初一下册数学练习题

合集下载

七年级数学下册《一元一次不等式》练习题附答案(苏科版)

七年级数学下册《一元一次不等式》练习题附答案(苏科版)

七年级数学下册《一元一次不等式》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.数学表达式:①﹣5<7;②3y ﹣6>0;③a=6;④x ﹣2x ;⑤a ≠2;⑥7y ﹣6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个2.语句“x 的18与x 的和不超过5”可以表示为( )A.18x+x ≤5B.18x+x ≥5 C.≤5 D.18x+x=53.如果a >b ,则下列不等式中不正确的是( )A.a+2>b+2B.a ﹣2>b ﹣2C.﹣2a >﹣2bD.0.5a>0.5b4.下列各数中,不是不等式2﹣3x >5的解的是( )A.﹣2B.﹣3C.﹣1D.1.355.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A.⎩⎨⎧x -1<3x +1<3B.⎩⎨⎧x -1<3x +1>3C.⎩⎨⎧x -1>3x +1>3D.⎩⎨⎧x -1>3x +1<3 6.若不等式组无解,则m 的取值范围是( )A.m >2B.m <2C.m ≥2D.m ≤27.不等式23>7+5x 的正整数解的个数是( )A.1个B.无数个C.3个D.4个8.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h9.某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.60B.70C.80D.9010.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有( )A.2种B.3种C.4种D.5种二、填空题11.如果a >0,b >0,那么ab 0. 12.写出一个解集为x >1的一元一次不等式:_________.13.不等式3x+1>7的解集为_______.14.不等式14x+5>2-x 的负整数解是 .15.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选 对 道题,其得分才能不少于80分.16.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共 张.三、解答题17.解不等式:2(2x -3)<5(x -1).18.解不等式:13(2x-1)-12(3x+4)≤1.19.解不等式组:20.解不等式组:.21.不等式13(x -m)>3-m 的解为x >1,求m 的值.22.定义新运算:对于任意实数a ,b ,都有a ¤b=a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2¤5=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)¤3的值;(2)若3¤x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.23.解不等式x 3<1-x -36,并求出它的非负整数解.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(2)当x>20时①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?25.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的3 2倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?参考答案1.C2.A3.C4.C5.B6.D7.C8.B9.C10.A.11.答案为:>. 12.答案为:x ﹣1>013.答案为:x >2.14.答案为:-1,-2.15.答案为:16.16.答案为:3117.解:x >-1;18.解:x ≥﹣4.19.解:解①得x <3解②得x >﹣1所以不等式组的解集为﹣1<x <3.20.解:﹣1<x ≤2.21.解:∵13(x -m)>3-m∴x -m >9-3m解得x>9-2m.又∵不等式13(x-m)>3-m的解为x>1∴9-2m=1解得m=4.22.解:(1)11.(2)x>-1数轴表示如图所示:23.解:去分母,得2x<6-(x-3).去括号,得2x<6-x+3移项,得x+2x<6+3.合并同类项,得3x<9.两边都除以3,得x<3.∴非负整数解为0,1,2.24.解:(1)方案一;(2)(40x+3200);(36x+3600).若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.25.解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(32m+5)件则240m+180(32m+5)≤21300,解得:m ≤40 经检验,不等式的解符合题意 ∴32m+5≤32×40+5=65答:最多能购进65件B 品牌运动服.。

