多目标规划建模
基于混合整数线性规划的多目标物流路径规划数学建模
基于混合整数线性规划的多目标物流路径规划数学建模多目标物流路径规划是指在满足多个目标的前提下,确定物流运输网络中各个节点之间的最佳路径和运输量。
在实际生产和配送过程中,物流路径规划的优化对于提高物流效率和降低物流成本具有重要意义。
本文将介绍基于混合整数线性规划的多目标物流路径规划数学建模方法。
首先,我们需要明确多目标物流路径规划的目标。
一般来说,物流路径规划需要同时满足以下多个目标:最短路径、最小成本、最小运输时间、最小能源消耗、最小污染排放等。
在实际问题中,可能还会根据具体需求提出其他目标。
我们将这些目标定义为优化目标函数。
其次,我们需要建立多目标物流路径规划的数学模型。
多目标规划中,常用的方法是加权法。
即将每个目标根据其重要性分配一个权重,然后将多个目标函数线性组合成一个总目标函数。
以最短路径和最小成本为例,假设分别对应的权重为w1和w2,则总目标函数可以表示为Z = w1 * f1 + w2 * f2,其中f1和f2分别表示最短路径和最小成本的目标函数。
在建立目标函数之后,我们需要确定决策变量,即模型中需要优化的变量。
在物流路径规划中,常用的决策变量包括运输路径、运输量、起点和终点等。
我们可以使用二维矩阵表示网络节点之间的路径,使用变量x[i,j]表示节点i到节点j的路径是否存在。
同时,使用变量y[i,j]表示节点i到节点j的运输量。
接下来,我们需要定义约束条件,以限制变量的取值范围。
常见的约束条件包括物流路径一致性条件、运输量限制条件、起点和终点限制条件等。
例如,路径一致性条件可以表示为sum(x[i,j]) = 1,即每个节点只能有一条进出路径。
运输量限制条件可以表示为y[i,j] <= C[i,j],即运输量不能超过节点i到节点j的最大运输能力。
最后,我们可以使用混合整数线性规划求解器对建立的多目标物流路径规划模型进行求解。
求解过程中,需要根据具体情况设置目标函数权重和约束条件,并根据求解结果进行调整和改进。
最优化之多目标规划
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即
max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即
pixi
交易费 =
xi>ui xi≤ui
piui
而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(ri-pi)xi
max i i
i 1 k
i ( x1 , x2 , xn ) gi ( i 1,2,, m)
式中, i 应满足: 向量形式:
i 1
i 1
k
max T
s.t . ( X ) G
方法二 罚款模型(理想点法)
思想: 规划决策者对每一个目标函数都能提出所期望的值 (或称满意值);
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
方法一
效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效
一、问题提出 市场上有 n 种资产 s i (i=1,2……n)可以选择,现用数额为 M 的相当大的资金作一 个时期的投资。这 n 种资产在这一时期内购买 s i 的平均收益率为 ri ,风险损失率为 qi , 投资越分散,总的风险越小,总体风险可用投资的 s i 中最大的一个风险来度量。
pi ),当购买额不超过给定值 u i 时,交易费按购买 u i 计算。另外,假定同期银行存款利率是 r0 ,既无交易费又无风险。 r0 =5%) (
救援车辆多目标实时路径规划模型
救援车辆多目标实时路径规划模型1. 引言1.1 背景救援车辆多目标实时路径规划模型是一种应用于救援行业的关键技术,可以帮助救援车辆在紧急情况下高效地到达多个目标地点。
随着城市化进程的加快,交通拥堵、交通事故等问题也日益严重,给救援工作带来了很大挑战。
传统的路径规划方法往往只考虑单一目标的情况,无法很好地适应多目标的复杂情况。
研究救援车辆多目标实时路径规划模型具有重要意义。
通过优化路径规划,可以有效减少救援车辆的行驶时间,提高救援效率,减少损失。
该模型还可以帮助救援人员更好地协调救援工作,提高应对突发事件的能力。
在当前科技发展迅速的背景下,利用先进的算法和技术,研究救援车辆多目标实时路径规划模型,不仅可以提升救援工作的效率和质量,还可以为相关研究领域提供更深入的探索和应用。
对于救援车辆多目标实时路径规划模型的研究具有重要的现实意义和实用价值。
1.2 研究目的【研究目的】:救援车辆多目标实时路径规划模型的研究目的主要包括以下几个方面:1. 提高救援效率:通过设计合理的路径规划模型,能够有效提高救援车辆的调度效率和行驶效率,使得救援车辆能够更快速地到达事故或灾害现场,从而最大程度地减少伤亡和财产损失。
2. 优化资源配置:通过准确的路径规划,可以避免资源浪费和重复调度,实现资源的最优配置,提高救援效率同时降低成本。
