多目标规划建模
基于混合整数线性规划的多目标物流路径规划数学建模

基于混合整数线性规划的多目标物流路径规划数学建模多目标物流路径规划是指在满足多个目标的前提下,确定物流运输网络中各个节点之间的最佳路径和运输量。
在实际生产和配送过程中,物流路径规划的优化对于提高物流效率和降低物流成本具有重要意义。
本文将介绍基于混合整数线性规划的多目标物流路径规划数学建模方法。
首先,我们需要明确多目标物流路径规划的目标。
一般来说,物流路径规划需要同时满足以下多个目标:最短路径、最小成本、最小运输时间、最小能源消耗、最小污染排放等。
在实际问题中,可能还会根据具体需求提出其他目标。
我们将这些目标定义为优化目标函数。
其次,我们需要建立多目标物流路径规划的数学模型。
多目标规划中,常用的方法是加权法。
即将每个目标根据其重要性分配一个权重,然后将多个目标函数线性组合成一个总目标函数。
以最短路径和最小成本为例,假设分别对应的权重为w1和w2,则总目标函数可以表示为Z = w1 * f1 + w2 * f2,其中f1和f2分别表示最短路径和最小成本的目标函数。
在建立目标函数之后,我们需要确定决策变量,即模型中需要优化的变量。
在物流路径规划中,常用的决策变量包括运输路径、运输量、起点和终点等。
我们可以使用二维矩阵表示网络节点之间的路径,使用变量x[i,j]表示节点i到节点j的路径是否存在。
同时,使用变量y[i,j]表示节点i到节点j的运输量。
接下来,我们需要定义约束条件,以限制变量的取值范围。
常见的约束条件包括物流路径一致性条件、运输量限制条件、起点和终点限制条件等。
例如,路径一致性条件可以表示为sum(x[i,j]) = 1,即每个节点只能有一条进出路径。
运输量限制条件可以表示为y[i,j] <= C[i,j],即运输量不能超过节点i到节点j的最大运输能力。
最后,我们可以使用混合整数线性规划求解器对建立的多目标物流路径规划模型进行求解。
求解过程中,需要根据具体情况设置目标函数权重和约束条件,并根据求解结果进行调整和改进。
最优化之多目标规划

三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即
max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即
pixi
交易费 =
xi>ui xi≤ui
piui
而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(ri-pi)xi
max i i
i 1 k
i ( x1 , x2 , xn ) gi ( i 1,2,, m)
式中, i 应满足: 向量形式:
i 1
i 1
k
max T
s.t . ( X ) G
方法二 罚款模型(理想点法)
思想: 规划决策者对每一个目标函数都能提出所期望的值 (或称满意值);
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
方法一
效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效
一、问题提出 市场上有 n 种资产 s i (i=1,2……n)可以选择,现用数额为 M 的相当大的资金作一 个时期的投资。这 n 种资产在这一时期内购买 s i 的平均收益率为 ri ,风险损失率为 qi , 投资越分散,总的风险越小,总体风险可用投资的 s i 中最大的一个风险来度量。
pi ),当购买额不超过给定值 u i 时,交易费按购买 u i 计算。另外,假定同期银行存款利率是 r0 ,既无交易费又无风险。 r0 =5%) (
救援车辆多目标实时路径规划模型

救援车辆多目标实时路径规划模型1. 引言1.1 背景救援车辆多目标实时路径规划模型是一种应用于救援行业的关键技术,可以帮助救援车辆在紧急情况下高效地到达多个目标地点。
随着城市化进程的加快,交通拥堵、交通事故等问题也日益严重,给救援工作带来了很大挑战。
传统的路径规划方法往往只考虑单一目标的情况,无法很好地适应多目标的复杂情况。
研究救援车辆多目标实时路径规划模型具有重要意义。
通过优化路径规划,可以有效减少救援车辆的行驶时间,提高救援效率,减少损失。
该模型还可以帮助救援人员更好地协调救援工作,提高应对突发事件的能力。
在当前科技发展迅速的背景下,利用先进的算法和技术,研究救援车辆多目标实时路径规划模型,不仅可以提升救援工作的效率和质量,还可以为相关研究领域提供更深入的探索和应用。
对于救援车辆多目标实时路径规划模型的研究具有重要的现实意义和实用价值。