北师大数学七年级下册练习题

北师大数学七年级下册练习题

七年级下练习题题班级 姓名一、选择题(每小题3分,共30分)1.下列计算正确是( )A .a 23nB .a 2n •3nC .(a 4)26D .()5÷3=()22.已知,3,5=-=+xy y x 则=+22y x ( )A. 19B. a a 62+ C . 25 D.19-3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A .3.5×104米B .3.5×10﹣4米C .3.5×10﹣5米D .3.5×10﹣9米4.(x ﹣1)(23)的计算结果是( )A .2x 2﹣3B .2x 2﹣x ﹣3C .2x 2﹣3D .x 2﹣2x ﹣35.如图,点E 在延长线上,下列条件中不能判定∥的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠∠180°6.下列乘法中,不能运用平方差公式进行运算的是( )A .()(x ﹣a )B .()(m ﹣b )C .(﹣x ﹣b )(x ﹣b )D .()(﹣a ﹣b ) 7.等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为( )A .7B .7或5C .5D .38.若(x ﹣a )(x ﹣5)的展开式中不含有x 的一次项,则a 的值为( ) A . 0 B . 5 C . ﹣5 D . 5或﹣59.下列说法中正确的个数有( )(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线及已知直线平行.A .2个B .3个C .4个D .5个10.如图,△中,∠α°,延长到D ,∠及∠的平分线相交于点A 1,∠A 1及∠A 1的平分线相交于点A 2,依此类推,∠﹣1及∠﹣1的平分线相交于点,则∠的度数为( ) A .B .C .D .二、填空题(每小题4分,共20分)11.计算:(﹣23z 2)2= .12.如图,直线、、相交于一点,∠1=50°,∠2=64°,则∠ 度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14.如果多项式x 2+82是一个完全平方式,则k 的值是 .15.46(310)(510)⨯⨯⨯= ;5x 3·x 4=三、计算及求值(共50分) 题号1 2 3 4 5 6 7 8 9 10 答案16.计算及求值(每小题5分,共20分)(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12;(2)(3x﹣2)2+(﹣3)(﹣x﹣3);(3)(9x4y3﹣6x232)÷(﹣3);(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.四、解答题(共30分)17、用简便方法计算(每小题5分,共10分)(1)9992(2)2016×2018-2017218.(6分)已知:a﹣4,﹣1,求:()2和a2﹣62的值.19.(本题满分7分)已知:如图所示,∠∠,和分别平分∠和∠,∠∠.求证:∥.证明:∵和分别平分∠和∠(已知)∴∠∠,∠∠().又∵∠∠(已知),∴∠=∠(等量代换).又∵∠∠(已知),∴∠=∠(等量代换),∴∥.20.(本题满分7分)如图,已知∥,∠B=40°,是∠的平分线,⊥,求∠的度数.B卷(50分)五、填空题(4分,共20分)21.已知:32,95,33m﹣21= .22.若(x﹣2)(x2)的积中不含x的二次项和一次项,则..23.若a2﹣31=0,则= .24.已知等腰△中一腰上的高及另一腰的夹角为30°,则△的底角度数为度.25.已知△的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为.六、解答题(每小题10分,共30分)26.(1)已知△三边长是a、b、c,化简代数式:﹣﹣﹣﹣﹣c﹣﹣a﹣;(2)已知x2+3x﹣1=0,求:x3+5x2+52015的值.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+48的最小值.解:y2+482+44+4=(2)2+4∵(2)2≥0∴(2)2+4≥4∴y2+48的最小值是4.(1)求代数式m24的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设(m),请问:当x取何值时,花园的面积最大?最大面积是多少?28.如图(1),在△中,∠90°,⊥,垂足为D.平分∠,交于点E,交于点F.(1)求证:;(2)若,,△、△、△的面积分别为S△、S△、S△,且S△24,则S△﹣S△;(3)将图(1)中的△沿向右平移到△A′D′E′的位置,使点E′落在边上,其它条件不变,如图(2)所示,试猜想:′及有怎样的数量关系?并证明你的结论.2015-2016学年四川省成都七年级(下)期中数学试卷参考答案及试题解析一、选择题(每小题3分,共30分)1.下列计算正确是()A.a23n B.a2n•3n C.(a4)26 D.()5÷3=()2【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方及积的乘方.【分析】根据整式的除法,合并同类项的方法,以及同底数幂的乘法和幂的乘方及积的乘方的运算方法逐一判断即可.【解答】解:∵a2≠a3n,∴选项A不正确;∵a2n•3n,∴选项B正确;∵(a4)28,∴选项C不正确;∵()5÷34y2,∴选项D不正确.故选:B.2.下列各组长度的三条线段能组成三角形的是()A.1,2,3 B.1,1,2 C.1,2,2 D.1,3,5【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:根据三角形任意两边的和大于第三边,A、1+2=3,不能组成三角形,故错误,B、1+1=2,不能组成三角形,故错误,C、1+2=3>2,2﹣2=0<1,能够组成三角形,故正确,D、1+3=4<5,5﹣3=2>1,不能组成三角形,故错误,故选C.3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×104米B.3.5×10﹣4米C.3.5×10﹣5米D.3.5×10﹣9米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,及较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:35000纳米=35000×10﹣9米=3.5×10﹣5米.故选:C.4.(x﹣1)(23)的计算结果是()A.2x2﹣3 B.2x2﹣x﹣3 C.2x2﹣3 D.x2﹣2x﹣3【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为()(),计算即可.【解答】解:(x﹣1)(23),=2x2﹣23x﹣3,=2x2﹣3.故选:A.5.如图,点E在延长线上,下列条件中不能判定∥的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠∠180°【考点】平行线的判定.【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴∥(内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴∥(内错角相等,两直线平行),所以正确;选项D中,∵∠∠180°,∴∥(同旁内角互补,两直线平行),所以正确;而选项A中,∠1及∠2是直线、被所截形成的内错角,因为∠1=∠2,所以应是∥,故A错误.故选A.6.下列乘法中,不能运用平方差公式进行运算的是()A.()(x﹣a)B.()(m﹣b)C.(﹣x﹣b)(x﹣b)D.()(﹣a﹣b)【考点】平方差公式.【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.【解答】解:A、B、C、符合平方差公式的特点,故能运用平方差公式进行运算;D,两项都互为相反数,故不能运用平方差公式进行运算.故选D.7.等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为()A.7 B.7或5 C.5 D.3【考点】等腰三角形的性质;三角形三边关系.【分析】分3长的边是腰和底边两种情况,分别利用三角形的周长,等腰三角形的性质和三角形的三边关系进行讨论即可求解.【解答】解:当长是3的边是底边时,三边为3,5,5,等腰三角形成立;当长是3的边是腰时,底边长是13﹣3﹣3=7,而3+3<7,不满足三角形的三边关系.故底边长是3.故选D.8.如图,下列条件不能证明△≌△的是()A.,B.∠∠D,∠∠C.,∠∠D D.,【考点】全等三角形的判定.【分析】利用全等三角形的判定方法:、、、、分别进行分析即可.【解答】解:A、,再加公共边可利用判定△≌△,故此选项不合题意;B、∠∠D,∠∠再加公共边可利用判定△≌△,故此选项不合题意;C、,∠∠D再加对顶角∠∠可利用判定△≌△,可得,,进而可得,再加公共边可利用判定△≌△,故此选项不合题意;D、,不能判定△≌△,故此选项不合题意;故选:D.9.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线及已知直线平行.A.2个B.3个C.4个D.5个【考点】平行线的性质;余角和补角;对顶角、邻补角.【分析】(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直线的距离的定义解答;(5)根据平行公理解答.【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选A.10.如图,△中,∠α°,延长到D,∠及∠的平分线相交于点A1,∠A1及∠A1的平分线相交于点A2,依此类推,∠﹣1及∠﹣1的平分线相交于点,则∠的度数为()A.B.C.D.【考点】三角形内角和定理;三角形的外角性质.【分析】由∠A1∠A1+∠A1,∠∠∠A,而A1B、A1C分别平分∠和∠,得到∠2∠A1,∠2∠A1,于是有∠2∠A1,同理可得∠A1=2∠A2,即∠22∠A2,因此找出规律.【解答】解:∵A1B、A1C分别平分∠和∠,∴∠2∠A1,∠2∠A1,而∠A1∠A1+∠A1,∠∠∠A,∴∠2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠22∠A2=α°,∴∠A2=α°,∴∠2n∠,∴∠α°•()()°.故选C.二、填空题(每小题3分,共15分)11.计算:(﹣23z2)2= 4x2y6z4.【考点】幂的乘方及积的乘方.【分析】根据积的乘方,即可解答.【解答】解:(﹣23z2)2=4x2y6z4,故答案为:4x2y6z4.12.如图,直线、、相交于一点,∠1=50°,∠2=64°,则∠74 度.【考点】对顶角、邻补角.【分析】根据平角意义求得∠,再根据对顶角求得结论.【解答】解:∵∠1=50°,∠2=64°,∴∠180°﹣∠1﹣∠2=74°∴∠∠74°,故答案为:74.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= 90°.【考点】平行线的性质.