°D. 25° [答案]D[解析][详解]解:由题意知.180ADE ADB ∠+∠=∴25ADB ∠=因为AD‖BC ,所以,ADB DBC ∠∠是内错角,所以25ADB DBC ∠=∠=,故选D .[点睛]本题综合考查了补角,内错角等基本知识的运用.2.12a 可以写成( ).A. 66a a +B. 26a a ⋅C. 66()a a -⋅D. 12a a ÷[答案]C[解析][分析]12a 可以使用同底数幂的乘法,幂的乘方公式进行书写.[详解]A. 6662a a a +=,故A 错误;B. 26268a a a a +⋅==,故B 错误;C. 666661662(1())a a a a a a +=-⋅⋅==-⋅,故C 正确;D. 1212111a a a a -÷==,故D 错误.故选:C.[点睛]本题考查了同底数幂乘法,幂的乘方公式的逆向运算,熟知这两个公式的逆用,是解题的关键.3.如图所示,已知直线AB、CD相较于O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是()A. 20B. 25°C. 30°D. 70°[答案]D[解析][分析]由角平分线定义可求出∠COB的度数,根据邻补角的定义求出∠BOD的度数即可.[详解]∵OE平分∠COB,若∠EOB=55°,∴∠COB=2∠EOB=110°,∵∠BOD与∠COB是邻补角,∴∠BOD=180°-∠COB=70°,故选D.[点睛]本题考查了角平分线的定义及邻补角的概念,掌握角平分线的定义和邻补角之和为180°是解题的关键.4.在下列运算中,正确的是( )A. a2•a3=a5B. (a2)3=a5C. a6÷a2=a3D. a5+a5=a10[答案]A[解析][分析]根据同底数幂的乘法、幂的乘方、同底数幂的除法、合并同类项的运算法则进行分析.[详解]A、a2•a3=a5,故原题计算正确;B、(a2)3=a6,故原题计算错误;C、a6÷a2=a4,故原题计算错误;D、a5+a5=2a5,故原题计算错误;故选:A.[点睛]此题主要考查了同底数幂的乘法、幂的乘方、同底数幂的除法、合并同类项,关键是熟练掌握各运算法则.5.纳米是非常小的长度单位,1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A. 2.51×10-5米 B. 25.1×10-6米 C. 0.251×10-4米 D. 2.51×10-4米 [答案]A[解析]分析:对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).详解:25100×10-9=2.51×104×10-9=2.51×10-5. 故选A.点睛:本题考查了负整数指数科学记数法,解题的关键是根据负整数指数科学记数法的定义确定出a 和n 的值.6.计算324()ab a b -⋅的结果正确的是( )A. 56a bB. 56a b -C. 57a bD. 57a b - [答案]D[解析][分析]根据幂的运算法则进行计算.[详解]解:324332457()=-=-ab a b a b a b a b -⋅故选:D[点睛]本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方是解题的关键.7.下列线段中能围成三角形的是( )A. 1,2,3B. 4,5,6C. 5,6,11D. 7,10,18 [答案]B[解析][分析]根据三角形的三边关系“三角形的两边之和大于第三边”进行分析即可判断.[详解]解:A 、1+2=3,所以不能围成三角形;B 、4+5>6,所以能围成三角形;C、6+5=11,所以不能围成三角形;D、7+10<18,所以不能围成三角形;故选B.[点睛]本题考查三角形的三边关系,解题的关键是熟练掌握三角形的两边之和大于第三边.8.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )A. 35°B. 45°C. 55°D. 25°[答案]A[解析][分析]根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.[详解]解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选A.[点睛]本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.9.如图,∠1的同旁内角共有( )A. 1个B. 2个C. 3个D. 4个[答案]C[解析][分析]根据同旁内角定义即可得解.[详解]根据同旁内角的定义可得,∠1的同旁内角有:∠ACE,∠D,∠DCE.故选C10.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A. ()2222a b a ab b -=-+B. ()2222a b a ab b +=++ C. 22()()a b a b a b -=+- D. 无法确定[答案]C[解析]试题分析:正方形中,S 阴影=a 2-b 2;梯形中,S 阴影=12(2a+2b)(a-b)=(a+b)(a-b);故所得恒等式为:a 2-b 2=(a+b)(a-b).故选C .考点:平方差公式的几何背景.二、填空题(共5题;共20分)11.计算:-(22a -)2=________.[答案]-4a 4[解析][分析]直接根据积的乘方与幂的乘方运算法则进行计算即可.[详解]-(-2a ²)2=-[22(a 2)2]= -4a 4.故答案为:-4a 4.[点睛]此题主要考查了积的乘方与幂的乘方,注意处理好负号.12.已知1924162m m ⨯⨯=,则的值是_________ .[答案]3[解析][分析]首先将2416m m ⨯⨯变形为24222m m ⨯⨯,然后再根据同底数幂的乘法运算法则进一步加以分析求解即可.[详解]∵2416m m ⨯⨯=24222m m ⨯⨯=4122m m ++=192,∴41219m m ++=,∴3m =,故答案为:3.[点睛]本题主要考查了幂的乘方与同底数幂乘法的性质,熟练掌握相关概念是解题关键.13.已知实数a 、b 满足a -b =3,ab =2,则a ²+b ²的值为________.[答案]13[解析][分析]根据完全平方公式的变形即可解答.详解]解:∵a -b =3∴(a -b )2=32,即a ²+b ²-2ab=9 ∴a ²+b ²=9+2ab=9+2×2=13 故答案为:13.[点睛]本题考查了完全平方公式的应用,灵活对完全平方公式进行变形是解答本题的关键.14.已知,,是ABC 的三边长,,满足2|7|(1)0a b -+-=,为奇数,则c =________.[答案]7[解析][分析]根据非负数的性质求出a 、b 的值,再根据三角形三边关系即可确定C 的值.[详解]∵2|7|(1)0a b -+-=,∴a-7=0,b-1=0,∴a=7,b=1由三角形三边关系可知,7-1<c <7+1,即6<c <8,∵为奇数,∴c =7,故答案为:7.[点睛]此题主要考查了非负数的性质以及三角形三边关系,求出6<c <8是解题的关键.15.如图,在ABC 中,点是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.[答案]20[解析][分析]根据三角形内角和和翻折的性质解答即可.[详解]解:40BAD ABC ∠=∠=︒,将ABD ∆沿着AD 翻折得到AED ∆,404080ADC ∴∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒,1008020CDE ∴∠=︒-︒=︒,故答案为20[点睛]此题考查翻折的性质,关键是根据三角形内角和和翻折的性质解答.三、解答题(共5题;共50分)16.计算:(1)()()102311234--⎛⎫--+-- ⎪⎝⎭ (2)()()()2333364332a a a a a a -⋅+-⋅--÷; (3)()()()()2212x y x y x y x y ++--+-; (4)2202020212019-⨯ [答案](1)478;(2)92a ;(3)223225x y +;(4)1 [解析][分析](1)根据零指数幂性质、负整数指数幂性质以及有理数乘方运算法则逐个计算出相应的值,然后进一步加以计算即可;(2)根据积的乘方运算和同底数幂的乘法与除法运算法则加以计算即可;(3)利用完全平方公式与平方差公式加以计算化简即可;(4)首先将原式变形为()()220202020120201-+⨯-,然后利用平方差公式进一步计算即可. [详解](1)()()102311234--⎛⎫--+-- ⎪⎝⎭ =19148-+- =478; (2)()()()2333364332a a a a a a -⋅+-⋅--÷=361233698a a a a a a ⋅-⋅+÷=99998a a a -+=92a ;(3)()()()()2212x y x y x y x y ++--+- =222222112222x xy y x xy y x y +++-+-+ =223225x y +; (4)2202020212019-⨯=()()220202020120201-+⨯- =22202020201-+=1.[点睛]本题主要考查了有理数与整式的混合运算及乘法公式的运用,熟练掌握相关方法及公式是解题关键.17.已知-x m -2n y m +n 与-3x 5y 6的和是单项式,求22(2)5()2(2)()m n m n m n m n --+--++的值.[答案]-49[解析][分析]先根据-x m -2n y m +n 与-3x 5y 6是同类项求出m -2n 和m +n 的值,再将22(2)5()2(2)()m n m n m n m n --+--++变形,最后代入即可.[详解]解:∵-x m -2n y m +n 与-3x 5y 6的和是单项式,∴-x m -2n y m +n 与-3x 5y 6同类项,∴m -2n =5,m +n =6,原式=(1-2)(m -2n )2+(1-5)(m +n )=-(m -2n )2-4(m +n )=-52-4×6=-25-24=-49.[点睛]本题考查了同类项的概念,以及代数式求值,解题的关键是掌握同类项的概念.18.如图,已知AB∥CD ,60B ∠=︒,CM 平分BCE ∠,90MCN ∠=︒,求DCN ∠的度数.[答案]30°[解析][分析]根据平行线的性质求出∠BCD 和∠BCE ,根据角平分线定义求出∠ECM ,即可求出答案.[详解]解://AB CD ,180B BCE ∠=∠=︒,BCD B ∠=∠,60B ∠=︒,120BCE ∠=︒,60BCD ∠=︒,CM 平分BCE ∠,1602ECM BCE ∠=∠=︒, 90MCN ∠=︒,180609030DCN ∠=︒-︒-︒=︒.[点睛]本题考查了平行线的性质,角平分线定义的应用,解此题的关键是求出∠ECA 的度数.19.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB 的位置关系,并写出合适的理由.[答案]CD AB ⊥[解析][分析]已知∠3=∠B ,根据同位角相等,两直线平行,则DE ∥BC ,通过平行线的性质和等量代换可得∠2=∠DCB ,从而证得CD ∥GF ,又因为FG ⊥AB ,所以CD 与AB 的位置关系是垂直.[详解]CD AB ⊥∵3B ∠=∠.∴DE BC ,∴14∠=∠,又∵12∠=∠,∴24∠=∠,∴GF CD ,∴CDB BGF ∠=∠,又∵FG AB ⊥,∴90BGF ∠=︒,90CDB ∴∠=︒,即CD AB ⊥.[点睛]本题考查了平行线的判定和性质,证明GF CD 是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.20.如图,在△ABC 中,AC=BC,∠C=90∘,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.求证:AB=AC+CD.[答案]见解析[解析][分析]根据已知AC=BC,∠C=90,可得出DE=EB,再利用AD是△ABC的角平分线,DE⊥AB,可证明△ACD≌△AED,然后利用全等三角形的对应边相等和等量代换即可证明AB=AC+CD.[详解]证明:∵在△ABC中,AC=BC,∠C=90°,∴∠ABC=45°,又∵DE⊥AB,垂足为E,∴∠B=∠EDB=45°,∴DE=EB,又∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴DE=CD.在Rt△ACD与Rt△AED中,∵AD AD DE CD ⎧⎨⎩==,∴△ACD≌△AED,∴AC=AE,CD=DE,∴AB=AE+EB=AC+CD.[点睛]此题考查学生对等腰直角三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识点的理解和掌握,证明此题的关键是证明△ACD≌△AED,此题难度不大,属于基础题.四、填空题(共5题;共20分)21.若4x2+2(k-3)x+9是完全平方式,则k=______.[答案]9或﹣3[解析]原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x 2+2(k-3)x+9=(2x±3)2,∴4x 2+2(k-3)x+9=4x 2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.[点睛]本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.22.若x ﹣y =a ,xy =a +3,且x 2+y 2=5,则a 的值为_____.[答案]-1.[解析][分析]先根据完全平方公式得到(x ﹣y )2=x 2+y 2﹣2xy ,然后利用整体代入得到关于a 的方程,解方程即可求解.[详解]解:(x ﹣y )2=x 2+y 2﹣2xy ,∵x ﹣y =a ,xy =a+3,x 2+y 2=5,∴a 2=5﹣2(a+3),即a 2+2a+1=0,解得a =﹣1.故a 的值是﹣1.[点睛]本题考查完全平方公式.也考查代数式的变形能力.解题关键是熟练掌握完全平方公式:(a±b )2=a 2±2ab+b 2. 23.观察下面解题过程,然后化简:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1化简:(3+1)(32+1)(34+1)(38+1)=_____.[答案]()161312- [解析][分析]原式变形后,利用平方差公式计算即可求出值.