3. 提高道路使用效率:救援车辆需要快速通行道路,而路况的复杂多变性可能会导致交通拥堵和延误。
设计合理的路径规划模型可以提高道路的使用效率,减少交通拥堵和延误。
4. 兼顾多目标需求:救援车辆在执行任务时可能需要兼顾多个目标,如尽快到达现场、避免拥堵、保证交通安全等。
本研究旨在设计一种能够充分考虑多目标需求的路径规划模型,以提高救援车辆的整体执行效率和综合效益。
1.3 研究意义救援车辆多目标实时路径规划模型的研究意义在于提高救援工作的效率和准确性。
随着人口的增多和城市的发展,在应对突发事件时需要救援车辆快速到达事发现场并进行救援操作。
多目标优化方法
多目标优化方法在现实生活和工作中,我们常常需要面对多个目标同时进行优化的情况。
比如在生产过程中需要考虑成本和质量的双重优化,或者在个人发展中需要兼顾事业和家庭的平衡。
针对这样的多目标优化问题,我们需要运用一些有效的方法来进行处理。
首先,我们可以考虑使用加权法来进行多目标优化。
加权法是一种简单而直观的方法,它通过为每个目标设定权重,然后将各个目标的值乘以对应的权重,最后将加权后的值相加得到一个综合指标。
这样一来,我们就可以将多个目标转化为单一的综合指标,从而方便进行优化决策。
当然,在使用加权法时,我们需要注意权重的确定要充分考虑到各个目标的重要性,以及权重的确定要充分考虑到各个目标的重要性,以及权重之间的相对关系,避免出现权重设置不合理导致优化结果不准确的情况。
其次,我们可以采用多目标规划方法来进行优化。
多目标规划是一种专门针对多目标优化问题的数学建模方法,它可以帮助我们在考虑多个目标的情况下,找到一组最优的决策方案。
在多目标规划中,我们需要将各个目标之间的相互影响考虑在内,通过建立数学模型来描述各个目标之间的关系,然后利用多目标规划算法来求解最优解。
多目标规划方法可以帮助我们充分考虑各个目标之间的平衡和权衡关系,从而得到更为合理的优化结果。
此外,我们还可以考虑使用进化算法来进行多目标优化。
进化算法是一种模拟生物进化过程的优化方法,它通过不断地演化和迭代,逐步优化出最优的解决方案。
在多目标优化问题中,我们可以利用进化算法来搜索出一组最优的解决方案,从而实现多个目标的同时优化。
进化算法具有较强的全局搜索能力和较好的鲁棒性,适用于复杂的多目标优化问题。
综上所述,针对多目标优化问题,我们可以运用加权法、多目标规划方法和进化算法等多种方法来进行处理。
在实际应用中,我们需要根据具体问题的特点和要求,选择合适的方法进行处理,以达到最佳的优化效果。
希望本文所介绍的方法能为大家在面对多目标优化问题时提供一些帮助和启发。
数学建模多目标规划函数fgoalattain
MATLAB 中文论坛讲义多目标规划优化问题Matlab 中常用于求解多目标达到问题的函数为fgoalattain.假设多目标函数问题的数学模型为:ubx lb beqx Aeq bx A x ceq x c goalweight x F t s yx ≤≤=≤=≤≤-**0)(0)(*)(..min ,γγ weight 为权值系数向量,用于控制对应的目标函数与用户定义的目标函数值的接近程度; goal 为用户设计的与目标函数相应的目标函数值向量;γ为一个松弛因子标量;F(x)为多目标规划中的目标函数向量。
综上,fgoalattain 的优化过程就是使得F 逼近goal;工程应用中fgoalattain 函数调用格式如下:[x,fval]=fgoalattain (fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)x0表示初值;fun 表示要优化的目标函数;goal 表示函数fun 要逼近的目标值,是一个向量,它的维数大小等于目标函数fun 返回向量F 的维数大小;weight 表示给定的权值向量,用于控制目标逼近过程的步长;例1. 程序(利用fgoalattain 函数求解)23222123222132min )3()2()1(min x x x x x x ++-+-+-0,,6..321321≥=++x x x x x x t s①建立M 文件.function f=myfun(x)f(1)= x(1)-1)^2+(x(2)-2)^2+(x(3)-3)^2;f(2)= x(1)^2+2*x(2)^2+3*x(3)^2;②在命令窗口中输入.goal=[1,1];weight=[1,1];Aeq=[1,1,1];beq=[6];x0=[1;1;1];lb=[0,0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun’,x0,goal,weight,[ ],[ ],Aeq,beq,lb,[ ])③得到结果.x =3.27271.63641.0909fval =8.9422 19.6364例2.某钢铁公司因生产需要欲采购一批钢材,市面上的钢材有两种规格,第1种规格的单价为3500元/t ,第2种规格的单价为4000元/t.要求购买钢材的总费用不超过1000万元,够得钢材总量不少于2000t.问如何确定最好的采购方案,使购买钢材的总费用最小且购买的总量最多.