【分析】过点B作∥,根据矩形的性质可得∥∥,再根据两直线平行,内错角相等可得∠1=∠3,∠2=∠4,然后求出∠1+∠2=∠,从而得证.【解答】证明:如图,过点B作∥,∵四边形是矩形纸片,∴∥,∴∥∥,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠90°,即∠1+∠2=90°.故答案为:90°.14.如果多项式x2+8是一个完全平方式,则k的值是16 .【考点】完全平方式.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵82×4•x,∴42=16.15.如图,△中,、分别平分∠和∠,过点F作∥交于点D,交于点E,那么下列结论:①△和△都是等腰三角形;②∠∠;③△的周长等于及的和;④.其中正确的是①③.(填序号,错选、漏选不得分)【考点】等腰三角形的判定;平行线的性质.【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:①∵∥,∴∠∠,∠∠,∵是∠的平分线,是∠的平分线,∴∠∠,∠∠,∵∠∠,∠∠,∴△,△都是等腰三角形.∴①正确;②∵△不是等腰三角形,∴②∠∠,是错误的;③∵△,△都是等腰三角形.∴,,即有,∴△的周长.∴③正确,共2个正确的;④∵△不是等腰三角形,∴∠≠∠,∴∠≠∠,∴是错误的;故答案为:①③.三、计算及求值(每小题24分,共24分)16.计算及求值(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12;(2)(3x﹣2)2+(﹣3)(﹣x﹣3);(3)(9x4y3﹣6x232)÷(﹣3);(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)=(﹣4)2=16,对于()11×(﹣)12;先将(﹣)12化为,再拆项变成,利用积的乘方的逆运算进行计算;(2)利用完全平方差公式和平方差公式计算,注意(﹣3)(﹣x﹣3)=(﹣3)(﹣3﹣x)=9﹣x2;(3)多项式除以单项式,把多项式的每一项都及单项式相除,最后相加即可;(4)先化简,按运算顺序,再代入求值.【解答】解:(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12,=16﹣1+(×)11×,,=16.5;(2)(3x﹣2)2+(﹣3)(﹣x﹣3),=9x2﹣124+9﹣x2,=8x2﹣1213;(3)(9x4y3﹣6x232)÷(﹣3),=9x4y3÷(﹣3)﹣6x2y÷(﹣3)+32÷(﹣3),=﹣3x3y2+2x﹣y;(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.原式=[4x2+42﹣y2﹣4﹣8]÷(﹣2x),=(4x2﹣8)÷(﹣2x),=﹣24y.当2,﹣1时,原式=﹣2×2+4×(﹣1)=﹣4﹣4=﹣8.四、解答题(共31分)17.解关于x的方程:(2)2﹣(x﹣2)(2)=6.【考点】平方差公式;完全平方公式;解一元一次方程.【分析】先转化为一般式方程,然后解关于x的一元一次方程.【解答】解:(2)2﹣(x﹣2)(2)=6,x2+44﹣x2+4=6,46﹣8,﹣.18.已知:a﹣4,﹣1,求:()2和a2﹣62的值.【考点】完全平方公式.【分析】依据完全平方公式对代数式进行变形,然后整体代入进行求解即可.【解答】解:()2=(a﹣b)2+442+4×(﹣1)=16﹣4=12.a2﹣62=(a﹣b)2﹣416+4=20.19.如图,已知点A、F、E、C在同一直线上,∥,∠∠,.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:.【考点】全等三角形的判定及性质.【分析】(1)本题有三对三角形全等,分别是△≌△,△≌△,△≌△(2)先根据利用等式的性质得:,由∥得内错角相等,则△≌△,得出结论.【解答】解:(1)△≌△,△≌△,(2)∵,∴,即,∵∥,∴∠∠,∵∠∠,∴△≌△(),∴.20.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若∥,点P在、外部,则有∠∠,又因∠是△的外角,故∠∠∠D.得∠∠B﹣∠D.将点P移到、内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线绕点B逆时针方向旋转一定角度交直线于点Q,如图3,则∠、∠B、∠D、∠之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠∠∠∠∠E的度数.【考点】平行线的性质;三角形内角和定理;三角形的外角性质.【分析】(1)延长交于点E,根据∥得出∠∠,再由三角形外角的性质即可得出结论;(2)连接并延长,由三角形外角的性质得出∠∠∠,∠∠∠,由此可得出结论;(3)由(2)的结论得:∠∠∠E.∠∠∠D.再根据∠∠∠180°即可得出结论.【解答】解:(1)不成立,结论是∠∠∠D.延长交于点E,∵∥,∴∠∠,又∵∠∠∠D,∴∠∠∠D;(2)结论:∠∠∠∠D.连接并延长,∵∠是△的外角,∠是△的外角,∴∠∠∠,∠∠∠,∴∠∠∠∠∠∠,即∠∠∠∠D;(3)由(2)的结论得:∠∠∠E.∠∠∠D.又∵∠∠∠180°∴∠∠∠∠∠180°.(或由(2)的结论得:∠∠∠∠E且∠∠,∴∠∠∠∠∠180°.五、填空题(4分,共20分)21.已知:32,95,33m﹣21= .【考点】同底数幂的除法;同底数幂的乘法;幂的乘方及积的乘方.【分析】逆运用同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加以及幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:33m﹣21=33m÷32n×31,=(3m)3÷(32)n×3,=23÷9n×3,=8÷9×3,=.故答案为:.22.若(x﹣2)(x2)的积中不含x的二次项和一次项,则 2 . 4 .【考点】多项式乘多项式.【分析】本题需先根据已知条件求出(x﹣2)及(x2)的积,再根据积中不出现一次项和二次项这个条件,即可求出a、b的值.【解答】解:(x﹣2)(x2)32﹣2x2﹣2﹣2b∵积中不含x的二次项和一次项,∴a﹣2=0,b﹣20,解得2,4.故答案为:2,4.23.若a2﹣31=0,则= 7 .【考点】完全平方公式.【分析】将配方为完全平方式,再通分,然后将a2﹣31=0变形为a2+1=﹣3a,再代入完全平方式求值.【解答】解:∵=(a22﹣2)=()2﹣2=()2﹣2①;又∵a2﹣31=0,于是a2+1=3a②,将②代入①得,原式=()2﹣2=9﹣2=7.故答案为7.24.已知等腰△中一腰上的高及另一腰的夹角为30°,则△的底角度数为30或60 度.【考点】等腰三角形的性质.【分析】等腰三角形一腰上的高及另一腰的夹角为30°,但没有明确此等腰三角形是锐角三角形还是钝角三角形,因此,有两种情况,需分类讨论.【解答】解:当等腰三角形为锐角三角形时,如图1,由已知可知,∠30°,又∵⊥,∴∠90°,∴∠60°,∴∠∠60°.当等腰三角形为钝角三角形时,如图2,由已知可知,∠30°,又∵⊥,∴∠60°,∴∠∠30°.故答案为:30或60.25.已知△的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为4921 .【考点】三角形的面积.【分析】先根据根据等底的三角形高的比等于面积比求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△及△A11底相等(1B),高为1:2(1=2),故面积比为1:2,∵△面积为1,∴S△A1B12.同理可得,S△C1B12,S△12,∴S△A1B1C1△C1B1△1△A1B1△2+2+2+1=7;如图,连接A2C1,根据A2B1=2A1B1,得到:A1B1:A2A1=1:3,因而若过点B1,A2作△A1B1C1及△A1A2C1的A1C1边上的高,则高线的比是1:3,因而面积的比是1:3,则△A2B1C1的面积是△A1B1C1的面积的2倍,则△A2B1C1的面积是14,同理可以得到△A2B2C1的面积是△A2B1C1面积的2倍,是28,则△A2B2B1的面积是42,同理△B2C2C1和△A2C2A1的面积都是42,△A2B2C2的面积是7×19=133,同理△A3B3C3的面积是7×19×37=4921,故答案为:4921.六、解答题(每小题10分,共30分)26.(1)已知△三边长是a、b、c,化简代数式:﹣﹣﹣﹣﹣c﹣﹣a﹣;(2)已知x2+3x﹣1=0,求:x3+5x2+52015的值.【考点】因式分解的应用;整式的加减;三角形三边关系.【分析】(1)根据三角形的三边关系即三角形的两边之和大于第三边,两边之差小于第三边,去掉绝对值,再根据整式加减的法则即可得出答案.(2)先据x2+3x﹣1=0,得出x2+31,再将x3+5x2+52015化简为含有x2+3x的代数式,然后整体代入即可求出所求的结果.【解答】解:(1)∵a、b、c是△三边的长,∴﹣﹣﹣﹣﹣c﹣﹣a﹣﹣c﹣(c﹣)﹣(﹣)+(﹣)﹣c﹣﹣﹣c﹣a﹣=2a﹣2c;(2)∵x2+3x﹣1=0,∴x2+31,∴x3+5x2+52015,(x2+3x)+2x2+52015=2x2+62015=2(x2+3x)+2015=2+2015=2017.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+48的最小值.解:y2+482+44+4=(2)2+4∵(2)2≥0∴(2)2+4≥4∴y2+48的最小值是4.(1)求代数式m24的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:(1)m24=()2+,∵()2≥0,∴()2+≥,则m24的最小值是;(2)4﹣x2+2﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时5,则当5m时,花园的面积最大,最大面积是50m2.28.如图(1),在△中,∠90°,⊥,垂足为D.平分∠,交于点E,交于点F.(1)求证:;(2)若,,△、△、△的面积分别为S△、S△、S△,且S△24,则S△﹣S△ 2 ;(3)将图(1)中的△沿向右平移到△A′D′E′的位置,使点E′落在边上,其它条件不变,如图(2)所示,试猜想:′及有怎样的数量关系?并证明你的结论.【考点】全等三角形的判定及性质;三角形的面积;角平分线的性质;等腰三角形的判定及性质.【分析】(1)求出∠∠,∠∠,根据三角形外角性质得出∠∠,即可得出答案;(2)求出△和△的面积,再相减即可求出答案;(3)过F作⊥于H,求出,证△′≌△,推出′,都减去′即可.【解答】(1)证明:如图(1),∵在△中,∠90°,⊥,∴∠∠90°,∴∠∠90°,∠∠90°,∴∠∠B,∵平分∠,∴∠∠,∴∠∠∠∠,∴∠∠,∴.(2)解:∵S△24,,,∴S△△△×24=6①,S△△△×24=8②,∴②﹣①得:S△﹣S△8﹣6=2,故答案为:2.(3)′,证明:如图(2),过F作⊥于H,∵⊥,∴∥,∴∠′=∠,∵△沿平移到△A′D′E′,∴′E′,′′,∴四边形′E′是平行四边形,∴′∥,∵∠90°,∴∠′=∠90°=∠,∵平分∠,∠90°,⊥,∴,∵,∴,在△′和△中∴△′≌△(),∴′,∴′﹣′﹣E′F,即′.2017年2月17日。

