三章中心对称图形单元测试卷
《中心对称图形》单元测试卷参考答案与试题解析
第9章《中心对称图形》单元测试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D. 1个分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O 按逆时针方向旋转而得,则旋转的角度为()A.30° B.45° C.90°D.135°考点:旋转的性质.专题:压轴题;网格型;数形结合.分析:△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.解答:解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.点评:本题考查了旋转的性质,旋转前后对应角相等,本题也可通过两角互余的性质解答.3.(3分)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.A B=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(3分)如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B. AC=BDC.AC⊥BD D.▱ABCD是轴对称图形考点:平行四边形的性质.分析:由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.解答:解:∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选:A.点评:此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.5.(3分)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形考点:平行四边形的判定;作图—复杂作图.专题:压轴题.分析:利用平行四边形的判定方法可以判定四边形ABCD是平行四边形.解答:解:∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.点评:本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.6.(3分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B 落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D. 1cm考点:矩形的性质;翻折变换(折叠问题).分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.解答:解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选C.点评:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.7.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是()A.25 B.20 C.15 D.10考点:菱形的性质;等边三角形的判定与性质.分析:由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.解答:解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是20.故选B.点评:本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.8.(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是()A.18米B.24米C.28米 D. 30米考点:三角形中位线定理.分析:根据D、E是OA、OB的中点,即DE是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.解答:解:∵D、E是OA、OB的中点,即CD是△OAB的中位线,∴DE=AB,∴AB=2CD=2×14=28m.故选C.点评:本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.9.(3分)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形考点:矩形的判定;三角形中位线定理.分析:此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解答:解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选C.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.10.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A. 1 B. C.4﹣2D. 3﹣4考点:正方形的性质.专题:压轴题.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选C.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(每空2分,共18分)11.(2分)如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=4.考点:三角形中位线定理;平行四边形的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故答案为:4.点评:此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.12.(2分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=2.考点:平行四边形的性质.分析:根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.解答:解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC﹣DE=AB﹣AD=5﹣3=2,∴CF=2.故答案为:2.点评:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,平行线的性质,比较简单,熟记性质是解题的关键.13.(2分)如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足AE=CF的条件时,四边形DEBF是平行四边形.考点:平行四边形的判定与性质.分析:当AE=CF时四边形DEBF是平行四边形;根据四边形ABCD是平行四边形,可得DO=BO,AO=CO,再由条件AE=CF可得EO=FO,根据对角线互相平分的四边形是平行四边形可判定四边形DEBF是平行四边形.解答:解:当AE=CF时四边形DEBF是平行四边形;∵四边形ABCD是平行四边形,∴DO=BO,AO=CO,∵AE=CF,∴EO=FO,∴四边形DEBF是平行四边形,故答案为:AE=CF.点评:此题主要考查了平行四边形的判定与性质,关键是掌握对角线互相平分的四边形是平行四边形.14.(4分)如图,DE∥BC,DE=EF,AE=EC,则图中的四边形ADCF是平行四边形,四边形BCFD是平行四边形.(选填“平行四边形、矩形、菱形、正方形”)考点:平行四边形的判定;全等三角形的判定与性质.分析:根据对角线互相平分的四边形是平行四边形可得四边形ADCF是平行四边形;首先证明△ADE≌△CFE可得∠A=∠ECF,进而得到AB∥CF,再根据两组对边分别平行的四边形是平行四边形可得四边形BCFD是平行四边形.解答:解:连接DC、AF,∵DE=EF,AE=EC,∴四边形ADCF是平行四边形;在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,∴AB∥CF,又∵DE∥BC,∴四边形BCFD是平行四边形;故答案为:平行四边形;平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形;两组对边分别平行的四边形是平行四边形.15.(2分)如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为60度时,四边形ABFE为矩形.考点:矩形的判定.专题:计算题.分析:根据矩形的性质和判定.解答:解:如果四边形ABFE为矩形,根据矩形的性质,那么AF=BE,AC=BC,又因为AC=AB,那么三角形ABC是等边三角形,所以∠ACB=60°.故答案为60.点评:本题主要考查了矩形的性质:矩形的对角线相等且互相平分.16.(2分)如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=22°.考点:旋转的性质.分析:根据旋转的性质可得AB=AB′,∠BAB′=44°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.解答:解:解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣44°)=68°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.点评:本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.17.(2分)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.考点:菱形的性质.分析:根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.解答:解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.点评:本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.18.(2分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=()n﹣1.考点:正方形的性质.专题:压轴题;规律型.分析:求a2的长即AC的长,根据直角△ABC中AB2+BC2=AC2可以计算,同理计算a3、a4.由求出的a2=a1,a3=a2…,a n=a n﹣1=()n﹣1,可以找出规律,得到第n个正方形边长的表达式.解答:解:∵a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2=a1=,同理a3=a2=2,a4=a3=2,…由此可知:a n=()n﹣1,故答案为:()n﹣1.点评:本题考查了正方形的性质,以及勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.三、解答题(共52分)19.(6分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.解答:证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.点评:本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.20.(6分)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.21.(6分)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:由已知∠AEB=∠BFC=90°,AB=BC,结合∠ABE=∠BCF,证明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数.解答:解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.点评:本题主要考查正方形的性质,解答本题的关键是熟练掌握全等三角形的判定与性质,以及勾股定理等知识.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB 的中点.(1)求∠A的度数;(2)求EF的长.考点:三角形中位线定理;含30度角的直角三角形.分析:(1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;(2)由“30度角所对的直角边等于斜边的一半”求得AB=2BC,则BC=4cm.然后根据三角形中位线定理求得EF=BC.解答:解:(1)如图,∵在Rt△ABC中,∠C=90°,∠B=60°,∴∠A=90°﹣∠B=30°,即∠A的度数是30°;(2)∵由(1)知,∠A=30°.∴在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,∴BC=AB=4cm.又E、F分别为边AC、AB的中点,∴EF是△ABC的中位线,∴EF=BC=2cm.点评:本题考查了三角形中位线定理、含30度角的直角三角形.在直角三角形中,30°角所对的直角边等于斜边的一半.23.(7分)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.考点:矩形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“边角边”证明△ABF和△DCE全等即可;(2)根据全等三角形对应角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根据等腰三角形的定义证明即可.解答:证明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,∵BE=CF,BF=BC﹣FC,CE=BC﹣BE,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠BAF=∠EDC,∵∠DAF=90°﹣∠BAF,∠EDA=90°﹣∠EDC,∴∠DAF=∠EDA,∴△AOD是等腰三角形.点评:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的判定,熟记性质确定出三角形全等的条件是解题的关键.24.(7分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.考点:菱形的性质;矩形的判定.分析:(1)根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.解答:(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==3,所以,S菱形ABCD=8×3=24.点评:本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.25.(7分)如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.考点:正方形的判定;三角形中位线定理;平行四边形的判定.专题:证明题.分析:通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.解答:证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.点评:主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.26.(7分)如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.专题:压轴题.分析:(1)根据平行四边形的性质和全等三角形的证明方法证明即可;(2)请连接EC、AF,则EF与AC满足EF=AC是,四边形AECF是矩形,首先证明四边形AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明.解答:(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AB∥CD.∴∠E=∠F.∵在△AOE与△COF中,,∴△AOE≌△COF(AAS);(2)连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形,理由如下:由(1)可知△AOE≌△COF,∴OE=OF,∵AO=CO,∴四边形AECF是平行四边形,∵EF=AC,∴四边形AECF是矩形.点评:本题主要考查了全等三角形的性质与判定、平行四边形的性质以及矩形的判定,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题。
补充材料十 《中心对称图形》单元测试卷