1.2 研究目的【研究目的】:救援车辆多目标实时路径规划模型的研究目的主要包括以下几个方面:1. 提高救援效率:通过设计合理的路径规划模型,能够有效提高救援车辆的调度效率和行驶效率,使得救援车辆能够更快速地到达事故或灾害现场,从而最大程度地减少伤亡和财产损失。
2. 优化资源配置:通过准确的路径规划,可以避免资源浪费和重复调度,实现资源的最优配置,提高救援效率同时降低成本。
3. 提高道路使用效率:救援车辆需要快速通行道路,而路况的复杂多变性可能会导致交通拥堵和延误。
设计合理的路径规划模型可以提高道路的使用效率,减少交通拥堵和延误。
4. 兼顾多目标需求:救援车辆在执行任务时可能需要兼顾多个目标,如尽快到达现场、避免拥堵、保证交通安全等。
本研究旨在设计一种能够充分考虑多目标需求的路径规划模型,以提高救援车辆的整体执行效率和综合效益。
1.3 研究意义救援车辆多目标实时路径规划模型的研究意义在于提高救援工作的效率和准确性。
随着人口的增多和城市的发展,在应对突发事件时需要救援车辆快速到达事发现场并进行救援操作。
多目标优化方法

多目标优化方法在现实生活和工作中,我们常常需要面对多个目标同时进行优化的情况。
比如在生产过程中需要考虑成本和质量的双重优化,或者在个人发展中需要兼顾事业和家庭的平衡。
针对这样的多目标优化问题,我们需要运用一些有效的方法来进行处理。
首先,我们可以考虑使用加权法来进行多目标优化。
加权法是一种简单而直观的方法,它通过为每个目标设定权重,然后将各个目标的值乘以对应的权重,最后将加权后的值相加得到一个综合指标。
这样一来,我们就可以将多个目标转化为单一的综合指标,从而方便进行优化决策。
当然,在使用加权法时,我们需要注意权重的确定要充分考虑到各个目标的重要性,以及权重的确定要充分考虑到各个目标的重要性,以及权重之间的相对关系,避免出现权重设置不合理导致优化结果不准确的情况。
其次,我们可以采用多目标规划方法来进行优化。
多目标规划是一种专门针对多目标优化问题的数学建模方法,它可以帮助我们在考虑多个目标的情况下,找到一组最优的决策方案。
在多目标规划中,我们需要将各个目标之间的相互影响考虑在内,通过建立数学模型来描述各个目标之间的关系,然后利用多目标规划算法来求解最优解。
多目标规划方法可以帮助我们充分考虑各个目标之间的平衡和权衡关系,从而得到更为合理的优化结果。
此外,我们还可以考虑使用进化算法来进行多目标优化。
进化算法是一种模拟生物进化过程的优化方法,它通过不断地演化和迭代,逐步优化出最优的解决方案。
在多目标优化问题中,我们可以利用进化算法来搜索出一组最优的解决方案,从而实现多个目标的同时优化。
进化算法具有较强的全局搜索能力和较好的鲁棒性,适用于复杂的多目标优化问题。
综上所述,针对多目标优化问题,我们可以运用加权法、多目标规划方法和进化算法等多种方法来进行处理。
在实际应用中,我们需要根据具体问题的特点和要求,选择合适的方法进行处理,以达到最佳的优化效果。
希望本文所介绍的方法能为大家在面对多目标优化问题时提供一些帮助和启发。
数学建模多目标规划函数fgoalattain

MATLAB 中文论坛讲义多目标规划优化问题Matlab 中常用于求解多目标达到问题的函数为fgoalattain.假设多目标函数问题的数学模型为:ubx lb beqx Aeq bx A x ceq x c goalweight x F t s yx ≤≤=≤=≤≤-**0)(0)(*)(..min ,γγ weight 为权值系数向量,用于控制对应的目标函数与用户定义的目标函数值的接近程度; goal 为用户设计的与目标函数相应的目标函数值向量;γ为一个松弛因子标量;F(x)为多目标规划中的目标函数向量。
综上,fgoalattain 的优化过程就是使得F 逼近goal;工程应用中fgoalattain 函数调用格式如下:[x,fval]=fgoalattain (fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)x0表示初值;fun 表示要优化的目标函数;goal 表示函数fun 要逼近的目标值,是一个向量,它的维数大小等于目标函数fun 返回向量F 的维数大小;weight 表示给定的权值向量,用于控制目标逼近过程的步长;例1. 