多目标规划模型-很好

合集下载

多目标模型

多目标模型

多目标模型多目标模型(Multi-Objective Model)是一种决策模型,用于解决具有多个目标的优化问题。

在传统的优化模型中,通常只存在一个目标函数,而多目标模型则考虑了多个目标同时优化的问题。

多目标模型的基本形式可以表示为:Minimize f(X) = [f1(X), f2(X), ..., fn(X)]其中,f(X)是一个向量函数,表示多个目标函数组成的向量,而X是决策变量向量。

多目标模型的目标是找到一个决策变量向量X,使得f(X)的每个分量都达到最小值。

多目标模型的求解方法有很多,其中最常用的方法是多目标优化算法。

多目标优化算法根据目标之间的相互关系,将优化问题转化为在多维搜索空间中搜索最佳解的问题。

多目标优化算法的核心思想是找到一组满足约束条件的非劣解(Pareto Optimal Solution),其中非劣解指的是在搜索空间中不能找到其他解比它更好的解。

而解决多目标优化问题的关键在于找到这一组非劣解的集合,即帕累托前沿(Pareto front)。

常用的多目标优化算法有遗传算法、粒子群算法、模拟退火算法等。

这些算法通过不同的方式进行搜索,并在搜索过程中进行交叉、变异、选择等操作,以逐步优化目标函数值。

同时,这些算法能够在搜索过程中保持多个解的多样性,以便找到更多的非劣解。

多目标模型的应用非常广泛。

例如,在工程领域,多目标模型可以用于工程设计中的多目标优化问题,如电子产品的设计中需要兼顾产品性能、成本、可靠性等多个目标。

在城市规划领域,多目标模型可以用于优化城市交通、环境、经济等多个指标。

同时,在金融领域,多目标模型也可以用于投资组合优化问题,以找到在风险、收益、流动性等方面兼顾的最佳投资组合。

总之,多目标模型是一种解决具有多个目标的优化问题的有效工具。

它通过引入多个目标函数,考虑不同目标之间的权衡和取舍,为决策提供了更多的选择和灵活性。

同时,多目标优化算法能够搜索出一组非劣解,帮助决策者了解到在不同目标下的最佳解集合,为决策制定提供了重要的参考依据。

运用多目标规划模型解决资源分配问题

运用多目标规划模型解决资源分配问题

运用多目标规划模型解决资源分配问题资源分配是一项重要的管理任务,无论是在企业中,还是在社会中,都需要合理分配资源以实现最佳效益。

然而,资源分配问题常常具有多个冲突的目标,如提高效率同时降低成本,在满足客户需求的同时保持环境可持续性等。

为了解决这一复杂问题,多目标规划模型被广泛引入,并取得了显著的成果。

多目标规划是一种数学优化方法,通过设置多个目标函数和约束条件,以求解最优解。

它与传统的单目标规划方法相比,能够更好地平衡各个目标之间的关系,以及资源之间的相互影响。

首先,多目标规划模型能够解决资源分配问题中的效率与成本之间的矛盾。

在生产过程中,企业需要提高效率以降低生产成本,但这往往会牺牲产品质量或客户满意度。

多目标规划模型可以综合考虑这两个因素,并找到一种最佳的资源分配方案,既提高了效率,又能够控制成本。

其次,多目标规划模型还能够解决资源分配问题中的时间与效率之间的矛盾。

在某些情况下,追求最高效率可能会导致项目的延期或质量不达标。

多目标规划模型可以通过设定目标函数和约束条件,平衡时间与效率的关系,确保项目能够按时完成,并保持较高的效率。

此外,多目标规划模型还能够解决资源分配问题中的环境与效益之间的矛盾。

在资源有限的情况下,企业需要在保证环境可持续性的前提下提高经济效益。

多目标规划模型可以将环境因素纳入考虑范围,并通过设定相应的约束条件,找到一种既能保护环境,又能实现经济效益的资源分配方案。

运用多目标规划模型解决资源分配问题需要进行以下步骤:首先,明确分配资源的目标。

根据具体情况,确定资源分配的目标函数,如最大化利润、最小化成本、最大化客户满意度等。

其次,建立资源分配模型。

根据目标函数和约束条件,建立数学模型,描述资源分配的关系和限制。

可利用线性规划、整数规划、动态规划等方法建立模型。

然后,求解模型并得出最优解。

通过运用相关的数学算法和计算工具,求解多目标规划模型,并得出最佳的资源分配方案。

最后,评估和优化方案。

多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用多目标规划是一种在优化问题中同时考虑多个目标的方法。