补充材料十《中心对称图形》单元练习一、选择题(每小题3分,共30分)1.把图形绕点A按逆时针方向旋转70o后所得的图形与原图作比较,保持不变的是( ) A.位置与大小B.形状与大小题C.位置与形状D.位置、形状及大小2.下面4个图案中,是中心对称图形的是( )3.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为( ) A.2个B.3个C.4个13.5个4.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=3,则菱形ABCD的周长是( ) A.12 B.18 C.24 D.305.如图,在周长为20 cm的 ABCD中,AB≠AD,AC、BD相交于点O,OE上BD交AD于点E,连接BE,则△ABE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm6.已知菱形的周长为40 cm,两对角线长度比为3:4,则对角线长分别为( )A.12 cm.16 cm B.6 cm,8 cm C.3 cm,4 cm D.24 cm,32 cm7.四边形ABCD,对角线AC、BD相交于点O,如果AO=CO,BO=DO,AC⊥BD,那么这个四边形( ) A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形,又是中心对称图形D.是轴对称图形,但不是中心对称图形8.对于下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.其中可以用任意两个全等的直角三角形拼成的图形有( )A.①④⑥B.①②⑤C.①③⑤D.②⑤⑥9.顺次连接下列各四边形各边中点所得的四边形是矩形的是( ) A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形10.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于( ) A.1:4 B.1:3 C.1:2 D.3:4二、填空题(每小题3分,共24分)11.已知三点A、B、D.如果点A'与点A关于点O对称,点B'与点B关于点O对称,那么线段AB与A'B'的关系是__________.12.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为__________cm.13.如图.在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形.四边形ABCD还应满足的一个条件是___________.14.△ABC三边的中点分别为D、E、F,如果AB=6 cm,Ac=8 cm,∠A=90o,那么△DEF的周长是________cm.15.平行四边形的周长为24 cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm.16.如图,矩形ABCD的对角线AC和BD相交于点D,过点O的直线分别交AD、BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为__________.17.菱形的两邻角的度数之比为l:3,边长为__________.18.如图.等边△EBC在正方形ABCD内,连接DE,则∠CDE=________.三、解答题(共46分)19.(6分)如图,在10×10的正方形网格纸中(每个小方格的边长都是1个单位)有一个△ABC,请在网格纸中画出以点O为旋转中心把△ABC按顺时针方向旋转90o得到的△A'B'C'.20.(8分)如图,在 ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF.(1)试说明△CEF是等腰三角形:(2) △CEF的哪两边之和恰好是 ABCD的周长,说明理由.21.(8分)如图,~ABCD中,AE~3J.A_DAB交DC于点E,连接BE,过E作EF⊥BE交AD于点F(1)试说明∠DEF=∠CBE:(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.22.(8分)如图,四边形ABCD是正方形,△DCE绕点D顺时针方向旋转90o后与△DAF重合,连接EF(1)试判断△DEF是什么三角形?并说明你的理由;(2)若此时DE的长为2,请求出EF的长.23.(8分)小华在某课外书上看到了这样一道题:“如图,分别以正方形ABCD的边AB、AD为直径画半圆.若正方形的边长为a,求阴影部分的面积.”从表面上看,图中的阴影部分是复杂且比较分散的图形,要直接计算它的面积还是有困难的,但小华仔细考虑过后,只是将正方形的对角线AC、BD连接起来,然后利用自己所学的“图形的旋转”知识很简便地就将本题解决了,你知道他是怎样做的吗?24.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D'处,折痕为EF(1)试说明△ABE≌△AD' F:(2)连接CF,判断四边形AECF是什么特殊四边形,并证明你的结论.。
轴对称单元测试题及答案
轴对称单元测试题及答案一、选择题(每题2分,共20分)1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 中心线C. 垂直线D. 平行线3. 一个图形的轴对称图形与其本身是否完全重合?A. 是B. 否C. 有时是D. 不确定4. 轴对称图形的对称轴可以有多少条?A. 只有一条B. 至少一条C. 无数条D. 没有5. 下列哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 矩形D. 正五边形二、填空题(每空1分,共10分)6. 轴对称图形的对称轴是________。
7. 如果一个图形关于点O对称,那么这个点O被称为该图形的________。
8. 一个轴对称图形的对称轴可以是一条________或多条________。
9. 轴对称图形的对称轴将图形分成两个完全________的部分。
10. 轴对称图形的对称轴是图形上所有点到________的距离相等的直线。
三、判断题(每题1分,共10分)11. 所有圆形都是轴对称图形。
()12. 轴对称图形的对称轴可以是曲线。
()13. 轴对称图形的对称轴一定经过图形的中心。
()14. 一个图形的轴对称图形与原图形是完全相同的。
()15. 轴对称图形的对称轴是唯一的。
()四、简答题(每题5分,共10分)16. 请解释什么是轴对称图形,并给出一个例子。
17. 描述如何确定一个图形是否是轴对称图形。
五、应用题(每题5分,共10分)18. 给定一个矩形,如果将其沿一条对角线折叠,这条对角线是否是该矩形的对称轴?为什么?19. 如果一个图形关于某条直线对称,那么这条直线上的所有点是否也是对称的?请解释。
六、解答题(每题5分,共10分)20. 给定一个等边三角形ABC,如果点A关于对称轴l对称到点A',求证点B和点C也关于对称轴l对称。
答案一、选择题1. A2. A3. A4. B5. D二、填空题6. 对称轴7. 对称中心8. 直线,直线9. 重合10. 对称轴三、判断题11. √12. ×13. ×14. √15. ×四、简答题16. 轴对称图形是指一个图形关于某条直线(对称轴)对称,这条直线将图形分成两个完全相同的部分。
2020-2021学年北师版八年级数学下册 第三章《图形的平移与旋转》 单元综合测试卷(含答案)
北师版八年级数学下册第3章图形的平移与旋转单元综合测试卷(时间90分钟,满分120分)一. 选择题(共10小题,3*10=30)1.下列各选项中的图形不能由左图通过旋转得到的是( )2.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是( ) A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)3.下列图形中,可以看作是中心对称图形的是( )4.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A. 6B. 8C. 10D. 125.下列四张扑克牌图案,属于中心对称图形的是( )6. 如图,在Rt△ABO中,∠ABO=90°,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A′B′O,那么点A′的坐标为()A.(-3,1) B.(-2,3)C.(-1,3) D.(-3,2)7.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED的面积等于8,则平移距离等于( )A. 2B. 4C. 8D. 168.如图,把图中的⊙A经过平移得到⊙O(如图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为( )A.(m+2,n+1)B.(m﹣2,n﹣1)C.(m﹣2,n+1)D.(m+2,n﹣1)9.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,在旋转的过程中,DG的最大值是( )A.6 B.2+2 2C.4+ 3 D.3+3二.填空题(共8小题,3*8=24)11.点(2,-1)关于原点O对称的点的坐标为__________.12. 在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(2,5),则点B(-4,-1)的对应点D的坐标为__ __.13.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=4.5cm,A,A′两点之间的距离为________cm.14.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,这四次旋转中旋转角度最小是________度.15.已知:如图,在长方形ABCD中,AB=8,BC=6,平移长方形ABCD到长方形A1B1C1D1,使得与原长方形A1B1C1D1重合部分的面积是12,请你写出一种可行的平移方案将长方形ABCD沿着AB边向右平移6个单位长度,得到长方形_______________.(一种即可)16.如图,在等腰三角形ABC中,∠C=90°,BC=2 cm,如果以AC的中点O为旋转中心,将这个几何图形旋转180°,点B落在点B′处,那么点B′与点B的距离为________cm.17.将图1剪成若干小块,再图2中进行拼接平移后能够得到①. ②. ③中的________.18.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后得到△AFB,连接EF,则有下列结论:①△AED≌△AEF;②BE+DC=DE;③S△ABE +S△ACD>S△AED;④BE2+DC2=DE2.其中正确的是________(填入所有正确结论的序号).三.解答题(7小题,共66分)19.(8分) 请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.20.(8分) 如图,将△ABC向右平移7个单位长度,再向下平移6个单位长度,得到△A1B1C1.(1)不画图,直接写出点A1,B1,C1的坐标(点A1,B1,C1分别是点A,B,C的对应点);(2)求△A1B1C1的面积.21.(8分) 如图所示,有一条宽相等的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?22.(10分) 如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且△A1B1C1与△ABC 关于原点O成中心对称.(1)请直接写出点A1的坐标________,并画出△A1B1C1;(2)P(a,b)是△ABC的边AC上一点,将△ABC平移后点P的对称点P′(a+2,b-6),请画出平移后的△A2B2C2;(3)若△A1B1C1和△A2B2C2关于某一点成中心对称,则对称中心的坐标为________.23.(10分) 如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.24.(10分) 将两块大小相同的含30°角的直角三角板(∠BAC=∠B′AC=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C相交于点E,AC与A′B′相交于点F,AB与A′B′相交于点O.(1)求证:△BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.25.(12分) 如图1,在△ABC中,AC=BC,∠A=30°,点D在AB边上,且∠ADC=45°.(1)求∠BCD的度数;(2)将图1中的△BCD绕点B顺时针旋转得到△BC′D′,当点D′恰好落在BC边上时,如图2所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.参考答案1-5 BBACB 6-10CADAA11.(-2,1) 12. (0,1) 13. 3 14.72 15.A 1B 1C 1D 1(答案不唯一) 16. 2 5 17. ①② 18.①③④ 19. 解:如图所示:解说词:两只小船在水中向前滑行20.解:(1)A 1(5,-1),B 1(3,-7),C 1(9,-3). (2)S △A 1B 1C 1=S △ABC =6×6-12×6×2-12×6×4-12×4×2=14.21.解:在矩形ABCD 中,AF ∥EC , 又∵AF=EC ,∴四边形AECF 是平行四边形.在Rt △ABE 中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC ﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m 2).240×50=1200元.答:需要1200元钱22.解:(1)如图所示:△A 1B 1C 1即为所求,A 1(3,-4); 故答案为:(3,-4). (2)如图所示:△A 2B 2C 2即为所求.(3)如图所示:中心对称点O′的坐标为(1,-3). 故答案为:(1,-3). 23. (1)解:补全图形,如图所示.(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.∵∠ACB =90°,∴∠DCE +∠BCD =90°,∴∠ECF =∠BCD.∵EF ∥DC ,∴∠EFC +∠DCF =180°,∴∠EFC =90°.在△BDC 和△EFC 中, ⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC, ∴∠BDC =90°24. 解:(1)因∠B =∠B′,BC =B′C ,∠BCE =∠B′CF ,所以△BCE ≌△B′CF(2)AB 与A′B′垂直,理由如下:旋转角等于30°时,即∠ECF =30°,所以∠FCB′=60°,又∠B =∠B′=60°,根据四边形的内角和可知∠BOB′的度数为360°-60°-60°-150°=90°,所以AB 与A′B′垂直 25. 解:(1)∵AC =BC ,∠A =30°,∴∠B =∠A =30°.∵∠ADC =45°,∴∠BCD =∠ADC -∠B =15°(2)①由旋转,得BC =BC′=AC ,∠C′BD′=∠CBD =∠A =30°.∴∠CC′B =∠C′CB =75°②证明:∵∠CEB =∠C′CB -∠CBA =45°,∴∠ACE =∠CEB -∠A =15°.∴∠BC′D′=∠BCD =∠ACE.在△C′BD′和△CAE 中,⎩⎪⎨⎪⎧∠BC′D′=∠ACE ,BC′=AC ,∠C′BD′=∠A ,∴△C′BD′≌△CAE(ASA)。
初中数学中心对称图形专题训练50题(含答案)