解:设采购第1、2种规格的钢材数量分别为1x 和2x .根据题意建立如下多目标优化问题的数学模型.0,200010000040003500max 40003500)(min212121211≥≥+≤++=x x x x x x x x x f ①建立M 文件. 在Matlab 编辑窗口中输入:function f=myfun(x)f(1)= 3500*x(1)+4000*x(2);f(2)=-x(1)-x(2);②在命令窗口中输入.goal=[10000000,-2000];weight=[10000000,-2000];x0=[1000,1000];A=[3500,4000;-1,-1];b=[10000000;-2000];lb=[0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun ’,x0,goal,weight,A,b,[ ],[ ],lb,[ ])③得到结果.x =1000 1000fval =7500000 -2000。
多目标规划(运筹学
环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。
数学建模-数学规划模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
数学建模多目标规划
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
4 5 6 7 8 9
∗ ∗ ∗
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7 Z − 0.3W
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件 先修课程要求 x3=1必有x1 = x2 =1
∗ 1 ∗ 2 ∗ 3 ∗ ∗ ∗
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
2023年数学建模c题讲解
2023年数学建模c题讲解
2023年数学建模C题涉及数学建模的多个领域,包括线性规划、整数规划、动态规划、多目标规划、预测问题和评价问题等。
1. 线性规划:如果目标函数和约束条件都是线性函数,则该问题属于线性规划。
线性规划是数学规划的一个重要分支,用于解决资源分配和优化问题。
2. 整数规划:在数学规划中,如果规划中的变量(全部或部分)限制为整数,则称为整数规划。
整数规划问题在现实生活中有着广泛的应用,如生产计划、物流调度等。
3. 动态规划:动态规划是一种解决优化问题的数学方法,适用于处理具有重叠子问题和最优子结构的问题。
动态规划可以解决背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题等。
4. 多目标规划:多目标规划是数学规划的一个分支,用于解决具有多个目标函数的优化问题。
在多目标规划中,需要权衡多个目标之间的矛盾和冲突,寻求最优解。
5. 预测问题:预测问题是数学建模中的一个重要问题,用于根据历史数据和相关因素预测未来的趋势和结果。
常用的预测方法包括回归分析、时间序列分析等。
6. 评价问题:评价问题是数学建模中的另一个重要问题,用于对方案、系统或项目进行评估和比较。
常用的评价方法包括层次分析法、优劣解距离法等。
针对2023年数学建模C题的具体要求和数据,需要结合以上数学建模领域的知识和方法进行分析和建模。
具体解题思路和步骤需要根据题目要求和数据特点进行详细规划和实施。
大学生数学建模--多目标规划建模
多目标规划问题的求解
一般来说,其基本途径是,把求解多目标问题转化为 求解单目标问题. 然后利用单目标模型的方法,求出 单目标模型的最优解,以此作为多目标问题的解.
下面,我们介绍几种主要的转化方法: • 线性加权和法 • 理想点法 • 极大极小法 • 主要目标法
多目标规划问题的求解
hj(X) 0
X (x1, x2 ,...., xn ) 为决策变量
如对于求极小(min)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≤ F(X) 有效解:若不存在X,使得F(X*)≥F(X)且有一至少一个
fi0 (x) fi0 (x*)
2、多目标优选问题的模型结构
多目标规划模型
基本内容:
1、多目标规划的基本概念 2、多目标规划的问题的特征 3、多目标规划的求解方法 4、目标规划模型 5、应用实例模型.
一、多目标的基本概念
多目标的问题:在现实生活中,决策的目标往往 有多个,例如,对企业产品的生产管理,既希望达到高 利润,又希望优质和低消耗,还希望减少对环境的污 染等.这就是一个多目标决策的问题. 。
二、多目标规划问题的分类
一般来说,多目标规划问题有两类.一类是多 目标规划问题,其对象是在管理决策过程中求解 使多个目标都达到满意结果的最优方案.另一类 是多目标优选问题,其对象是在管理决策过程中 根据多个目标或多个准则衡量和得出各种备选 方案的优先等级与排序.