与传统的单目标规划相比,多目标规划更加适用于现实生产优化中存在多个相互关联的目标的情况。

在生产优化中,多目标规划可以帮助企业在平衡多种目标之间找到最佳的决策方案,提高生产效率和经济效益。

1.决策变量:表示决策者可以调整的各种生产资源和生产参数,如生产数量、生产设备分配等。

2.约束条件:表示各种技术和资源限制,如设备产能、雇员工时等。

3.目标函数:表示需要优化的目标,可以包括多个目标函数,如最小化生产成本、最大化产出、最小化生产时间等。

在生产优化中,多目标规划可以应用于多个方面,如生产调度、生产设备配置和物料采购等。

下面以生产调度为例来具体说明多目标规划的应用。

生产调度是指在生产过程中,根据生产资源和生产任务的需求,合理安排和调度各个工序和设备的完成时间和数量,以达到最佳的生产效率和经济效益。

在生产调度中,通常存在多个决策变量和多个目标。

决策变量可以包括产品的生产顺序、工序的分配和设备的调度等。

不同的决策变量选择可能导致不同的生产成本、生产时间和质量水平等目标的变化。

多目标规划可以将生产调度问题转化为一个多目标优化问题。

在模型中,决策变量可以是各个工序的完成时间和数量,目标函数可以是最小化生产成本、最小化生产时间和最大化产品质量等。

同时,还需要考虑各种资源约束条件,如设备产能、雇员工时和原材料供应等。

通过多目标规划模型求解,可以得到一组最优解,即在满足约束条件的前提下,使得多个目标函数达到最优的决策方案。

这些最优解通常形成一个“帕累托前沿”,即在无法同时改善所有目标的情况下,提供了各种权衡和选择的可能性。

在实际应用中,多目标规划可以帮助企业决策者综合考虑多种目标和约束条件,合理安排生产资源和生产任务,以提高生产效率和经济效益。

同时,多目标规划还可以用于方案比较和灵敏度分析,帮助决策者评估不同决策方案的优劣和稳定性。

多目标规划——精选推荐

多目标规划——精选推荐

则目标函数为
,并根据最初的约束条件求解。
记求得的最优解为 = 。
然后将 = 为约束条件(绝对约束)添加到原目标规划的约束中,求解 级目标问题:
对于解P3级规划问题也是同理。
最后一个单目标规划的规划的求解结果即为目标规划的满意解。
注意:在目标规划中不提最优解的概念,只提满意解的概念(因为不可能所有的目标都达到最优),即寻求能够照顾到各个目标,并使决 策者感到满意的解,由决策者来确定选取哪一个解,但满意解的数目太多而难以将其一一求出。
于是我们就可以把多目标规划问题转化为一般的单目标模型:
例题:某厂计划在下一个生产周期内生产A,B两种产品,每种产品的单位利润分别为10和18(单位:万元),资源消耗和限制数 量如下表,求总利润最大的生产方案。
解:设生产A,B,C分别为 , , 个单位,数学模型为:
这是一个单目标问题,解得x1=50/7,x2=200/7,最优目标函数值z=4100/7万元。 但是如果考虑到第一种资源面临涨价预期,希望尽可能清空库存利于快速补充,故考虑本期利润最大化的同时必须为下一个周期 做好准备,从而增加新目标函数:
P1级目标: 达到利润指标利润6000万; P2级目标: 尽量用完第一种资源的库存,不够可以适当外购议价资源; P3级目标: 尽量不加班,如果需要加班则加班时间不要超过100小时。 达成函数(目标函数): 设生产A,B,C分别为 , , 个单位,约束条件:
先求解P1级目标问题:
在目标规划中不提最优解的概念只提满意解的概念因为不可能所有的目标都达到最优即寻求能够照顾到各个目标并使决策者感到满意的解由决策者来确定选取哪一个解但满意解的数目太多而难以将其一一求出
多目标规划 多目标规划问题特点:
1. 多个优化目标 2. 约束条件有回旋 给出几个实际的例子: 例如要购置一台手提电脑,你想要 1. 内存尽可能大 2. 运行速度尽可能快 3. 重量尽可能轻 4. 体积尽可能小 5. 清晰度要高 6. 性 价比要尽可能高 … 这些东西就是目标。 而像:1. 希望价格在5千以内 2. 希望外观比较漂亮 3. 比较坚固 4. 性能要稳定可靠 .....就是一些模糊的约束条件。 又例如,去浙大参加研究生复试,应该怎么走?这就是一个交通工具的选择问题。 每个人都有自己的走法,而 1. 一个小时左右能够到 2. 单程费用不要超过20元 3. 最好车上有坐位 4. 步行路程不要超过1000米 .....之类的约束条件就是很多的目标。