[详解]解:原式=12(3-1)(3+1)(32+1)(34+1)(38+1) =12(32-1)(32+1)(34+1)(38+1) =12(34-1)(34+1)(38+1) =12(38-1)(38+1) =12(316-1).故答案为()161312-. [点睛]本题考查平方差公式,熟练掌握平方差公式是解题的关键.24.如图,直线AB ∥CD ∥EF ,则∠α+∠β-∠γ=_______.[答案]180°[解析][分析]根据平行线性质得出∠α=∠ADC,∠CDF=180°-∠γ,根据∠β+∠ADC+∠CDF=360°推出∠β+∠α+180°-∠γ=360°即可得出答案.[详解]解:∵AB ∥CD ∥EF,∴∠α=∠ADC,∠CDF=180°-∠γ, ∵∠β+∠ADC+∠CDF=360°, ∴∠β+∠α+180°-∠γ=360°∴∠α+∠β-∠γ=180°,故答案为180.[点睛]本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).[答案]②.[解析][分析]一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解.[详解]∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC ∆≌DCB ∆;若添加②AC DB =,则属于边边角的顺序,不能判定ABC ∆≌DCB ∆;若添加③AB DC =,则属于边角边的顺序,可以判定ABC ∆≌DCB ∆.故答案为②.[点睛]本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.五、解答题(共3题;共30分)26.利用我们学过的知识,可以得出下面这个优美的等式:()()()⎡⎤++---=-+-+-⎣⎦2222221a b c ab bc ac a b b c c a 2;该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.⑴.请你证明这个等式;⑵.如果===a 2018,b 2019,c 2020,请你求出 222a b c ab bc ac ++---的值.[答案](1)证明见解析;(2)3.[解析][分析](1)已知等式右边利用完全平方公式化简,整理即可作出验证;(2)把a ,b ,c 的值代入已知等式右边,求出值即为所求式子的值.[详解](1)证明:右边=12[(a-b )2+(b-c )2+(c-a )2]= 12(a 2-2ab+b 2+b 2-2bc+c 2+c 2-2ac+a 2) =12(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac=左边;(2)解:当a=2018,b=2019,c=2020时,原式=12[(a-b )2+(b-c )2+(c-a )2]=12×(1+1+4)=3.[点睛]此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.27.如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D,(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.[答案](1)60°;(2)30°;(3)不变.[解析][分析](1)由AM∥BN可得∠ABN=180°-∠A,再由BC、BD均为角平分线可求解;(2)由AM∥BN可得∠ACB=∠CBN,再由∠ACB=∠ABD可得∠ABC =∠DBN;(3)由AM∥BN可得∠APB=∠PBN,再由BD为角平分线即可解答.[详解]解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=12(∠ABP+∠PBN)=12∠ABN=60°,故答案为60°.(2)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN, ∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=12∠ABN=30°,故答案为30°. (3)不变.理由如下:∵AM ∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD 平分∠PBN,∴∠ADB=∠DBN=12∠PBN=12∠APB ,即∠APB :∠ADB=2:1. [点睛]本题考查了平行线的性质.28.(1)如图1,等腰ABC ∆和等腰ADE ∆中,90BAC DAE ∠=∠=︒,,,三点同一直线上,求证:90BDC ∠=︒;(2)如图2,等腰ABC ∆中,AB AC =,90BAC ∠=︒,是三角形外一点,且90BDC ∠=︒,求证:45ADB ∠=︒;(3)如图3,等边ABC ∆中,是形外一点,且60BDC ∠=︒,①ADB ∠的度数为 ;②DA ,DB ,DC 之间的关系是 .[答案](1)见解析;(2)见解析;(3)①60ADE ∠=︒,②BD AD CD =+.[解析][分析](1)如图1,先利用SAS 证明ABE ACD ∆≅∆,得到34∠=∠,进一步可得证90BDC ∠=︒;(2)如图2,过作AE AD ⊥交BD 于,利用ASA 证明ABE ACD ∆≅∆,得到AE AD =,从而得证45ADB ∠=︒;(3)①如图3-1,在三角形内作60DAE ∠=︒,AE 交BD 于点,证得ADE ∆是等边三角形,即可得证; ②先利用SAS 证明ABE ACD ∆≅∆,得到BE CD =,再利用等量代换可证得结论.[详解](1)如图1,90BAC DAE ∠=∠=︒,12∠∠∴=,在ABE ∆和ACD ∆中,12AB AC AE AD =⎧⎪∠=∠⎨⎪=⎩ABE ACD ∴∆≅∆(SAS),34∴∠=∠,3590∠+∠︒=,56∠=∠,4690∴∠+∠=︒,90BDC ∴∠=︒;(2)如图2,过作AE AD ⊥交BD 于,90BAC DAE ∠=∠=︒,12∠∠∴=,90BAC BDC ∠︒∠==,56∠=∠,34∴∠=∠,在ABE ∆和ACD ∆中,1234AB AC ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ACD ∴∆≅∆()ASA ,AE AD ∴=,45ADE AED ∴∠=∠=︒;(3)①如图3-1,在三角形内作60DAE ∠=︒,AE 交BD 于点,与(2)同理可证AE AD =,ADE ∴∆是等边三角形,60ADE ∴∠=︒;②BD AD CD =+.理由是:如图3-1,易知BAE CAD ∠=∠,又AB=AC,由①知AE=AD ,ABE ACD ∴∆≅∆(SAS),BE CD ∴=,ADE ∆是等边三角形,DE AD ∴=BD BE ED AD CD ∴=+=+[点睛]本题考查了全等三角形的性质和判定,也考查了等边三角形的性质,添加恰当的辅助线是解第2、3问的关键.。
山西省晋中市太谷区2023-2024学年七年级下学期期中语文试题(含答案)
太谷区2023-2024学年第二学期期中质量检测试题七年级语文(本试卷满分100分,考试时间120分钟)一、活动·探究(10分)青春正好,不负韶华。
七年级(7班)开展了“奔跑吧,青春”主题读书交流活动。
【传承文化——奋进的青春】1.为了勉励大家珍惜光阴、勤学向上,学校图书馆计划张贴一幅内容为颜真卿《劝学诗》的书法作品,要求笔画浑厚端庄,有阳刚之美。
请赏读上面两幅作品,从中选出恰当的一幅,用楷体将这首诗的第二句正确、规范地书写在田字格内。
(2分)我选择:______【经典语录——我们的青春】①同学们,青春是人生美好的年华,奔跑是青春靓丽的姿态。
②邓稼先锲而不舍,奔跑出研发“两弹”的民族科技路;闻一多言行合一,奔跑出民族文化与气节。
③只有每一次奔跑都奋力向前追寻,才能让挫折变为机遇,让坎坷化作基石。
④青春就是不回避、不退缩、不推诿,坚忍不拔,自强不息,并以“凌霄羽毛原无力,坠地金石自有声”的姿态,勇于担当责任,勇于披荆斩棘。
⑤让我们坚持向前奔跑,张开双臂去拥抱bān lán的青春!2.以上为勤学组设计的开场词,下列说法正确的一项是()(2分)A.第②句中的“锲”字应读“qiè”,第⑤句中加拼音处应填入的词语是“斑斓”。
B.第②句运用排比的修辞手法,表达有节奏、有气势。
C.文段中加点词“美好”“向”“并”依次是副词、介词、连词。
D.第⑤句运用拟人的修辞手法,生动形象地写出了青春之美。
【名著推荐——凡人的青春】3.博学组的同学以“品京味儿语言,学名家写作”为主题开讲,下面是他们整理的批注笔记。
请你帮他们完善。
(3分)品鉴《骆驼祥子》的一个重大贡献,就是用美好的文字给我们留下了一座老北京城。
老北京的风情,除了地道的京腔,还有纯正的京味儿。
这些味道,集中体现在饮食上。
相关片段要了碗馄饨,他仍然坐在地上。
呷了口汤,觉得恶心,在口中含了半天,勉强的咽下去;不想再喝。
可是,待了一会儿,热汤像股线似的一直通到腹部,打了两个响嗝。
期中综合能力测试题(一)2021-2022学年下学期人教版七年级英语下册
期中综合能力测试题(一)Listening test part(共20分)I.听句子,选择最佳应答语。
(每小题1分,共5分)( )1.A. She's from Africa.B. She is my classmate.C. She is in Class 2.( )2.A.I don't like singing. B. Yes,I'd love to. C. By bike.( )3.A. On weekends. B. With my cousin. C.In the sports hall( )4.A、For about one hour. B. At 10:00a.m. C. No. he doesn't.( )5.A. Sure. B.I like fish. C. You're welcome.Ⅱ.听对话,选择最佳答案。
(每小题1分,共5分)( )6. What does Wang Wei want to do on Music Day?A. Play the violin.B. Sing.C. Play the piano.( )7. How long does it take to get to Mingzhu Radio Station by subway?A. 15 minutes.B. 35 minutes.C. 50 minutes.( )8. What does Amy have to do?A. Clean the table.B. Do her homework.C. Go to the supermarket .( )9. Who is good at Chinese?A. Dave.B. Julie,C. Kate.( ) 10. When does Dr. Chen play basketball ?A.Every Wednesday.B. Every Friday.C. Every Sunday.Ⅲ.听长对话,选择最佳答案。
人教版数学七年级下学期《期中检测试卷》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅结果是( )A. 5m -B. 5mC. 6m -D. 6m2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=-C. 1025x x x ÷=D. 03226-⨯=- 3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠对顶角 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+ 6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是( ) A. B. C. D. 8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.10.一个长方体长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg )1 2 3 4 … 销售总价(元)6.5 125 18.5 245 …13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.16.根据如图所示阴影部分的面积可以写出的一个等式是________.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. 19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.答案与解析一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅的结果是( )A. 5m -B. 5mC. 6m -D. 6m[答案]B[解析][分析] 根据积的乘方和同底数幂的乘法计算即可.[详解]解:23()m m -⋅=23m m ⋅=5m故选B .[点睛]此题考查的是幂的运算性质,掌握积的乘方和同底数幂的乘法是解决此题的关键.2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=- C 1025x x x ÷=D. 03226-⨯=- [答案]A[解析][分析]根据同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质逐一判断即可.[详解]A.2312366()()()()()a a a a a a ++---=-==-,故本选项正确;B.()3236928m n m n -=-,故本选项错误;C.1018202x x x x -÷==,故本选项错误;D.031122188-⨯=⨯=,故本选项错误. 故选A . [点睛]此题考查的是幂的运算性质,掌握同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质是解决此题的关键.3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭[答案]B[解析][分析]根据平方差公式对各选项进行逐一计算即可. [详解]解:A 、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B 、符合平方差公式,故本选项正确;C 、原式=()2x y -+,故本选项错误; D 、原式=212x ⎛⎫-- ⎪⎝⎭,故本选项错误. 