测试技术实验指导书

合集下载

工程测量实验指导书

工程测量实验指导书

工程测量实验指导书摘要:一、实验目的二、实验原理三、实验仪器与设备四、实验步骤1.准备工作2.测量过程3.数据处理与分析五、实验报告要求六、注意事项正文:【实验目的】本实验旨在使学生掌握工程测量的基本原理和方法,熟练使用测量仪器,培养学生的动手能力和实际操作技能。

【实验原理】工程测量是研究和应用测量理论与技术,对各种工程项目的几何形状、大小、位置及物理特性进行测量、描述和评价的一门学科。

实验中将涉及到测量误差的计算与分析,以及全站仪、经纬仪、水准仪等测量仪器的使用。

【实验仪器与设备】1.全站仪2.经纬仪3.水准仪4.测距仪5.测量标尺6.其他辅助工具【实验步骤】【准备工作】1.检查实验仪器,确保仪器状态良好,功能正常。

2.熟悉实验流程,了解各步骤的操作要点。

3.确定实验场地,做好安全措施。

【测量过程】1.使用经纬仪进行角度测量。

2.使用水准仪进行高差测量。

3.使用全站仪进行距离测量。

4.记录测量数据,整理测量成果。

【数据处理与分析】1.计算测量误差,分析误差来源。

2.对测量数据进行处理,得出最终测量结果。

3.分析实验过程中存在的问题,提出改进措施。

【实验报告要求】1.详细记录实验过程,包括测量数据、计算过程和分析结果。

2.绘制实验成果图,清晰展示测量结果。

3.撰写实验报告,对实验过程和结果进行总结,并提出建议。

【注意事项】1.严格遵守实验纪律,确保实验安全。

2.爱护实验仪器,正确使用和存放。

3.注重实际操作,培养良好的动手能力。

IQC测试作业指导书

IQC测试作业指导书

IQC测试作业指导书一、引言IQC(Incoming Quality Control)是指对进货物料进行质量控制的过程,旨在确保供应商提供的原材料、零部件或者成品的质量符合公司的要求。

本作业指导书的目的是为了提供一份详细的IQC测试流程,以确保所有的进货物料都能够经过严格的质量检验。

二、测试范围本次IQC测试的范围包括但不限于以下几个方面:1. 原材料的外观、尺寸、分量等基本属性;2. 零部件的装配质量、材料成份等;3. 成品的功能性能、耐久性等。

三、测试流程1. 来料检验1.1 收货确认:接收到进货物料后,检查货物的数量是否与采购定单一致,并确认是否有损坏或者异常情况。

1.2 外观检查:对进货物料的外观进行检查,包括表面是否有划痕、变形、污渍等。

1.3 尺寸测量:对进货物料的尺寸进行测量,使用合适的测量工具,确保尺寸符合要求。

1.4 分量检验:对进货物料的分量进行检验,使用称重设备进行准确测量,确保分量符合要求。

1.5 样品保留:对每一批进货物料,保留一定数量的样品,用于后续的功能性能测试。

2. 功能性能测试2.1 样品准备:从样品保留中选择合适数量的样品,准备进行功能性能测试。

2.2 测试设备准备:根据进货物料的特点,准备相应的测试设备和工具。

2.3 功能性能测试:根据产品的要求,进行相应的功能性能测试,例如电气性能测试、力学性能测试等。

2.4 结果记录:记录每一个样品的测试结果,包括通过与否、数值数据等。

3. 材料分析3.1 样品准备:从样品保留中选择合适数量的样品,准备进行材料分析。

3.2 分析方法选择:根据进货物料的特点,选择合适的材料分析方法,例如化学分析、光谱分析等。

3.3 分析过程:按照选定的分析方法进行材料分析,确保分析结果准确可靠。

3.4 结果记录:记录每一个样品的材料分析结果,包括成份、含量等。

四、测试记录与报告1. 测试记录:每一次IQC测试都应有详细的测试记录,包括测试日期、测试人员、测试设备、测试方法、测试结果等。

电气测试技术-实验指导书

电气测试技术-实验指导书

电气测试技术实验指导书河北科技师范学院机械电子系电气工程教研室二00六年十月实验台组成及技术指标CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、15个(基本型)传感器和相应的实验模板、数据采集卡及处理软件、实验台桌六部分组成。

1、主控台部分:提供高稳定的±15V、+5V、±2V~±1OV可调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。

音频信号源(音频振荡器)0.4KHz~10KHz可调);低频信号源(低频振荡器)1Hz~3OHz(可调);气压源0~15kpa可调;高精度温度控制仪表(控制精度±0.5℃);RS232计算机串行接口;流量计。

2、三源板:装有振动台1Hz~3OHz(可调);旋转源0~2400转/分(可调);加热源<200℃(可调)。

3、传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流位移传感器、光纤位移传感器、光电转速传感器、集成温度传感器、K型热电偶、E型热电偶、Pt10O 铂电阻,共十五个。

4、实验模块部分:普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。

5、数据采集卡及处理软件:数据采集卡采用12位A/D转换、采样速度1500点/秒,采样速度可以选择,既可单采样亦能连续采样。

标准RS-232接口,与计算机串行工作。

提供的处理软件有良好的计算机显示界面,可以进行实验项目选择与编辑,数据采集,特性曲线的分析、比较、文件存取、打印等。

6、实验台桌尺寸为160O×8OO×280(mm),实验台桌上预留计算机及示波器安放位置。

注意事项:1、迭插式接线应尽量避免拉扯,以防折断。

单项试验、测试作业指导书

单项试验、测试作业指导书

单项试验、测试作业指导书一适用范围本作业指导书适用于所有铁路信号轨道电路、转辙机、信号机室外单项试验、测试作业。

二作业准备1、技术准备熟悉施工图,清楚轨道电路、转辙机、信号机室外单项试验、测试内容、步骤,熟悉室外设备性能、参数。

2、仪器仪表准备单项试验、测试前,检查试验用各种仪器、仪表是否齐全,仪器、仪表应经计量检验,并在计量检验有效期内。

三技术要求轨道电路空闲情况下,接收端的接收设备可靠工作;在轨道电路内任何一处分路(不含死区段),接收端的接收设备应可靠的停止工作。

轨道测试盘或微机监测轨道采集机所测试区段与室外实际区段一致;移频轨道电路或97型25HZ 轨道电路叠加电码化区段机车信号入口电流应满足设计要求。

核对移频轨道电路(1500~3000Hz)调谐区长度及其出、入口端的机车信号短路电流符合设计要求;载频为1700 Hz、2000 Hz、2300 Hz时机车信号短路电流不小于500mA,载频为2600 Hz时机车信号短路电流不小于450mA。