matlab多目标规划模型

matlab多目标规划模型
多目标决策方法
李小飞
多目标决策的基本概念 多目标决策的数学模型及其非劣解 多目标决策建模的应用实例
用LINGO软件求解目标规划问题
1. 求解方法概述
• LINGO(或LINDO)不能直接求解目标规 划问题,但可以通过逐级求解线性规划的 方法,求得目标规划问题的满意解。
2. 示例
• 例1 用LINGO求解目标规划问题
需要预先确定各个目标的期望值 fi* ,同时给每一个目标 赋予一个优先因子和权系数,假定有K个目标,L个优先级
多目标决策问题有两个共同的特点,即各目 标的不可公度性和相互之间的矛盾性。所谓目标 的不可公度性指各目标之间没有统一的量纲,因 此难以作相互比较。
目标之间的矛盾性是指,如果改进某 一目标的值,可能会使另一个或一些目标 变差。正因为各目标的不可公度性和相互 之间的矛盾性,多目标决策问题不能简单 的作为单目标问题来处理。必须深入研究 其特征,特别是解的性质。单目标决策一 般有最优解,且往往是唯一的,有时可能 存在无限多个解。但是这里的“最优”往 往带有片面性,不能全而准确的反映决策 者的偏好信息。多目标决策问题不存在所 谓的“最优”解,只存在满意解。满意解 指决策者对于有关的所有目标值都认为满 意。
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
多目标规划问题的求解不能只追求一个目标的最优化(最大或 最小),而不顾其它目标。 对于上述多目标规划问题,求解就意味着需要做出如下的复合 选择:
每一个目标函数取什么值,原问题可以得到最满意的解决? 每一个决策变量取什么值,原问题可以得到最满意的解决 ?
max(min) fk ( X )
1( X )
g1
s.t.
(

多目标规划模型解读

多目标规划模型解读

a

x ( , ) bi ij j

xj 0
dl , dl 0
( j 1,2, , n)
( l 1,2, , L)
在以上各式中, kl+ 、kl- 分别为赋予pl优先因子的第 k 个目标的正、负 偏差变量的权系数, gk为第 k个目标的预期值, xj为决策变量, dk+ 、dk- 分别为第 k 个目标的正、负偏差变量, 22
非负约束
21
m i nZ pk (kl dl kl dl ) k 1 l 1
K
L
目标函数
目标约束 绝对约束 非负约束
c
j 1 n
j 1
n
(l ) j
x j d l d l gl


( l 1,2, , L)
( i 1,2, , m )
16
三 目标规划方法
通过前面的介绍和讨论,我们知道,目标规划方法 是解决多目标规划问题的重要技术之一。 这一方法是美国学者查恩斯(A.Charnes)和库 伯(W.W.Cooper)于1961年在线性规划的基础上提 出来的。后来,查斯基莱恩(U.Jaashelainen)和李 (Sang.Lee)等人,进一步给出了求解目标规划问题 的一般性方法——单纯形方法。
2 x1 x2 11 x1 2 x2 10 x ,x 0 1 2
将上述问题化为标准后,用单纯形方法求解可得最佳决策
方案为: x1 4, x 2 3, Z 62 (万元)。
但是,在实际决策时,企业领导者必须考虑市场等 一系列其它条件,如:
目标规划模型 目标规划的图解法 求解目标规划的单纯形方法

多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用随着科技的不断进步,企业在生产的过程中需要考虑的因素也越来越多,例如成本、质量、效率、环保等多个方面。