三、多目标规划问题的求解
多目标决策由于考虑的目标多,各目标之间的矛盾性 和不可公度性,这就使多目标问题成为一个复杂而困 难的问题.所谓矛盾性是指采用某种方案去改进一个 目标的同时,可能会使另一个目标值变劣。而目标 间的不可公度性是指各目标间一般没有统一的度量 标准,因而不能直接进行比较和运算。但由于客观 实际的需要,多目标决策问题越来越受到重视,因而 出现了许多解决此决策问题的方法.
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模四大模型归纳
四类基本模型1优化模型1.1数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2微分方程组模型阻滞增长模型、SARS传播模型。
1.3图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。
1.5组合优化经典问题多维背包问题(MKP)背包问题:n个物品,对物品i,体积为W i,背包容量为W。
如何将尽可能多的物品装入背包。
多维背包问题:n个物品,对物品i,价值为P i,体积为W i,背包容量为W。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP难问题。
二维指派问题(QAP)工作指派问题:n个工作可以由n个工人分别完成。
工人i完成工作j的时间为d j。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n台机器要布置在n个地方,机器i 与k之间的物流量为f ik,位置j与l之间的距离为d jl,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d ij,找一条经过n个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
【数学建模】多目标规划
≥
绝对最优解=有效解
有效解= 弱有效解
定义3 像集F(R)={F(x)|x∈R}ÅÆ约束集R在映像F之下的值域 F*是有效点 ÅÆ不存在F∈F(R), 使得F≤F*; F *是弱有效点ÅÆ 不存在F∈F(R), 使得F<F;
f2
f2
f2 *
f1
f1 *
f2
f2 * f1 *
f2 *
f1 *
有效点
f1
fj(X )
j = 1,2,L, p
定义评价函数:
∑ ( ) h(F ( X )) = h( f1,L, f p ) =
p j =1
fj(X)− fj * 2
求解非线性规划问题: min h(F ( X )) X∈D 原理:距理想点最近的点作为最优解!
多目标规划的基本解法
4. 评价函数法——这是一种最常见的方法,就是用一个评价 函数来集中反映各不同目标的重要性等因素,并极小化此评价 函数,得到问题的最优解。常见的以下几种方法:
4.1 理想点法:
{ } V- min X ∈D
f1(X ), f2 (X ),L, f p (X )
⇒
f j*
=
min
X∈D
宽容值ε>0, 即此 目标值再差ε也是 可接受的!
缺点:当前面的问题最优解唯
一时,后面的求解失去意义!
多目标规划的基本解法
3. 功效系数法——对不同类型的目标函数统一量纲,分别得
到一个功效系数函数,然后求所有功效系数乘积的最优解。例
如:
{ } V- min X∈D
f1 (X ), f2 (X ),L, f p (X )
主要目标的最优值。
{ } V- min X ∈D
lingo-多目标规划模型
在生产系统、工程系统、社会经济系统中, 多目标决策问题更是屡见不鲜。比如在炼油厂的 生产计划中,基本的决策问题是如何根据企业的 外部环境与内部条件,制定出具体的作业计划。 该计划应能使企业的各种主要的经济指标达到预 定的目标。这些指标包括:利润、原油量、成本、 能耗等。其他企业一般也有类似的多目标计划决 策问题。 多目标决策问题有两个共同的特点,即各目 标的不可公度性和相互之间的矛盾性。所谓目标 的不可公度性指各目标之间没有统一的量纲,因 此难以作相互比较。
多目标决策问题的案例及特点 我们介绍两个日常生活中常见的决策问题。第 一个是顾客到商店购买衣服。对于顾客而言,购买 衣服就是一个决策问题,顾客本人是决策者,各种 各样的衣服是行动方案集。该决策问题的解就是顾 客最终买到一件合适的衣服(或选择一个满意的方 案)。那么,一件衣服(即一个方案)合适否(满 意否)应该根据几个指标来评价,比如衣服的质量、 价格、大小、式样、颜色等。 因此,顾客购买衣服的问题是多目标决策问题。 又如,公务人员外出办事总要乘某种交通工具。这 也是一个决策问题,决策者是公务员,备选方案是 可利用的交通工具。公务员为了选择合适的交通工 具,需要考虑几个指标,比如:时间、价格、舒适 性、方便程度等。显然这也是一个多目标决策问题。