七年级最新数学下册单元测试题初一数学章节练习题带图文答案解析100篇第八章3实际问题与二元一次方程组

七年级最新数学下册单元测试题初一数学章节练习题带图文答案解析100篇第八章3实际问题与二元一次方程组

第八章8.3实际问题与二元一次方程组同步练习实际问题与二元一次方程组1同步练习(答题时间:20分钟)1. 成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇。

相遇时,小汽车比小客车多行驶20千米。

设小汽车和客车的平均速度分别为x千米/时和y千米/时,则下列方程组正确的是()A. B.C. D.**2. 一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为()A.39832x yy x+=⎧⎨-=⎩B.39832x yy x+=⎧⎨+=⎩C.29834x yy x+=⎧⎨-=⎩D.39824x yx y-=⎧⎨+=⎩**3. 如下图所示,高速公路上,一辆长为4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间大约是多少秒(保留整数)?*4. 甲乙两个施工队在六安(六盘水·安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离。

若设甲队每天铺设x米,乙队每天铺设y米。

(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?*5. 根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__________cm,放入一个大球水面升高__________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?*6. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时75千米的速度行驶,则可提前24分钟到达乙地,求甲、乙两地间的距离。

*7. 现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液各取多少?**8. 甲、乙、丙三队要完成A、B两项工程,B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别为20天、24天、30天,为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程。

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。

初一数学下册期末考试试卷及答案

初一数学下册期末考试试卷及答案

初一数学下册期末考试试卷及答案213年级下学期数学期末试卷一、选择题(每题3分,共18分)1.下列运算正确的是()。

A。

a+a=aB。

a×a=a^2C。

a÷a-1=aD。

a^4-a^4=a^22.给出下列图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()A。

1个B。

2个C。

3个D。

4个3.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A。

4/112B。

1/4C。

1/35D。

15/354.1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径是()A。

6万纳米B。

6×10^4纳米C。

3×10^6米D。

3×10^-6米5.下列条件中,能判定两个直角三角形全等的是()A。

一锐角对应相等B。

两锐角对应相等C。

一条边对应相等D。

两条直角边对应相等6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了。

A。

1个B。

2个C。

3个D。

4个二、填空题(每空3分,共27分)7.单项式-xy的次数是3.8.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为60°,90°,120°的三角形。

9.在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到1.3万亿元,这个数据用科学记数法可表示为1.3×10^13元。

10.如图∠AOB=125°,AO⊥OC,BO⊥OD则∠COD=55°。

11.小明同学平时不用功研究,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是1/4.12.若a+2ka+9是一个完全平方式,则k等于2.13.(2m+3)/2=4m-9.14.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为3/4.15.观察下列运算并填空:1×2×3×4+1=25=5^2;2×3×4×5+1=121=11^2;3×4×5×6+1=361=19^2;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1=。

(完整版)初一数学下册练习题

(完整版)初一数学下册练习题

图 3AC21a初一数学下册练习题一、选择题(每小题3分,满分24分) 1、如图,下列推理正确的是( )A . ∵ ∠1=∠2,∴ AD ∥BCB . ∵ ∠3=∠4,∴ AB ∥CDC . ∵ ∠3=∠5,∴ AB ∥DCD . ∵ ∠3=∠5,∴ AD ∥BC2、如果两条直线被第三条直线所截,那么必定有 ( )A 、内错角相等B 、同位角相等C 、同旁内角互补D 、以上都不对3、如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y <0 B .y >0 C .y ≤0 D .y ≥04、已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm 5、已知a<b,则下列式子正确的是( )A.a+5>b+5B.3a>3b;C.-5a>-5bD.3a >3b 6、某多边形的外角和等于内角和的一半,那么这个多边形是( ) A 、五边形 B 、六边形 C 、七边形 D 、八边形 7、下列图形中,不能镶嵌成平面图案的是( )A. 正三角形B. 正四边形C. 正五边形D. 正六边形8、某商场对顾客实行如下优惠方式:⑴一次性购买金额不超过1万元,不予优惠; ⑵一次性购买金额超过1万元,超过部分9折优惠,某人第一次在该商场付款8000元,第二次又在该商场付款19000元,如果他一次性购买的话可以节省( )。

A 、600元 B 、800元 C 、1000元 D 、2700元 二、填空题(每小题3分,满分21分) 9、“如果n 是整数,那么2n 是偶数”其中题设是 ,结论是 ,这是 命题(填真或假).10、如图2,∠ACD=1550,∠B=350,则∠A= 度。