道岔尖轨及心轨的第一连接杆(或第一锁闭杆)处,尖轨与基本轨、心轨与翼轨间有4mm及其以上间隙时,道岔不得锁闭;在尖轨、心轨的密贴段,牵引点之间有5mm及以上缝隙时不得接通道岔表示电路;道岔位置核对须室内外同时进行,核对时应确认现场道岔实际开向、值班员操作意图、室内表示继电器位置完全一致;安装分动外锁闭及可动心轨转辙装置的道岔,尖轨与基本轨、可动心轨与翼轨间在外锁闭牵引点处不应有密贴力(间隙不得大于1mm)。

道岔转换动程、外锁闭量等主要技术指标应符合设计要求。

三相交流转辙机断相功能检查正常。

信号机、表示器、带灯标志牌的灯光应调试良好,正常情况下显示距离为:进站信号机,不得小于1000m;高柱出站、高柱进路信号机,不得小于800m ;调车、矮型出站、矮型进路、复示信号机、引导信号机及各种表示器、带灯停车标志牌,不得小于200m ;在地形、地物影响视线的地方,进站信号机的显示距离,不得小于200m 。

机械工程《传感器与检测技术》测试技术实验指导书

机械工程《传感器与检测技术》测试技术实验指导书

机械工程《传感器与检测技术》测试技术实验指导书机械工程测试技术实验指导书——传感器与检测技术罗烈雷编机械工程系机械工程测试技术实验指导书——传感器与检测技术一、测试技术实验的地位和作用《传感器与检测技术》课程,在高等理工科院校机械类各专业的教学打算中,是一门重要的专业基础课,而实验课是完成本课程教学的重要环节。

其要紧任务是通过实验巩固和消化课堂所讲授理论内容的明白得,把握常用传感器的工作原理和使用方法,提高学生的动手能力和学习爱好。

其目的是使学生把握非电量检测的差不多方法和选用传感器的原则,培养学生独立处理问题和解决问题的能力。

二、应达到的实验能力标准1、通过应变式传感器实验,把握理论课上所讲授的应变片的工作原理,并验证单臂、半桥、全桥的性能及相互之间关系。

2、通过差动变压器静态位移性能测试和差动变压器零点残余电压的补偿电路设计,把握理论课上所讲授的差动变压器的工作原理和零点残余电压的补偿措施。

3、通过电涡流式传感器的静态标定和被测体材料对电涡流式传感器特性的阻碍实验,把握理论课上所讲授的电涡流式传感器的原理及工作性能,验证不同性质被测体材料对电涡流式传感器性能的阻碍。

4、通过差动面积式电容传感器的静态及动态特性测试,了解差动面积式电容传感器的工作原理及其特性。

5、通过磁电感应式传感器的性能和霍尔式传感器直流静态位移特性的测试方法,把握磁电感应式传感器的工作原理及其性能和霍尔式传感器的工作原理及其特能。

6、通过压电式传感器的动态响应和引线电容对电压放大器与电荷放大器的阻碍实验,把握压电式传感器的原理、结构及应用和验证引线电容对电压放大器的阻碍,了解电荷放大器的原理和使用方法。

7、通过光敏三极管和光敏电阻的性能测试,把握光电传感器的原理与应用方法。

8、热电偶和热敏电阻的性能测试的方法,把握热电偶的原理和 NTC 热敏电阻的工作原理和使用方法,并对传感器灵敏度线性度进行分析。

9、通过差动放大器和低通滤波器设计和测试,把握差动放大器和滤波器的设计方法和性能测试方法。

软件测试技术实验指导书

软件测试技术实验指导书

软件测试技术实验指导书公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-《软件测试技术》实验指导书实验1、自由测试一、实验目的1.理解软件测试的概念。

2.提高反向思维的能力。

二、实验任务针对某产品Beta的版本,对照其竞争对手的产品,进行测试,以发现该软件产品潜在的任何问题,记录下来。

Discuz! X beta 对比 PHPWind实验2、黑盒测试方法:等价类划分法+边界值分析方法一、实验目的1.掌握等价类、有效等价类、无效等价类、边界值等概念。

2.掌握边界值分析法、等价类划分法的测试用例设计方法。

3.能够将这两种方法结合起来,灵活运用二、实验任务以下三个任务、至少完成一个1、对三角问题综合运用边界值分析方法、等价类划分方法设计测试用例。

三角形问题:void Triangle (int a, int b, int c)函数规定输入三个整数a、b、c分别作为三边的边长构成三角形。

通过程序判定所构成的三角形的类型(等边三角形、等腰三角形、一般三角形、构不成三角形),并在屏幕上输出。

1<=a,b,c<=200。

实验步骤:①划分等价类,得到等价类表。

等价类表格式如下:②综合运用这两种方法设测试用例,得到测试用例表:③综合运用这两种方法设测试用例,得到测试用例表:④根据上述测试用例表,能否进行优化,获得最小测试用例集合:2、对于找零钱最佳组合问题运用边界值分析法设计测试用例。