程序(利用fgoalattain 函数求解)23222123222132min )3()2()1(min x x x x x x ++-+-+-0,,6..321321≥=++x x x x x x t s①建立M 文件.function f=myfun(x)f(1)= x(1)-1)^2+(x(2)-2)^2+(x(3)-3)^2;f(2)= x(1)^2+2*x(2)^2+3*x(3)^2;②在命令窗口中输入.goal=[1,1];weight=[1,1];Aeq=[1,1,1];beq=[6];x0=[1;1;1];lb=[0,0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun’,x0,goal,weight,[ ],[ ],Aeq,beq,lb,[ ])③得到结果.x =3.27271.63641.0909fval =8.9422 19.6364例2.某钢铁公司因生产需要欲采购一批钢材,市面上的钢材有两种规格,第1种规格的单价为3500元/t ,第2种规格的单价为4000元/t.要求购买钢材的总费用不超过1000万元,够得钢材总量不少于2000t.问如何确定最好的采购方案,使购买钢材的总费用最小且购买的总量最多.解:设采购第1、2种规格的钢材数量分别为1x 和2x .根据题意建立如下多目标优化问题的数学模型.0,200010000040003500max 40003500)(min212121211≥≥+≤++=x x x x x x x x x f ①建立M 文件. 在Matlab 编辑窗口中输入:function f=myfun(x)f(1)= 3500*x(1)+4000*x(2);f(2)=-x(1)-x(2);②在命令窗口中输入.goal=[10000000,-2000];weight=[10000000,-2000];x0=[1000,1000];A=[3500,4000;-1,-1];b=[10000000;-2000];lb=[0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun ’,x0,goal,weight,A,b,[ ],[ ],lb,[ ])③得到结果.x =1000 1000fval =7500000 -2000。
多目标规划(运筹学

环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。
数学建模-数学规划模型

将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
数学建模多目标规划

虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
4 5 6 7 8 9
∗ ∗ ∗
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7 Z − 0.3W
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件 先修课程要求 x3=1必有x1 = x2 =1
∗ 1 ∗ 2 ∗ 3 ∗ ∗ ∗
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)线性加权和目标规划
optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T s.t. g i ( X ) 0 hj (X ) 0
在上述目标规划中,假定f1(X),f2(X),…,fp(X)具有相同的量纲, 按照一定的规则分别给fi赋予相同的权系数ωi,作线性加权和 评价函数 p
U ( X ) i f i ( X )
i 1
则多目标问题化为如下的单目标问题
maxU ( X ) i f i ( X )
i 1 p
f3 67 1 100 67
f4 50.5 100 1 25.75
f5 34 1 67 100
6 j 1 6
f6 50.5 1 100 1
设权系数向量为W=(0.2,0.1,0.1,0.1,0.2,0.3),
U ( X 1 ) j a1 j 34 U ( X 2 ) j a 2 j 40.6
X ( x1 , x2 ,....,xn ) 为决策变量
如对于求极大(max)型,其各种解定义如下:
绝对最优解:若对于任意的X,都有F(X*)≥F(X)
有效解:若不存在X,使得F(X*) ≤ F(X) 弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构
可用效用函数来表示。设方案的效用是目标属性 的函数:
数学建模
主讲 薛长虹
E-mail 地址: xuechanghong@home.swjt
QQ: 315165
多目标规划模型
基本内容:
1、多目标规划的基本概念 2、多目标规划的问题的特征 3、多目标规划的求解方法 4、目标规划模型 5、应用实例模型.