故选:B .[点睛]本题考查平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解题的关键. 4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠是对顶角[解析][分析]根据对顶角的性质、补角和余角的定义即可解题.[详解]解:A.∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,故正确;B.∠BOD 和∠DOE 互为余角,故正确;C.AOC ∠与AOD ∠互补,故正确;D.AOE ∠与BOC ∠不是对顶角,故错误.故选D .[点睛]本题考查了对顶角的性质、补角和余角的定义,属于简单题,熟悉概念和性质是解题关键. 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+[答案]D[解析][分析]运用十字相乘的方法来分解即可.[详解]解:256x x --=(x-6)(x+1)故选D[点睛]本题考查了运用十字相乘的方法来分解因式,熟练掌握该方法是解决本题的关键.6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条[答案]D[分析]根据点到直线的距离的定义:从直线外一点到这直线的垂线段的长度叫做点到直线的距离,即可得出结论.[详解]解:AD的长度表示点A到直线BC的距离;BD的长度表示点B到直线AD的距离;CD的长度表示点C到直线AD的距离;CA的长度表示点C到直线AB的距离;BA的长度表示点B到直线AC的距离;综上:图中能表示点到直线的距离的线段共有5条故选D.[点睛]此题主要考查了点到直线的距离,解题关键是明确点到直线的距离是这个点到直线的垂线段的长,因此要找到垂直的特点即可.7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是()A. B. C. D.[答案]A[解析][分析]根据小颖妈妈所走的路程与时间关系分析图象即可.[详解]解:小颖妈妈用了10分钟快速走到一个离家800米的药店,此时各个选项均符合题意;在药店排队10分钟买到了预约口罩,即这10分钟走的路程为0,故可排除B和D;然后步行回到家,即此时小颖妈妈又行驶了800米,故可排除C,选A.故选A.[点睛]此题考查的是根据题意,选择正确的图象,掌握图象横纵坐标表示的实际意义是解决此题的关键.8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -[答案]B[解析][分析]根据A B ÷的计算结果是21x -+,可得A=B (-2x+1),将21B x =+代入计算即可.[详解]解:∵A B ÷的计算结果是21x -+,∴A=B (2x+1)=(2x+1)(-2x+1)=-(2x+1)(2x-1)=214x -.故选:B .[点睛]本题考查了整式的乘除,关键是掌握整式的乘除运算法则,平方差公式,在计算时要注意结果的符号. 二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.[答案]8610-⨯[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:∵1nm=1×10-9m ∴60nm=6×10-8m . 故答案为:6×10-8. [点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,为由原数左边起第一个不为零的数字前面的0的个数所决定.本题也考查了纳米与米之间的单位换算:1nm=1×10-9m . 10.一个长方体的长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .[答案]63.910⨯[解析][分析]先进行单位换算,再计算长方体的体积[详解]53210cm=210m ⨯⨯,311.510cm=1.510m ⨯⨯,421.310cm=1.310m ⨯⨯故它的体积是:33126210 1.510 1.310 3.1m 90⨯⨯⨯⨯⨯=⨯.故答案为:63.910⨯[点睛]此题主要考查了单项式乘以单项式以及科学记数法的表示方法,单位换算和正确计算是解题关键. 11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.[答案] (1). 增大 (2). 对顶角相等[解析][分析]根据对顶角的性质即可得出结论.[详解]解:∵∠AOB 和∠DOC 为对顶角∴∠AOB=∠DOC∴随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)增大理由为对顶角相等.故答案为:增大;对顶角相等.[点睛]此题考查的是对顶角性质的应用,掌握对顶角相等是解决此题的关键.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg ) 1 2 3 4 …[答案]60.5y x =+[解析][分析] 由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元,从而求出y 与x 的函数关系式.[详解]解:由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元, ∴y=6.5+6(x -1)=60.5x +故答案为:60.5y x =+.[点睛]此题考查的是求函数解析式,掌握实际问题中的等量关系是解决此题的关键.13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.[答案]-3[解析][分析]按照负指数幂和零指数幂运算法则分别计算后,进行有理数加减法运算即可. [详解]解:101(2213)2π-⎛⎫---=-- ⎪⎭=-⎝ 故答案为:-3[点睛]本题考查了负指数幂、零指数幂和有理数加减运算的运算法则,解答关键是按照法则进行计算.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.[答案]北偏东50°[解析][分析]首先计算2∠的度数,再根据方向角来描述乙地所修公路的走向.[详解]解:如图所示:150∠=︒,//AC BD ,2150∴∠=∠=︒,乙地所修公路的走向是北偏东50︒,故答案为:北偏东50︒.[点睛]此题主要考查了方向角,关键是掌握以正北,正南方向为基准,来描述物体所处的方向.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.[答案]127[解析][分析]根据平方差公式和负指数幂的性质可得()()13a b a b +-=,然后根据积的乘方的逆用即可求出结论.[详解]解:∵2213a b --=∴()()13a b a b +-=∴33()()a b a b +-=[]3()()a b a b +- =313⎡⎤⎢⎥⎣⎦=127故答案为:127. [点睛]此题考查的是平方差公式、负指数幂的性质和积的乘方的逆用,掌握平方差公式、负指数幂的性质和积的乘方的逆用是解决此题的关键.16.根据如图所示阴影部分的面积可以写出的一个等式是________.[答案]22()()4a b a b ab +=-+[解析]分析]由图可知:图中大正方形的边长为a +b ,其面积为2()a b +;空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;然后根据大正方形的面积=空白正方形的面积+4个矩形的面积即可得出结论.[详解]解:由图可知:图中大正方形边长为a +b ,其面积为2()a b +; 空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;∴22()()4a b a b ab +=-+故答案为:22()()4a b a b ab +=-+.[点睛]此题考查的是完全平方公式变形的几何意义,利用大正方形的面积=空白正方形的面积+4个矩形的面积得出等式是解决此题的关键.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.[答案](1)623xy (2)2a (3)41x - [解析][分析](1)先计算单项式的乘方,再进行单项式乘法,最后进行单项式除法即可;(2)先计算单项式的乘方,再进行单项式乘除法,最后加减;(3)直接利用平方差公式计算得出答案.[详解]解:(1)()32328x x y xy ⋅÷=63388x x y xy ⋅÷=623x y ;(2)3(2)(3)9a a a a -⋅--÷=232(27)9a a a ---÷=222+3a a -=2a ;(3)()2(1)(1)1x x x -++=()22(1)1x x -+=41x -.[点睛]本题考查整式的混合运算,正确掌握相关运算法则是解题关键.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. [答案](1)76x +;-8 ; (2)2n +;32[解析][分析] (1)利用多项式乘以多项式和单项式乘以多项式计算法则进行计算,再合并同类项,化简后,再代入的值可得答案.(2)首先利用完全平方公式计算括号里面的乘法,再合并同类项,然后再利用多项式除以单项式计算除法,化简后,再代入、的值计算即可.[详解]解:(1)原式2(31)(32)(23)x x x x +-+-2262(6946)x x x x x =+--+-22626946x x x x x =+-+-+76x =+,当2x =-时,原式2768=-⨯+=-;(2)原式222()()22m n m n mn mn ⎡⎤=+--+÷⎣⎦222222(2)22m mn n m mn n mn mn ⎡⎤=++--++÷⎣⎦22222(222)2m mn n m mn n mn mn =++-+-+÷2(42)2mn mn mn =+÷24222mn mn mn mn =÷+÷2n =+,当1m =,12n =-时,原式13222=-+=. [点睛]此题主要考查了整式的混合运算--化简求值,关键是掌握有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.[答案]//AB CD ,理由:内错角相等,两直线平行[解析][分析]根据三角尺的摆放方式,比较容易找到一组相等的内错角,从而证明两条直线平行.[详解]//AB CD ,理由:内错角相等,两直线平行[点睛]本题考查了平行线的判定方法,熟练掌握平行线的判定定理是解题的关键.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)[答案]图见解析[解析][分析]作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠.[详解]解:作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠,如下图所示,∠AOB 即为所求.[点睛]此题考查的是基本作图,掌握利用尺规作图作一个角等于已知角是解决此题的关键.21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?[答案](1)点表示小孙从社区办公室出发5分钟后到达距社区办公室200米的张家;(2)80(米/分);(3)10分钟,9:40.[解析][分析](1)根据题意和图象中A点对应的(米)与(分)解答即可;(2)根据“速度时间路程”解答即可;(3)根据图象中(米)与(分)解答即可.[详解]解:(1)由图象可知,点表示小孙从社区办公室出发5分钟后到达距社区办公室200米张家;(2)800(4030)80÷-=(米分).故小孙从李家出来后步行的速度是80米分;(3)由图象可知,小孙在李家停留了()302010-=分钟,小孙9:00出发,到经过40分钟回到社区办公室, 9:40回到社区办公室.故:小孙在李家停留了10分钟,小孙9:40回到社区办公室.[点睛]此题主要考查了看函数图象,解决本题的关键是读懂图意,然后根据图象信息找到所需要的数量关系,利用数量关系即可解决问题.22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.[答案](1)40DCE ∠=︒(2)100ACD ∠=︒(3)不变 ACD A B ∠=∠+∠[解析][分析](1)直接利用两直线平行,同位角相等即可得出答案;(2)利用三角形外角的性质可知ACD A B ∠=∠+∠,然后代入相应的角度即可求出答案;(3)利用三角形外角的性质可知ACD A B ∠=∠+∠,从而得出答案.[详解](1)//AB CE ,40DCE B ∴∠=∠=︒;(2)60A ∠=︒,40B ∠=︒,∴6040100ACD A B ∠=∠+∠=︒+︒=︒;(3)不变,根据三角形外角的性质可知,ACD A B ∠=∠+∠.[点睛]本题主要考查平行线的性质和三角形外角的性质,掌握平行线的性质和三角形外角的性质是解题的关键.。
人教版七年级语文(下册期中)综合检测卷及答案
人教版七年级语文(下册期中)综合检测卷及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字注音完全正确的一项是( )A.哺.乳(bǔ)称.职(chèng)惩.戒(chéng)畏罪潜.逃(qián)B.蜷.伏(quán)废墟.(xū)纯粹.(cuì)惊慌失措.(chuò)C.拼凑.(còu)倜傥.(tǎng)菜畦.(qí)人声鼎.沸(dǐng)D.荫.蔽(yìn) 粗犷.(guǎng) 酝酿.(liàng) 淅淅沥.沥(lì)2、下列词语中书写有误的一项是()A.酝酿懒惰怂恿人声鼎沸B.竦峙绵延禁锢见异思迁C.褴褛热忱贮蓄神采奕奕D.滑稽决别帐篷骇人听闻3、下列句中加点词语使用正确的一项是()A.面对玉龙雪山扑朔迷离....的天气,登山队员们进退两难。
B.苏州园林在设计上处处别有用心....,是我国各地园林的标本。
C.做一个人,我们要行使自己的权利;做一个公民,我们要恪尽职守....。
D.张璐同学在“文明礼仪伴我成长”演讲比赛中获得了一等奖,全家人简直是乐此不疲....。
4、下列句子中,没有语病的一句是()A.9月10日,大约一百名左右的教师参加了庆祝教师节活动。
B.通过开展禁毒宣传活动,使我们进一步认识了毒品的危害性。
C.他的语文成绩不仅在全校很突出,而且在我们班也名列前茅。
D.为了规范义务教育阶段的招生行为,成都市教育局严禁公办学校招收择校生。