实验步骤:①分析边界值。

②运用健壮性边界条件法设计测试用例,得到测试用例表(测试用例表格式同实验1)。

③执行测试,填写软件缺陷报告(软件缺陷报告格式同实验1)。

3、现有一个程序int CheckTel(char *rc, char *n)执行电话号码有效性检查功能,中国的固定电话号码由两部分组成。

这两部分的名称和内容分别是:地区码(rc):以0开头的三位或者四位数字(包括0)。

电话号码(n):以非0、非1开头的七位或者八位数字。

《测试技术》实验指导书

《测试技术》实验指导书
以标准重量进行标定。测试已有应变片测力传感器在加静载重量下应变及 应力计算。要在不同配重下作多次测试和分析。
测试在冲击载荷下的受力最大值及变化过程。 三、实验原理
LC1004 动态应变仪为八通道采用电子自动平衡技术,其主要技术指标处于 国际领先水平,配接不同类型的应变片及应变式传感器,除了测量结构和材料 的应变外,还可以测量力、压力、扭矩、温度、加速度、速度、位移等多种物 理量。桥路零点自动平衡 测试方便快捷;自动修正长电缆测量时引入的误差。 1、 测量系统方框图:
2
实验一 电阻应变片的粘贴技术
实验项目性质:验证性实验 实验计划学时:2 学时 一、实验目的
1、初步掌握常温用电阻应变片的粘贴技术。 2、为后续电阻应变测量的实验做好在试件上粘贴应变片、接线、防潮、检查等 准备工作。 二、实验内容 掌握应变片的粘贴方法与技巧。 三、实验方法和步骤 1、选片:
在确定采用那种类型的应变计后,用肉眼或放大镜检查丝栅是否平行,有 否霉点、锈点、用数字式万用表测量各应变片电阻值,选择电阻值差在土 0.5 欧姆内的 8~10 枚应变片供粘贴用。 2、测点表面的清洁处理:
图为 一应变片方式 2 线系统
图为二应变片方式 2 线系统
6
图为四应变片方式 在连接成三种接线方式时,必须使用 120 的应变测量片,为防止电磁干扰, 特别是 50Hz 干扰,桥盒与应变片之间的连线要用屏蔽线,并且屏蔽网要做好接 地处理。
四、实验仪器设备 1、悬臂梁 ,加载砝码。 2、应变片、数字万用电表、502 胶水等贴片材料及在补偿块一个。 3、 LC1004 动态应变仪。
为防止在导线被拉动时应变计引出线被拉坏,可使用接线端子,接线端子相 当于接线柱,使用时先用胶水把它粘在应变计引出线前端,然后把应变计引出线 及导线分别焊于接线端子的两端,以保护应变计,如上图所示。 6、防潮处理:

软件测试技术实验指导书—2016.pdf(终稿)

软件测试技术实验指导书—2016.pdf(终稿)

软件测试技术实验指导书谢红薇、崔冬华、宋晓涛、兰方鹏编写2016 年9 月16 日实验名称实验二黑盒测试方法实验地点实验时间一、实验目的和要求⑴熟练掌握黑盒测试方法中的等价类测试方法和边界值测试方法。

⑵通过实验掌握如何应用黑盒测试方法设计测试用例。

⑶运用所学理论,完成实验研究的基本训练过程。

二、实验内容和原理1.用你熟悉的语言编写一个判断三角形问题的程序。

要求:读入代表三角形边长的三个整数,判断它们能否组成三角形。

如果能够,则输出三角形是等边、等腰或一般三角形的识别信息;如何不能构成三角形,则输出相应提示信息。

2.使用等价类方法和边界值方法设计测试用例。

三、主要仪器设备笔记本电脑四、操作方法与实验步骤⑴先用等价类和边界值方法设计测试用例,然后用白盒法进行检验与补充。

⑵判断三角形问题的程序流程图和程序流图如图1和图2所示。

用你熟悉的语言编写源程序。

⑶使用等价类方法设计测试用例,并填写完成表2和表3。

⑷输入设计好的测试用例,执行源程序,记录输出结果。

表2. 等价类划分表输入条件有效等价类无效等价类是否构成三角形是否等腰三角形是否等边三角形表3. 测试用例表用例编号测试数据(A, B, C)等价类覆盖情况输出五、实验数据记录和处理六、实验结果与分析七、讨论、心得图3⑶在弹出的“Record and Run Settings”对话框中切换至“Windows Applications”标签,如图4所示:图4⑷在弹出的对话框中,选择“Application details:”中右边的“+”标签,如图5所示:图5⑸在弹出的对话框中按照默认选项选择,然后点击“ok”按钮,如图6所示:图6⑹在弹出的“Login”界面中输入用户名和密码,如图7所示。

注意:用户名至少是4个字符,密码是“mercury”。

图7⑺在弹出的“Flight Reservation”窗口中选择订票日期、出发地和目的地,然后选择“Flight”图标选择航班,如图8所示。

机械工程测试实验

机械工程测试实验

《机械工程测试技术》实验指导书实验一、霍尔传感器的直流激励特性一、实验目的加深对霍尔传感器静态特性的理解。

掌握灵敏度、非线性度的测试方法,绘制霍尔传感器静态特性特性曲线,掌握数据处理方法。

二、实验原理当保持元件的控制电流恒定时,元件的输出正比于磁感应强度。

本实验仪为霍尔位移传感器。

在极性相反、磁场强度相同的两个钢的气隙中放置一块霍尔片,当霍尔元件控制电流I不变时,Vh与B成正比。

若磁场在一定范围内沿X方向的变化梯度dB/dX为一常数,则当霍尔元件沿X方向移动时dV/dX=RhXIXdB/dX=K,K为位移传感器输出灵敏度。

霍尔电动势与位移量X成线性关系,霍尔电动势的极性,反映了霍尔元件位移的方向。

三、实验步骤1.有关旋钮初始位置:差动放大器增益打到最小,电压表置2V档,直流稳压电源置±2V档。

2..RD、r为电桥单元中的直流平衡网络。

3.差动放大器调零,按图6-1接好线,装好测微头。

4.使霍尔片处于梯度磁场中间位置,调整RD使电压表指示为零。

5.上、下旋动测微头,以电压表指示为零的位置向上、向下能够移动5mm,从离开电压表指示为零向上5mm的位置开始向下移动,建议每0.5mm读一数,记下电压表指示并填入数据记录表。