11、如图3,直线AB 、CD 相交于点O ,∠1=∠2.则∠1的对顶角是_____ ,∠4的邻补角是______.∠2的补角是_________.12、如图,直线a ∥b,点B 在直线b 上,且A B ⊥BC ,∠1=55°,则∠2的度数为______。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ).A.106元B.105元C.118元D.108元2、某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于2次,则电视台在播放时收益最大的播放方式是()A. 15秒的广告播放4次,30秒的广告播放2次B. 15秒的广告播放2次,30秒的广告播放4次C. 15秒的广告播放2次,30秒的广告播放3次D.15秒的广告播放3次,30秒的广告播放2次3、张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为()A. 500元 B. 600元C. 700元 D. 800元4、式子6+与+1的和是31,则的值是( )A.―12 B.12 C.13D.―195、如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A……的方向行走.甲从A 点以65m/min的速度、乙从B点以72m/min的涑度行走.当乙第一次追上甲时。

将在正方形( )A.AB边上 B.DA边上 C.BC边上 D.CD边上6、中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息税).设到期后银行应向储户支付现金元,则所列方程正确的是( )A.B.C.D.7、李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为,那么可得方程( )A. B.C. D.8、下列两个方程的解相同的是()A.方程与方程B.方程与方程C.方程与方程D.方程与9、如果33、27和21分别除以同一个数,余数都是3,那么这个除数最大是()A.4 B.6 C.18 D.3010、今年爸爸比我大30岁,3年前爸爸的年龄是我的4倍,则今年我和爸爸的年龄分别是()A.13,43 B.9,39 C.10,40 D.14,44二、填空题(共10题)1、某商店购进一批商品,每件商品进价为a元,若要获利20%,则每件商品的零售价应定为________元。

初一数学下册单元测试题

初一数学下册单元测试题

初一数学下册单元测试题一.选择题(共30小题)1.根据语句“直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M.”画出的图形是()A.B.C.D.2.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点3.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n(n≥2,且n是整数)条直线相交最多能有()A.(2n﹣3)个交点B.(3n﹣6)个交点C.(4n﹣10)个交点D.n(n﹣1)个交点4.如图所示,直线AB与CD相交于点O,则下列说法正确的是()A.∠1和∠3互为余角B.∠2和∠3是对顶角C.∠1+∠2=90°D.∠1+∠3=180°5.如图,已知直线AB与CD相交于点O,OC平分∠AOE,∠AOD=140°.则∠BOE的度数为()A.120°B.110°C.100°D.80°6.如图,直线a、b被直线c所截,下列说法不正确的是()A.∠1与∠5是同位角B.∠3与∠6是同旁内角C.∠2与∠4是对顶角D.∠5与∠2是内错角7.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.8.如图,已知直线AB与CD相交于点O,OE平分∠AOD,∠EOF=90°.对于下列结论:①∠BOC=2∠AOE;②OF平分∠BOD;③∠AOE是∠BOF的余角;④∠AOE是∠COE的补角.其中正确结论的个数是()A.1B.2C.3D.49.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=78°,则∠BOM=()A.39°B.102°C.141°D.143°10.如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为()A.140°B.100°C.80°D.40°11.如图,在灯塔O处观测到轮船A位于北偏西66°的方向,轮船B在OA的反向延长线的方向上,同时轮船C在东南方向,则∠BOC的大小为()A.45°B.31°C.24°D.21°12.如图,∠1=20°,则∠2的度数是()A.40°B.60°C.70°D.80°13.如图,AB⊥CD于点O,OE平分∠AOC,若∠BOF=18°,则∠EOF的度数为()A.116°B.117°C.118°D.127°14.如图,直线AB,CD相交于点O,EO⊥AB于点O,若∠2=40°,则∠1﹣∠3的度数为()A.30°B.25°C.20°D.10°15.如图,OA⊥OB,且∠BOC=25°,则∠AOC的度数是()A.45°B.55°C.65°D.75°16.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OE,且∠AOC:∠COF=2:3,则∠DOF的度数为()A.105°B.112.5°C.120°D.135°17.如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=56°,则∠BED的度数为()A.24°B.26°C.34°D.44°18.如图,AC⊥BC,直线EF经过点C,若∠1=34°,则∠2的大小为()A.56°B.66°C.54°D.46°19.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.垂线段最短B.线段有两个端点C.两点之间线段最短D.两点确定一条直线20.把弯曲的公路改直,就能够缩短路程,这样设计的依据是()A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.连结直线外一点与直线上各点的所有连线中,垂线段最短21.如图,河道l的同侧有M、N两地,现要铺设一条引水管道,从P地把河水引向M、N 两地.下列四种方案中,最节省材料的是()A.B.C.D.22.如图,某同学在体育课上跳远后留下的脚印,在图中画出了他的跳远距离,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.经过一点有且只有一条直线与已知直线垂直23.如图,点A,B,C在直线m上,点P在直线m外,PB⊥m,能表示点P到直线m的距离的是()的长度.A.线段P A B.线段PB C.线段PC D.线段AC24.如图,∠ACB=90°,CD⊥AB,垂足为点D,则点C到直线AB的距离是()A.线段AC的长度B.线段CB的长度C.线段CD的长度D.线段AD的长度25.如图,∠ACB=90°,CD⊥AB,垂足为D,则点B到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段BE的长度D.线段BD的长度26.如图,表示点A到BC距离的是()A.AD的长度B.AE的长度C.BE的长度D.CE的长度27.如图,AC⊥BC,CD⊥AB,垂足分别为C、D,线段CD的长度是()A.点A到BC的距离B.点B到AC的距离C.点C到AB的距离D.点D到AC的距离28.如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P 到直线m的距离是线段()的长度.A.P A B.PB C.PC D.AB29.如图,点P在直线l外,点A、B在直线l上,若P A=4,PB=7,则点P到直线l的距离可能是()A.3B.4C.5D.730.如图,点C到直线AB的距离是()A.线段CA的长度B.线段CB的长度C.线段AD的长度D.线段CD的长度二.填空题(共10小题)31.平面上三条直线两两相交,最多有个交点.32.如图,平面内两条直线相交有一个交点,三条直线相交最多有三个交点,四条直线相交最多有六个交点,那么,平面内有10条直线相交最多有个交点.33.在同一平面内的三条直线,它们的交点个数是.34.如图,在四边形ABCD中,∠C与∠D互补,∠A比∠B大60°,则∠B=.35.从六边形的一个顶点出发,可以引条对角线.36.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为.37.如图所示,O为直线BC上一点,∠AOC=30°,则∠1=.38.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC,∠AOC=40°,则∠DOE的度数为.39.如图,直线CD经过点O,若OC平分∠AOB,则∠AOD=∠BOD,依据是.40.如图,将三个边长相同的正方形的一个顶点重合放置,已知∠1=34°,∠2=32°,则∠3=°.三.解答题(共10小题)41.如图,∠EAD=130°,∠B=50°,试说明EF∥BC.42.如图,已知∠1=∠2,试说明a∥b的理由.43.已知:如图,CB平分∠ACD,交AE于点B,且AB=AC.求证:AE∥CD.44.如图,填推理过程的理由:已知:∠1+∠2=180°,求证:a∥b证明:∵∠1=∠3 ()∠1+∠2=180°()∴∠3+∠2=180°()∴a∥b().45.将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠2=∠().∵∠1=∠2(已知),∴∠1=∠().∴AB∥CD().46.补全下面的证明过程,并在括号内填上适当的理由.如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证:AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD(已知),又∠COA=∠BOD(),∴∠C=().∴AC∥BD().47.按要求补全证明条件如图,∠1=70°,∠2=70°.直线AB与CD平行吗?为什么?解:理由如下:∵∠2与∠3是对顶角,∴∠2=∠3().∵∠2=70°(已知),∴∠3=70°(等量代换).又∠1=70°(已知),∴∠1=∠3(等量代换).∴∥().48.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.49.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().50.填写下列空格:已知:如图,CE平分∠ACD,∠AEC=∠ACE.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠=∠().∵∠AEC=∠ACE(已知),∴∠AEC=∠().∴AB∥CD().。