5、下列对句子使用的修辞手法表述错误的一项是()A.风儿清唱着歌,唤醒了沉睡中的大地。
(拟人)B.油蛉在这里低唱,蟋蟋们在这里弹琴。
(拟人)C.水底的鹅卵石就像一颗颗晶莹剔透的宝石。
(比喻)D.夜空中的小星星眨着眼睛,似乎对你微笑。
(比喻)6、下列文字依次填入横线处最恰当的一组是()让我们对所有的苦难心存感激,因为,生命,思想,意志。
辽宁省营口市2023-2024学年七年级下学期期中语文试题(含答案)
2023—2024学年度(下)期中教学质量检测七年级语文试题(考试时间120分钟试卷满分120分)一、积累与运用(17分)1.下列词语的字音和字形都正确的一组是()。
(2分)A.哺.育(bǔ)亘.古(gèng)深恶痛觉.(jué)心不在焉.(yān)B.憎.恶(zèng)奠.基(diàn)沥.尽心血(lì)妇儒.皆知(rú)C.屏嶂.(zhàng)嗥.鸣(áo)鲜.为人知(xiǎn)慷慨.淋漓(kǎi)D.污秽.(huì)镐.头(gǎo)锋芒毕.露(bì)目不窥.园(kuī)2.依次填入下面语段横线处的词语,最恰当的一项是()。
(2分)我们构建新发展______,______封闭的国内单循环,______开放的、相互促进的国内国际双循环。
中国市场潜力将充分激发,为世界各匡国创造更多需求。
人类命运______,各国利益紧密相连。
A.格局与其不如同舟共济B.格局不是而是休戚与共C.局面不是就是休戚与共D.局面不但而且同舟共济3.下列各项中分析错误..的一项是()。
(2分)成语是浓缩的文化..。
它.言简意赅深刻隽永滴水藏海,折射历史的千姿百态。
它以语言为承载,方寸之间传达着丰富的含义,是汉语词汇中的璀璨..明珠。
A.文中“文化”“它”“璀璨”的词性分别是代词、名词、形容词。
B.“言简意赅”“深刻隽永”“滴水藏海”之间是并列关系,应该用顿号。
C.画线句运用了比喻的修辞手法。
D.“成语是浓缩的文化。
”这句话没有语病。
4.文学、文化常识与名著阅读。
(5分)(1)下列各项中表述有误..的一项是()。
(2分)A.杨绛,原名杨季康,现代女作家,翻译家。
著有散文《干校六记》《将饮茶》《我们仨》,译作有《堂吉诃德》等。
B.“卿”是君对臣的爱称。
朋友、夫妇间也以“卿”为爱称。
C.《资治通鉴》是北宋司马迁主持编纂的一部编年体通史,记载了从春秋到五代共1362年间的史事。
人教版数学七年级下册《期中检测试题》(带答案)
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.3.25的算术平方根是_________;(-14)2 的算术平方根是_________. 4.若3x +是4的平方根,的立方根是1y -,则x y +=_________.5.把命题“对顶角相等”改写成“如果…那么…”形式是__________________.6.如图,直线a ∥b ,点B 在直线b 上,AB BC ⊥,若255∠=︒,则1∠=___度.7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x 为____.8.如图,已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=__________,∠3=__________.9.实数120的整数部分是_____, 小数部分是_____.10.把下列各数分别填入相应的集合内:32,34,9, -5,-38,0有理数集合:_______________;无理数集合: _______________; 正数集合:__________________;负数集合:_________________.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④13.下列运算中,正确的是( )55-= B. 3.60.6-=- 2(13)13-= 366=±14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为() A. (-5,-4) B. (-4 ,5) C. (4,5) D. (5,-4)15.若点P(m+3,m+1) 在y 轴上,则点P 的坐标为( )A. (0,2)B. (2,0)C. (0,4)D. (0,-2)16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位17.下列命题中,是假命题的是( )A 两点之间,线段最短 B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个19.把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若∠EFB=32°则下列结论正确的有( )(1)∠C ′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个20.一个数的立方根是 4,这个数的平方根是 ( )A. 8B. -8C. 8 或 -8D. 4 或 -421.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A -3 B. -1 C. 1 D. -3或122.16平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或623.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ 24.已知a<b<0 , 则点A(a-b ,b )在第( )象限A. 一B. 二C. 三D. 四三.解答题25.求下列各式中的值(1)252x =36(2)-3=3826.解方程组25{437x y x y +=+=. 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )答案与解析一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.[答案](1). 0 (2). 0,1 (3). 0,1,-1[解析][分析]利用平方根,算术平方根,以及立方根定义判断即可.[详解]解:一个数的平方根等于它本身,这个数是0;一个数算术平方根等于它本身,这个数是0,1;一个数的立方根等于它本身,这个数是0,1,−1;故答案为:0;0,1;0,1,-1.[点睛]此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.[答案]49[解析][分析]根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.[详解]解:∵一个数的两个平方根分别是a+3与2a-15,∴(a+3)+(2a﹣15)=0,a=4,a+3=4+3=7,7的平方是49,∴这个数是49,故答案为:49.[点睛]此题考查平方根,解题关键在于求出a的值._________;(-14)2 的算术平方根是_________.[答案](1). (2). 1 4[解析] [分析]21()4-的值,再分别计算它们的算术平方根即可得解.[详解5=,5211()416-=,116的算术平方根是14,14.[点睛]本题主要考查了求一个数的平方及算术平方根,熟练掌握相关计算方法是解决本题的关键.4.若3x+是4的平方根,的立方根是1y-,则x y+=_________.[答案]-2或-6[解析]32x+==±,可得x=-1或-5;12y-==-,可得y=-1.所以x+y=-2或-6.5.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.6.如图,直线a∥b,点B在直线b上,AB BC⊥,若255∠=︒,则1∠=___度.[答案]35[解析]⊥[详解]试题分析:因为直线a∥b,根据同位角的知识可知,∠2等于∠3,因为AB BC ∠+∠=︒⇒∠=︒所以1390135点评:本题综合考查了对顶角,同旁内角互补等基本知识的运用7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为____.[答案]165°[解析][分析]根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.[详解]解:∵∠x为下边小三角形外角,∴∠x=30°+(180°-45°)=165°,故答案为:165°.[点睛]本题考查了三角形外角定理,通过三角板拼装来求角度数,将问题实际化.8.如图,已知直线a∥b,c∥d,∠1=115°,则∠2=__________,∠3=__________.[答案](1). 115°(2). 115°[解析]∵a∥b,∠1=115°,∴∠2=∠1=115°.∵c∥d,∴∠3=∠2=115°.点睛:本题考查了平行线的性质,①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.根据平行线的性质解答即可.9.120_____,小数部分是_____.[答案](1). 10 (2). 120[解析][分析]利用二次根式的估算,先找出离被开方数最近的两个完全平方数,得出二次根式所在的范围即可.[详解]100120121,∴120,12010,120,故答案为:10120.[点睛]本题主要考查的是二次根式的估算,掌握二次根式的估算方法是解题的关键.10.,34,,0 有理数集合:_______________;无理数集合: _______________;正数集合:__________________;负数集合:_________________.[答案] (1).34,0 (2). , (3). ,34 , [解析][分析]根据有理数、无理数、正负数的定义判断即可.[详解]解:有理数:340;,34负数:故答案为:有理数集合:340 ,34[点睛]本题考查实数的分类,其中0是有理数,但不是正数也不是负数.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数[答案]D[解析][分析]根据数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示进行回答.[详解]解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选:D .[点睛]此题考查实数与数轴,解题关键在于掌握其定义.12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④[答案]B[解析][分析] 根据同位角的定义判断即可.[详解]由图可知①③中的∠1与∠2有公共边,为同位角,故选B.[点睛]此题主要考察同位角的定义.13.下列运算中,正确的是( ) A. 55-=- B. 3.60.6-=- C. 2(13)13-= D. 366=± [答案]C[解析][分析]根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.[详解]因为-5<0,故A 项的表达式无意义,故A 项错误;-0.36=-0.6,故B 2(13)-169,故C 366=,故D 项错误.故答案为C.[点睛]本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为( )A. (-5,-4)B. (-4 ,5)C. (4,5)D. (5,-4) [答案]A[解析][分析]根据各象限内点的坐标特征,可得答案.[详解]解:由题意,得|y|=4,|x|=5,又∵在第三象限内有一点P,∴x=−5,y=−4,∴点P的坐标为(−5,−4),故选:A.[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).15.若点P(m+3,m+1) 在y轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (0,4)D. (0,-2)[答案]D[解析][分析]根据点P在y轴上,即x=0,可得出m的值,从而得出点P的坐标.[详解]解:∵点P(m+3,m+1)在y轴上,∴x=0,∴m+3=0,解得m=−3,∴m+1=−3+1=-2,∴点P的坐标为(0,-2).故选:D.[点睛]本题考查平面直角坐标系中,坐标轴上的点的坐标的有关性质,解题关键在于得出m的值.16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位[答案]D[解析]分析]根据向下平移,纵坐标相减,横坐标不变解答.[详解]∵将三角形各点的纵坐标都减去3,横坐标保持不变,∴所得图形与原图形相比向下平移了3个单位.故选D.[点睛]本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.下列命题中,是假命题的是( )A. 两点之间,线段最短B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等[答案]B[解析][分析]根据线段、对顶角、补角、平行线的性质判断即可.[详解]A. 两点之间,线段最短是真命题;B. 如果两直线不平行,同旁内角不互补,所以同旁内角互补是假命题;C. 直角的补角仍然是直角是真命题;D. 对顶角相等是真命题;故选B[点睛]掌握线段、对顶角、补角、平行线的性质是解题的关键.18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个[答案]C[解析] ①由∠1=∠2,得到AD ∥BC ,不合题意;②由∠BAD=∠BCD ,不能判定出平行,不合题意;③由∠ABC=∠ADC 且∠3=∠4,得到∠ABC-∠4=∠ADC-∠3,即∠ABD=∠CDB ,得到AB ∥CD,符合题意;④由∠BAD+∠ABC=180°,得到AD ∥BC ,不合题意,则符合题意的只有1个,[点睛]本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.19.把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有( ) (1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.[详解]解:(1)∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠GEF=∠C′EF=32°,∴∠AEC=180°-32°-32°=116°,故本小题正确;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故选D.