图5
d 对应于第三优先等级,将 1 =0,d 2 6 作为约束条件,建立
线性规划问题:
min z d 3 10x1 15x2 d1 d1 40 x x d d 1 2 2 2 10 x2 d 3 d 3 7 s.t. d1 0, d 2 6 x , x , d , d 1 2 j j 0, j 1,2,3
由于模型的不准确性和单一目标的片面性,这 种所谓最优的方案并不一定是决策者满意的。自然, 用这种最优方案作为决策者的最终决策具有强迫性 质,往往难以为决策者接受。另一方面,多目标方 法向决策者提供经过仔细选择的备选方案(多种方 案)。这样使得决策者有可能利用自己的知识和经 验对这些方案进行评价和判断,从中找出满意方案 或给出偏好信息以及寻找更多的备选方案。 概括起来,多目标决策方法处理实际决策问题 有三个方面的优点:(1)加强了决策者在决策过程 中的作用;(2)可以得到范围更为广泛的备选决策 方案;(3)决策问题的模型和分析者对问题的直觉 将更加现实。
数学模型之数学规划模型
多目标规划模型的应用案例
资源分配问题
投资组合优化
在有限的资源条件下,如何分配资源 以达到多个目标的优化,如成本、质 量、时间等。
在风险和收益的权衡下,如何选择投 资组合以达到多个目标的优化,如回 报率、风险分散等。
生产计划问题
在满足市场需求和生产能力限制的条件 下,如何制定生产计划以达到多个目标 的优化,如利润、成本、交货期等。
整数规划模型的应用案例
总结词
整数规划模型在生产计划、资源分配、物流优化等领域有广泛应用。
详细描述
在生产计划领域,整数规划模型可以用于安排生产计划、优化资源配置和提高生产效率。在资源分配 领域,整数规划模型可以用于解决资源分配问题,例如人员分配、物资调度等。在物流优化领域,整 数规划模型可以用于车辆路径规划、货物配载等问题,提高物流效率和降低运输成本。
数学规划模型可以分为线性规划、非线性规划、整数规划、动态 规划等类型,根据问题的特性选择合适的数学规划模型进行建模 。
数学规划模型的应用领域
01
02
03
04
生产计划
数学规划模型可以用于制定生 产计划,优化资源配置,提高 生产效率。
物流运输
通过建立数学规划模型,可以 优化物流运输路线和运输方式 ,降低运输成本。
80%
金融投资组合优化
通过建立线性规划模型,可以优 化投资组合,实现风险和收益的 平衡。
03
非线性规划模型
非线性规划模型的定义
非线性规划模型是一种数学优化模型 ,用于解决目标函数和约束条件均为 非线性函数的问题。
它通过寻找一组变量的最优解,使得 目标函数达到最小或最大值,同时满 足一系列约束条件。
• 整数规划与混合整数规划的拓展:整数规划模型解决了离散变量的优化问题,混合整数规划则进一步扩展了整数规划的适 用范围。
数学建模中的多目标决策与多准则决策
数学建模中的多目标决策与多准则决策在数学建模中,决策问题一直是一个重要而复杂的研究领域。
在实际应用中,我们常常会面临多个目标和多个准则的抉择,这就需要采用多目标决策和多准则决策的方法来解决。
本文将讨论数学建模中的多目标决策与多准则决策的应用和方法。
一、多目标决策多目标决策是指在决策问题中,存在多个相互联系但又有所独立的目标,我们需要在这些目标之间进行权衡和取舍。
多目标决策的核心是建立一个评价指标体系,将多个目标统一地考虑在内,并找到一个最优化的结果。
在多目标决策中,我们可以采用多种方法来求解最优解。
其中比较常用的方法有以下几种:1.加权法:加权法是将每个指标的重要性进行加权后进行综合评价,得到一个加权和最大的方案作为最优解。
这种方法简单直观,但也存在一定的主观性。
2.约束法:约束法是在满足一定约束条件的前提下,使目标函数最小化或最大化。
通过对各个目标进行约束,可以有效避免因为某个目标过分追求而导致其他目标的损失。
3.非支配排序遗传算法:非支配排序遗传算法是一种基于进化计算的多目标优化算法。
通过对候选解进行非支配排序,并根据解的适应度进行遗传操作,最终得到一组非劣解。
二、多准则决策多准则决策是指在决策问题中,存在多个相互独立但又有一定重叠性的准则,我们需要在这些准则之间进行权衡和衡量,找到最优的方案。
多准则决策通常需要考虑到几个关键因素:准则权重、准则的计算方法和准则的分值范围等。
在多准则决策的过程中,我们可以采用以下几种方法:1.正交实验设计法:正交实验设计法是一种常用的多准则决策方法。
通过合理选择实验设计方案,对多个准则进行全面而又系统地评估,得到最终的决策结果。
2.层次分析法:层次分析法是一种定量分析问题的层次结构的方法。
通过构建层次结构模型,并通过对每个层次的准则进行权重赋值,最终得到一个最优方案。