初中数学中心对称图形专题训练50题含参考答案一、单选题1.在平面直角坐标系中,点(2-,6)关于原点对称的点坐标是()A.(6-,2)B.(2,6-)C.(2,6)D.(2-,6-)2.下列图标中,既是中心对称又是轴对称的图标是()A.B.C.D.3.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.(2,5)B.(-3,2)C.(3,-2)D.(3,2)4.我国已经进入5G时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中,属于中心对称图形的是()A.B.C.D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.正五边形C.正六边形D.正七边形8.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形9.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1B.2C.3D.410.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个12.在下列四个图形中,是中心对称图形的是()A.B.C.D.13.这四个汽车标志图中,既是中心对称图形又是轴对称图形的是()A.B.C.D.14.下列①平行四边形,①矩形,①菱形,①正方形四个图形中,是中心对称图形,但不是轴对称图形是()A.①B.①C.①D.①15.下列图形中,可以看作是中心对称图形的有()A.0个B.1个C.2个D.3个16.下列图案中不是中心对称图形的是()A.B.C.D.17.下列图形中,是中心对称图形,但不是轴对称图形的是()A.(A)B.(B)C.(C)D.(D)18.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.19.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A .B .C .D .二、填空题20.平面直角坐标系内一点(5,3)P -,关于原点对称的点的坐标为____________. 21.在平面直角坐标系中点M (2,﹣4)关于原点对称的点的坐标为 _____. 22.在平面直角坐标系中,点()2,3A 关于x 轴的对称点是_____;关于y 轴的对称点是_____;关于原点的对称点是_____.23.点(2,1)P -与点Q 关于原点对称,则点Q 的坐标为__________.24.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b =_____.25.将点()2,3P 绕原点O 旋转180°后P 点的对应点坐标为______.26.已知点(,1)A a 与点(3,1)B --关于原点对称,则=a __ .27.点A (-1,2)关于原点中心对称点的坐标是___________28.在平面直角坐标系中,已知点(),2A a -和点()3,B b 关于原点对称,则a b +=________.29.在平面直角坐标系中,若点(),3A a 与点()4,B b 关于原点O 对称,则ab =__________.30.在四张完全相同的卡片上,分别画有:线段、正三角形、矩形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是____.31.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.32.已知点(2,)A m -与点(,3)B n 关于原点对称,则n m 的值为____________________. 33.已知实数a 、b 是方程22530x x --=的两根,a b <,则点(),P a b 关于原点的对称点Q 的坐标是___________.34.下列图形中,其中是中心对称图形有_____个.①圆;①平行四边形;①长方形;①等腰三角形.35.在直角坐标系中,点(﹣1,2)关于原点对称的点的坐标是___.36.点2(1)A -,关于x 轴对称的点的坐标是_____;点A 关于原点对称的点的坐标是_____.37.平面直角坐标系中,点(31)P a -,与点(23)Q b ,+关于原点对称,则a b +=_____. 38.如图,在平面直角坐标系中,11OA B 是边长为1的等边三角形,作122B A B 与11B AO 关于点1B 成中心对称,再作233B A B 与221B A B 关于点2B 成中心对称,继续作344B A B 与332B A B 关于点3B 成中心对称,….按此规律作下去,则202120222022B A B 的顶点2022A 的坐标是__________.39.如图,C 是线段AB 的中点,B 是线段CD 的中点,线段AB 的对称中心是点__,点C 关于点B 成中心对称的点是点__.三、解答题40.如图,已知①ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)画出①ABC 关于原点成中心对称的三角形①A′B′C′;(2)将①ABC 绕坐标原点O 逆时针旋转90°,画出图形,直接写出点B 的对应点B″的坐标;(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.41.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,.(1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △;(2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.42.利用图甲所示的地板砖各两块,在图乙(1)中铺成一个只是轴对称的图形;在图乙(2)铺成一个只是中心对称的图形,在图乙(3)中铺成既是轴对称图形,又是中心对称的图形.43.如图:在网格中按题目要求画图(1)把ABC 先向右平移5格,再向上平移3格得到111A B C △;(2)作ABC 关于原点对称的图形得到222A B C △.44.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,①ABC 的顶点都在格点上.(1)将①ABC 向右平移6个单位长度得到①A 1B 1C 1,请画出①A 1B 1C 1;(2)画出①ABC 关于点O 的中心对称图形①A 2B 2C 2;(3)若将①A 1B 1C 1绕某一点旋转可得到①A 2B 2C 2,请直接写出旋转中心的坐标:_________.45.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,①ABC 的顶点均在格点上,点C 的坐标为(0,1),请按要求画图与作答:(1)请画出①ABC关于原点成中心对称的①A1B1C1;(2)请画出①ABC绕着点C顺时针旋转90°后的①A2B2C2;(3)求①A2B2C2的面积.46.如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.47.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB 扫过的面积.48.如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1) 请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.49.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF①x轴于点F,设EF=m,问:当m为何值时,①BFE与①DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案:1.B【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:B.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.2.A【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.既是中心对称又是轴对称,符合题意;B.不是中心对称,是轴对称,不符合题意;C.不是中心对称,是轴对称,不符合题意;D.既不是中心对称也不是轴对称,不符合题意;故选:A.【点睛】本题考查了轴对称图形与中心对称图形的识别,牢记轴对称图形和中心对称图形的概念是解答本题的关键.3.A【详解】①P(m,m-n)与点Q(-2,3)关于原点对称,①m=2,n=5,①点P的坐标为(2,5).故选A.4.C【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项不合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不合题意;C.是中心对称图形,但不是轴对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.5.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】根据中心对称图形的概念进行求解即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,解题的关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.A【分析】根据中心对称图形和轴对称图形的概念,即可得出正确选项.【详解】解:A.此图既是轴对称图形又是中心对称图形,故此选项符合题意;B.此图不是中心对称图形,是轴对称图形,故此选项不合题意;C.此图是中心对称图形,不是轴对称图形,故此选项不合题意;D.此图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题考查中心对称图形和轴对称图形的概念,属于基础题,熟练掌握概念是本题的关键.11.A【详解】试题分析:根据轴对称图形与中心对称图形的概念求解.解:既是轴对称图形又是中心对称图形的图形为:矩形、圆,正方形,共3个.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是轴对称图形,不是中心对称图形,故本选项错误,C、不是中心对称图形,故本选项错误,D、是中心对称图形,故本选项正确.故选D.13.C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,也是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形,故此选项正确;B、矩形既是轴对称图形,又是中心对称图形,故此选项错误;C、菱形既是轴对称图形,也是中心对称图形,故此选项错误;D、正方形既是轴对称图形,也是中心对称图形,故此选项错误.故答案为:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.C【详解】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:①、旋转180°,与原图形不能够重合,不是中心对称图形,故错误;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,不是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;综上可得有两个正确.故选C.此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.16.D【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,对四个选项分别进行判断,即可得出结论.【详解】解:A、B、C三个选项的图形都是中心对称图形,D不是中心对称图形.故选:D.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义并能运用定义对图形进行准确判断是解题的关键.17.B【详解】分析:根据轴对称图形与中心对称图形的概念进行判断即可.详解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选B .点睛:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.18.B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.D【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A 、不是中心对称图形,故本选项不符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、是中心对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.20.(-5,3).【详解】试题分析:关于原点对称的点的坐标横、纵坐标均互为相反数,所以P (5,-3)关于原点对称点的坐标是(-5,3).故答案为(-5,3).考点:关于原点对称点的坐标.21.()2,4-【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.【详解】解:点M (2,﹣4)关于原点对称的点的坐标为()2,4-故答案为:()2,4-【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.22. ()2,3- ()2,3- ()2,3--【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可直接写出答案.【详解】解:在平面直角坐标系中,点()2,3A 关于x 轴的对称点是()2,3-;关于y 轴的对称点是()2,3-;关于原点的对称点是()2,3--.故答案为:()2,3-;()2,3-;()2,3--.【点睛】此题主要考查了关于x 轴、y 轴、以及关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.23.(21)-,【详解】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),所以点Q 的坐标为(−2,1).,故答案为()21-, 24.1【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b .【详解】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数, ①a=4且b=-3,①a+b=1.故答案为125.()2,3--【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【详解】点()2,3P 绕原点O 旋转180°后,P 点的对应点与点P 关于原点对称,则其坐标为()2,3--.故答案为:()2,3--.【点睛】本题考查了平面直角坐标系中关于原点对称的两点的坐标特征,掌握这一特征是关键.26.3【分析】直接利用关于原点对称点的性质即可得出答案. 【详解】解:点(,1)A a 与点(3,1)B --关于原点对称,3a ∴=.故答案为:3【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.1,2【详解】根据关于原点成中心对称的两个点的横、纵坐标互为相反数即可得出答案. 解:点A (-1,2)关于原点中心对称点的坐标是(1,-2).故答案为(1,-2).28.-1【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a 、b 即可求得答案.【详解】①点(),2A a -和点()3,B b 关于原点对称,①a=-3,b=2,①a+b=-3+2=-1,故答案为:-1.【点睛】此题考查原点对称点的性质,熟记性质并运用解题是关键.29.12【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:①点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,①a=-4,b=-3,则ab=12.故答案为:12.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.30.3 4【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对线段、正三角形、矩形、圆进行判断,然后求概率即可.【详解】解:由题意知,既是中心对称图形又是轴对称图形的为线段、矩形、圆,①卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是34,故答案为:34.【点睛】本题考查了中心对称图形,轴对称图形的定义,概率等知识.解题的关键在于熟练掌握中心对称图形,轴对称图形的定义.31.(﹣3,﹣4),(3,4),(3,﹣4)【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,①点A关于x轴对称的点的坐标是(﹣3,﹣4),①关于y轴对称时,横坐标为相反数,纵坐标不变,①点A关于y轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.32.9【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数求得,m n的值,进而求得n m 的值. 【详解】解:点(2,)A m -与点(,3)B n 关于原点对称,3,2m n ∴=-=∴n m ()239=-= 故答案为:9【点睛】本题考查了关于原点对称的点的坐标特征,有理数的乘法,掌握关于原点对称的点的坐标特征是解题的关键.33.1,32⎛⎫- ⎪⎝⎭【分析】先利用因式分解法解一元二次方程求出,a b 的值,进而利用关于原点对称点的坐标性质得出即可.【详解】①实数a 、b 是方程22530x x --=的两根,a b <,()()2130x x ∴+-=,1,32a b ∴=-=, 1,32P ⎛⎫∴- ⎪⎝⎭, ①点1,32P ⎛⎫- ⎪⎝⎭关于原点的对称点Q 的坐标是1,32⎛⎫- ⎪⎝⎭, 故答案为:1,32⎛⎫- ⎪⎝⎭. 【点睛】本题考查了关于原点对称的点的坐标和解一元二次方程-因式分解法,熟练掌握知识点是解题的关键.34.3【分析】根据中心对称图形的特点进行分析即可.【详解】解:①圆;①平行四边形;①长方形是中心对称图形,共3个,①等腰三角形不是中心对称图形.故答案为:3.【点睛】本题考查中心对称图形的识别,熟练掌握中心对称图形的特点是解题关键. 35.1,2【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可【详解】点(﹣1,2)关于原点对称的点的坐标是1,2故答案为:1,2【点睛】本题考查了关于原点对称的点的坐标的特点,掌握平面直角坐标系中对称点的坐标特点是解题的关键.36. (1,2) (﹣1,2)【详解】解:点P (m ,n )关于x 轴对称点的坐标P′(m ,﹣n ),关于原点对称点的坐标P″(﹣m ,﹣n );所以点A (1,﹣2)关于x 轴对称的点的坐标为(1,2),关于原点对称的坐标是(﹣1,2).故答案为:(1,2);(﹣1,2)37.﹣1【分析】根据原点对称的点,横坐标和纵坐标都互为相反数,即可得到答案.【详解】解:①P 与Q 关于原点对称,故3=-(b +2),1-a =-3,解得:a =4,b =-5,①a +b =-1,故答案为-1.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.38.40432⎛ ⎝⎭【分析】首先根据11OA B 是边长为1的等边三角形,可得A 1的坐标为1,2⎛ ⎝⎭,B 1的坐标为(1,0);然后根据中心对称的性质,分别求出点A 2、A 3的坐标各是多少;最后总结出An 的坐标的规律,求出A 2n +1的坐标是多少即可.【详解】解:①11OA B 是边长为1的等边三角形,①A 1的坐标为:1,2⎛ ⎝⎭,B 1的坐标为:(1,0), ①233B A B 与221B A B 关于点2B 成中心对称,①点A 2与点A 1关于点B 1成中心对称, ①132122⨯-=,①点A 2的坐标是:32⎛ ⎝⎭,①①B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,①点A 3与点A 2关于点B 2成中心对称, ①153122⨯-=①点A 3的坐标是:5,2⎛ ⎝⎭,①An 的横坐标是:n −12,当n 为奇数时,An 的纵坐标是:,当n 为偶数时,An 的纵①2022是偶数,14043202222-=①2022A 的坐标是40432⎛ ⎝⎭,故答案为:40432⎛ ⎝⎭. 【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出An 的横坐标和纵坐标是解题的关键.39. C D【详解】根据中心对称图形的对称中心的定义,点C 是线段AB 的中点,点B 是线段CD 的中点,线段AB 的对称中心是点C ;点C 关于点B 成中心对称的对称点是点D. 故答案为C ;D.40.(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D 坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【分析】(1)根据网格结构找出点A 、B 、C 关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 绕坐标原点O 逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 的对应点的坐标;(3)分AB 、BC 、AC 是平行四边形的对角线三种情况解答.。