初一下册数学练习题及答案

初一下册数学练习题及答案

初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。

答案:42. 一个数的立方根是3,那么这个数是______。

答案:27三、计算题1. 计算下列各题,并写出计算过程。

(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。

证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。

2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。

五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。

2. 一个水池的长是15米,宽是10米,求水池的面积。

答案:水池的面积为长×宽=15×10=150平方米。

通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。

希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。

初一下册数学练习题及答案

初一下册数学练习题及答案

初一下册数学练习题及答案一、选择题1.下列选项中,哪个是正数?A. -2B. 0C. 1D. -1答案:C2.2 * (3 + 4) - 5的值是多少?A. 11B. 13C. 9D. 15答案:A3.求下列各式的值:(3 + 5) * 2 + 4 - 6 ÷ 3A. 9B. 10C. 13D. 6答案:B4.下列哪个数是两位数?A. 45B. 100C. 789D. 10答案:A5.把80÷4的商乘以4再减去80÷4的余数,结果是多少?A. 19B. 41C. 29D. 21答案:B二、填空题1.24 + 15 - 7 = ______答案:322.3 * 4 + (10 - 2) = ______答案:263.21 - 9 + 14 = ______答案:264.48 ÷ 8 + 5 = ______答案:115.(4 + 6) * 2 - 9 = ______答案:11三、解答题1.计算:20 + 35 - 12答案:432.计算:(4 + 8) * 3 - 7答案:393.把55分解成一个整十数和一个个位数,并计算它们的和。

答案:50 + 5 = 554.某书店有48本科学书和32本文学书,求它们的总数。

答案:48 + 32 = 805.小明去书店买了5本科学书和3本文学书,求他一共买了多少本书。

答案:5 + 3 = 8总结:本篇文章主要介绍了初一下册数学练习题及答案。

通过选择题、填空题和解答题来帮助学生巩固和提高数学知识。

希望本文对学生们的学习有所帮助,让他们更好地掌握初一下册数学知识。

初一数学下册期末考试试题及答案

初一数学下册期末考试试题及答案

-初一数学下册期末考试试题满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.—的绝对值的倒数是( ).(A ) (B )— (C )—3 (D ) 32.方程5—3x=8的解是( ).(A )x=1 (B)x=—1 (C )x= (D )x=-3.如果收入15元记作+15元,那么支出20元记作( )元。

(A)+5 (B)+20 (C )-5 (D )—204.有理数,,, ,—(-1),中,其中等于1的个数是( )。

(A)3个 (B )4个 (C )5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A ) (B ) (C) (D ) p=q6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )。

(A )1。

68×104m (B )16。

8×103 m (C )0。

168×104m (D )1。

68×103m7.下列变形中, 不正确的是( ).(A) a +b -(-c -d )=a +b +c +d (B ) a +(b +c -d )=a +b +c -d(C ) a -b -(c -d )=a -b -c -d (D )a -(b -c +d )=a -b +c -d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a 〉0(B) a -b 〉0(C) ab >0(D ) a +9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( )。

(A )1022。

01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022。

010(精确到千分位)10.“一个数比它的相反数大—14",若设这数是x ,则可列出关于x 的方程为( )。

人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题

人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题

2022学年人教版七年级下册数学第7章7.1《平面直角坐标系》考点一:有序数对把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。

考点二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 .①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。

考点三、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。

注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。

例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。

2、平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.考点四:坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)考点五:点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。

人教版初一数学下册常考试题(详细解析)

人教版初一数学下册常考试题(详细解析)