[点睛]本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.一个数的立方根是4,这个数的平方根是 ( )A. 8B. -8C. 8 或-8D. 4 或-4[答案]C因一个数的立方根是 4,可得这个数为64,64的平方根是±8,故选C. 21.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A. -3B. -1C. 1D. -3或1 [答案]D[解析][分析]根据平方根的性质列方程求解即可;[详解]当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.[点睛]本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.22.16的平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或6 [答案]B[解析][分析]先求16的平方根,再求−8的立方根,然后求和.[详解]4,∴它们的和是−6或2,故选:B .[点睛]本题主要考查了平方根和立方根的定义,掌握知识点是解题关键.23.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ [答案]D[解析][分析]将四个选项中的x 与y 的值代入已知方程检验,即可得到正确的选项.[详解]解:A、将x=2,y=0代入方程左边得:x+2y=2+2×0=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;B、将x=-2,y=2代入方程左边得:x+2y=-2+2×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;C、将x=0,y=1代入方程左边得:x+2y=0+1×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;D、将x=-1,y=0代入方程左边得:x+2y=-1+2×0=-1,右边为2,故本选项不是方程的解,符合题意,本选项正确;故选:D.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.24.已知a<b<0 ,则点A(a-b,b )在第( )象限A. 一B. 二C. 三D. 四[答案]C[解析][分析]根据a<b<0,判断出a−b和b的取值范围,再根据点的坐标特点判断其所在象限.[详解]解:∵a<b<0,∴a−b<0,b<0,∴点A(a−b,b)第三象限,故选:C.[点睛]本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,−);第二象限(−,+);第三象限(−,−);第四象限(+,−).三.解答题25.求下列各式中的值(1)252x=36(2)-3=3 8[答案](1)x=65;(2)x=32[解析][分析](1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.[详解]解:(1)25x 2=36x 2=3625∴x=56±; (2)x 3−3=38x 3=278∴x=32. [点睛]本题考查了平方根与立方根的定义,理解相关定义是解决本题的关键,注意一个正数的平方根有两个,它们互为相反数,不要漏解.26.解方程组25{437x y x y +=+=. [答案]4{3x y ==-,;[解析] 解:①×3﹣②得,28x =,解得4x =.把4x =代入①得,85y +=,解得3y =-所以原方程组的解为4{ 3.x y ==-, 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?[答案]甲的速度是4千米/时,乙的速度是2千米/时.[解析][分析]设甲的速度是x 千米/时,乙的速度是y 千米/时,根据甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,可列方程组求解.[详解]设甲的速度是x 千米/小时,乙的速度是y 千米/小时,由题意,得6336x y x y +=⎧⎨-=⎩,解得:42 xy=⎧⎨=⎩.故甲的速度是4千米/时,乙的速度是2千米/时.[点睛]本题考查理解题意的能力,有两种情景,一种是相遇,一种是追及,根据两种情况列出方程组求解.28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.[答案]55︒[解析][分析]根据题意求出∠DOB,OG平分∠BOF,得∠BOG=∠FOG,等量代换即可求解.[详解]由题意知:CD⊥EF,∠AOE=70︒∵∠AOE+∠EOD+∠DOB= 180︒,∴∠DOB=20︒.又∵∠BOF和∠AOE是对顶角∴∠BOF=∠AOE=70︒.∵OG平分∠BOF,∠BOF=70︒∴∠BOG=∠FOG=35︒.∠DOG=∠DOB+∠BOG=55︒.[点睛]本题主要考查了角平分线的性质和对顶角相等,正确掌握角平分线的性质和对顶角相等是解题的关键.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )[答案]答案见解析[解析][详解]解:∵BD⊥AC,EF⊥AC(已知),∴∠2=∠3=90°,∴BD∥EF(同位角相等,两直线平行),∴∠4=∠5(两直线平行,同位角相等);∵∠1=∠4(已知),∴∠1=∠5(等量代换),∴DG∥BC(内错角相等,两直线平行),∴∠ADG=∠C(两直线平行,同位角相等).[点睛]本题考查平行线的性质与判定,解决问题要熟悉平行线的性质和判定,能正确运用语言叙述理由,还要注意平行线的性质和判定的综合运用.。
人教版七年级下册地理《期中检测试题》带答案
人教版地理七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、单项选择题(每小题2分,共60分)1. 我国人口最多的少数民族是( )A. 藏族B. 壮族C. 蒙古族D. 维吾尔族2. 我国面积最大的盆地为( )A. 塔里木盆地B. 准噶尔盆地C. 柴达木盆地D. 四川盆地3. 我国少数民族集中分布的地区是( )A. 东北、华北、西北B. 华东,华北、华南C.西南、东北、西北D. 西南、华北、西北4. 某同学到新疆旅游,观看民族风俗表演。
下列最能够体现当地民族风俗的是A. B. C. D. 5. 蒙古族的传统节日是 ( ) A. 泼水节 B. 开斋节 C. 雪顿节 D. 那达慕节6. 我国人口东多西少的地理界线是( )A. 哈尔滨至广东一线B. 黑河至昆明一线C. 黑河至腾冲一线D. 漠河至腾冲一线7. 当乌苏里江上洒满阳光时,帕米尔高原上还是星斗满天,这是由于我国( )A. 距海远近不同B. 地形地势不同C. 东西跨经度广D. 南北跨纬度广8. 我国民族最多的省级行政区域是( )A. 吉林省B. 陕西省C. 西藏自治区D. 云南省9. 当海南岛进入春耕季节时,黑龙江还是一片冰天雪地,这是由于我国( )A. 南北跨纬度很广B. 东西跨经度很广C. 西部深入亚欧大陆内部D. 东临太平洋10. “这一天是最隆重、最热闹的一天,男女老少齐出动…泼水分文泼和武泼,被人泼的水越多,说明受到的祝福越多,因而也越高兴。
”以上描写的是( )A. 蒙古族的摔跤节B. 汉族的端午节C. 傣族的泼水节D. 彝族的火把节11. 我国年降水量的总趋势是( )A. 从西南向东北逐渐减少B. 从西南向东逐渐减少C. 从东南向西北逐渐减少D. 从北向南逐渐减少12. 下列山脉中,既是我国第一、二级阶梯分界线,又是东西走向的山脉是( )A. 昆仑山脉B. 秦岭C. 横断山脉D. 祁连山脉13. 我国主要河流自西向东流,说明地势主要特征大致是( )A. 中部高四周低B. 西高东低C. 东南高西北低D. 南高北低14. 下列不是影响我国气候的主要因素是A. 纬度位置B. 冬夏风势强弱C. 海陆位置D. 地形15. 粤菜、川菜、湘菜是我国著名的菜系,其发源地分别是( )A. 福建四川湖南B. 广东四川湖南C. 湖北云南河南D河北四川河南16. 我国地势第二级阶梯的主要地表形态是( )A.山地和平原B. 高原和盆地C. 盆地和丘陵D. 平原和丘陵17. 下列省的简称、行政中心对应正确的是A. 海南省---海---三亚B. 安徽省---皖---合肥C. 贵州省---蜀---成都D. 浙江省---浙---南京18. 我国气候复杂多样,其形成的主要原因是( )①地域辽阔,跨众多的温度带和干湿地区②河流众多③地形复杂多样,地势高低悬殊④各类土地资源齐全A. ①②B. ②③C. ③④D. ①③19. 军军2017年暑假从成都出发去哈尔滨、武汉、昆明、广州旅游。
人教版数学七年级下学期《期中考试题》有答案
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题12小题,每题中只有一个答案符合要求,每小题4分,共48分)1. 要调查下列问题,你认为哪些适合抽样调查[ ]①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A. ①②B. ①③C. ②③D. ①②③2.下列条件中不能判定AB∥CD的是()A. ∠1=∠4B. ∠2=∠3C. ∠5=∠BD. ∠BAD+∠D=180°3.下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.4.下列说法:①()2-=-;1010②数轴上的点与实数成一一对应关系;③﹣216④任何实数不是有理数就是无理数;⑤两个无理数和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A. 2个B. 3个C. 4个D. 5个5.下列说法正确的个数有( )⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离A. 0个B. 1个C. 2个D. 3个6.在平面直角坐标系xOy中,线段AB两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB得到线段A’B’(点A与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为( )A. (4,2)B. (5,2)C. (6,2)D. (5,3)7.如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在点G、H处,若∠1=50°,则∠AEF=( )A. 110°B. 115°C. 120°D. 125°8.如果一元一次不等式组3xx a>⎧⎨>⎩的解集为>3,则的取值范围是( )A. >3B. ≥3C. ≤3D. <39.如果方程组134541ax byx y-=⎧⎨-=⎩与3237ax byx y+=⎧⎨+=-⎩有相同解,则a,b的值是()A.21ab=⎧⎨=⎩B.23ab=⎧⎨=-⎩C.521ab⎧=⎪⎨⎪=⎩D.45ab=⎧⎨=-⎩10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折11.对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A. ﹣13B. 13C. 2D. ﹣212.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A. x≥11B. 11≤x <23C. 11<x≤23D. x≤23二、境空题(本题6个小题,每小题4分,共24分)13.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是_____.14.将点P 向下平移3个单位,向左平移2个单位后得到点Q (3,-1),则点P 坐标为______. 15.若是64的立方根,则3m +=___________.16.如果一个角的两边与另一个角的两边分别平行,那么这两个角的数量关系是_____.17.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是_____18.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆1O 、2O 、3O ,组成一条平滑的曲线,点从原点出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2019秒时,点的坐标是____.三、解答题(本题7个小题,共78分)19.计算:(1)(-2)2-95)4+2×(327; (2)|12|381274-2; 20.求下列各式中x 的值:(1)4(x +1)2-9=0; (2)(3x +2)3-1=6164. 21.解方程组或 不等式(组)(1)2520x y x y +=⎧⎨-=⎩ (2)2353212x y x y -=-⎧⎨+=⎩(3)334642x x ---<; (4)()513112 1.3x x x x ⎧->+⎪⎨+>-⎪⎩,22.中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B 类(较喜欢),C 类(一般),D 类(不喜欢).已知A 类和B 类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查样本容量; (2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数. 23.如图.将ABC 向右平移4个单位得到A B C '''.(1)写出A B C ,,的坐标; (2)画出A B C '''; (3)求ABC 的面积.24.已知:如图,点C 在AOB ∠的一边OA 上,过点C 的直线DE //OB ,CF 平分ACD ∠,CG CF ⊥于C .()1若O 40∠=,求ECF ∠的度数; ()2求证:CG 平分OCD ∠;()3当O ∠为多少度时,CD 平分OCF ∠,并说明理由.25.为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.答案与解析一、选择题(本题12小题,每题中只有一个答案符合要求,每小题4分,共48分)1. 要调查下列问题,你认为哪些适合抽样调查[ ]①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A. ①②B. ①③C. ②③D. ①②③[答案]D[解析][详解]解:根据抽样调查的适用情况可得:①、②和③都适合抽样调查.