八年级(上)数学单元测试卷中心对称图形单元测试卷.docx
八年级(上)数学单元测试题(三)第三章中心对称图形(一)(§3・1 - §3.4)班别_____________ 学号 _______________ 姓名__________________ 成绩 _____________一、填空题:本大题共10小题;每小题3分,共30分.请将答案填写在题中的横线上.1.如图1, A/1BC经旋转后得到另一图形厶A'BC,则点A的对应点是____ ,点C的对应点是_____ ・2.如图1, AABC经旋转后得到另一图形厶/VBC,则线段的对应线段是 ______ ,线段AC的对应线段是_____ ,线段BC的对应B 线段是___________ ・图13・如图1, AABC经旋转后得到另一图形厶A'BC,则Z4的对应角是_________ , ZABC的对应角是 ______ , ZC的对应角是_______ •4.如图1, /\ABC经旋转后得到另一图形厶AFC,则旋转中心是________ ,旋转角是_____ ・5.一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为60°,旋转前后所有的图形共同组成的图案是 _______________________________ .6.一个正方形要绕它的中心至少旋转 ____ 度,才能和原来的图形重合.7.如图,5ABC为等边三角形,D为BC中点,4AEB是厶ADC绕点4旋转60。
得到的,则ZABE= _______ 度;若连结DE,则为__________________ 三角形.8.如图,以△A〃C的边4B、AC为边分别向外侧作等腰直角△ ABD. AACE f则将△ ADC绕点A逆时针旋转 ____ 度可得到此时CD与BE有______________________ 的关系.9.在UABCD中,ZA + ZC=200° , ZA= ____________ , ZB____________ .10・如图,在口4BCD中,EF//BC, GH//AB, EF、GH相交于点O,那么图中除口4BCD 外共有____ 个平行四边形.-V 选择题:f 本大题共8小题;每小题3分,共24分•)11.下列图形中是中心对称图形的是14・下列图形中:①等边三角形;②正五角星形;③正方形;④圆.15. ............................................................................................................................ 下列说法中正确的是 ......................................................... ( .................................................................... ).(A )旋转对称图形一定是轴对称图形 (B )旋转对称图形一定不是轴对称图形(C )轴对称图形一定是旋转对称图形(D )以上说法均不正确 16. 把26个英文大写字母看成图案:ABCDEFGHIJKLMNOPQRSTUVWXYZ,则成中心对称图案的字母共有 .................................... (). (A ) 4 个 (B ) 5 个 (C ) 6 个 (D ) 7 个17. ............................................................................................................................ 下列各组条件中,不能判定四边形ABCD 为平行四边形的一组是 .................... ( ).(A) AB=CD, AD=BC(B) AB//CD, AB=CD (C) AB=CD, AD//BC (D) AB//CD f AD//BC18. ............................................................................................................................ 以不共线的三点为顶点作平行四边形可作岀 ..................................... (). (C)12.下列平面图形中, 既是轴对称图形,又是中心对称图形的是 .............(B) 13・下列情形不属于旋转的是 ........................................... ( ). (A )电风扇的扇叶在不停转动(B )时钟上的秒针不停地转动 (C )单摆上转动的小球 (D )笔直的铁轨上飞驰而过的火车属于旋转对称图形的有 ............................................. ( ).(A) 1 个 (B) 2 个 (C) 3 个 (D) 4 个(A) (A)(C) (D).................................................................... ).(A) 1 个(B) 2 个(C) 3 个(D) 4 个三、解答题:本大题共4小题,共46分.解答应写出文字说明或演算步骤.19. (11分)如图,在ZkABC中,AD是中线.(1)(3分)读语句画图:延长AD到点使DE=AD f连结〃E、CE;(2)______________________ (4分)填空:点A与点_____________________ 关于点_______________________ 成中心对称,线段AB与线段________________ 关于点_______ 成中心对称;(3)(4分)写出所有关于点D成中心对称的三角形.20. (11分)如图,在10X5的正方形网格中,每个小正方形的边长均为单位1,将ZkABC向右平移4个单位,得到△ A f B f C r f再把△ A r B r C绕点4逆时针旋转90。
苏科版八上数第三章单元测试(2)
— 1 —第三章 中心对称图形(二)一.选择题1.在矩形ABCD 中,AB =2AD ,E 是CD 上一点,且AE =AB ,则∠CBE = ( )A .30°B .22.5°C .15°D .以上都不对 2.菱形的周长为20㎝,两邻角的比为1∶3㎝ A .25B .16C .D .3.下列命题不正确的是( )A .任何一个成中心对称的四边形是平行四边形B .平行四边形既是轴对称图形又是中心对称图形C .线段、平行四边形、矩形、菱形、正方形都是中心对称图形D .等边三角形、矩形、菱形、正方形都是轴对称图形4.四边形的四边长顺次为a 、b 、c 、d ,且a 2+b 2+c 2+d 2=ab +bc +cd +ad ,则此四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形5.以线段a =16,b =13,c =6为边作梯形,其中a ,c 为梯形的两底,这样的梯形( ) A .有一个B .有两个C .有三个D .以上都不对6.梯形ABCD 的面积是6cm 2,P 是腰BC 的中点,则S △APD 等于( )A .1cm 2B .1.5cm 2C .2cm 2D .3cm 27.三角形三条中位线的长为3、4、5,则此三角形的面积为( )A .12B .24C .36D .488和( )A .12BC .D .9.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为( )A .15°B .30°C . 45°D .60°10.直角梯形ABCD 中,AB ∥CD ,∠A =30°,AB +CD =m ,BC +AD =n ,则梯形ABCD— 2 —《同步课程》试卷 八年级数学(上)ABCDEGH的面积为 ( )A .1mn 4B .1mn 5C .1mn 6D .1mn 8二.填空题11.梯形的上底长为3cm ,中位线长为5cm ,底边上的高为5cm ,则梯形面积为______ cm 2,下底长为__________cm .12.已知等腰梯形一底角为60°,两底的和为30cm ,且对角线平分60°的底角,则此等腰梯形的周长为__________cm .13.如图:正方形ABCD 的边长为a ,E 为AD 的中点,BM ⊥BC 于M ,则BM 的长为___________.14.如图:DE 是△ABC 的中位线,且DE=5cm ,GH 是梯形DECB 的中位线,则GH=___________.15.如图:延长正方形ABCD 的边BC 至E ,使CE=AC ,连接AE 交CD 于F ,则∠AFC=___________.16. 梯形的高为5cm ,中位线为14cm ,则此梯形的面积为____________. 17.等腰梯形两对角线互相垂直,中位线长为a ,则此梯形的面积为___________. 18.如图,在□ABCD 中,E 、F 分别是AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,以下结论:① BE=DF ;② AG=GH=HC ;③ EG=21BG ;F— 3 —《同步课程》试卷 八年级数学(上)A BCDM NBACD ④ S △ABE =3S △AGE其中,正确的有________________. 三.解答题19.矩形ABCD 中,AC 、BD 相交于点O ,E 为矩形ABCD 外一点,若AE ⊥CE ,求证BE ⊥DE .20.在梯形ABCD 中,∠B=45°,∠C=60°,CD=4cm , AD=2cm ,求梯形ABCD 的周长及面积.21.在△ABC 中, AB=2AC ,AF=41AB ,D 、E 分别为AB 、AC 的中点,EF 与CA 的延长线交于点G ,求证:AF=AG .22.如图:梯形ABCD 中,AD ∥BC ,S △ADC :S △ABC =2:3,而对角线中点M 、N 的连线段为10cm ,ABCEDF G— 4 —《同步课程》试卷 八年级数学(上)EABCDE 求梯形两底的长.23.△ABC 中E 是AB 的中点,CD 平分∠ACD ,AD ⊥CD与点D ,求证:DE=21(BC-AC ).24.如图:AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O ,求证:OF=21CE .第三章 中心对称图形(二)1.C 2.C 3.B 4.C 5.D 6.D 7.B 8.A 9.D 10.C 11.25、7;12.50、 13;14.7.5; 15.112.5° 16.70㎝217.2a ; 18.①、②、③、④;19.提示:连结OE ,证OE =OA ,又OA =OB =OC =OD ,则OE =OB =OD 即得;《同步课程》试卷八年级数学(上)20.周长为10+、面积为6+;21.提示:取AC的中点M,连结EM;22.AD=40,BC=60;23.提示:延长AD交BC于F,说明AC=CF,DE是△ABF的中位线;24.提示:过O点作OP∥BC交AE于P,则OP=12CE,再证OP=OF.— 5 —。
北师大版小学数学六年级下册第三单元图形的运动高频考点检测卷(单元测试) (含答案)
北师大版小学数学六年级下册第三单元图形的运动高频考点检测卷(单元测试)一、选择题1.下面的图形中,()是旋转而成的;()是轴对称图形。
①②③A.③①B.①②C.②③2.下图中,线段AO绕点O逆时针旋转90°后的线段是()。
A.DO B.CO C.BO D.AO3.将()绕点O按顺时针方向旋转90°,得到。
A.B.C.4.将下图绕点O顺时针旋转90°,得到的图形是()。
A.B.C.D.5.下面图形中,________是由基本图形平移得到的,________是由基本图形旋转得到的。
()①②③A.①②B.③①C.②①6.下面的图案中利用旋转设计的是()。
A.B.C.D.二、填空题7.这个图形可以看做是由( )绕着点( )向( )方向旋转而成的。
8.如图,在图1中,先将图A绕点( )按( )时针方向旋转( )°,再将图B绕点( )按( )时针方向旋转( )°得到图2。
9.箭头绕点O( )时针旋转了( )°。
10.看图填一填。
(1)图形①绕点( )按( )时针方向旋转( )得到图形②。
(2)图形①绕点( )按( )时针方向旋转( )得到图形③。
11.如图的图A绕点O顺时针旋转90︒后,得到图( );图D绕点O逆时针旋转90︒后,得到图( )。
12.看一看,想一想,填一填。
在下图中,图形B可以看作是图形A绕点O按( )时针方向旋转( )°,再向( )平移( )格得到的。
13.如图中图形2先绕点O按( )方向旋转( )°,再向( )平移( )格,得到图形1。
14.中国青铜文化源远流长,下图是在四川广汉三星堆出土的青铜面具,它体现了( )美。
(填“平移”“旋转”或“轴对称”)三、判断题15.图形旋转后所对应的一组线段的夹角是90°,说明这个图形旋转了90°。
( ) 16.绕轴旋转一周可以得到。
( )17.如图,将等边三角形图形绕着点O旋转120°后与原来图形重合。
北师大版数学六年级上册《第3单元_图形的变换》小学数学-有答案-单元测试卷(一)
北师大版数学六年级上册《第3单元图形的变换》单元测试卷(一)一、填空题.(每题2分,共20分)1. 我们学过的变换图形的方法有________、________、________.2. 图形通过________得到图形.3. 这个图形通过________得到4. 图案的基本图形是________,是通过________得到这个图案。
5. 图中有无数条对称轴的是第________幅图。
6. 平移不改变图形的________和________,只改变图形的________.7. 三角形向________平移了________个小格。
8. 图形向________平移了________个小格。
9. 如图形1到图形2,再到图形3,最后到图形4,是一个________的过程。
10. 如图的基本图形是________,它是由基本图形经过________或________设计而成的。
二、画一画(8分)画出对称图形的另一半三、解决问题.(72分)观察方格纸中图形的变换,完成下面的问题。
(1)A经过怎样的变换得到图形B?(2)图形B又经过怎样的变换得到图形C?(3)你还有什么办法,能将右图中图形A变换得到图形C?以虚线为对称轴作图形A的对称图形B,再将图形B向左平移7格得到图形C.淘气和笑笑玩游戏,分别从A、B处出发,沿半圆行驶到C、D.(1)笑笑所跑中路线半径为20米,他跑过的路是________米。
(2)淘气所跑的路程的半径是________米,他跑过的路程是________米。
(3)他俩跑过的路程相差________米。
一次体育比赛结束时,7名获奖运动员想到握手,如果每2人握一次手,共握几次手?实际操作。