6.用以上的位移和输出电压数据,绘出霍尔传感器静态特性的位移和输出电压特性V-X曲线, 指出线性范围。

7.将位移和输出电压数据分成两组,用“点系中心法”对数据进行处理,并计算两点联线的斜率,即得到灵敏度值。

实验可见:本实验测出的实际是磁场的分布情况,它的线性越好,位移测量的线性度也越好,它们的变化越陡,位移测量的灵敏度也就越大。

数据记录表四、思考题1.为什么霍尔元件位于磁钢中间位置时,霍尔电动势为0。

2.在直流激励中当位移量较大时,差动放大器的输出波形如何?实验二、电容传感器的直流特性实验内容:加深对电容传感器静态特性的理解。

掌握灵敏度、非线性度的测试方法,绘制电容传感器静态特性曲线,掌握数据处理方法。

测试技术实验指导书(实验三悬臂梁应变综合实验)

测试技术实验指导书(实验三悬臂梁应变综合实验)

实验三悬臂梁应变综合实验一、试验目的1)掌握电阻应变片的粘贴工艺过程及方法。

2)掌握应变传感单元(电桥)测量的工作原理。

3)通过对悬臂梁的应变测量,掌握动静态应变测量的基本方法。

二、实验原理电阻应变测量技术是一种确定构件表面应力状态的实验应力分析方法。

其原理是将电阻应变片粘贴在被测构件表面上,当构件受力变形时.应变片的电阻值发生相应的变化。

通过电阻应变仪测定应变片中电阻值的改变,井换算成应变值或者输出与应变成正比的电信号,用模拟或数字记录设备记录信号,就可得到被测量的应变或应力。

目前,电阻应变测量技术已成为实验应力分析中广泛应用的一种方法,具有如下特点:应变片尺寸小、重量轻.一股不影响构件的工作状态和应力分布。

测量灵敏度、精度高。

应变最小分辨率可达1微应变。

测量应变的范围广。

可由1微应变到几万微应变。

频率响应好。

可测量0 ~ 10万赫的动应变。

可在高温、低温、高速旋转及强磁场等环境下进行测量。

由于测量过程中输出的是电信号,因此容易实现自动化、数字化,并能进行远距离测量和无线电遥测。

通用性好。

不但适用于测量应变,而且可制成各种高精度传感器,用于测量载荷、位移、加速度、扭矩等力学量。

不过该测量方法也有它的缺点,主要表现在只能测量构件表面某一方向的应变,应变计有一定栅长,只能测定栅长范围内的平均应变。

在应力集中的部位,若应力梯皮很陡,则测量误差较大。

电阻应变片由于构件变形而发生的电阻变化ΔR用惠斯顿电桥来测量,如图所示。

电阻应变片是将被测点的应变量转换为电阻变化率ΔR/R(以应变片的灵敏度S g来衡量)。

电阻应变仪是将这电参量,经放大处理后再转换成应变量。

电阻应变测量分析系统(仪),主要由传感单元(应变计与电桥)、信号放大/调理器、数据采集和输出(显示/记录)三部分所组成。

电桥的输出电压u y与各桥臂上应变片的应变(ε1、ε2、ε3、ε4)代数和成线性关系,计算公式如下:其中:S g — 应变片的灵敏度 u 0 — 供桥电压(V) 上式表明:相邻桥臂的电阻变化率(或应变)相减,相对桥臂的电阻变化率(或应变)相加。

CVI实验指导书2012版

CVI实验指导书2012版

现代测试技术实验指导书西安交通大学测控教研室2012年3月目录实验一 熟悉LabWindows/CVI集成软件开发环境 2 实验二 虚拟波形发生器演示仪 20 实验三 模拟信号的采集及其信号频率的计算 41 实验四 虚拟频谱分析演示仪 46 实验五 温度的测量 52 实验六 电量测量的研究 57 实验七 磁性材料磁特性测量的研究 65现代测试系统软件平台基础训练实验一熟悉LabWindows/CVI集成软件开发环境一、实验目的1.掌握工程项目窗口(Project Window)中各菜单选择项的使用方法。

2.掌握用户接口编辑窗口(User Interface Editor window)的使用和功能3.掌握源代码窗口(Source window)的使用和功能4.了解函数面板(Fuction Panel)的使用和功能二、实验原理LabWindows/CVI是一个ANSI C的集成开发环境。

它包含了32位的编译、链接器,以及先进的编辑与调试工具。

LabWindows/CVI编写的虚拟仪器软件基本组成框图,如图1-8所示。

图1-1 LabWindows/CVI编写的虚拟仪器软件基本组成框图LabWindows/CVI开发环境有4个主要的界面窗口(window):¾工程项目窗口(Project Window) ——生成*.prj文件¾用户接口编辑窗口(User Interface Editor window) ——设计*.uir文件¾源代码窗口(Source window)——编辑*.c文件¾函数面板窗口(Function Panel)。

其中:9*.prj文件:工程文件,它是最终的运行文件。

由*.uir、*.c和*.h文件组成。

9*.c文件:源程序文件,用户编写的程序代码就在此文件中,是标准的C语言程序。

9*.uir文件:用户接口文件,该文件为虚拟仪器的面板文件,类似VB或VC中的窗口体文件,包含如旋钮、开关等各类控件。

《岩土原位测试技术实验指导书》

《岩土原位测试技术实验指导书》

岩土原位测试技术实验指导书中南大学地学与环境工程学院勘察与基础工程研究所2005年10月目录实验一动力触探实验 (3)实验二平板载荷实验 (6)实验三旁压实验 (11)实验四静力触探—十字板剪切联合实验 (19)附录 (25)实验一动力触探实验一、实验目的1.熟悉动力触探仪的使用方法;2.掌握动力触探仪的工作原理;3.掌握动力触探实验实验成果的应用;4.培养学生分析问题和解决问题的能力。