3.模糊综合评判法:模糊综合评判法是一种基于模糊数学的多准则决策方法。
通过将准则的评价结果转化为模糊数,并进行模糊集的运算,最终得到一个最优的决策方案。
数学建模中的多目标优化问题
数学建模中的多目标优化问题在数学建模中,多目标优化问题是一个重要且具有挑战性的问题。
在实际应用中,我们常常面临的是多个目标之间的矛盾与权衡,因此需要找到一个平衡点来满足各个目标的需求。
本文将介绍多目标优化问题的定义、解决方法以及应用案例。
第一部分:多目标优化问题的定义多目标优化问题是指在给定的约束条件下,寻找多个目标函数的最优解的问题。
常见的形式可以表示为:最小化/最大化 f1(x), f2(x), ..., fn(x)其中,fi(x)表示第i个目标函数,x表示决策变量。
多目标优化问题与单目标优化问题的不同之处在于,单目标问题只需考虑一个目标函数,而多目标问题需要同时考虑多个目标函数。
第二部分:多目标优化问题的解决方法在解决多目标优化问题时,常用的方法有以下几种:1. 加权求和法(Weighted Sum Method):将多个目标函数加权求和,转化为单目标函数进行求解。
具体地,可以通过设置不同的权重系数,使得不同目标函数在求解中的重要性得到体现。
2. Pareto优化法(Pareto Optimization):Pareto优化法基于Pareto最优解的概念,即同时满足所有约束条件下,无法改善任何一个目标函数而不损害其他目标函数的解集。
通过构建Pareto最优解集,可以帮助决策者在多个解中进行选择。
3. 遗传算法(Genetic Algorithm):遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择、交叉和变异等过程来搜索最优解。
在多目标优化问题中,遗传算法通过维护一个种群中的多个个体,以逐步进化出Pareto最优解集。
4. 粒子群优化算法(Particle Swarm Optimization):粒子群优化算法是一种模拟鸟群觅食的行为进行优化的算法。
在多目标优化问题中,粒子群优化算法通过在解空间中搜索多个粒子,通过粒子之间的合作与竞争,逐步逼近Pareto最优解。
第三部分:多目标优化问题的应用案例多目标优化问题在各个领域都有广泛的应用。
数学建模-多目标规划
例 选课策略
课号
课名
学分
所属类别
先修课要求
1
微积分
5
数学
2
线性代数
4
数学
3
最优化方法
4
数学;运筹学 微积分;线性代数
4
数据结构
3
数学;计算机
计算机编程
5
应用统计
4
数学;运筹学 微积分;线性代数
6
计算机模拟
3
计算机;运筹学
计算机编程
7
计算机编程
2
计算机
8
预测理论
2
运筹学
应用统计
9
数学实验
3
运筹学;计算机 微积分;线性代数
min h(F (x)) st x R
方法:(1)理想点法
第一步:计算出 个单目标规划问题
f* i
min fi ( x) st x R
第二步:构造评价函数
p
h(F(x))
(
fi (x)
f *)2 i
i 1
3、评价函数法
(2)、线性加权法
p
p
h(F(x)) j f j 其中j 0, j 1
上班时间 加班情况
X1+d3- -d3+=24 X2 +d4- -d4+=30
市场需求
X1 , X2 , di- , di+ 0 di- .di+= 0 (i=1,2,3,4)
多目标线性规划问题的Matlab7.0求解
多目标线性规划标准形式 min f (x) ( f1(x), f2(x), fn(x))T gi (x) 0 i 1, 2 , m hj (x) 0 j 1, 2, , k x0
数学建模中电力安排问题
数学建模中电力安排问题
电力安排问题在数学建模中属于运筹学与优化学的研究领域,主要涉及到能源供给和需求之间的匹配和优化。
以下是电力安排问题的一些常见建模方法:
1. 线性规划模型:将电力供需匹配问题转化为线性规划模型,通过优化算法求解最优的供电方案,以最大化电力供给并满足电力需求。
2. 整数规划模型:考虑到电力供应中有些决策变量需要为整数值,可以将电力安排问题转化为整数规划模型,通过求解最优的整数决策变量组合,以最大化电力供给并满足电力需求。
3. 网络流模型:将电力供需问题看作一个网络流问题,电力供应节点和需求节点通过边连接,通过最小费用最大流算法求解最优的供电方案。
4. 随机规划模型:考虑到电力供需问题中存在不确定性因素,可以使用随机规划模型来建模,并通过概率分布函数对不确定因素进行建模,以最大化预期电力供给并满足电力需求。
5. 多目标规划模型:考虑到电力供需问题中存在多个决策目标,如最大化供电可靠性、最小化供电成本等,可以使用多目标规划模型来建模,通过权衡各个目标之间的关系,求解最优的供电方案。