(1)以直线l为对称轴作图形A的轴对称图形,得到图形B.(2)将图形B绕点O逆时针旋转90∘,得到图形C.(3)将图形C向左平移5格,得到图形D.一种麦田的自动旋转喷灌装置的射程15米。
它能喷灌的面积有多少平方米?(1)以直线MN为对称轴作图A的轴对称图形得到图形B.(2)将图形B绕点O顺时针旋转90∘,得到图形C.(3)将图形C向右平移5格,得到图形D.请你按照前面三个图形的规律,画出后面三个图形。
中心对称图形单元测试卷
E D CB A A BCD E九年级数学..(测试内容:中心对称图形(一))一、填空题:.1.如图1,△ABC 经旋转后得到另一图形△A'BC',则点A 的对应点是 ,点C 的对应点是 ...2.如图1,△ABC 经旋转后得到另一图形△A'BC',则线段AB 的对应线段是 ,线段AC 的对应线段是 ,线段BC 的对应线段是 ...3.如图1,△ABC 经旋转后得到另一图形△A'BC',则∠A 的对应角是 ,∠ABC 的对应角是 ,∠C 的对应角是 .4.如图1,△ABC 经旋转后得到另一图形△A'BC',则旋转中心是 ,旋转角是 ...5.一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为60°,旋转前后所有的图形共同组成的图案是 .6.一个正方形要绕它的中心至少旋转 度,才能和原来的图形重合...7.如图,△ABC 为等边三角形,..D 为BC 中点,△AEB 是△ADC 绕点A 旋转60°得到的,则∠ABE =度;若连结DE ,则△ADE 为__________三角形. 8.如图,以△ABC 的边AB 、AC 为边分别向外侧作等腰直角△ABD 、△ACE ,则将△ADC 绕点A 逆时针旋转______度可得到△ABE ,此时CD 与BE 有_______________的关系.图1E DCBAA B C DE9.在□ABCD 中,∠A +∠C =200°,∠A = ,∠B .10.如图,在□ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 相交于点O ,那么图中除□ABCD 外共有______个平行四边形.二、选择题:11.下列图形中是中心对称图形的是( ).(A ) (B ) (C ) (D )12.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ).(A ) (B ) (C ) (D ) 13下列情形不属于旋转的是( ).(A )电风扇的扇叶在不停转动(B )时钟上的秒针不停地转动(C )单摆上转动的小球 (D )笔直的铁轨上飞驰而过的火车14.下列图形中:①等边三角形;②正五角星形;③正方形;④圆.属于旋转对称图形的有( ). (A )1个(B )2个(C )3个(D )4个DAC A B C DE F G HO15.下列说法中正确的是().(A)旋转对称图形一定是轴对称图形(B)旋转对称图形一定不是轴对称图形(C)轴对称图形一定是旋转对称图形(D)以上说法均不正确16.把26个英文大写字母看成图案:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z,则成中心对称图案的字母共有().(A)4个(B)5个(C)6个(D)7个17.下列各组条件中,不能判定四边形ABCD为平行四边形的一组是().(A)AB=CD,AD=BC (B)AB∥CD,AB=CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC18.以不共线的三点为顶点作平行四边形可作出().(A)1个(B)2个(C)3个(D)4个三、解答题:19.(11分)如图,在△ABC中,AD是中线.(1)(3分)读语句画图:延长AD到点E,使DE=AD,连结BE、CE;(2)(4分)填空:点A与点关于点成中心对称,线段AB与线段关于点成中心对称;(3)(4分)写出所有关于点D成中心对称的三角形.。
初中数学中心对称图形专题训练50题(含参考答案)
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.下列四边形中,是中心对称但不是轴对称的图形是()A.矩形B.等腰梯形C.正方形D.平行四边形4.下列选项中的垃圾分类图标,属于中心对称图形的是()A.B.C.D.5.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等腰三角形B.矩形C.平行四边形D.正五边形6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.下列汽车车标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D .10.如图,将ABC ∆绕点()1,1C 旋转180︒得到''.A B C ∆设点A 的坐标为(,)a b , 则点'A 的坐标为( )A .()1,1a b -+-+B .()1,1a b ----C .()2,2a b -+-+D .2,2()a b ----11.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线相等且互相垂直D .矩形的对角线不能相等12.下列图案中,既是中心对称又是轴对称图形的个数有( )A .1个B .2个C .3个D .4个 13.对于等边三角形,下列说法正确的为( )A .既是中心对称图形,又是轴对称图形B .是轴对称图形,但不是中心对称图形C .是中心对称图形,但不是轴对称图形D .既不是中心对称图形,又不是轴对称图形14.在平面直角坐标系中,点(2,1)-关于原点对称的点的坐标是( )A .(2,1)B .(2,1)-C .(1,2)-D .(2,1)-- 15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .16.下列图形中,是轴对称图形不是中心对称图形的有( )A .1个B .2个C .3个D .4个 17.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .18.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5-- 19.如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .//AD EF =,//AB GF =B .BO GO =C .B 、O 、G 三点在一条直线上D .DO HO =20.下列图形中既是轴对称图形又是中心对称图形的是( )A .AB .BC .CD .D二、填空题21.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.22.请写出一个是轴对称图形但不一定是中心对称图形的几何图形名称:____________________.23.已知点()4,3P -和点(),Q x y 关于原点对称,则x y +=______.24.下列图形:①平行四边形;①菱形;①等边三角形;①正方形,其中既是轴对称图形,又是中心对称图形的有_____(填序号).25.在平面直角坐标系中,点(-1,2)关于x 轴对称的点的坐标是____________,关于y 轴对称的点的坐标是____________,关于原点对称的点的坐标是_____________.26.已知点A (a ,1)与点B (﹣3,b )关于原点对称,则ab 的值为_____. 27.在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.28.数轴上A B 点表示-2,则A 点关于B 点的对称点A '表示的数为_______________.29.成中心对称的两个图形________,对应点的连线都经过________,并且被对称中心________.30.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P '的坐标是P '___.31.直线2y x =+上有一点()1,,P m 则P 点关于原点的对称点为P'________________(不含字母m ).32.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段AB ,求作线段AB 的垂直平分线.小明的作法如下:(1)分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧交于点C ; (2)再分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于点D ; (3)作直线CD ,直线CD 即为所求的垂直平分线.同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC ,BC ,AD ,BD由作图可知:AC BC =,AD BD =①点C ,点D 在线段的垂直平分线上(依据1:______)①直线就是线段的垂直平分线(依据2:______)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A ,B ,C ,D 恰好均在格点上,依次连接A ,C ,B ,D ,A 各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.33.若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;①()0m y m x =≠;①31y x =-;①2y x .其中是“H 函数”的为________.(填上序号即可)34.旋转对称图形______________(填“一定是”、“一定不是”或“不一定是”)中心对称图形;中心对称图形________(填“一定是”、“一定不是”或“不一定是”)旋转对称图形.35.给出下列5种图形:①平行四边形①菱形①正五边形、①正六边形、①等腰梯形中,既是轴对称又是中心对称的图形有________个.36.若点P (﹣m ,3﹣m )关于原点的对称点在第四象限,则m 满足_____. 37.在下列字型的数字中,既是轴对称图形又是中心对称图形的有______________.38.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.39.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题40.(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O . (2)如图①所示,已知①ABC 的三个顶点的坐标分别为A (4,﹣1),B (1,1),C (3,﹣2).将①ABC 绕原点O 旋转180°得到①A 1B 1C 1,请画出①A 1B 1C 1,并写出点A 1的坐标.41.如图,ABC 的三个顶点都在正方形网格的格点上,其中点A 的坐标为()1,0-.(1)在网格中作A B C ''',使A B C '''与ABC 关于原点O 成中心对称.(2)如果四边形BCDE 是以BC 为一边,且两条对角线相交于原点O 的平行四边形,请你直接写出点D 和点E 的坐标.42.如图,在85⨯的正方形网格中,每个小正方形的边长均为1,ABC 的三个顶点均在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使ABD △与ABC 全等,且点D 在直线AB 的下方(点D 不与点C 重合);(2)在图2中画ABE △(点E 在小正方形的顶点上),使ABE △与ABC 全等,且//AC BE ;(3)请直接写出ABC 的面积.43.如图,有三张背面相同的纸牌A B C 、、,其正面分别画有三个不同的图形,将这三张纸牌背面朝上洗匀后随机摸出一张,记下图案放回洗匀后再随机摸出一张.求两次摸出的纸牌正面图形都是中心对称图形的概率,(纸牌用A B C 、、表示)44.如图,在平面直角坐标系内,已知①ABC 的三个顶点坐标分别为A (1,3)、B (4,2)、C (3,4).(1)将①ABC 沿水平方向向左平移4个单位得①A 1B 1C 1,请画出①A 1B 1C 1; (2)画出①ABC 关于原点O 成中心对称的①A 2B 2C 2;(3)若①A 1B 1C 1与①A 2B 2C 2关于点P 成中心对称,则点P 的坐标是45.如图,D 是△ABC 边BC 的中点,连接AD 并延长到点E,使DE=AD ,连接BE .(1)图中哪两个图形成中心对称;(2)若△ADC 的面积为4,求△ABE 的面积.46.如图所示的正方形网格中,ABC ∆的顶点均在格点上,在所给直角坐标系中解答下列问题;(1)作出ABC ∆关于坐标原点成中心对称的111A B C ∆;(2)分别写出点11,A B 两点的坐标;47.作出下列图形的对称中心.48.如图,在ABC 中,D 为BC 上任一点,//DE AC 交AB 于点//E DF AB ,交AC 于点F ,求证:点E F ,关于AD 的中点对称.49.由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.参考答案:1.D【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,但不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.3.D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合的图形,依次进行判定即可.【详解】A、既是轴对称图形,也是中心对称图形,故不符题意;B、是轴对称图形,不是中心对称图形,故不符题意;C、既是轴对称图形,也是中心对称图形,故不符题意;D、是中心对称图形,不是轴对称图形,故符合题意;故选:D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是熟练掌握轴对称和中心对称图形的概念.4.C【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是中心对称图形,故选项错误,不符合题意;B.不是中心对称图形,故选项错误,不符合题意;C.是中心对称图形,故选项正确,符合题意;D.不是中心对称图形,故选项错误,不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形对各选项进行判断即可.【详解】解:①等腰三角形,正五边形均为轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;故A,C,D不符合题意;矩形既是轴对称图形又是中心对称图形故B符合题意;故选B.【点睛】本题考查了轴对称图形与中心对称图形.解题的关键在于熟练掌握轴对称图形与中心对称图形的定义.6.B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A是轴对称图形,不是中心对称图形.不符合题意;B既是轴对称图形,又是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D既不是轴对称图形,又不是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误,故选:C.【点睛】本题考查两种对称图形,掌握轴对称图形与中心对称图形的概念是解决问题的关键.8.A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【分析】中心对称图形定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,根据定义逐项判定即可得出结论.【详解】解:A、是轴对称图形,不是中心对称图形,故选项不符合题意;B、是轴对称图形,也是中心对称图形,故选项符合题意;C 、是轴对称图形,不是中心对称图形,故选项不符合题意;D 、不是轴对称图形,是中心对称图形,故选项不符合题意;故选:B .【点睛】本题考查中心对称图形与轴对称图形的定义,熟练掌握中心对称图形与轴对称图形的定义是解决问题的关键.10.C【分析】根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A’的坐标是(x ,y ), 则12a x +=,12b y +=, 解得x =−a+2,y =−b+2,①点A’的坐标是()2,2a b -+-+.故选:C .【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方. 11.C【分析】根据菱形、平行四边形、正方形、矩形的性质逐项判断即可得出答案.【详解】解:菱形的对角线互相垂直,但不一定相等,故选项A 说法错误,不合题意; 平行四边形不是轴对称图形,是中心对称图形,故选项B 说法错误,不合题意; 正方形的对角线相等且互相垂直,故选项C 说法正确,符合题意;矩形的对角线一定相等,故选项D 说法错误,不合题意;故选C .【点睛】本题考查菱形、平行四边形、正方形、矩形的性质,以及轴对称、中心对称图形的识别,属于基础题,熟练掌握特殊平行四边形的特点是解题的关键.12.B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B .【点睛】本题考查了轴对称图形,中心对称图形的识别,解题的关键是掌握轴对称图形,中心对称图形的定义.13.B【分析】根据中心对称图形与轴对称图形的概念分析即可.