一、多目标的基本概念
多目标的问题:在现实生活中,决策的目标往往 有多个,例如,对企业产品的生产管理,既希望达到高 利润,又希望优质和低消耗,还希望减少对环境的污 染等.这就是一个多目标决策的问题. 。 又如选购一个好的计算机系统,似乎只有一个目 标,但由于要从多方面去反映,要用多个不同的准则 来衡量,比如,性能要好,维护要容易,费用要省.这些 准则自然构成了多个目标,故也是一个多目标决策问 题. 应用:研究多目标决策问题的前提,因此研究解决这 类问题在实际中是很有意义的,特别是在政治、经 济、社会及军事管理、工程技术及科学决策等领域 都有重要的应用价值。
j 1 6
故最优方案为选购A3型卡车
U ( X 3 ) j a3 j 57.925
j 1 6
U ( X 4 ) j a 4 j 40.27
j 1
U * maxU U ( X 3 ) 57.925
(6)分层序列法:
1.基本步骤:把(VP)中的p个目标 f1 ( x),, f p ( x) 按其重要程度排序。 依次求单目标规划的最优解。 2. 过程:无妨设其次序为 f1 , f 2 ,, f p min f1 ( x ) 先求解 ( P1 ) * * S S x f ( x ) f s.t. x S f 1 1 1 得最优值 ,记 1 再解 ( P )min f 2 ( x) * * 2 S1 S x f ( x ) f f s . t . x S 2 2 2 1 得最优值 , 2 依次进行,直到 min f p ( x) ( Pp ) * f p s.t. x S p 1 得最优值
多目标规划问题的求解
化多目标问题为单目标问题的方法大致可分为两类,
一类是转化为一个单目标问题,另一类是转化为多个 单目标问题,关键是如何转化. 下面,我们介绍几种主要的转化方法:主要目标 法、线性加权和法、字典序法、步骤法。
多目标规划问题的特征
一、解的特点
在解决单目标问题时,我们的任务是选择一个或一组变 量X,使目标函数f(X)取得最大(或最小)。对于任意两方案 所对应的解,只要比较它们相应的目标值,就可以判断谁优 谁劣。但在多目标情况下,问题却不那么单纯了。例如,有 两个目标f1(X),f2(X),希望它们都越大越好。下图列出在这两 个目标下共有8个解的方案。其中方案1,2,3,4称为劣解, 因为它们在两个目标值上都比方案5差,是可以淘汰的解。而 方案5,6,7,8是非劣解(或称为有效解,满意解),因为 这些解都不能轻易被淘汰掉,它们中间的一个与其余任何一 个相比,总有一个指标更优越,而另一个指标却更差。
U ( x) U ( f1 , f 2 ,..., f p )
并设
aij f i ( x j )
且各个方案的效用函数分别为
U ( x j ) U (a1 j , a2 j ,...,a pj )
则多目标优选模型的结构可表示如下:
ordU( X ) (U ( X 1 ),U ( X 2 ),....,U ( X p ))T s.t. g i ( X ) 0 hj (X ) 0
f2
1 2
5 3
4
6
7 8 f
二、模型结构
多目标决策问题包含有三大要素:目标、方案和决策者。 在多目标决策问题中,目标有多层次的含义。从最高层次 来看,目标代表了问题要达到的总目标。如确定最满意的 投资项目、选择最满意的食品。从较低层次来看,目标可 看成是体现总目标得以实现的各个具体的目标,如投资项 目的盈利要大、成本要低、风险要小;目标也可看成衡量 总目标得以实现的各个准则,如食品的味道要好,质量要 好,花费要少。
s.t. g i ( X ) 0 hj (X ) 0
例如,在上述多目标问题中,假定f1(X)为主要目标,其余p-1 个为非主要目标。这时,希望主要目标达到极大值,并要求 max f1 ( X ) 其余的目标满足一定的条件,即