这些建模方法可以根据实际情况进行组合和调整,以解决具体
的电力安排问题。
同时,在建模过程中还需要考虑到实际电力系统的运行特点、电力市场的规则和约束条件等因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)线性加权和目标规划
optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T s.t. g i ( X ) 0 hj (X ) 0
在上述目标规划中,假定f1(X),f2(X),…,fp(X)具有相同的量纲, 按照一定的规则分别给fi赋予相同的权系数ωi,作线性加权和 评价函数 p
U ( X ) i f i ( X )
i 1
则多目标问题化为如下的单目标问题
maxU ( X ) i f i ( X )
i 1 p
f3 67 1 100 67
f4 50.5 100 1 25.75
f5 34 1 67 100
6 j 1 6
f6 50.5 1 100 1
设权系数向量为W=(0.2,0.1,0.1,0.1,0.2,0.3),
U ( X 1 ) j a1 j 34 U ( X 2 ) j a 2 j 40.6
X ( x1 , x2 ,....,xn ) 为决策变量
如对于求极大(max)型,其各种解定义如下:
绝对最优解:若对于任意的X,都有F(X*)≥F(X)
有效解:若不存在X,使得F(X*) ≤ F(X) 弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构
可用效用函数来表示。设方案的效用是目标属性 的函数:
数学建模
主讲 薛长虹
E-mail 地址: xuechanghong@home.swjt
QQ: 315165
多目标规划模型
基本内容:
1、多目标规划的基本概念 2、多目标规划的问题的特征 3、多目标规划的求解方法 4、目标规划模型 5、应用实例模型.
一、多目标的基本概念
多目标的问题:在现实生活中,决策的目标往往 有多个,例如,对企业产品的生产管理,既希望达到高 利润,又希望优质和低消耗,还希望减少对环境的污 染等.这就是一个多目标决策的问题. 。 又如选购一个好的计算机系统,似乎只有一个目 标,但由于要从多方面去反映,要用多个不同的准则 来衡量,比如,性能要好,维护要容易,费用要省.这些 准则自然构成了多个目标,故也是一个多目标决策问 题. 应用:研究多目标决策问题的前提,因此研究解决这 类问题在实际中是很有意义的,特别是在政治、经 济、社会及军事管理、工程技术及科学决策等领域 都有重要的应用价值。
j 1 6
故最优方案为选购A3型卡车
U ( X 3 ) j a3 j 57.925
j 1 6
U ( X 4 ) j a 4 j 40.27
j 1
U * maxU U ( X 3 ) 57.925
(6)分层序列法:
1.基本步骤:把(VP)中的p个目标 f1 ( x),, f p ( x) 按其重要程度排序。 依次求单目标规划的最优解。 2. 过程:无妨设其次序为 f1 , f 2 ,, f p min f1 ( x ) 先求解 ( P1 ) * * S S x f ( x ) f s.t. x S f 1 1 1 得最优值 ,记 1 再解 ( P )min f 2 ( x) * * 2 S1 S x f ( x ) f f s . t . x S 2 2 2 1 得最优值 , 2 依次进行,直到 min f p ( x) ( Pp ) * f p s.t. x S p 1 得最优值
多目标规划问题的求解
化多目标问题为单目标问题的方法大致可分为两类,
一类是转化为一个单目标问题,另一类是转化为多个 单目标问题,关键是如何转化. 下面,我们介绍几种主要的转化方法:主要目标 法、线性加权和法、字典序法、步骤法。
多目标规划问题的特征
一、解的特点
在解决单目标问题时,我们的任务是选择一个或一组变 量X,使目标函数f(X)取得最大(或最小)。对于任意两方案 所对应的解,只要比较它们相应的目标值,就可以判断谁优 谁劣。但在多目标情况下,问题却不那么单纯了。例如,有 两个目标f1(X),f2(X),希望它们都越大越好。下图列出在这两 个目标下共有8个解的方案。其中方案1,2,3,4称为劣解, 因为它们在两个目标值上都比方案5差,是可以淘汰的解。而 方案5,6,7,8是非劣解(或称为有效解,满意解),因为 这些解都不能轻易被淘汰掉,它们中间的一个与其余任何一 个相比,总有一个指标更优越,而另一个指标却更差。
U ( x) U ( f1 , f 2 ,..., f p )
并设
aij f i ( x j )
且各个方案的效用函数分别为
U ( x j ) U (a1 j , a2 j ,...,a pj )