二、实验原理利用一定的锤击动能,将一定规格的圆锥探头打入土中,然后根据打入土中的难以易程度来判断土的性质。

(根据能量平衡的原理进行分析)三、实验方法圆锥动力触探实验技术要求应符合下列规定:1. 采用自动落锤装置;(重型以上)2. 触探杆最大偏斜度不应超过2%,锤击贯入应连续进行;同时防止锤击偏心、探杆倾斜和侧向晃动,保持探杆垂直度;锤击速率每分钟宜为15~30 击;3. 每贯入1m,宜将探杆转动一圈半;当贯入深度超过10m,每贯入20cm 宜转动探杆一次;4. 对轻型动力触探当N10>100 或贯入15cm 锤击数超过50 时,可停止实验;对重型动力触探,当连续三次N63.5>50 时,可停止实验或改用超重型动力触探。

四、实验仪器设备动力触探仪包括导向杆、穿心锤、锤垫、探杆及探头。

五、实验步骤1.先用钻具钻至试验深度;2.将重锤提至一定高度自由落下,记录贯入一定深度的锤击数;3.完成某一深度的动力触探试验,上提钻具。

六、实验数据处理1.数据处理圆锥动力触探实验成果分析应包括下列内容:1 )单孔连续圆锥动力触探实验应绘制锤击数与贯入深度关系曲线;2 )计算单孔分层贯入指标平均值时,应剔除临界深度以内的数值、超前和滞后影响范围内的异常值;3) 根据各孔分层的贯入指标平均值,用厚度加权平均法计算场地分层贯入指标平均值和变异系数。

2.动力触探实验成果应用根据圆锥动力触探实验指标和地区经验,可进行力学分层,评定土的均匀性和物理性质(状态、密实度)、土的强度、变形参数、地基承载力、单桩承载力、查明土洞、滑动面、软硬土层界面,检测地基处理效果等。

热工测试技术实验指导书

热工测试技术实验指导书

实验指导书广东海洋大学工程学院李锐赖学江实验一. 各种传感器的性能测试及标定1.金属泊式应片:直流单臂、半桥、全桥比较实验目的:验证单臂、半桥、全桥的性能,比较它们的测量结果。

实验所需单元:直流稳压电源、差动放大器、电桥、F/V(频率/电压)表。

实验注意事项:(1)电桥上端虚线所示的四个电阻实际并不存在。

(2)在更换应变片时应关闭电源。

(3)实验过程中如发现电压表过载,应将量程扩大。

(4)接入全桥时,请注意区别各应变片的工作状态,桥路原则是:对臂同性,邻臂异性。

(5)直流电源不可随意加大,以免损坏应变片。

实验步骤:(1)直流电源旋在±2V档。

F/V表置于2V,差动放大器增益打到最大。

(2)观察梁上的应变片,转动测微头,使梁处于水平位置(目测),接通总电源及副电源。

放大器增益旋至最大。

(3)差动放大器调零,方法是用导线将放大器正负输入端与地连接起来,输出端接至F/V表输入端,调整差动放大器上的调零旋钮,使表头指示为零。

(4)根据图1的电路,利用电桥单元上的接线和调零网络连接好测量电路。

图中r及w1为调平衡网络,先将R4设置为工作片。

(5)直流电源打到±4V,调整电桥平衡电位器使电压表为零(电桥调零)。

(6)测微头调整在整刻度(0mm)位置,开始读取数据。

图1 应变片直流电桥电路(8)保持差动放大器增益不变,将R3换为与R4工作状态相反的另一个应变片,形成半桥电(9)保持差动放大器增益不变,将R1、R2两个电阻换成另外两个应变片,接成一个直流全1 2 3 4 5 6 7 8 9 10X(mm)V (mv)(10)观察正反行程的测量结果,解释输入输出曲线不重合的原因。

(11)在同一坐标上描绘出X—V曲线,比较三种接法的灵敏度。

思考题1.根据X—V曲线,计算三种接法的灵敏度K=∆V/∆X,说明灵敏度与哪些因素有关?2.根据X—V曲线,描述应变片的线性度好坏。

3.如果相对应变片的电阻相差很大会造成什么结果,应采取怎样的措施和方法?4.如果连接全桥时应变片的方向接反会是什么结果,为什么?2.霍尔式传感器、霍尔传感器的直流激励特性霍尔元件的结构中,矩型薄片状的立方体称为基片,在它的两侧各装有一对电极。