- -.新人教版初一数学(下)数学常考试题一、选择题(共30小题)1.(常考指数:106)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB 等于()A. 70°B.65°C.80°D.35°考点:翻折变换(折叠问题).专题:数形结合.分析:根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.解答:解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故选:A.点评:此题考查了翻折变换的知识,解答本题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.2.(常考指数:69)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 30°B.25°C.20°D.15°考点:平行线的性质.分析:本题主要利用两直线平行,同位角相等作答.解答:解:根据题意可知,两直线平行,同位角相等,∴∠1=∠3∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.点评:本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.3.(常考指数:79)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点:坐标确定位置.分析:根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.解答:解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.点评:此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(常考指数:94)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.5.(常考指数:71)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.解答:解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(常考指数:72)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.考点:平行线的判定与性质.分析:根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、∵AB∥CD,∴∠1+∠2=180°,故A选项错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B选项正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C选项错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D选项错误.故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.7.(常考指数:88)4的算术平方根是()A.±2 B.±C.D.2考点:算术平方根.专题:计算题.分析:本题是求4的算术平方根,应看哪个正数的平方等于4,由此即可解决问题.解答:解:∵=2,∴4的算术平方根是2.故选:D.点评:此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.8.(常考指数:90)如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.考点:一元一次不等式的应用;在数轴上表示不等式的解集.分析:根据图形就可以得到重物A,与砝码的关系,得到重物A的范围.解答:解:由图中左边的天平可得m>1,由右边的天平可得m<2,即1<m<2,在数轴上表示为:故选:A.点评:此题考查了不等式的解集在数轴上的表示方法,在数轴上表示解集时,注意空心圆圈和失信圆点的区别.还要注意确定不等式组解集的规律:大小小大中间跑.9.(常考指数:73)如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵a与﹣2互为倒数,∴a 是﹣.故选:B.点评:本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.10.(常考指数:108)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A. 32°B.58°C.68°D.60°考点:平行线的性质;余角和补角.专题:计算题.分析:本题主要利用两直线平行,同位角相等及余角的定义作答.解答:解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.点评:主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.11.(常考指数:72)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短考点:三角形的稳定性.分析:根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.解答:解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.点评:本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.12.(常考指数:89)如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°考点:平行线的判定.分析:在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠1与∠3是l1与l2形成的内错角,由∠1=∠3由能判断直线l1∥l2,故A选项不符合题意;B、∠2与∠3不是l1与l2形成的角,由∠2=∠3不能判断直线l1∥l2,故B选项符合题意;C、∠4与∠5是l1与l2形成的同位角,由∠4=∠5能判断直线l1∥l2,故D选项不符合题意;D、∠2与∠4是l1与l2形成的同旁内角,由∠2+∠4=180°能判断直线l1∥l2,故C选项不符合题意.故选:B.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两条被截直线平行.13.(常考指数:66)在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为()A. 0<x<2 B.x<2 C.x>0 D.x>2考点:点的坐标.分析:根据第二象限内的点的坐标特征,列出不等式组,通过解不等式组解题.解答:解:∵点P(x﹣2,x)在第二象限,∴,解得0<x<2,∴x的取值范围为0<x<2,故选:A.点评:坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求x的取值范围.14.(常考指数:70)解集在数轴上表示为如图所示的不等式组是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<﹣3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是﹣3<x≤2,故D选项正确.故选:D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.15.(常考指数:74)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:将不等式2x﹣6>0移项,可得:2x>6,将其系数化1,可得:x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选:A.二、填空题(共30小题)16.(常考指数:53)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有40 个.考点:坐标与图形性质;正方形的性质.专题:规律型.分析:可以发现第n个正方形的整数点有4n个点,故第10个有40个整数点.解答:解:第一个正方形有4×1=4个整数点;第2个正方形有4×2=8个整数点;第3个正方形有4×3=12个整数点;…∴第10个正方形有4×10=40个整数点.故答案为:40.点评:此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.17.(常考指数:81)点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.解答:解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).点评:本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.18.(常考指数:70)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解答:解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.19.(常考指数:87)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.考点:规律型:图形的变化类.专题:规律型.分析:观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.解答:解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(常考指数:62)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是(1,2).考点:坐标与图形变化-平移.分析:由于线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B(﹣4,﹣1)的对应点D的坐标.解答:解:∵线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(﹣4,﹣1)的对应点D的坐标为(1,2).故答案为:(1,2).点评:本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.21.(常考指数:86)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= 20 °.考点:平行线的性质;三角形的外角性质.专题:计算题.分析:本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.解答:解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.点评:本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.22.(常考指数:70)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= 120 °.考点:平行线的性质;角平分线的定义;对顶角、邻补角.专题:计算题.分析:本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.解答:解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.点评:本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.23.(常考指数:101)把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.考点:命题与定理.分析:先找到命题的题设和结论,再写成“如果…,那么…”的形式.解答:解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.24.(常考指数:107)的算术平方根是 2 .考点:算术平方根.分析:首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.解答:解:∵=4,∴的算术平方根是=2.故答案为:2.点评:此题主要考查了算术平方根的定义,注意要首先计算=4.25.(常考指数:65)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.考点:垂线段最短.专题:应用题.分析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.点评:本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.26.(常考指数:91)4的算术平方根是 2 .考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.27.(常考指数:54)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣.考点:解一元一次不等式组.分析:解出不等式的解,用含有字母a的代数式表示,根据数轴可以看出x≤﹣1,所以可以求出a的值.解答:解:解不等式得:x≤.观察数轴知其解集为:x≤﹣1,∴=﹣1,∴a=﹣.故答案为:﹣.点评:解答此类题,要懂得等量转换,注意数轴中的解集部分的端点是实心还是空心.28.(常考指数:180)16的平方根是±4 .考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.29.(常考指数:77)4的平方根是±2 .考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.30.(常考指数:68)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第15个图形需要黑色棋子的个数是255 .考点:规律型:图形的变化类.专题:压轴题;规律型.分析:观察发现,每一条边上的黑色棋子的个数是这个多边形的边数减去1,又顶点处的黑色棋子被两条边公用,根据此规律列式计算即可.解答:解:第1个图形棋子个数是:(3﹣1)×3﹣3=(3﹣2)×3=3,第2个图形棋子个数是:(4﹣1)×4﹣4=(4﹣2)×4=8,第3个图形棋子个数是:(5﹣1)×5﹣5=(5﹣2)×5=15,第4个图形棋子个数是:(6﹣1)×6﹣6=(6﹣2)×6=24,…按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2﹣2n.第15个图形棋子个数是:(17﹣1)×17﹣17=(17﹣2)×17=255.故答案为:255.点评:本题主要是对图形的变化规律的考查,观察出图形的边数与每一条边上的黑色棋子的个数是解题的关键.三、解答题(共40小题)31.(常考指数:56)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.考点:二元一次方程组的应用;一元一次不等式组的应用.专题:应用题.分析:(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”.解答:解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得,;解得:,答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元);∵5000>4950>4900;∴最低运费是方案三的费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.点评:解题关键是要读懂题目的意思,找出(1)合适的等量关系:1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)根据租车费用不超过5000元列出方程组,再求解.32.(常考指数:49)某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?考点:二元一次方程组的应用;一元一次不等式组的应用.专题:方案型.分析:(1)通过理解题意可知本题存在两个等量关系,即每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.(2)本题存在两个不等量关系,即设购买文化衫t件,购买相册(50﹣t)本,则1800﹣300≤35t+26(50﹣t)≤1800﹣270,根据t为正整数,解出不等式再进行比较即可.解答:解:(1)设每件文化衫和每本相册的价格分别为x元和y元,则,解得.答:每件文化衫和每本相册的价格分别为35元和26元.(2)设购买文化衫t件,购买相册(50﹣t)本,则:1800﹣300≤35t+26(50﹣t)≤1800﹣270,解得≤t≤,∵t为正整数,∴t=23,24,25,即有三种方案:第一种方案:购买文化衫23件,相册27本,此时余下资金293元;第二种方案:购买文化衫24件,相册26本,此时余下资金284元;第三种方案:购文化衫25件,相册25本,此时余下资金275元.∴第一种方案用于购买教师纪念品的资金更充足.答:有3种购买文化衫和相册的方案,当购买文化衫23件,相册27本时,用于购买老师纪念品的资金更充足.点评:此类问题属于综合性的题目,问题(1)在解决时只需认真分析题意,找出本题存在的两个等量关系,即每件文化衫比每本相册费9元,用200元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.问题(2)需利用不等式解决,另外要注意,同实际相联系的题目,需考虑字母的实际意义,从而确定具体的取值.再进行比较即可知道哪个方案用于购买老师纪念品的资金更充足.33.(常考指数:45)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?考点:一元一次不等式的应用.专题:方案型.分析:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.解答:解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案二购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案三购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案二.故应选择方案二.点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.34.(常考指数:42)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?考点:一元一次不等式的应用;一次函数的应用.专题:压轴题.分析:(1)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数=3600;(2)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数≤4200;(3)关系式为:甲种鱼的尾数×0.9+乙种鱼的尾数×95%≥6000×93%.解答:解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.由题意得:0.5x+0.8(6000﹣x)=3600,解方程,可得:x=4000,∴乙种鱼苗:6000﹣x=2000,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5x+0.8(6000﹣x)≤4200,解不等式,得:x≥2000,即购买甲种鱼苗应不少于2000尾,∵甲、乙两种鱼苗共6000尾,∴乙不超过4000尾;答:购买甲种鱼苗应不少于2000尾,购买乙种鱼苗不超过4000尾;。