则多目标优选模型的结构可表示如下:
ordU( X ) (U ( X 1 ),U ( X 2 ),....,U ( X p ))T s.t. g i ( X ) 0 hj (X ) 0
f2
1 2
5 3
4
6
7 8 f
二、模型结构
多目标决策问题包含有三大要素:目标、方案和决策者。 在多目标决策问题中,目标有多层次的含义。从最高层次 来看,目标代表了问题要达到的总目标。如确定最满意的 投资项目、选择最满意的食品。从较低层次来看,目标可 看成是体现总目标得以实现的各个具体的目标,如投资项 目的盈利要大、成本要低、风险要小;目标也可看成衡量 总目标得以实现的各个准则,如食品的味道要好,质量要 好,花费要少。
s.t. g i ( X ) 0 hj (X ) 0
例如,在上述多目标问题中,假定f1(X)为主要目标,其余p-1 个为非主要目标。这时,希望主要目标达到极大值,并要求 max f1 ( X ) 其余的目标满足一定的条件,即
g i ( X ) 0, i 1,2,...,n s.t.h j ( X ) 0, j 1,2,...,m f k ( X ) k , k 1,2,..., p 1
1 j p
也可以给每个
f j ( x)
配上权系数
aj
,即考虑:
1 j p
min U ( x) max (a j f j ( x))
多目标规划问题的求解
(4)主要目标法 在有些多目标决策问题中,各种目标的重要性程 度往往不一样。其中一个重要性程度最高和最为关 键的目标,称之为主要目标法。其余的目标则称为 T optF ( X ) ( f ( X ), f ( X ),...., f ( X )) 1 2 p 非主要目标。
资源A单位消耗 资源B单位消耗 资源C单位消耗 单位产品的价格 单位产品的利润 单位产品的污染
解:问题的多目标模型如下
max f 1 ( X ) 70x1 120x 2 max f 2 ( X ) 400x1 600x 2 max( f 3 ( X )) 3 x1 2 x 2 9 x1 4 x 2 240 4 x 5 x 200 1 2 3 x1 10x 2 300 x1 , x 2 0
400x1 600x 2 20000 3 x 2 x 90 2 1 9 x1 4 x 2 240 4 x1 5 x 2 200 3 x1 10x 2 300 x1 , x 2 0
由主要目标法化为单目标问题 max f1 ( X ) 70x1 120x 2 用单纯形法求得其最优解为
g i ( X ) 0 s.t. h j ( X ) 0
例如,某公司计划购进一批新卡车,可供选择的卡车有如 下4种类型:A1,A2,A3,A4。现考虑6个方案属性:维 修期限f1,每100升汽油所跑的里数f2,最大载重吨数f3,价 格(万元)f4,可靠性f5,灵敏性f6。这4种型号的卡车分别 关于目标属性的指标值fij如下表所示。 fij A1 A2 A3 f1 2.0 2.5 2.0 f2 1500 2700 2000 f3 4 3.6 4.2 f4 55 65 45 f5 一般 低 高 f6 高 一般 很高
A4
2.2
1800
4
50
很高
一般
首先对不同度量单位和不同数量级的指标值进行标准化处理。 先将定性指标定量化:
效益型指标
很低 低 1 3 很高 高一般 高 很高 5 7 9 一般 低 很低 成本型指标
可靠性和灵敏性都属于效益型指标,其打分如下
可靠性 灵敏性 一般 5 高 7 低 3 一般 5 高 7 很高 9 很高 9 一般 5
多目标决策问题中的方案即为决策变量,也称为多目 标问题的解。备选方案即决策问题的可行解。在多目标决 策中,有些问题的方案是有限的,有些问题 的方案是无限 的。方案有其特征或特性,称之为属性。
1、多目标规划问题的模型结构
optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T s.t. g i ( X ) 0 hj (X ) 0
例题1 某工厂在一个计划期内生产甲、乙两种产品,各产品 都要消耗A,B,C三种不同的资源。每件产品对资源的单位 消耗、各种资源的限量以及各产品的单位价格、单位利润和 所造成的单位污染如下表。假定产品能全部销售出去,问每 期怎样安排生产,才能使利润和产值都最大,且造成的污染 最小?
甲 9 4 3 400 70 3 乙 4 5 10 600 120 2 资源限量 240 200 300
二、多目标规划问题的分类
一般来说,多目标规划问题有两类.一类是多目 标规划问题,其对象是在管理决策过程中求解使多个 目标都达到满意结果的最优方案.另一类是多目标优 选问题,其对象是在管理决策过程中根据多个目标或 多个准则衡量和得出各种备选方案的优先等级与排 序.