【详解】等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查判断轴对称图形与中心对称图形.掌握轴对称图形和中心对称图形的概念是解答本题的关键.14.B【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(2,1)-关于原点对称的点的坐标是(2,1)-,故选:B .【点睛】本题考查了关于原点对称的点的坐标,掌握两个点关于原点对称时,它们的坐标符号相反是解题的关键.15.D【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】①不是中心称图形,①不符合题意;①不是对称图形,①不符合题意;①不是轴对称图形,①不符合题意;①是轴对称图形,也是中心对称图形,①符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.16.A【分析】利用轴对称图形和中心对称图形的定义即可求解.【详解】解:等腰三角形是轴对称图形,不是中心对称图形,符合题意;菱形既是轴对称图形,又是中心对称图形,不符合题意;圆既是轴对称图形,又是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查识别轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解题的关键.17.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.B【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】①菱形是中心对称图形,且对称中心为原点,①A、C坐标关于原点对称,2,5-,①C的坐标为()故选C.【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.19.D【分析】根据中心对称的性质即“中心对称的两个图形全等,对称点到对称中心的距离相等”可得到结论.【详解】解:①四边形ABCD与四边形FGHE关于点O成中心对称,=,B、O、G三点在一条直线① AD与EF、AB GF与的关系是相等并且平行,BO GO=,上,DO EO①A、B、C选项正确,D选项错误.故选D.【点睛】本题考查中心对称的图形性质,得出对应顶点、对应边是解题关键.20.D【详解】根据轴对称图形又和中心对称图形的定义,易得D.21.中心对称圆心【分析】圆是一种比较特殊的几何图形,圆既是轴对称图形,又是中心对称图形,对称中心是圆心.【详解】解:圆是轴对称图形,圆也是中心对称图形,圆心是其对称中心,故答案为中心对称,圆心.【点睛】此题考查的知识点是中心对称图形,关键是结合中心对称图形和轴对称图形的概念对圆的认识.22.等腰三角形(答案不唯一)【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:是轴对称,但不是中心对称的几何图形名称:如等腰三角形或正三角形(答案不唯一).故答案为:等腰三角形(答案不唯一).【点睛】本题考查的是中心对称图形与轴对称图形的含义.掌握“轴对称图形与中心对称图形的概念”是解本题的关键.23.1-【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(﹣x ,﹣y ),进而得出答案.【详解】解:①点()4,3P -和点(),Q x y 关于原点对称,①4,3x y =-=,则1x y +=-.故答案为:1-.【点睛】此题主要考查了关于原点对称点的性质,解题的关键是正确掌握横纵坐标的符号关系.24.①①【分析】根据中心对称图形及轴对称图形的定义即可解答.【详解】①只是中心对称图形;①、①两者都既是中心对称图形又是轴对称图形,①只是轴对称图形.故答案为①①.【点睛】本题主要考查了中心对称与轴对称的概念.轴对称的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.25. (-1,-2) (1,2) (1,-2)【详解】试题分析:根据关于x 轴、y 轴、原点对称的点的坐标的特征即可得到结果. 点(-1,2)关于x 轴对称的点的坐标是(-1,-2),关于y 轴对称的点的坐标是(1,2),关于原点对称的点的坐标是(1,-2).考点:本题考查的是关于x 轴、y 轴、原点对称的点的坐标的特征点评:解答本题的关键是熟练掌握关于x 轴对称的点的横坐标不变,纵坐标变为相反数;关于y 轴对称的点的纵坐标不变,横坐标变为相反数;关于原点对称的点的横、纵坐标均变为相反数.26.-3【分析】根据关于原点对称的两个点横纵坐标互为相反数得出,a b 的值,代入计算即可.【详解】解:①点A (a ,1)与点B (﹣3,b )关于原点对称,①a =3,b =﹣1,故ab =﹣3.故答案为:﹣3.【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.(-3,5)【分析】根据旋转180°后的对应点与点A 关于原点对称进行求解即可.【详解】解:①将点A 绕原点逆时针旋转180°后,点A 的对应点B 与点A 关于原点对称, ①点B 的坐标为(-3,5),故答案为:(-3,5).【点睛】本题主要考查了绕原点旋转一定角度的点的坐标特征,熟知绕原点旋转180度对应点关于原点对称是解题的关键.28.4-【分析】根据对称中心是对应点的中点,可得答案.【详解】①点A 和点A '关于点B 对称,①B 是A 与A '连线的中点,设A '表示的数是x ,则)122x =-,解得:4x =-故答案为:4-.【点睛】本题考查了实数与数轴,利用对称中心是对应点的中点得出方程是解答本题的关键.29. 全等 对称中心 平分【分析】根据中心对称的性质直接填空得出即可.【详解】成中心对称的两个图形全等,对应点的连线都经过对称中心,并且被对称中心平分.故填:全等,对称中心,平分.【点睛】此题主要考查了中心对称的定义,熟练掌握中心对称的定义是解题关键.30.(3,-1)【详解】试题分析:根据中心对称的性质,得点P(﹣3,1)关于原点对称的点的坐标是(3,﹣1).故答案为(3,-1).考点:关于原点对称的点的坐标.31.(-1,-3).【分析】根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.【详解】解:①直线y=x+2上有一点P(1,m),①x=1,y=1+2=3,①P(1,3),①P点关于原点的对称点P′的坐标为:(-1,-3).故答案为:(-1,-3).【点睛】此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.32.(1)到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)见解析【分析】(1)根据线段的垂直平分线的判定进行解题即可.(2)根据题意用基本图形设计中心图案即可.【详解】解:(1)连接AC,CB,AD,DB.由作图可知:AC=BC,AD=BD.①点C,点D在线段的垂直平分线上(到一条线段两个端点距离相等的点在这条线段的垂直平分线上).①直线就是线段的垂直平分线(两点确定一条直线).故答案为:到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)如图所示:【点睛】本题考查利用旋转设计图案,线段的垂直平分线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.33.①①【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --, ①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;①将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ①将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;①将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①①,故答案为:①①.【点睛】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 34. 不一定是; 一定是【分析】根据中心对称的定义及旋转对称的定义:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;即可得出答案.【详解】旋转对称图形不一定是中心对称图形,中心对称图形一定是旋转对称图形. 故答案为:不一定是;一定是。
八年级数学下册《第三章图形的平移与旋转》单元测试题含答案
第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。
《第3章_图形的变换》小学数学-有答案-北师大版六年级(上)数学单元测试卷(5)
《第3章图形的变换》北师大版六年级(上)数学单元测试卷(5)一、填空题.(18分)1. 钟表的时针从指向6到指向9,时针绕钟表的中心旋转了________度。
2. 把一个图形平移、旋转或画出它关于某条直线的轴对称的图形,图形的大小均________.3. 半圆有________条对称轴,等边三角形有________条对称轴,长方形有________条对称轴。
4. 在环形跑道中,弯道的外圈比内圈________一些。
(填长或短)5. 4名队员参加乒乓球比赛,如果每2名队员之间都要进行一场比赛,一共要安排________场比赛。
二、选择题.(18分)图形变换为,经过了()变换。
A.平移B.旋转C.不确定下列图形中,由通过平移得到的是()A. B. C.下列图形中,对称轴最少的是()A.长方形B.正方形C.等腰三角形D.圆下列现象中不属于平移的是()A.大楼里竖直向上、下运动的电梯B.公园里转动的木马C.汽车在笔直的公路上向前行驶下面的图形中,有4条对称轴的是()A.圆B.等腰梯形C.正方形以下半圆变成圆的方法有()种。
①沿直径作轴对称图形②绕直径的一个端点旋转180度③绕圆心旋转180度④平移。
A.1种B.2种C.3种D.4种三、解答题(共1小题,满分8分)先仔细观察下图,然后回答问题。
(1)图形A如何变换得到图形B?(2)图形B如何变换得到图形C?四、按要求画图.(23分)画一画。
(1)把图形A向右平移8格,得到图形B.(2)把图形A绕点O顺时针旋转180度,得到图形C.按要求在方格纸上画图形。
(1)在方格纸上,把圆O向右平移4格,画出平移后的图形。
(2)把六边形绕A点逆时针旋转90度,画出旋转后的图形,再以直线MN为对称轴,画出原图形的轴对称图形。
五、按要求完成下列各题.(27分)看图填空。
看图填空。
(1)图形2是图形1绕点________顺时针方向旋转________,又向________平移________格得到的;(2)图形4是图形1绕点________逆时针方向旋转________,又向________平移________格得到的;(3)图形3是图形2绕点________时针方向旋转________,又向________平移________格得到的;(4)图形4是图形3绕点________时针方向旋转________,又向________平移________格得到的。
北师大版八下第三章 图形的平移与旋转单元测试题B卷(含答案)
2020年春北师大版八年级数学下册第三章单元测试卷(B 卷)说明:请将答案或解答过程直接写在各题的空白处.本卷满分100分.考试时间90分钟一、选择题:(每小题3分,共36分)1.(3分)将长度为5cm 的线段向上平移10cm 后,所得线段的长度是( ) A .10cm B .5cm C .0cm D .无法确定2.(3分)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .3.(3分)一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是( )①对应线段平行 ②对应线段相等 ③图形的形状和大小都没有发生变化 ④对应角相等. A .①②③B .②③④C .①②④D .①③④4.(3分)如图,△ABC 和△BDE 是等边三角形,点A 、B 、D 在一条直线上,并且AB =BD .由一个三角形变换到另一个三角形( )A .仅能由平移得到B .仅能由旋转得到C .既能由平移得到,也能由旋转得到D .既不能由平移得到,也不能由旋转得到5.(3分)将点A (3,2)沿x 轴向左平移4个单位长度得到点A ′,点A ′关于y 轴对称的点的坐标是( ) A .(﹣3,2) B .(﹣1,2) C .(1,2) D .(1,﹣2)6.(3分)如图,将Rt △ABC (其中∠B =35°,∠C =90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( ) A .55° B .70° C .125° D .145°7.(3分)如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是( ) A .线段BC 的长度 B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度8.(3分)如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=( )A .30°B .35°C .40°D .50°9.(3分)在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为( ) A .(3,4)B .(﹣4,3)C .(﹣3,4)D .(4,﹣3)10.(3分)如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O 旋转,则正方形ABCD 被纸板覆盖部分的面积为( )A .a 2B .a 2C .a 2D . a 11.(3分)关于这一图案,下列说法正确的是( )A .图案乙是由甲绕BC 的中点旋转180°得到的B .图案乙是由甲绕点C 旋转108°得到的C .图案乙是由甲沿AB 方向平移3个边长的距离得到的D .图案乙是由甲沿直线BC 翻转180°得到的 12.(3分)如图,△ABO 中,AB ⊥OB ,OB =,AB =1,把△ABO 绕点O 旋转150°后得到△A 1B 1O ,则点A 1的坐标为( ) A .(﹣1,)B .(﹣1,)或(﹣2,0)C .(,﹣1)或(0,﹣2) D .(,﹣1)二、填空题(每小题3分,共24分)13.(3分)线段AB 沿和它垂直的方向平移到A ′B ′,则线段AB 和线段A ′B ′的位置关系是 .14.(3分)如图,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B 与∠C 互余,将AB ,CD 分别平移到EF 和EG 的位置,则△EFG 为 三角形.15.(3分)如图,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,则∠BB ′C ′= 度.学校 姓名 年级密 封 线 内 不 要 答 题密 封线16.(3分)如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED 的面积为.17.(3分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.18.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.三、解答题(本部分共4题,合计40分)19.(8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.20.(12分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.21.(8分)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′,点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′,如图,若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是.已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.22.(8分)如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.参考答案一、选择题(本大题共12题,每小题3分,共36分)1-5.BBBCC6-10. CBACB11-12.AB二、填空题(本大题共8小题,每小题3分,共24分)13.平行且相等14.直角15.2016. 15 17.(4,2)18. 20°三、解答题(本大题共4小题,共40分)19、【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.20、【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC =AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM 中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD =∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB =×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD =×60°=30°,又∵BD=4,∴BE =×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF 的长为或.21、【解答】解:点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a ,则a+1=2,解得a=3,设点E表示的数为b ,则b+1=b,解得b=1.5.故答案为:0,3,1.5.22、【解答】解:由点A到A′,可得方程组;由B到B′,可得方程组,解得,设F点的坐标为(x,y),点F′点F 重合得到方程组,解得,即F(1,4).。