山东大学测试技术实验指导书

山东大学测试技术实验指导书

实验一信号分析一、实验目的1.掌握信号时域参数的识别方法,学会从信号时域波形中观察和获取信号信息。

2.加深理解傅立叶变换的基本思想和物理意义,熟悉典型信号的频谱特征,掌握使用频谱分析提取测量信号特征的方法。

3.理解信号的合成原理,观察和分析由多个频率、幅值和相位成一定关系的正弦波叠加的合成波形。

4. 初步了解虚拟仪器的概念。

二、实验原理1.信号时域分析信号时域分析又称为波形分析或时域统计分析,它是通过信号的时域波形计算信号的均值、均方值、方差等统计参数。

信号的时域分析很简单,用示波器、万用表等普通仪器就可以进行分析。

通过本实验熟悉时域参数的识别方法,能够从信号波形中观测和读取所需的信息,也就是具备读波形图的能力。

2信号频谱分析信号频谱分析是采用傅里叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。

频谱是构成信号的各频率分量的集合,它完整地表示了信号的频率结构,即信号由哪些谐波组成,各谐波分量的幅值大小及初始相位,揭示了信号的频率信息。

信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。

工程上习惯将计算结果用图形方式表示,以频率f为横坐标,X(f)的实部和虚部为纵坐标画图,称为时频-虚频谱图;以频率f为横坐标,X(f)的幅值。

和相位为纵坐标画图,则称为幅值-相位谱。

附:软件介绍机械工程测试实验程序是以LabVIEW为平台开发的虚拟仪器软件,程序包含了信号分析、信号合成、采样定理、窗函数、相关分析等子程序。

程序可以按照设定的信号类型、频率、相位等参数生成仿真信号,并可以对生成的信号进行频谱分析、信号合成、滤波等操作。

波形可以通过显示窗口中呈现出来(如图1-1所示)。

图1-1波形显示缩放的操作坊法在显示窗口中的工具栏,可以对窗口中的波形现实进行调整。

1 拖动工具:用来对波形进行拖动;2 缩放工具:来实现对波形的多种形式的缩放,此包括图1-2所示的选择项。

拉力试验作业指导书

拉力试验作业指导书

拉力试验作业指导书标题:拉力试验作业指导书引言概述:拉力试验是一种常见的材料力学性能测试方法,通过施加拉力来测试材料的拉伸性能。

本文将详细介绍拉力试验的作业指导书,帮助读者了解如何正确进行拉力试验。

一、试验前准备1.1 确定试验目的:在进行拉力试验前,首先需要明确试验的目的,是为了评估材料的拉伸性能还是进行其他性能测试。

1.2 准备试验材料:根据试验目的选择合适的材料进行试验,确保材料的质量符合要求。

1.3 检查试验设备:在进行拉力试验前,需要检查试验设备是否完好,确保设备能够正常工作。

二、试验操作步骤2.1 安装试验样品:将试验样品固定在拉力试验机上,确保样品的位置正确,避免出现偏差。

2.2 设置试验参数:根据试验要求设置拉力试验机的参数,包括拉力速度、试验温度等。

2.3 开始试验:启动拉力试验机,开始施加拉力,记录拉力和变形数据,直到试验结束。

三、数据处理与分析3.1 处理试验数据:在试验结束后,需要将试验过程中记录的拉力和变形数据进行处理,计算拉伸强度、屈服强度等指标。

3.2 分析试验结果:根据试验数据分析材料的拉伸性能,评估材料的强度和韧性。

3.3 撰写试验报告:根据试验结果撰写试验报告,包括试验目的、方法、结果和结论等内容。

四、注意事项4.1 安全第一:在进行拉力试验时,要注意安全问题,避免发生意外事故。

4.2 保持设备干净:定期清洁试验设备,保持设备的良好状态,确保试验结果的准确性。

4.3 遵守规定:在进行拉力试验时,要遵守相关的试验标准和规定,确保试验结果的可靠性。

五、实验结果应用5.1 优化材料设计:通过拉力试验的结果,可以优化材料的设计,提高材料的性能。

5.2 质量控制:拉力试验可以用于质量控制,检验材料的质量是否符合标准要求。

5.3 研究材料性能:拉力试验是研究材料力学性能的重要方法,可以为材料研究提供重要数据。

结论:拉力试验作业指导书是进行拉力试验的重要参考资料,正确的操作流程和注意事项能够保证试验结果的准确性和可靠性。

测试技术实验指导书

测试技术实验指导书

实验一光电感测传感器性能实验一、实验目的了解光敏晶体管、光遮断器的特性二、实验仪器设备1、KL-62001 实验器。

2、模板KL-64001,KL-64002,KL-64003。

3、连接线2mm-0.65mm。

4、附件:小磁铁三、实验电路原理说明(一)、光电晶体光控电路本电路由光电晶体所构成的光控开关电路。

当光电晶体不受光时,C、E 两端为截止状态,因此输出端为高电位。

当受光时,受光强度的大小,输出电压随之做大小变化。

(二)、光遮断器当光遮断器的检测口没有物体通过时,发光二极管加一偏压,产生一光源,此一光源,照射光电晶体,集电极电流变大,使集电极电位(Vo)下降。

一旦光束被检测物阻断时,光电晶体的集电极电路下降,集电极电压(Vo)上升。

利用集电极电压的高低变化,并将输出波形加以调整,即可侦测物体的有无。

四、实验步骤与记录(一)、光电晶体1、依图所示,取出KL-64001 模板的PHOTO TRANSISTOR 区域。

2、输出Vo1 端接KL-62001 STATUS DISPLAY & DCV INPUT 正端,接地接INPUT 负端。

3、KL-62001 接线图4、将KL-62001 主机的电源打开,此时显示器应亮。

5、将KL-62001 STATUS DISPLAY & DCV MODE 选在DCV,RANGE 定在20V。

6、当光电晶体不受光时(用手将光电晶体的受光面遮住),量测Vo1 端的电压值,记录。

7、当光电晶体受光时(以日光灯直射时),量测Vo1 端的电压值,记录。

8、光源打开,移动光电晶体与光源的距离,记录。

距离 0cm 5cm 10cm 15cm 20cm 30cm 40cm 50cmVo1(二)、光遮断器1、依图所示,找出KL-64001 模板的PHOTO INTERRUPTOR 区域。