故应选D考点:调查方法的选择2.下列条件中不能判定AB∥CD的是()A. ∠1=∠4B. ∠2=∠3C. ∠5=∠BD. ∠BAD+∠D=180°[答案]B[解析]解:A.∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),故本选项错误;B.∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),判定的不是AB∥CD,故本选项正确;C.∵∠5=∠B,∴AB∥CD(同位角相等,两直线平行),故本选项错误;D.∵∠BAD+∠D=180°,∴AB∥CD(同旁内角互补,两直线平行),故本选项错误.故选B.3.下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.[答案]B[解析][分析]根据平移的定义直接判断即可.[详解]解:由其中一个图形平移得到整个图形的是B,故选B.[点睛]此题主要考查了图形的平移,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.4.下列说法:①10=-;②数轴上的点与实数成一一对应关系;③﹣2④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A 2个 B. 3个 C. 4个 D. 5个[答案]C[解析][分析]根据平方根,数轴,有理数的分类逐一分析即可.[详解]10=-是错误的;=,10②数轴上的点与实数成一一对应关系,故说法正确;4,故-2的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,和是错误的;⑥无理数都是无限小数,故说法正确;故正确是②③④⑥共4个;故选C.[点睛]本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,等,也有π这样的数.5.下列说法正确的个数有( )⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离A. 0个B. 1个C. 2个D. 3个[答案]A[解析]解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.故正确的有0个.故选A.6.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB得到线段A’B’(点A与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为( )A. (4,2)B. (5,2)C. (6,2)D. (5,3)[答案]B[解析]试题解析:根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选B.7.如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在点G、H处,若∠1=50°,则∠AEF=( )A. 110°B. 115°C. 120°D. 125°[答案]B[解析]解:∵四边形ABCD为长方形,∴AE∥BF,∠AEF+∠BFE=180°;由折叠变换的性质得:∠BFE=∠HFE,而∠1=50°,∴∠BFE=(180°﹣50°)÷2=65°,∴∠AEF=180°﹣65°=115°.故选B.点睛:该题主要考查了翻折变换的性质、矩形的性质、平行线的性质及其应用问题;应牢固掌握矩形的性质、平行线的性质等几何知识点.8.如果一元一次不等式组3xx a>⎧⎨>⎩的解集为>3,则的取值范围是( )A. >3B. ≥3C. ≤3D. <3[答案]C[解析][分析]由题意不等式组中的不等式分别解出来为x>3,x>a,已知不等式解集为x>3,再根据不等式组解集的口诀:同大取大,得到a的范围.[详解]由题意x>3,x>a,∵一元一次不等式组3xx a>⎧⎨>⎩的解集为x>3,∴a≤3.故选:C.[点睛]主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a的范围.9.如果方程组134541ax byx y-=⎧⎨-=⎩与3237ax byx y+=⎧⎨+=-⎩有相同的解,则a,b的值是()A.21ab=⎧⎨=⎩B.23ab=⎧⎨=-⎩C.521ab⎧=⎪⎨⎪=⎩D.45ab=⎧⎨=-⎩[答案]A[解析][分析]因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.[详解]由已知得方程组4541 237x yx y-⎧⎨+-⎩==,解得45x y ⎧⎨-⎩==, 代入133ax by ax by -⎧⎨+⎩==,得到4513453a b a b +⎧⎨-⎩==, 解得21a b =⎧⎨=⎩.故选A.[点睛]此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.10. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A. 6折 B. 7折 C. 8折 D. 9折[答案]B [解析][详解]设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . [点睛]本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.11.对于非零的两个实数a ,b ,规定a ⊕b=am ﹣bn ,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为( ) A. ﹣13 B. 13C. 2D. ﹣2[答案]A [解析][详解]解:根据题意得:3⊕(5)3515m n -=+=, 4⊕(7)4728m n -=+=35154728m n m n +=⎧∴⎨+=⎩,解得:3524m n =-⎧⎨=⎩∴(-1)⊕2=-m-2n=35-48=-13故选A12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A. x≥11B. 11≤x <23C. 11<x≤23D. x≤23[答案]C[解析] [详解]解:根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95可得不等式组()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③,解不等式①得,x ≤47;解不等式②得,x ≤23;解不等式③得,x >11,所以不等式组的解集为11<x ≤23,即x 的取值范围是11<x ≤23.故选C .点睛:本题考查了一元一次不等式组的应用,根据题目所给的信息,并运用运输程序并列出不等式组是解题的关键.二、境空题(本题6个小题,每小题4分,共24分)13.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是_____.[答案]0.1.[解析][分析]根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.[详解]解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是440,即0.1.14.将点P向下平移3个单位,向左平移2个单位后得到点Q(3,-1),则点P坐标为______.[答案](5,2)[解析][分析]设点P的坐标为(x,y),然后根据向左平移,横坐标减,向下平移,纵坐标减,列式进行计算即可得解.[详解]设点P的坐标为(x,y),根据题意,x-2=3,y-3=-1,解得x=5,y=2,则点P的坐标为(5,2).故答案是:(5,2).[点睛]考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15.,则3m+=___________.[答案]5[解析][分析]根据立方根的定义进行计算即可.[详解]又∵m,∴m=2,则m+3=5,故答案为5.[点睛]本题考查了立方根,算术平方根,掌握立方根以及算术平方根的定义是解题的关键.16.如果一个角两边与另一个角的两边分别平行,那么这两个角的数量关系是_____.[答案]相等或互补[解析][分析]根据题意画出图形进行分析即可.[详解]如图所示:∵AB∥CD,∴∠1=∠3,∵BE∥DF,∴∠2=∠3,∴∠1=∠2;(2)如图所示:∵AB∥CD,∴∠1=∠3,∵BE∥DF,∴∠2+∠3=180°,∴∠1+∠2=180°;综合上述可得:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;故答案是:相等或互补.[点睛]考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.17.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是_____[答案]48[解析][分析]根据平移的性质可知:AB =DE ,BE =CF ;由此可求出EH 和CF 的长.由于CH ∥DF ,根据成比例线段,可求出EC 的长.由EH 、EC ,DE 、EF 的长,即可求出△ECH 和△EFD 的面积,进而可求出阴影部分的面积.[详解]根据题意得:DE =AB =10;BE =CF =6;CH ∥DF ,∴EH =10﹣4=6;EH :HD =EC :CF ,即6:4=EC :6,∴EC =9,∴S △EFD =12×10×(9+6)=75;S △ECH =12×9×6=27,∴S 阴影部分=75﹣27=48.故答案为48. [点睛]本题考查了平移的性质、由平行判断成比例线段及有关图形的面积计算,有一定的综合性.18.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆1O 、2O 、3O ,组成一条平滑的曲线,点从原点出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2019秒时,点的坐标是____.[答案](2019,-1)[解析][分析]根据速度及半圆的周长可知点P 每秒走12个半圆,分别求出第2、3、4、5、6秒时点P 的坐标,可得图象纵坐标4秒一循环,横坐标与移动的时间相同,即可得答案.[详解]∵半圆额半径为1,∴半圆的周长为12×2×1=, ∵点P 运动速度为每秒2π个单位长度, ∴点P 每秒走12个半圆, ∵点P 从原点O 出发,沿这条曲线向右运动,∴运动时间为1秒时,点P 的坐标为(1,1),运动时间为2秒时,点P 的坐标为(2,0),运动时间为3秒时,点P 的坐标为(3,-1),运动时间为4秒时,点P 的坐标为(4,0),运动时间为5秒时,点P 的坐标为(5,1),运动时间为6秒时,点P 的坐标为(6,0),…,∴纵坐标4秒一循环,横坐标与移动的时间相同,∵2019÷4=504……3,∴点P 2019的坐标为(2019,-1),故答案为:(2019,-1)[点睛]本题考查了点的规律变化,仔细观察图象,得到点的变化规律是解题关键.三、解答题(本题7个小题,共78分)19.计算:(1)(-2)2-5)+2×(;(2)|1|; [答案](1)-2;(2)43-[解析][分析](1)原式先进行乘方与开方运算,再进行乘法运算,最后进行加减运算即可得到结果;(2)原式先进行开方运算,再进行乘法和化简绝对值,然后再进行合并即可得到结果.[详解](1)(-2)2-5)+2×(=4-3+5-2+2×(-3)=4-3+5-2-6=-2(2)|1|21132-⨯ =113--=43 -.[点睛]此题主要考查了实数的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.20.求下列各式中x的值:(1)4(x+1)2-9=0;(2)(3x+2)3-1=61 64.[答案](1)x=12或x=52-;(2)x=14-[解析] [分析](1)通过移项得到(x+1)2=94,利用平方根的性质求解即可;(2)化简得到(3x+2)3=12564,可利用立方根的性质求解即可;[详解]解:(1)4(x+1)2-9=0, 4(x+1)2=9,(x+1)2=94,x+1=±32,x=12或x=-52.(2)(3x+2)3-1=61 64,(3x+2)3=125 64,3x+2=54,x=-14.[点睛]本题主要考查了利用平方根和立方根的性质进行方程求解,求解过程中准确理解平方数和立方数是解题的关键.21.解方程组或不等式(组)(1)2520x yx y+=⎧⎨-=⎩(2)2353212x yx y-=-⎧⎨+=⎩(3)334642x x ---<; (4)()513112 1.3x x x x ⎧->+⎪⎨+>-⎪⎩, [答案](1)21x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩;(3)x >-3;(4)2<x <4. [解析][分析](1)化简之后用加减消元法求解;(2)化简之后用加减消元法求解;(2)去分母,化成整式,解一元一次不等式即可;(4)分别求出两个一元一次不等式,即可得到解集.[详解](1)2520x y x y +=⎧⎨-=⎩, 整理得:25240+=⎧⎨-=⎩x y x y , 两式相减得:1y =,把1y =代入20x y -=得:2x =,所以方程组的解是21x y =⎧⎨=⎩. (2)2353212x y x y -=-⎧⎨+=⎩ 整理得:69156424-=-⎧⎨+=⎩x y x y , 两式相减得:3y =,把3y =代入23-5x y -=得:2x =,所以方程组的解是23x y =⎧⎨=⎩. (3)334642x x ---< 化简得:()3234<24---x x ,整理得:-721<x ,解得:-3x >.(4)()51311213⎧->+⎪⎨+>-⎪⎩x x x x ,整理不等式组得:51331233->+⎧⎨+>-⎩x x x x , 化简得:244>⎧⎨->-⎩x x , 解得:24<>⎧⎨⎩x x , ∴不等式的解集为:2<x <4.[点睛]本题主要考查了二元一次方程组和一元一次不等式组的解法,准确的进行化简计算是解题的关键. 22.中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B 类(较喜欢),C 类(一般),D 类(不喜欢).已知A 类和B 类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.