八年级数学第3、4章 四边形性质探索单元测试卷正式版
八年级上期数学第三、四章单元测试合卷姓名 得分一、没有把握的题你反复思考过了吗?(每题3分,总共36分)1、下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A 、1个B 、2个C 、3个D 、4个2、右图绕图形中心旋转一定角度后能与自身重合,则旋转的角度可能是A 、︒45B 、︒60C 、︒90D 、︒1203、下列说法正确的是( )A 、平移图形旋转也能得到B 、平移和旋转的共同之处是改变图形的位置C 、旋转使图形形状发生改变D 、图形旋转时一定存在不动点4、在□ABCD 中,如果∠B=︒100,那么∠A 、∠D 的值分别是( )A 、∠A=︒80,∠D=︒100B 、∠A=︒100,∠D=︒80C 、∠A=︒80,∠D=︒80D 、∠A=︒100,∠D=︒1005、菱形的一个内角是︒60,周长24cm ,请问较短的一条对角线长为( )A 、2cmB 、4cmC 、6cmD 、8cm6、平行四边形的两条对角线的长分别为6cm 、10cm ,则它的边长不可能取的值是( )A 、3cmB 、5cmC 、7cmD 、9cm7、在四边形ABCD 中,AC 与BD 相交于点O ,且OA=OC ,OB=OD ,如果再增加一个条件AC=BD ,此四边形是( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形8、如右图,将矩形ABCD 沿BE 折叠,使点A 与点F 重合,若∠CBF=︒30,则∠BEF 等于( )A 、︒30B 、︒45C 、︒60D 、︒759、若菱形周长为52cm ,一条对角线长为10cm ,则面积为( )A 、2402cmB 、1202cmC 、602cmD 、302cm10、一个多边形的内角和与外角和相加等于︒1080,请问它是几边形?( )A 、四边形B 、五边形C 、六边形D 、七边形11、在直角梯形中,AD ∥BC ,∠A=︒90,BC=DC ,∠C=︒40,则∠ABD 的度数为( )A 、︒20B 、︒40C 、︒50D 、︒7012、如右图,在□ABCD 中,BE 平分∠ABC ,且AE=3,DE=1, 请问□ABCD 的周长是( )A 、12B 、13C 、14D 、15A B C D E F AD B C E二、你填的是最简的结果吗?(每空2分,总共26分)13、在□ABCD 中,∠A ︰∠D=1︰2,则∠B= ,∠C= 。
2020-2021学年八年级数学湘教版下册《第3章 图形与坐标》单元测试题(有答案)
2020-2021学年八年级下册数学湘教新版《第3章图形与坐标》单元测试题一.选择题1.在平面直角坐标系中有M,N两点,若以N点为原点建立直角坐标系,则点M的坐标为(3,5),若以M点为原点建立直角坐标系,则点N的坐标是()A.(﹣3,5)B.(3,﹣5)C.(﹣3,﹣5)D.(3,5)2.点M(2,3),N(﹣2,4),则MN应为()A.17B.1C.D.3.已知点A(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,则a=()A.a=0B.a=﹣9C.a=﹣9或a=D.a=4.下列关于A,B两点的说法中,正确的个数是()①如果点A与点B关于y轴对称,则它们的纵坐标相同②如果点A与点B的纵坐标相同,则它们关于y轴对称③如果点A与点B的横坐标相同,则它们关于x轴对称④如果点A与点B关于x轴对称,则它们的横坐标相同A.1个B.2个C.3个D.4个5.如果把点A(﹣1,4)向右平移2个单位长度,再向上平移3个单位长度,则平移后的坐标是()A.(1,7)B.(﹣1,7)C.(1,﹣7)D.(﹣1,﹣7)6.如图,一个动点P在平面直角坐标系中按箭头所示方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是()A.(2012,1)B.(2012,2)C.(2013,1)D.(2013,2)7.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()A.4排3列B.4排5列C.5排4列D.5排5列8.如图,△ABC三个顶点的坐标分别为A(﹣2,5),B(﹣5,1),C(﹣2,1),将△ABC绕点C按顺时针方向旋转90°,得到△DEC,则点D的坐标为()A.(1,2)B.(2,1)C.(1,1)D.(2,2)9.如图,△AOB关于x轴对称图形△A′OB,若△AOB内任意一点P的坐标是(a,b),则△A′OB中的对应点Q的坐标是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)10.已知点P关于x轴对称的点的坐标为(2,﹣1),那么点P关于原点对称的点的坐标是()A.(1,﹣2)B.(2,1)C.(﹣2,﹣1)D.(﹣2,1)二.填空题11.若点A(a,b)在第三象限,则点C(﹣a,b﹣5)在第象限.12.点P(1,2)关于点Q(﹣1,1)的对称点的坐标为.13.已知点P(﹣2,3)和点Q(2,﹣3),则P,Q两个点的位置关系是.14.已知点P(a,5)与Q(2,b)是关于x轴对称,则a=,b=.15.在坐标平面内,已知点M(1,2)和点N(1,﹣4),那么线段MN的长为个单位长度,MN中点的坐标为.16.两点(3,﹣4)、(5,a)间的距离是2,则a的值为.17.点M(﹣3,5)关于直线x=1对称的点M′的坐标为.18.如图所示,在一个规格为4×8的球台上,有两只小球P和Q,设小球P的位置用(1,3)表示,小球Q的位置用(7,2)表示,若击打小球P经过球台的边AB上的点O反弹后,恰好击中小球Q,则点O的位置可以表示为.19.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1;点A1向上平移1个单位,冉向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4;…按这个规律平移得到点A2019,则点A2019的横坐标为.20.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1,△A2A3B2,△A3A4B3,…,△A n A n+1B n均为等边三角形,点A1,A2,A3,…,A n+1在x轴的正半轴上依次排列,点B1,B2,B3,…,B n在直线OD上依次排列,那么B2020的坐标为.三.解答题21.已知点P(m+3,2m﹣1),试分别根据下列条件求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.22.小明和小东在沙滩上玩游戏,他们都从某一点出发,小明先是沿正东方向行走50米,然后沿正北方向走30米到达点A处;小东则是先沿正西方向行走20米,然后沿正南行走40米到达点B出,请问此时小明和小东相距大约多少米?23.在平行四边形ABCD中,AB=3,BC=4,∠A=60°,建立适当的平面直角坐标系,把平行四边形ABCD的各个顶点的坐标写出来.(要求写出一组坐标即可)24.已知点M(4p,4q+p)和点N(5﹣3q,2p﹣2)关于x轴对称,求P和Q的值,若M,N关于y轴对称呢?关于原点对称呢?25.当m为何值时,点P(3m﹣1,m﹣2)到y轴的距离是到x轴距离的3倍?求出此时点P到原点的距离.26.在平面直角坐标系中,等边三角形OAB关于x轴对称的图形是等边三角形OA′B′.若已知点A的坐标为(6,0),求点B′的横坐标.27.已知正方形的边长为8,它在平面直角坐标系中的位置如图所示,被坐标轴分为四个同样的小正方形.(1)直接写出点A,B,C,D四个点的坐标;(2)若将正方形向右平移4个单位长度,写出平移后A点的坐标.参考答案与试题解析一.选择题1.解:以N点为原点建立直角坐标系,则点M的坐标为(3,5),则以M点为原点建立直角坐标系(两直角坐标系x轴,y轴方向一致),N点的坐标是(﹣3,﹣5).故选:C.2.解:MN==.故选C.3.解:∵点A(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,∴5a﹣7=﹣(﹣6a﹣2),解得a=﹣9.故选:B.4.解:正确的是:①如果点A与点B关于y轴对称,则它们的纵坐标相同;④如果点A与点B关于x轴对称,则它们的横坐标相同;故正确的有两个;故选:B.5.解:A(﹣1,4)向右平移2个单位长度得到:(﹣1+2,4),即:(1,4),再向上平移3个单位长度得到:(1,4+3),即:(1,7),故选:A.6.解:∵第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,∴按这样的运动规律,第几次横坐标即为几,纵坐标为:1,0,2,0,1,0,2,0 (4)个一循环,∵=503…1,∴经过第2013次运动后,动点P的坐标是:(2013,1).故选:C.7.解:根据1号同学,2号同学,3号同学的说法,可知小明在第4列,再根据4号同学说:“小明离1号同学和3号同学的距离一样远”可得小明在第5排第4列.故选:C.8.解:∵A(﹣2,5),B(﹣5,1),C(﹣2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选:B.9.解:∵△AOB与△A'OB关于x轴对称,∴点P(a,b)关于x轴的对称点为(a,﹣b),∴点P的对应点Q的坐标是(a,﹣b).故选:D.10.解:根据轴对称的性质,得P点的坐标是(2,1).再根据中心对称的性质,得点P关于原点对称的点的坐标是(﹣2,﹣1).故选:C.二.填空题11.解:∵点A(a,b)在第三象限,∴a<0,b<0,∴﹣a>0,b﹣5<0,∴点C(﹣a,b﹣5)在第四象限.故答案为:四.12.解:设点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(a,b),则=﹣1,=1,解得:a=﹣3,b=0,∴点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(﹣3,0),故答案为:(﹣3,0).13.解:∵P,Q两个点的横纵坐标都互为相反数,∴P,Q两个点关于原点对称,故答案为关于原点对称.14.解:∵点P(a,5)与Q(2,b)是关于x轴对称,∴a=2,b=﹣5,故答案为:2,﹣5.15.解:∵点M(1,2)和点N(1,﹣4)横坐标相等,∴MN∥y轴,MN=2﹣(﹣4)=6,MN中点的坐标为(1,),即(1,﹣1).故答案填:6、(1,﹣1).16.解:根据题意得=2,解得a=﹣4.故答案为﹣4.17.解:∵点M(﹣3,5)与点N关于直线x=1对称,而1×2﹣(﹣3)=5,∴点M(﹣3,5)关于直线x=1对称的点N的坐标是(5,5),故答案为(5,5).18.解:如图所示,O点的坐标为(3,4),故答案为(3,4).19.解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,∴点A2018的横坐标为22019﹣1,故答案为:22019﹣1.20.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,∴OA2=2OA1=2,同理可得,OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°,∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),∴点B2020的坐标为(3×22018,×22018).故答案为(3×22018,×22018).三.解答题21.解:(1)∵点P(m+3,2m﹣1)在y轴上,∴m+3=0,解得m=﹣3,所以,2m﹣1=﹣2﹣1=﹣7,所以,点P的坐标为(0,﹣7);(2)∵点P的纵坐标比横坐标大3,∴(2m﹣1)﹣(m+3)=3,解得m=7,∴7+3=7+3=10,2m﹣1=14﹣1=13,所以,点P的坐标为(10,13);(3)∵点P到x轴的距离为2,∴|2m﹣1|=2,解得m=或m=,当m=时,m+3=,2m﹣1=3﹣1=2,此时,点P(,2)(不合题意,舍去),当m=时,m+3=,2m﹣1=﹣1﹣1=﹣2,此时,点P(,﹣2),∵点P在第四象限,∴点P的坐标为(,﹣2).22.解:选择出发点O为原点,西东方向为横轴,南北方向为纵轴建立坐标系.如图中每个单位长度表示10米,此时A点的坐标为(5,3),B点坐标为(﹣2,﹣4).过点A作y轴平行线,过点B作x轴平行线,则两平行线交于点C.在Rt△ABC中,AB=≈9.898.9.898×10=98.98(米).答:时小明和小东相距大约98.98米.23.解:如图所示:以A点为原点,∵在平行四边形ABCD中,AB=3,BC=4,∠A=60°,∴AD=BC=4,CD=AB=3,C点纵坐标为:4×sin60°=2,∴A点坐标为:(0,0),B点坐标为:(3,0),C点坐标为:(5,2),D点坐标为:(2,2).24.解:若关于x轴对称,则得到方程组,解得;若关于y轴对称,则得到方程组,解得;若关于原点对称,则得到方程组,解得.25.解:根据题意得到|3m﹣1|=3|m﹣2|,两边平方,解得m=因而P的坐标是(,﹣),则OP=.26.解:如图所示,由等边三角形,得B点的横坐标为3,BC==3,即B点的坐标为(3,3).由等边三角形OAB关于x轴对称的图形是等边三角形OA′B′,得B′点的坐标为(3,﹣3).27.解:(1)因为正方形ABCD的各顶点A,B,C,D到两坐标轴的距离都相等,且A,B,C,D分别在第二、第三、第四、第一象限,正方形的边长为8,所以A,B,C,D 的坐标分别是A(﹣4,4),B(﹣4,﹣4),C(4,﹣4),D(4,4).(2)平移的规律是:纵坐标不变,横坐标加4,所以平移后A点的坐标是(0,4).。
第三章 函数的概念与性质(基础提升练)【单元测试】高一数学必修第一册(解析版)
第三章函数的概念与性质(基础提升测试卷)本试卷共4页,22小题,满分150分,考试用时120分钟。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·湖南·长郡中学高二期中)函数11y x =++的定义域为()A .[)4,1--B .[)()4,11,---+∞C .()1,-+∞D .[)4,-+∞【答案】B 【解析】【分析】偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.【详解】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞.故选:B .2.(2022·甘肃庆阳·高一期末)若函数()y f x =在R 上单调递增,且()()23f m f m ->-,则实数m 的取值范围是()A .(),1-∞-B .()1,-+∞C .()1,+∞D .(),1-∞【答案】C 【解析】【分析】由单调性可直接得到23m m ->-,解不等式即可求得结果.【详解】()f x 在R 上单调递增,()()23f m f m ->-,23m m ∴->-,解得:1m >,∴实数m 的取值范围为()1,+∞.故选:C.3.(2015·山东·高考真题)已知函数()f x 是奇函数,当0x >时,()22f x x =+,那么()1f -的值是()A .3-B .1-C .1D .3【答案】A 【解析】【分析】根据奇函数的性质即可求解.【详解】函数()f x 是奇函数,当0x >时,()22f x x =+,∴()()()211123f f -=-=-+=-.故选:A.4.3.(2022·陕西西安·高二期末(文))已知函数()()()F x f x g x =+,其中()f x 是x 的正比例函数,()g x 是x 的反比例函数,且119,(1)93F F ⎛⎫== ⎪⎝⎭,则(2)F =()A .3B .8C .9D .16【答案】C 【解析】【分析】根据题意设(),()m f x kx g x x ==,则()()()m F x f x g x kx x =+=+,然后由119,(1)93F F ⎛⎫== ⎪⎝⎭列方程组求4.(2022·新疆·沙湾县第一中学高一期中)已知偶函数f (x )与奇函数g (x )的定义域都是[-2,2],它们在[0,2]上的图象如图所示,则关于x 的不等式f (x )·g (x )<0成立的x 的取值范围为()A .(-2,-1)∪(0,1)B .(-1,0)∪(0,1)C .(-1,0)∪(1,2)D .(-2,-1)∪(1,2)【答案】C 【解析】【分析】根据图象,函数()()⋅f x g x 的奇偶性以及符号法则即可解出.