初一下册数学试题

初一下册数学试题

七年级下册数学试题姓名:班级:(答题时间:90分钟)一.选择题(每小题3分,共30分)1.多项式3x2y+2y-1的次数是()A、1次B、2次C、3次D、4次2.棱长为a的正方形体积为a3,将其棱长扩大为原来的2倍,则体积为()A、2a3B、8a3C、16 a3D、a33.2000年中国第五次人口普查资料表明,我国人口总数为1295330000人,精确到千万位为()A、1.30×109B、1.259×109C、1.29×109D、1.3×1094.下列四组数分别是三根木棒的长度,用它们不能拼成三角形的是()A、3cm,4cm,5cmB、12cm,12cm,1cmC、13cm,12cm,20cmD、8cm,7cm,16cm5.已知△ABC三内角的度数分别为a,2a,3a。

这个三角形是()三角形。

A、锐角三角形B、直角三角形C、钝角三角形D、不能确定6.国旗是一个国家的象征,下面四个国家的国旗不是轴对称图形的是()A、越南B、澳大利亚C、加拿大D、柬埔寨7.下面哪一幅图可大致反映短跑运动员在比赛中从起跑到终点的速度变化情况()A、 B、 C、D、8.如图,已知,△ABD≌△CBE,下列结论不正确的是()A、∠CBE=∠ABDB、BE=BDC、∠CEB=∠BDED、AE=ED9. 将一张矩形纸片对折,再对折,将所得矩形撕去一角,打开的图形一定有()条对称轴。

A、一条B、二条C、三条D、四条10.房间铺有两种颜色的地板,其中黑色地板面积是白色地板面积的二分之一,地板下藏有一宝物,藏在白色地板下的概率为()A、1B、C、D、二.我会填。

(每小题3分,共15分)11.22+22+22+22=____________。

12.三角形的两边长分别为5cm,8cm,则第三边长的范围为___________。

13.三角形的高是x,它的底边长是3,三角形面积s与高x的关系是____________。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()A.(+3)×(+2) B.(+3)×(﹣2) C.(﹣3)×(+2) D.(﹣3)×(﹣2)2、若,则以下四个结论中,正确的是()A .一定是正数B .可能是负数C .一定是正数D .一定是正数3、下表是淮河某河段今年雨季一周内水位变化情况,(其中 0 表示警戒水位)那么水位最高是()星期一二三四五六日水位变化/米+0.03 +0.41 +0.25 +0.10 0 -0.13 -0.2A .周一B .周二C .周三D .周五4、将 7 张扑克牌,全部背面朝上,每次翻三张且必须翻三张,最少翻多少次可翻成全部背面朝下()A . 3B . 4C . 5D . 65、计算-2+3的结果是A.1 B.-1 C.-5 D.-6 6、在、、、这四个数中比小的数是()A.B.C. D.7、 -5的相反数是()A. -5 B. 5 C.D.8、 5的相反数是()A、-5B、5C、D、9、的倒数为()A.-2 B.2 C.D.10、已知,则下列四个式子中一定正确的是( ).A. B. C. D.二、填空题(共10题)1、设有理数、、满足及,若,,则的值为__________.2、若|m|=1,|n|=2,且|m+n|=m+n,则=________.3、若,则______.4、已知:,则_________.5、湛江市某天的最高气温是℃,最低气温是℃,那么当天的温差是℃.6、如果水位上升1.2米,记作+1.2米,那么水位下降0.8米记作______米。

7、计算:的结果是___________.8、-2的绝对值等于___________9、经验证明,在一定范围内,高出地面的高度每增加l00m,气温就降低大约0.6℃,现在地面的温度是25℃,则在高出地面5000m高空的温度是_________.10、若实数a、b满足,则=__________。

初一数学下册考试题

初一数学下册考试题

初一数学下册考试题一、选择题(每题2分,共10分)1. 下列哪个选项是正比例函数的表达式?A. $y = -3x$B. $y = 3x + 2$C. $y = -2x + 4$D. $y = 4$2. 已知一个等腰三角形的底边长为6cm,腰长为5cm,那么它的面积是多少平方厘米?A. 10B. 12C. 14D. 163. 若一个数的平方与它的三倍相等,即$x^2 = 3x$,那么$x$的值是多少?A. 0B. 3C. 0 或 3D. 不能确定4. 一个长方体的长、宽、高分别是8cm、6cm、4cm,那么它的体积是多少立方厘米?A. 192B. 96C. 48D. 245. 一个圆的半径是7cm,求这个圆的周长,使用π取3.14的近似值,周长是多少厘米?A. 43.96B. 28.26C. 14.13D. 35.69二、填空题(每题2分,共10分)6. 已知一个三角形的三个角分别是60°、80°和_______°,那么这是一个_______三角形。

7. 在数轴上,-3和5之间的距离是_______。

8. 一个分数的分子是12,分母是20,化简后的结果是_______。

9. 一个长方形的长是10cm,宽是5cm,它的周长是_______。

10. 一个圆的直径是10cm,那么它的半径是_______cm。

三、解答题(每题10分,共30分)11. 一个班级有40名学生,其中男生占总人数的60%,女生占总人数的多少百分比?如果班级中有10名男生参加了足球队,那么剩余的男生占总人数的多少百分比?12. 一个长方体的长、宽、高分别是10cm、8cm、6cm,求这个长方体的表面积和体积。

13. 一个圆的半径是5cm,求这个圆的面积,使用π取3.14的近似值。

四、综合题(每题20分,共40分)14. 小明有一些5分和10分的邮票,总共20张,总价值为1元50分。

请问他有多少张5分的邮票和多少张10分的邮票?15. 一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

初一数学下册试题及答案

初一数学下册试题及答案

初一数学下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A3. 计算下列算式:2x - 3 = 7,x的值是:A. 5B. 2C. 10D. 3答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是50°,那么顶角的度数是:A. 80°B. 50°C. 100°D. 30°答案:A5. 一个数的平方是36,这个数是:A. 6B. ±6C. 36D. ±36答案:B6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 下列哪个选项是不等式?A. 3x + 4 = 7B. 2x - 5 > 0C. 6x = 12D. 7x - 3答案:B8. 一个数的立方是-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 计算下列算式:(-3)^2,结果是:A. -9B. 9C. -6D. 6答案:B10. 下列哪个选项是二次方程?A. 2x + 3 = 0B. x^2 - 4x + 4 = 0C. 3x - 7D. 5x^3 + 2x^2 - 6 = 0答案:B二、填空题(每题4分,共20分)11. 一个数的平方根是3,那么这个数是______。

答案:912. 一个数的立方根是-2,那么这个数是______。

答案:-813. 一个数的倒数是1/2,那么这个数是______。

答案:214. 一个数的绝对值是7,那么这个数可以是______或______。

答案:7,-715. 一个等腰三角形的底角是30°,那么顶角的度数是______。

答案:120°三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档