[答案](1)本次抽样调查的样本容量为100;(2)图形见解析;(3)估计观看“中国汉字听写大会”节目不喜欢的学生人数为520人.[解析][分析](1)用A 类的人数除以它所占的百分比,即可得样本容量;(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B 类所占的百分比为:35÷100×100%=35%,即可补全统计图;(3)用2000乘以26%,即可解答.[详解]解:(1)20÷20%=100,∴本次抽样调查的样本容量为100.(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,如图所示:(3)2000×26%=520(人).故若该校有2000名学生.估计观看“中国汉字听写大会”节目不喜欢的学生人数为520人.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.23.如图.将ABC向右平移4个单位得到A B C'''.(1)写出A B C,,的坐标;(2)画出A B C''';(3)求ABC的面积.[答案](1)A(-4,1)、B(-2,0)、C(-1,3);(2)见解析;(3)72.[解析] [分析](1)根据各点在坐标系中的位置写出各点坐标即可;(2)根据图形平移的性质画出△A′B′C′即可;(3)利用正方形的面积减去三个顶点上三角形的面积即可.[详解](1)由图可知,A (-4,1)、B (-2,0)、C (-1,3);(2)如图,△A′B′C′即为所求;(3)S △ABC =3×3-12×2×1-12×3×1-12×2×3=9-1-32-3=72. [点睛]本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.24.已知:如图,点C 在AOB ∠的一边OA 上,过点C 的直线DE //OB ,CF 平分ACD ∠,CG CF ⊥于C . ()1若O 40∠=,求ECF ∠的度数;()2求证:CG 平分OCD ∠;()3当O ∠为多少度时,CD 平分OCF ∠,并说明理由.[答案](1) ∠ECF =110°;(2)答案见解析;(3) ∠O =60°.[解析]试题分析:由两直线平行,同位角相等得∠ACE =40︒,由平角定义得∠ACD=140︒,再由角平分线定义得70ACF ∠=︒,由邻补角定义得到∠ECF=110︒;(2)由垂直的定义得90FCG ∠=︒,由平角定义得90GCO FCA ∠+∠=︒,由等角的余角相等可证;(3)由两直线平行,同位角相等得∠DCO=∠O=60︒,由角平分线性质得∠DCF=60︒,由等量代换得DCO DCF ∠=∠即可得证.试题解析:(1)∵DE//OB ,∴∠O=∠ACE ,(两直线平行,同位角相等)∵∠O =40︒,∴∠ACE =40︒,∵∠ACD+∠ACE=180︒ (平角定义)∴ ∠ACD=140︒又 ∵CF 平分∠ACD ,∴ 70ACF DCF ∠=∠=︒ (角平分线定义)∴ ∠ECF=110︒(2)证明:∵CG ⊥ CF,∴90FCG ∠=︒ .∴ 90DCF DCG ∠+∠=︒又 ∵180GCO GCD FCA FCD ∠+∠+∠+∠=︒ (平角定义)∴ 90GCO FCA ∠+∠=︒∵ACF FDC ∠=∠∴GCO DCG ∠=∠(等角的余角相等)即CG 平分∠OCD .(3)结论:当∠O=60︒时 ,CD 平分∠OCF .当∠O=60︒时∵DE//OB,∴ ∠DCO=∠O=60︒.∴ ∠ACD=120︒.又 ∵CF 平分∠ACD∴ ∠DCF=60︒,∴DCO DCF ∠=∠即CD 平分∠OCF .点睛:本题主要考查平行线的判定与性质,掌握平行线的性质和判定是解题的关键,即两直线平行⇔同位角相等;两直线平行⇔内错角相等;两直线平行⇔同旁内角互补;a ∥b,b ∥ca ∥c.25.为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A 、B 两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.[答案](1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)了节约资金,应选购A型设备1台,B型设备9台.[解析][分析](1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.[详解](1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台, 则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.[点睛]此题考查一元一次不等式应用,二元一次方程组的应用,解题关键在于理解题意列出方程.。
人教版数学七年级下册《期中检测题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 2. 已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A B. 13- C. 1 D. 53. 把不等式2x -<1的解集在数轴上表示正确的是A. B. C. D. 4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ 5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=56. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m << B. 21m m m << C. 21m m m << D. 21m m m<< 7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( )A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 09. 已知不等式组213{0x x a -≥->解集是2x ≥,则实数的取值范围是( ) A. 2a > B. 2a ≥C. 2a <D. 2a ≤ 10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.12. 不等式 4153x x +≤+ 的最大负整数解为________.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛. 15. 对于有理数,我们规定[]m 表示不大于最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. 三、解答题16. 解方程或方程组(1)331123x x+-+=(2)3131632x yx y-=-⎧⎨+=⎩17. 解不等式组()3241213x xxx⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.18. 老师在黑板上写了一道解方程的题:212134x x--=-,小明马上就举起了手,要求到黑板上去做,他是这样做的:()()421132x x-=-+①84136x x-=--②111x=-③111x=-④老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146 a a---=(2)253210 0.60.8x x+--=19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?20. 若m是整数,且关于x,y的方程组2-2,-5x y mx y+=⎧⎨=⎩的解满足x≥0,y<0,试确定m的值.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?23. 根据下面两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?答案与解析一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 [答案]B[解析]分析]根据一元一次方程的定义解答即可.[详解]解:①4x-7=0符合一元一次方程的定义,故正确;②3x+y=z 是三元一次方程,故错误;③x-7=x 2是一元二次方程,故错误;④4xy=3是二元二次方程,故错误; ⑤23x yx+=属于二元一次方程,故错误; ⑥31x =属于分式方程,故错误.故选:B .[点睛]本题考查了一元一次方程的概念.解答关键是根据定义解答问题.2. 已知31x y=⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. B. 13- C. 1D. 5[答案]C[解析]分析]把x 与y 的值代入方程计算即可求出m 的值.[详解]解:把31x y =⎧⎨=⎩代入方程得:3m-1=2,解得:m=1,故选C.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3. 把不等式2x -<1的解集在数轴上表示正确的是 A.B. C. D. [答案]A[解析][分析]先解不等式2x -<1得到1<x ,根据数轴表示数的方法得到解集在1的右边.[详解]由2x -<1,移项得1<x ,根据数轴表示数的方法得到解集在1的右边.故选A.[点睛]本题考查在数轴上表示不等式的解集和解一元一次不等式,解题的关键是掌握在数轴上表示不等式的解集和解一元一次不等式.4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ [答案]C[解析]分析]把x 看做已知数求出y 即可.[详解]方程2x−y =3,解得:y =2x−3,故选:C .[点睛]此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=5[答案]D[解析][分析]根据等式的基本性质,即可得到答案.[详解]∵由7x=4x-3移项得7x-4x=-3,∴A 错误, ∵由2x 1x 3132--=+去分母得2(2x-1)=6+3(x-3),∴B 错误, ∵由2(2x-1)-3(x-3)=1去括号得4x-2-3x+9=1,∴C 错误,∵由2(x+1)=x+7解得x=5,∴D 正确,故选D.[点睛]本题主要考查一元一次方程的移项,去分母,去括号法则,熟练掌握解一元一次方程的步骤和方法是解题的关键.6. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m <<B. 21m m m <<C. 21m m m <<D. 21m m m << [答案]B[解析][分析]根据01m <<时,可得越平方越小,11m >,从而得到大小关系式.[详解]01m <<,11m> 21m m <<,1m m <, 21m m m<<, 故选:B .[点睛]本题考查了简单的实数的比较,可利用特殊值法即可比较大小,也可利用当01m <<时,的指数越大则数值越小解题.7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( ) A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ [答案]B[解析][分析]本题的等量关系是:绳长木长 4.5=;木长12-绳长1=,据此可列方程组求解. [详解]设绳长尺,长木为尺, 依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B .[点睛]此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 0[答案]B[解析][分析] 把12x =-代入方程,得出一个关于的方程,求出方程的解,再代入求出答案即可. [详解]解:把12x =-代入方程211x a -=+得:111a --=+, 解得:3a =-,所以22(1)(31)4a +=-+=,故选:.[点睛]本题考查了解一元一次方程和一元一次方程的解,能得出一个关于的一元一次方程是解此题的关键.9. 已知不等式组213{0x x a -≥->的解集是2x ≥,则实数的取值范围是( ) A. 2a >B. 2a ≥C. 2a <D. 2a ≤ [答案]C[解析][分析]应先求出不等式组中两个不等式的解集,根据所给的解集进行判断.[详解]解不等式组得2x x a≥⎧⎨⎩>∵已知解集为解集是2x ≥,∴2a <.故选C .[点睛]主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向相同,数字相同时情况.(如:x >a ,x >a ,其解集也是x >a ),在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm[答案]B[解析][分析] 设长方体长x cm ,宽y cm ,高a cm ,由图象建立方程组求出其解就可以得出结论.[详解]设长方体长x cm ,宽y cm ,高a cm ,由题意,得9080x a y y a x +=+=-⎧⎨-⎩,解得:2a =170,∴a =85.故选B.[点睛]本题考查的是三元一次方程组的应用,熟练掌握三元一次方程组是解题的关键.二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.[答案][解析][分析]根据相反数的定义计算出x 的值,再代入2020x 即可作答.[详解]解:(23)(4)0x x -+-=从而有1x =-,代入2020x 有:20202020(1)1x-==;故答案为:1.[点睛]本题主要考查了相反数定义以及积的乘方运算,其中根据相反数的定义计算出x 的值是解题的关键. 12. 不等式 4153x x +≤+ 的最大负整数解为________.[答案]-1[解析][分析]先根据不等式的性质求出不等式的解集,然后在不等式的解集中找出最大负整数即可.[详解]解: 4x+1≤5x+3,则4x-5x≤3-1,-x≤2,∴x≥-2.∴最大的负整数为-1.[点睛]本题主要考查了一元一次不等式的特殊解,掌握一元一次不等式的解是解题的关键.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.[答案]18°[解析][分析]根据题意结合图形列出方程组,解方程组即可求解.[详解]解:由题意得:12901254︒︒⎧∠+∠=⎨∠-∠=⎩,解得∠1=72°,∠2=18°.故答案为18°.[点睛]此题主要考查二元一次方程组的应用,解题的关键是根据图形找到等量关系进行列式.