g i ( X ) 0, i 1,2,...,n s.t.h j ( X ) 0, j 1,2,...,m f k ( X ) k , k 1,2,..., p 1
1 j p
也可以给每个
f j ( x)
配上权系数
aj
,即考虑:
1 j p
min U ( x) max (a j f j ( x))
多目标规划问题的求解
(4)主要目标法 在有些多目标决策问题中,各种目标的重要性程 度往往不一样。其中一个重要性程度最高和最为关 键的目标,称之为主要目标法。其余的目标则称为 T optF ( X ) ( f ( X ), f ( X ),...., f ( X )) 1 2 p 非主要目标。
资源A单位消耗 资源B单位消耗 资源C单位消耗 单位产品的价格 单位产品的利润 单位产品的污染
解:问题的多目标模型如下
max f 1 ( X ) 70x1 120x 2 max f 2 ( X ) 400x1 600x 2 max( f 3 ( X )) 3 x1 2 x 2 9 x1 4 x 2 240 4 x 5 x 200 1 2 3 x1 10x 2 300 x1 , x 2 0
400x1 600x 2 20000 3 x 2 x 90 2 1 9 x1 4 x 2 240 4 x1 5 x 2 200 3 x1 10x 2 300 x1 , x 2 0
由主要目标法化为单目标问题 max f1 ( X ) 70x1 120x 2 用单纯形法求得其最优解为
g i ( X ) 0 s.t. h j ( X ) 0
例如,某公司计划购进一批新卡车,可供选择的卡车有如 下4种类型:A1,A2,A3,A4。现考虑6个方案属性:维 修期限f1,每100升汽油所跑的里数f2,最大载重吨数f3,价 格(万元)f4,可靠性f5,灵敏性f6。这4种型号的卡车分别 关于目标属性的指标值fij如下表所示。 fij A1 A2 A3 f1 2.0 2.5 2.0 f2 1500 2700 2000 f3 4 3.6 4.2 f4 55 65 45 f5 一般 低 高 f6 高 一般 很高
A4
2.2
1800
4
50
很高
一般
首先对不同度量单位和不同数量级的指标值进行标准化处理。 先将定性指标定量化:
效益型指标
很低 低 1 3 很高 高一般 高 很高 5 7 9 一般 低 很低 成本型指标
可靠性和灵敏性都属于效益型指标,其打分如下
可靠性 灵敏性 一般 5 高 7 低 3 一般 5 高 7 很高 9 很高 9 一般 5
多目标决策问题中的方案即为决策变量,也称为多目 标问题的解。备选方案即决策问题的可行解。在多目标决 策中,有些问题的方案是有限的,有些问题 的方案是无限 的。方案有其特征或特性,称之为属性。
1、多目标规划问题的模型结构
optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T s.t. g i ( X ) 0 hj (X ) 0
例题1 某工厂在一个计划期内生产甲、乙两种产品,各产品 都要消耗A,B,C三种不同的资源。每件产品对资源的单位 消耗、各种资源的限量以及各产品的单位价格、单位利润和 所造成的单位污染如下表。假定产品能全部销售出去,问每 期怎样安排生产,才能使利润和产值都最大,且造成的污染 最小?
甲 9 4 3 400 70 3 乙 4 5 10 600 120 2 资源限量 240 200 300
二、多目标规划问题的分类
一般来说,多目标规划问题有两类.一类是多目 标规划问题,其对象是在管理决策过程中求解使多个 目标都达到满意结果的最优方案.另一类是多目标优 选问题,其对象是在管理决策过程中根据多个目标或 多个准则衡量和得出各种备选方案的优先等级与排 序.