【详解】如图所示:当01x <<时,()0f x >,()0g x >,()()0f x g x ⋅>;当12x <<时,()0f x <,()0g x >,()()0f x g x ⋅<,故当0x >时,其解集为()1,2,∵()y f x =是偶函数,()y g x =是奇函数,∴()()⋅f x g x 是奇函数,由奇函数的对称性可得:当0x <时,其解集为()1,0-,综上:不等式()()0f x g x ⋅<的解集是()()1,01,2-.故选:C.5.(2022·广西北海·高二期末(文))若函数2112f x x x x ⎛⎫+=+ ⎪⎝⎭,且()4f m =,则实数m 的值为()AB C .D .3【答案】B 【解析】【分析】令1x t x+=,配凑可得()22f t t =-,再根据()4f m =求解即可【详解】令1x t x +=(2t ≥或2t ≤-),22221122x x t x x ⎛⎫+=+-=- ⎪⎝⎭,()22f t t ∴=-,()224f m m =-=,m ∴=故选;B6.(2022.全国卷)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A 【解析】【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .7.(2021·全国·高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则()A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B 【解析】【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.8.(2022·河南·开封市东信学校模拟预测(文))已知()y f x =是R 上的奇函数,当0x >时,312()21xf x x x -=-++,则满足(23)0f m -≤的m 的取值范围是()A .[1,2]-B .[1,2]C .3(,1],22⎡⎤-∞-⎢⎥⎣⎦D .31,[2,)2⎡⎤+∞⎢⎥⎣⎦【答案】D 【解析】【分析】根据函数在公共的定义域函数单调性的性质及奇函数的性质,再利用函数单调性的定义即可求解.【详解】因为函数3123,1211x y x y x x -=-==-+++在(0,)+∞上均为减函数,∴312()21x f x x x -=++在(0,)+∞上为减函数.又3121(1)10211f -=-⋅+=+,且()y f x =是R 上的奇函数,∴(0)0,()f f x =在(,0)-∞上为减函数.又(1)0,(23)0f f m -=-≤,得1230m -≤-≤或231m -≥,解得312m ≤≤或2m ≥.所以实数m 的取值范围是31,[2,)2⎡⎤+∞⎢⎣⎦.故选:D.二、选择题:本题共4小题,每小题5分,共20分。
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。
湘教版九年级上册数学第三章 图形的相似 单元测试题(含答案)
湘教版九年级数学上册第三章图形的相似单元检测试卷一、单选题(共10题;共30分)1.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A. 18米B. 16米C. 20米D. 15米2.△ABC∽△A,B,C,,相似比为3:4,那么面积的比是_____。
A. 3:4B. 9:16C. 6:8D. 4:53.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm24.在上科学课时,老师让同学利用手中的放大镜对蜗牛进行观察,同学们在放大镜中看到蜗牛与实际的蜗牛属于什么变换()。
A. 相似变换B. 平移变换C. 旋转变换D. 轴对称变换5.如图,在△ABC中,DE∥BC ,,DE=4,则BC的长是()A. 8B. 10C. 11D. 126.若相似△ABC与△DEF的相似比为1 :3,则△ABC与△DEF的面积比( )A. 1 :3B. 1 :9C. 3 :1D. 1 :7.如图,在ΔABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN的长为()A. B. C. D.8.如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A. 3B. 4C. 5D. 69.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A. 1:1B. 1:2C. 1:3D. 1:410.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1:2B. 2:1C. 1:4D. 4:1二、填空题(共10题;共30分)11.已知8:x =6:9,则x的值等于________。
第三章 中心对称图形(一)单元测试(含答案)
第三章 中心对称图形(一)一、选择题:1.下列图形中,是中心对称图形而不是轴对称图形的是 ( ) A .平行四边形 B .矩形 C .菱形 D .正方形 2.正方形具有而菱形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线互相平分 C .对角线相等 D .对角线平分一组对角3.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是 ( ) A .8和14 B .10和14 C .18和20 D .10和34 4.下面说法正确的是 ( )A .一个三角形中,至多只能有一个锐角B .一个四边形中,至少有一个锐角C .一个四边形中,四个内角可能全是锐角D .一个四边形中,不能全是钝角 5.一个凸n 边形的边数与对角线条数的和小于20,且能被5整除,则n 为 ( ) A .4 B .5 C .6 D .5或6 6.如图:在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F 。
若AE=4,AF=6,且□ABCD 的周长为40,则ABCD 的面积为 ( ) A .24 B .36C .40D .487.顺次连接四边形四边中点所组成的四边形是菱形, 则原四边形为 ( ) A .平行四边形 B .菱形 C .对角线相等的四边形 D .直角梯形8.平行四边形ABCD 的周长为2a ,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大b ,则AB 的长为 ( ) A .2ba - B .2ba + C .22ba + D .22ba + 9.菱形的周长为20cm ,两邻角的比为1:2,则较长的对角线长为 ( )A .4.5 cmB .4 cmC .53 cmD .43 cm10.在四边形ABCD 中,从①AB ∥CD ;②AB=CD ;③BC ∥AD ;④BC=AD 中任选两个使四边形ABCD 为平行四边形的选法有 ( ) A .3 B .4 C .5 D .6 二、填空题:11.一个正方形要绕它的中心至少旋转_______度,才能与原来的图形重合.A B C D EF12.从数学对称的角度看:下面的几组大写英文字母:①ANEG;②KBXM;③XIHO;④HWDZ不同于另外三组的一组是__________,这一组的特点是_______________.13.若一个正方形的周长为x cm,面积为x cm2,则它的对角线长为_________.14.一个菱形的两条对角线长分别为6cm、8cm,则这个菱形的面积S为___________.15.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为__________.16.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.17.如图:点E、F分别是菱形ABCD的边BC、CD上的点且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=___________.18.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则长边的长为___________.三、解答题:19.作一直线,将下图分成面积相等的两部分(保留作图痕迹).20.如图:□ABCD中,MN∥AC,试说明MQ=NP.D C21.矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E.若∠CAE=15°,求∠BOE的度数.Array 22.如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.求:①∠ABC的度数;②对角线AC的长;③菱形ABCD的面积.23.矩形ABCD中AB=6cm,BC=8cm,AE平分∠BAC交BC于E,CF平分∠ACD交AD于F.①说明四边形AECF为平行四边形;②求四边形AECF的面积.24.点D是等腰Rt△ABC的直角边BC上一点,AD的中垂线EF分别交AC、AD、AB 于E、O、F,且BC=2.①当CD=2时,求AE;②当CD=2(2-1)时,试证明四边形AEDF是菱形.B D参考答案1.A 2.C 3.C 4.D 5.D 6.D 7.C 8.B 9.C 10.B11.0°;12.③,各个字母成中心对称;13.14.24cm2;15.22㎝或20cm16.6、3;17.45°18..19.提示:将此图形分成两个矩形,找出两矩形的对称中心,连结两中心的直线即是所作线;20.提示:先证AMQC为平行四边形,得AC=MQ,再证APNC为平行四边形,得AC=NP;21.∠BOE=75°;22.①∠ABC=120°②BD2223.①(略)②平行四边形AECF的面积等于30;24.①AE=32②提示:过D作DG⊥AB于G,通过计算得DG=CD,则AD平分∠CAB,从而得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章中心对称图形(一) 单元测试卷
满分:100分时间:60分钟
一、选择题(每小题3分,共24分)
1.如图,△ABC与△BDE都是等边三角形,AB<BD,若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为( )
A.AE=CD B.AE>CD C.AE<CD D.无法确定
2. 如图,关于该图形对称性的表述,正确的是( )
A.轴对称图形B.中心对称图形
C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形又不是中心对称图形,
3.菱形具有而矩形不一定具有的性质是( )
A.内角和等于3600B.对角相等C.对边平行且相等D.对角线互相垂直
4.如图,在梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形的中位线EF上的一点P.若EF=3,则梯形ABCD的周长为( )
A.9 B.10.5 C.12 D.15
5.在线段、角、两条相交直线、等边三角形、平行四边形和菱形这6种图形中,既是轴对称图形又是中心对称图形的有( )
A.5种B.4种C.3种D.2种
6.如图,在□ABCD 中,EF经过对角线的交点O,交AB于点E,交CD于点F.若AB=5,AD=4,OF=1.8,那么四边形BCFE的周长为( )
A.8.3 B.9.6 C.12.6 D.13.6
7.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有( )
A.1个B.2个C.3个D.4个
8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则AM的最小值为( )
A.1 B.1.2 C.1.3 D.1.5
二、填空题(每小题4分,共24分)
9.9点30分,时钟的时针和分针的夹角是_________.
10.一个正三角形至少绕其中心旋转_________,就能与其自身重合;一个正六边形至少绕其中心旋转_________,就能与其自身重合.
11.如图,在矩形ABCD中,对角线AC、BD相交于点O,若DF⊥AC,∠ADF:∠FDC= 3:2,则∠BDF=_________.
12.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,若菱形的周长为80,则OE=_________.
13.如图,在菱形ABCD中,AD=8,∠ABC=1200,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值为_________.
14.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过点A的直线折叠,使点B落在AD边上的点F 处,折痕为AE(如图②);再沿过点D的直线折叠,使得点C落在DA边上的点N处,点E落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,点M正好在∠NDG的平分线上,那么矩形ABCD 中长与宽的比值为_________.
三、解答题(共52分)
15.(8分)如图,在 ABCD中,DE是∠ADC的平分线,交BC于点E.
(1)试说明CD=CE;
(2)若BE=CE,∠B=800,求∠DAE的度数.
16.(8分)如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)试说明△BEC≌△DEC;
(2)延长BE,交AD 于F,∠BED=1200时,求∠EFD的度数.
17.(10分)如图①,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=900,AB与CE交于F,ED与AB、BC分别交于M、H.
(1)试说明CF=CH;
(2)如图②,△ABC不动,△EDC绕点C旋转到∠BCE=450时,试判断四边形ACDM是什么四边形,请说明你的结论.
18.(12分)观察探究,完成说明和填空.
如图①,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接点E、
F、G、H,得到的四边形.EFGH叫做中点四边形.
(1)试说明四边形EFGH是平行四边形;
(2)如图②,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:
当四边形ABCD变成平行四边形时,它的中点四边形是_________;
当四边形ABCD变成矩形时,它的中点四边形是_________;
当四边形ABCD变成菱形时,它的中点四边形是_________;
当四边形ABCD变成正方形时,它的中点四边形是_________.
(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?
19.(14分)如图①,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)①试说明CE=CF,∠BCE=∠DCF;
②如图①,若点G在AD上,且∠GCE=450,则GE=GF成立吗?为什么?
(2)运用(1)中积累的经验和知识,完成下题:
如图②,在梯形ABCG中,AG∥BC,BC>AG,∠B=900,AB=BC=6,E是AB上一点,且∠GCE=450,BE=2,求GE的长.
参考答案
—、1.A 2.B 3.D 4.C 5.C 6.C 7.A 8.B
二、9.105010.120060011.18012.10 1314
三、15.(1)在 ABCD中,由AD∥BC得,∠ADE=∠DEC.又∠ADE=∠CDE,所以∠DEC=∠CDE,所以CD=CE
(2)由四边形ABCD是平行四边形,则AB=CD.又因为CD=CE,BE=CE,所以AB=BE所以∠BAE=∠BEA.因为∠B=800,所以∠BAE=500,所以∠DAE=1800-500-800=500
16.(1)因为四边形ABCD是正方形,所以BC=DC.又因为AC为对角线,E为AC上一点,所以∠BCE=∠DCE=450.因为EC=EC,所△BEC≌△DEC(SAS)
(2)因为△BEC≌△DEC,∠BED=1200,所以∠BEC=∠DEC=600.因为∠DAC=450,所以∠ADE=150,所以∠EFD=∠BED-∠ADE=1200-150=1050
17.(1)因为∠ACB=∠ECD=900,所以∠1+∠ECB=∠2+∠ECB,所以∠1=∠2.又因为AC=CE=CB=CD,所以∠A=∠D=450,所以△ACF≌△DCH,所以CF=CH
(2)四边形ACDM是菱形因为∠ACB=∠ECD=900,∠BCE=450,所以∠l=450,∠2=450.又因为∠E=∠B=450,所以∠1=∠E,∠2=∠B,所以AC∥MD,CD∥AM.所以四边形ACDM是平行四边形,又因为AC=CD,所以四边形ACDM是菱形
18.(1)连接BD.因为E、H分别是AB、AD的中点,所以EH是△ABD的中位线,所以EH=1
2
BD,EH
∥BD.同理,FG=1
2
BD,FG∥BD,所以EH=FG,EH∥FG.所以四边形EFGH是平行四边形
(2)平行四边形菱形矩形正方形
(3)中点四边形的形状由原四边形中两条对角线之间的关系决定
19.(1)提示:①说明△BCE≌△DCF ②GE=G成立,说明△ECG≌△FCG即可.
(2)过点C作CD⊥AG,交AG的延长线于D,则得正方形ABCD.延长AD到点F,使DF=BE,连接CF.设GE=x,由(1)得GF=GE=x,则DG=x-2,所以AG=6-(x-2)=8-x.在Rt△EAG中,42+(8-x)2=x2,解。