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛.[答案]20[解析][分析]本题需要设未知数,设胜的场次为x ,则负的场次为32-x .根据题意列出不等式.[详解]设胜的场次为x ,则负的场次为32-x ,则根据题意可得:3(1)(32)48x x ⋅+-⋅-≥,解得不等式为20x ≥,故这个队至少要胜20场才有希望进入季后赛.[点睛]本应用题关键学会利用方程的思想解不等式.15. 对于有理数,我们规定[]m 表示不大于的最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. [答案]-17,-16,-15. [解析][分析] 根据[x]表示不大于x 的最大整数,列出不等式组,再求出不等式组的解集即可.[详解]∵[x]表示不大于x 的最大整数,∴-5≤23x +<-5+1, 解得-17≤x <-14.∵x 是整数,∴x 取-17,-16,-15.故答案为:-17,-16,-15.[点睛]本题考查的是有理数的大小比较,关键是根据[x]表示不大于x 的最大整数,列出不等式组,求出不等式组的解集.三、解答题16. 解方程或方程组(1)331123x x +-+= (2)3131632x y x y -=-⎧⎨+=⎩[答案](1)19x =-;(2)11x y . [解析][分析](1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.[详解]解:(1)去分母得:()()332316x x ++-=,去括号得:976x +=移项合并得:91x =-, 解得:19x =-; (2)3131632x y x y -=-⎧⎨+=⎩①②, ②×3-①得:22y =22, 解得:y =1,把y =1代入②得:x =-1,则方程组的解为11x y =-⎧⎨=⎩. [点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17. 解不等式组()3241213x x x x ⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.[答案]14x ≤<,在数轴上表示解集见解析.[解析][分析]先分别解出各个不等式的解集,再利用‘大小小大取中间’写出不等式组的解集,然后将解集表示在数轴上即可.[详解]解:(1)解不等式①,得:1≥x ,解不等式②,得:4x <,则不等式组的解集为14x ≤<,将不等式组的解集表示在数轴上如下:[点睛]本题考查了解一元一次不等式组、用数轴表示不等式的解集,属于基础题,关键是正确解出不等式(组)的解集,注意不等号的方向.18. 老师在黑板上写了一道解方程的题:212134x x --=-,小明马上就举起了手,要求到黑板上去做,他是这样做的: ()()421132x x -=-+①84136x x -=--②111x =-③111x =-④ 老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146a a ---= (2)2532100.60.8x x +--= [答案]小明错在第①步;(1)1a =-;(2) 2.x =[解析][分析]观察发现,第①步没有分母的项1没有乘以分母的最小公倍数,所以第①步错误;(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.[详解]解:第(1)步小明错在去分母时,等式两边各项都应该乘以公分母,但是小明等号右边的1还是1.(1)3157146a a ---= ()()63124457a a --=-186242028a a --=-22830a -=-+22a -=1a =-.(2)2532100.60.8x x +--= 2532168x x +--= ()()825632)48x x +--=1640181248x x +-+=24x -=-2x =.[点睛]此题考查了解一元一次方程,去分母时注意各项都要乘以各分母的最小公倍数.19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?[答案]小明和爸爸分别投中了5个和15个.[解析][分析]根据题干,设小明投进了x 个,则小明爸爸投进了(20-x )个,根据两个人的得分相等,即可列出方程解决问题.[详解]解:设小明和爸爸分别投中了个和个.由题意得:203x y x y +=⎧⎨=⎩,解得515x y =⎧⎨=⎩答:小明和爸爸分别投中了5个和15个.[点睛]本题考查了二元一次方程的应用,解题关键是找到关键描述语,得到等量关系:小明投中球的个数+爸爸投中球的个数=20,小明得分=爸爸得分.是解决此题的关键.20. 若m 是整数,且关于x,y 的方程组2-2,-5x y m x y +=⎧⎨=⎩的解满足x≥0,y<0,试确定m 的值. [答案]m=-1,0,1,2,3.[解析][分析]]把m 当作已知数,解方程组求出方程组的解(x 、y 的值)根据已知得出不等式组,求出m 的取值范围即可.[详解]2-2-5x y m x y +=⎧⎨=⎩①②,①+②,得2x=2m+3,解得x=2m32+,把x=2m32+代入②,解得y=2m-7 2,∵x≥0,y<0,∴2m32+≥0,即m≥-32,2m-72<0,即m<72,∴解集为-32≤m<72,∵m是整数,∴m=-1,0,1,2,3.[点睛]本题综合考查了解方程组和解不等式组的应用,关键是根据题意求出关于m的不等式组.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?[答案](1)200元和100元(2)至少6件[解析][分析](1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.[详解]解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n值分别是多少?(2)正确的解应该是怎样的?[答案](1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩[解析][分析](1)将第一组解代入方程组的第一个方程求出m的值,将第二组解代入方程组的第二个方程求出n的值即可;(2)确定出正确的方程组,求出解即可.[详解](1)将7,32,3xy⎧=⎪⎪⎨⎪=⎪⎩代入方程组的第一个方程得:74633m+=,解得:m=2;将2,4.xy=-⎧⎨=⎩代入方程组的第二个方程得:−4+4n=8,解得:n=3;(2)方程组3238x yx y+=⎧⎨+=⎩①②,②−①×2得:y=2,将y=2代入①得:x=1,则方程组正确的解为12. xy=⎧⎨=⎩[点睛]考查二元一次方程组的解以及解二元一次方程组,熟练掌握加减消元法是解题的关键.23. 根据下面的两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?[答案](1) 250分钟;(2) 选择全球通比较合算[解析]试题分析:(1)从表格中可知道全球通月租25元,每打一分钟0.2元,神州行没有月租,每分钟0.3元,因此可设一个月内本地通话x分钟时,两种通讯方式的费用相同;(2)根据第一问求得数据后可知,大于这个数据,应该用全球通,小于这个数据应该用神州行.试题解析:解:(1)设一个月内本地通话x分钟时,两种通讯方式的费用相同.25+0.2x=0.3x,x=250,故一个月内本地通话250分钟时,两种通讯方式的费用相同.(2)若使用全球通时,90元可以使用的时间为:(90﹣25)÷0.2=375(分钟)若使用神州行时,90元可以使用的时间为:90÷0.3=300(分钟)因为375>300,故选择全球通合适.点睛:本题考查理解题意的能力,关键是求出两种通讯方式的费用相同时,一个月内的本地通话是多少分钟,找到此临界点,其他问题就能回答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期期中综合检测题(2)
一、 选择题(每小题3分,共30分)
1、如图1,▣DEF 是由▣ABC 经过平移得到的,则图中平移的距离是( )
A 、 线段BE 的长
B 、线段E
C 的长
C 、线段BC 的长
D 、线段EF 的长
2、如图2,AD ∥BC ,点E 在BD 的延长线上,若∠ADE=155°,则∠DBC 的度数为( )
A 、155°
B 、50°
C 、45°
D 、25°
3、已知方程组⎩⎨
⎧=++=+3313y x k y x 的解为x 、y ,且2<k <4,则x-y 的取值范围是( ) A 、0<x-y <2
1 B 、0<x-y <1 C 、-3<x-y <1 D 、-1<x-y <1 4、(2008湖南长沙)若点P (a ,a -4)是第二象限的点,则a 必须满足( )
A 、a <4
B 、a >4
C 、a <0
D 、0<a <4
5、如图3,∠C=∠ABC=2∠A ,BD 是AC 边上的高,则∠DBC 的度数为( )
A 、36°
B 、18°
C 、72°
D 、28° 6、下列调查工作需采用普查方式的是( )
A 、 环保部门对淮河某段水域的水污染情况的调查
B 、 电视台对正在播出的某电视节目收视率的调查
C 质检部门对各厂家生产的电池使用寿命的调查
D 、企业在给职工做工作服前进行尺寸大小的调查
7、若方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 的值是( ) A 、-6 B 、6 C 、9 D 、30
8、在公式S=S 0+vt 中,当t=5时,S=360;当t=7时,S=440,则此公式可写成( )
A 、S=40+160t
B 、S=160+40t
C 、S= -40+160t
D 、S=235+5t
9、平面直角坐标系中,将点A 的横坐标加5,纵坐标减7后,恰好与原点重合,则点A 的坐标为( )
A 、(5,7)
B 、(-5,7)
C 、(5,-7)
D 、(-5,-7)
10、小红为了了解自己的学习效率,对每天在家完成课外作业所用的时间做了一周的记录,并用图表的形式表示出来,如图4所示。
那么,她用时最多的一天是( )
A 、 星期一
B 、星期三
C 、星期四
D 、星期六
A B C D E F 图1 A B C D
E
图2
A
C
D 图
图4
二、 填空题(每小题3分,共30分)
11、已知线段AB 平行于x 轴,且A (4,-6),B (-3,a ),那么a= 。
12、设●、■、▢分别表示三种不同的物体,如图5,前两架天平保持平衡,如果要使第(3)架也平衡,那么“?”处应放“■”的个数为
13、已知⎩⎨⎧=-+=--0
720634z y x z y x ,则z y x z y x +++-= 。
14、正多边形的一个外角等于20°,则这个正多边形的边数是 。
15、如图6所示,已知点D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于F ,∠A= 50°,∠ACD=40°,∠ABE=28°,则∠CFE
16、已知A 、C 在直线BD 的同旁,O 在BD 上, 且OA ⊥OC ,∠AOB :∠AOC=2:3, 则∠COD 的度数是 。
17、若不等式组⎩⎨⎧〉-〉-022x b a x 的解集是-1<x <1,则(a+b )= 。
18、小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是284□9456,(□
表示忘记的数字)若□位置的数字是不等式组⎪⎩
⎪⎨⎧+≤〉-4210112x x x 的整数解,则□可能表示的数字是 。
19.若不等式组2425x a x b +>⎧⎨-<⎩
的解集为02x <<,那么a b +的值等于_____
(1) 图5 (2) (3) ● ▢ ▣ ● ● ▢ ■
▣
C 图
20、5671234x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩
的解是 。
解答题
21,如图,▣ABC 中,BD 是∠ABC 的角平分线,DE ∥BC ,交AB 于E ,∠A =60°,∠BDC =95°,求▣BDE 各内角的度数.
22,解下列方程组: (1)27,23100.x y x y +=⎧⎨+=⎩ (2)124323 1.
y x x y ++⎧=⎪⎨⎪-=⎩,
23,解下列不等式(组):
(1)x +9<5x +1. (2)()5231221 1.2
3x x x x -<+⎧⎪⎨++-≤⎪⎩,
25、如图8,已知AB ∥DE ,BF 、EF 分别平分∠ABC 、∠CED ,若∠BCE=100°,求∠BFE 的度数。
D A E
B A B
C D E
F 图
24.(8分)我市某初中对该校八年级学生的视力进行了检查,发现学生患近视情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(如图11的部分).
(说明:各组含最大年龄,不含最小年龄):
(
1)频率分布表中的值分别为:a=,b=,c=;
(2)补全频率分布直方图;
(3)初患近视两年内的属假性近视,若及时矫正,视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力所占的百分比.
26、据研究,一般情况下,洗衣水的洗衣粉含量以0.2%~0.5%为宜,即100kg洗衣水含200~500g的洗衣粉比较合适,因为此时洗衣粉的表面活性最大,去污力最强,现在洗水缸里可容纳15kg的洗衣水(包括衣服),已知其中衣服4kg,所用洗衣粉的含量为0.4%,已放了两匙洗衣粉(1匙约0.02kg)还需加多少洗衣粉加多少水比较合适?
图11
27、某公司经营甲、乙两种商品,每件甲种商品进价12万元售价14.5万元,每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元。
(1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案。
27:
如图,长青化工厂D与A,B两地有公路、铁路相连。
这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
已知AC为长120米的铁路,CD 为长10米的公路,DE为长110米的铁路,EB为长20米的公路。
公路运价为1。
5元(吨*千米),铁路价格为1。
2元(吨*千米),且这两次运输共支出公路运费15000元,铁路运费97200元。
这批产品的销售款比运输费与原料费的和多多少元?。