Vo2 端接至KL-62001 STATUS DISPLAY & DCV INPUT 正端,接地端接至INPUT 负端。

《光学测试技术》实验指导书-深圳大学光电工程学院

《光学测试技术》实验指导书-深圳大学光电工程学院
斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究 它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、 对比度和散斑运动规律等特点的认识。
图1
光散斑的产生(图中为透射式,也可以是反射式的情形)
图 1 说明激光散斑具体的产生过程。当激光照射在粗糙表面上时,表面上的每 一点都要散射光。因此在空间各点都要接受到来自物体上各个点散射的光,这些光 虽然是相干的,但它们的振幅和位相都不相同,而且是无规分布的。来自粗糙表面 上各个小面积元射来的基元光波的复振幅互相迭加,形成一定的统计分布。颗粒的 大小,可用它的平均直径来表示,而颗粒尺寸的严格定义是两相邻亮斑间距离 的
铜片散斑图
铝片散斑图
3
实验二 面内位移的散斑测量实验
一、 实验目的 1. 掌握散斑测量平面位移的基本原理 2. 进行面内位移的散斑测量, 二、 实验原理 当物体发生位移时,引起前方空间散斑场分布的变化,通过测量散斑场的变 化,从而得 到物体位移的相关信息。测量面内位移的原理见图 1。实际测量时, 以单束激光 S 照射物体 U 的表面,在物体前方空间将充满散斑,取相机靶面平行 物平面的位置。当物体发生位移时,空间散斑颗粒也发生位移,则空间散斑在数字 相机靶面上也同样发生位移,在电脑中分别记录下物体位移前后的空间散斑图。在 位移前散斑图上,取散斑某子区,将其在位移后的数字散斑图上进行相关搜索,由 相关系数的最大值求出位移值。 对散斑测量形成定性认识
1
统计平均值。 此值由产生散斑的激光波长λ及粗糙表面圆形照明区域对该散斑的孔 径角 u’所决定,即 若经过一个光学系统,在它的像平面上形成的散斑,称为成像散斑,则
在斑干涉技术中,常常应用成像散斑来进行测量。 散斑的基本性质: 1. 散斑与均匀场的相干结合,散斑图与相应的单独散斑图分布差别不大,只 是全暗光斑较少一些 2. 散斑与均匀场的不相干叠加,没有全暗散斑 3. 两个散斑场的相干相加,散斑的大小没有明显变化 4. 两个散斑场的非相干相加,没有全暗光斑 三、 实验器材 光电实验平台、电脑 四、 实验光路图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测试技术实验指导书封士彩编徐州师范大学机电工程学院目录实验一信号频谱分析实验 (2)实验二悬臂梁固有频率测试实验 (7)实验一信号频谱分析实验一、实验目的1.熟悉典型信号的波形和频谱特征,从信号中读取所需的信息。

2.了解信号频谱分析的基本方法及仪器设备。

3.训练制定方案和如何选择仪器的能力。

二、实验设备和工具1.信号发生器及信号采集分析软件。

2.计算机、打印机。

三、实验内容本实验利用采集分析软件和信号发生器对信号进行频谱分析。

由信号发生器产生多种典型波形信号,通过对该信号进行数据采集和频谱分析,得到信号的频谱特性数据。

分析结果用图形在计算机上显示出来,也可通过打印机打印出来。

四、实验原理1.典型信号极其频谱分析的作用正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。

2.频谱分析的方法频谱是构成信号的各频率分量的集合,它完整地表示了信号的频率结构,即信号由哪些谐波组成,各谐波分量的幅值大小及初始相位,从而揭示了信号的频率信息。

信号的频谱可分为幅值谱、功率谱、对数谱等。

对信号作频谱分析的设备主要是频谱分析仪或软件,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。

模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时-频关系转换分析。

3.周期信号的频谱分析周期信号是经过一定时间可以重复出现的信号,满足条件:x (t )=x(t+nT),从数学分析已知,任何周期函数在满足狄利克利(Dirichlet )条件下,可以展开成正交函数线性组合的无穷级数,通常有实数形式表达式:∑∑∞=∞=-+=++=1001000)]cos([)]sin()cos([)(n n n n n n t n A a t n b t n a a t x ϕωωω直流分量幅值为:⎰-=2/2/0)(1T T dt t x T a22n n n b a A +=各频率分量的相位为:n nn a b arctg =ϕ各余弦分量幅值为:⎰⎰--==2/2/02/2/0)2cos()(2)cos()(2T T T T n dt t nf t x T tdt n t x T a πω各正弦分量幅值为:⎰⎰--==2/2/02/2/0)2sin()(2)sin()(2T T T T n dt t nf t x T dt t n t x T b πω4.非周期信号的频谱分析非周期信号是在时间上不会重复出现的信号,一般为时域有限信号,具有收敛可积条件,其能量为有限值。

这种信号的频域分析手段是傅立叶变换。

傅立叶变换是信号频谱分析中常见的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值,从而帮助人们从另一个角度来了解信号的特征。

时域信号x (t )的傅氏变换为:ωωπωd e X t x t j ⎰∞∞-=)(21)(dt e t x X t j ωπω-∞∞-⎰=)(21)(5.频谱分析的应用频谱分析主要用于识别信号中的周期分量,是信号分析中最常用的一种手段。

如在机床齿轮箱故障诊断中,可以通过测量齿轮箱上的振动信号,进行频谱分析,确定最大频率分量,然后根据机床转速和传动链,找出故障齿轮。

再例如,在螺旋桨设计中,可以通过频谱分析确定螺旋桨的固有频率和临界转速,确定螺旋桨转速工作范围。

五、实验步骤1.由信号发生器产生一组正弦波形。

2.由信号发生器产生一组三角波形。

3.由信号发生器产生一组方波波形。

4.由信号发生器产生一组随机波形。

5.对所采集的正弦波、三角波、方波和随机波形信号进行频谱分析。

信号频谱分析实验报告班级 ____________姓名____________学号____________同组实验人姓名________________实验日期___________一、实验记录二、实验分析三、思考题1.典型信号有哪些?在时域上如何表示?2.典型信号的频谱有何特征?3.信号的频谱分析有何意义?4.联系工程实际举例说明信号频谱分析的应用。

成绩评定_____________ 指导教师___________实验二 悬臂梁固有频率测试实验一、实验目的掌握用共振法及不同的相位差合成李萨育图形法测量振动系统的固有频率,理解固有频率的工程意义,加深了解常用简单振动测试仪器的使用方法。

二、实验设备和工具1.机械振动综合实验装置(安装双简支梁) 1套2.激振器及功率放大器 1套3.加速度传感器 1台4.电荷放大器 1台5.数据采集仪 1台6.信号分析软件 1套三、实验内容1.用共振法测量简支梁固有频率共振法测量振动系统的固有频率是比较常用的方法之一。

共振是指当激振频率达到某一特定值时,振动量的振动幅值达到极大值的现象。

由弹性体振动理论可知,计算简支梁固有频率理论解为:APEJ L f 20115.49 式中,L 为简支梁长度(cm );E 为材料弹性系数(kg/cm 2);A 为梁横截面积(cm 2);P 为材料比重(kg/cm 3);J 为梁截面弯曲惯性矩(cm 4)。

用共振法测量双简支梁固有频率的仪器连接如图1所示。

图1 测量双简支梁固有频率框图2.用李萨育图形法测量简支梁固有频率李萨育图形是由运动方向相互垂直的两个简谐振动的合成运动轨。

李萨育图形可以通过示波器或数据采集软件的X-Y轨迹图观察到。

在图的X、Y轴上同时输入简谐振动两个信号,这两个信号不同的相位差合成不同的李萨育图形如图2所示。

振动的位移、速度及加速度的幅值其各自达到极大值时频率是不同的,只有在无阻尼的情况下,它们频率才相等,并且等于振动系统的固有频率。

但在弱阻尼的情况下,三种共振频率接近系统的固有频率。

只有速度共振频率真正和固有频率相等,所以用速度共振的相位差判别共振。

判别依据是系统发生速度共振时,激振力和速度响应之间的相位差为90°,依据位移、速度、加速度响应判断速度共振的李萨育图形如图3~5所示。

θ=00θ=45θ=900 θ=1350 θ=1800 图2 不同相位差信号合成的李萨育图形n ωω< n ωω= n ωω>图3用位移响应判断速度共振n ωω< n ωω= n ωω>图4用速度响应判断速度共振n ωω< n ωω= n ωω>图5用加速度响应判断速度共振四、实验原理固有频率是振动系统的一项重要参数。

它取决于振动系统结构本身的质量、刚度及其分布,是结构本身固有特性之一。

确定系统的固有频率的方法很多,比较方便又便于测试的方法有自由振动法、强迫振动法和李萨育图形法。

1.自由振动法(自由衰减振动法)图6振动测试系统框图用敲击法给系统一初始扰动,使系统产生一个自由振动,同时记录下振动波形,便可求的系统的固有频率0ω。

对于单自由度系统,其振动力学模型如图6所示。

用敲击法给系统(质量m )一初始扰动,系统作自由衰减振动,其运动微分方程为:0'''=++Kx x c x m02'2''0=++x n x x ω0202''0=++x x x ξωω 其中:0ω为系统的固有频率 m /K 20=ω;n 为衰减系数 2n=C/m ;ξ为阻尼比0/n ωξ=。

当1<ξ(小阻力)时,上方程的解为:)sin(Φ+=-t Ae x d nt ω式中:A 为振动振幅;Φ为初相位d ω为有阻尼衰减振动圆频率。

220nd ωωω-= 可见,用自由振动法测出的系统的固有频率,略小于实际的固有频率,当阻尼很小时,两者是很接近的。

2.强迫振动法(共振法)利用激振器对被测系统施以简谐激励力,使系统产生强迫振动,然后连续改变激振频率,进行连续的激振扫描,当激振力的频率与系统的固有频率接近时,系统即产生共振。

因此,只要逐渐调节激振频率,同时测定系统的幅值,绘出幅值和频率的关系曲线(即幅频特性曲线),曲线上各峰值点所对应的频率,就是系统的各阶固有频率。

单自由度系统,在简谐激励力的作用下,系统作简谐强迫振动,设激励力F 的幅值F 0,固有频率0ω,系统的微分方程为:t F x c kx x m ωsin 0'''=++m t F nx x x /sin 2020''ωω=++m t F x x x /sin 20020''ωξωω=++ 式中:0ω为系统的固有频率 m /K 20=ω;n 为衰减系数 2n=C/m ;ξ为阻尼比 0/n ωξ=。

上述方程的特解为:)sin(φω-=t B x式中:B 为强迫振动振幅;φ为初相位))2()1(*/()()(/22202220ξλλωω+-=+-=k F c m K F B式中:λ为频率比 0/ωωλ=上式叫系统的幅频特性,将上式所表示的振动幅值与激励频率的关系用图形表示,称为幅频特性曲线,如图7所示。

振幅最大时的频率叫做共振频率n ω。

有阻尼时,共振频率为:20n 21ξωω-=但在实际中,ξ往往比较小,故一般认为n 0ωω=。

需要注意的是:固有频率是由系统本身的参数所确定的,而共振频率是指振动系统产生共振时,外来强迫信号的频率,而且由于测量的振动参数不同,存在着位移共振、速度共振、加速度共振三种情况。

根据在共振频率下激振时,振动的幅值最大的原理,可分别求得位移共振频率、速度共振频率及加速度共振频率,它们与系统固有频率ω之间的关系见表1。

图7幅频特性曲线表1 不同振动形式系统的固有频率由表1可知,在有阻尼情况下,只有速度共振时,测得的速度共振频率是系统的无阻尼固有频率,所以在测量中,用速度幅值。

五、实验步骤1.用共振法测量双简支梁固有频率的实验步骤为:(1)将激振器通过顶杆连接到双简支梁(注意确保顶杆与激振器的中心线在一直线上),激振点位于双简支梁中心偏左50mm处(已有安装螺孔),将信号发生器输出端连接到功率放大器的输入端,并将功率放大器与激振器相连接。

(2)用双面胶(或传感器磁座)将加速度传感器粘贴在双简支梁上(中心偏左50mm)并与电荷放大器连接,将将电荷放大器输出端分别与数据采集仪输入端连接。

(3)将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源,设置信号发生器输出频率10Hz,调节信号发生器的幅值旋钮使其输出电压为2V。

调节功率放大器的幅值旋钮,逐渐增大其输出功率直至双简支梁有明显的振动(用眼观察或用手触摸)。

相关文档
最新文档