这些因素不仅对企业的发展起到了决定性的作用,而且对于整个行业的发展也具有重要意义。

因此,在这个时代,如何能够完成多目标规划,对于企业的生产优化是非常重要的。

本文将从多目标规划模型及其在生产优化中的应用方面进行探讨。

一、多目标规划模型的概述多目标规划(multi-objective programming,MOP)是指在满足多个目标的基础上,寻求最优方案的一种决策方法。

多目标规划模型是通过建立目标函数,对每个目标进行评价和权衡,从而实现多目标的决策优化模型。

多目标规划模型可以被用来解决许多现实生产和决策问题,例如资源配置问题、供应链管理问题、营销决策问题、风险管理和环境保护问题等等。

在这些问题中,优化目标多个,且有时目标之间存在着矛盾性,因此需要采用多目标规划模型来解决。

二、多目标规划模型在生产优化中的应用1. 降低成本和提高质量对于一个企业来说,成本和质量是两个非常重要的因素。

如何同时降低成本和提高质量成为了企业的一个难题。

多目标规划模型可以帮助企业在进行生产决策时,考虑多个目标,实现成本和质量的平衡。

在多目标规划模型中,建立成本和质量的目标函数,对企业的各项指标进行量化和分析,然后对目标函数进行加权,最终得到最优方案。

通过这种方式,企业可以在不降低产品质量的条件下,实现成本的降低,从而提高企业的效益。

2. 提高生产效率和降低能耗随着市场竞争的加剧,企业需要不断提高生产效率,从而降低成本,并提高企业的竞争力。

另一方面,环境保护也成为了现代企业生产的一个必须考虑的因素。

多目标规划模型可以在生产过程中,同时考虑生产效率和能耗,实现生产的可持续发展。

在多目标规划模型中,建立生产效率和能耗的目标函数,评估企业的各项指标,加权得到最优方案。

通过这种方式,企业可以在提高生产效率的同时,降低能耗,实现生产效率与环境保护的双赢。

多目标规划模型

多目标规划模型

图6
LINGO运算后输出为:(参见图7)
图7
• 因此,x1 4, x2 0, d1 =d10,
d
2
6, d3就 7是目
标规划的满意解。
第一部分 多目标决策的基本概况
本章将从多目标决策(也称多目标规划)方法 的作用出发,通过分析简单的多目标决策问题的几 个案例,阐述多目标决策的基本概念。任何决策问 题的解决主要依赖于所谓的决策者和分析者。决策 者一般指有权挑选行动方案,并能够从中选择满意 方案作为最终决策的人员。政府官员、企业行政管 理人员均为某类问题的决策者。
40 10
x1
,
x2
,
d
j
,
d
j
0,
j
1,2
用LINGO求解,得最优解
d1
d1=0
,d
2
6,最优值为6。
具体LINGO程序及输出信息如下:LINGO程序为(参见图4):
model: min=d2_; 10*x1+15*x2+d1_-d1=40; x1+x2+d2_-d2=10; d1=0; END
max(min) fk ( X )
1( X )
g1
s.t.
(
X
)
2(X
)
G
g2
m ( X )
gm
式中: X [ x1, x2 ,, xn ]T 为决策变量向量。
缩写形式:
max(min)Z F ( X )
s.t. ( X ) G
有n个决策变量,k个目标函数,m个约束方程, 则:
例 试分析下表所示四个方案的非劣性。
方案
X1 X2 X3 X4
目标函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多目标决策由于考虑的目标多,有些目标之间又 彼此有矛盾,这就使多目标问题成为一个复杂而困难 的问题.但由于客观实际的需要,多目标决策问题越来 越受到重视,因而出现了许多解决此决策问题的方法. 一般来说,其基本途径是,把求解多目标问题转化为求 解单目标问题.其主要步骤是,先转化为单目标问题, 然后利用单目标模型的方法,求出单目标模型的最优 解,以此作为多目标问题的解.
化多目标问题为单目标问题的方法大致可分为两 类,一类是转化为一个单目标问题,另一类是转化为多 个单目标问题,关键是如何转化. 下面,我们介绍几种主要的转化方法:主要目标法、 线性加权和法、字典序法、步骤法。
§10.1多目标决策问题的特征
一、解的特点
在解决单目标问题时,我们的任务是选择一个或一组变 量X,使目标函数f(X)取得最大(或最小)。对于任意两方案 所对应的解,只要比较它们相应的目标值,就可以判断谁优 谁劣。但在多目标情况下,问题却不那么单纯了。例如,有 两个目标f1(X),f2(X),希望它们都越大越好。下图列出在这两 个目标下共有8个解的方案。其中方案1,2,3,4称为劣解, 因为它们在两个目标值上都比方案5差,是可以淘汰的解。而 方案5,6,7,8是非劣解(或称为有效解,满意解),因为 这些解都不能轻易被淘汰掉,它们中间的一个与其余任何一 个相比,总有一个指标更优越,而另一个指标却更差。
单位产品的污染
3
2
解:问题的多目标模型如下
max f 1 ( X ) 70x1 120x 2 max f 2 ( X ) 400x1 600x 2 max( f 3 ( X )) 3 x1 2 x 2 9 x1 4 x 2 240 4 x 5 x 200 1 2 3 x1 10x 2 300 x1 , x 2 0
s.t. g i ( X ) 0 hj (X ) 0
例如,在上述多目标问题中,假定f1(X)为主要目标,其余p-1 个为非主要目标。这时,希望主要目标达到极大值,并要求 其余的目标满足一定的条件,即 max f1 ( X )
g i ( X ) 0, i 1,2,...,n s.t.h j ( X ) 0, j 1,2,...,m f k ( X ) k , k 1,2,..., p 1
f2
1 2
5 3
4
6
7 8 f
二、模型结构
在多目标决策问题中,目标有多层次的含义。从最高层次 来看,目标代表了问题要达到的总目标。如确定最满意的 投资项目、选择最满意的食品。从较低层次来看,目标可 看成是体现总目标得以实现的各个具体的目标,如投资项 目的盈利要大、成本要低、风险要小;目标也可看成衡量 总目标得以实现的各个准则,如食品的味道要好,质量要 好,花费要少。 多目标决策问题中的方案即为决策变量,也称为多目 标问题的解。备选方案即决策问题的可行解。在多目标决 策中,有些问题的方案是有限的,有些问题 的方案是无限 的。方案有其特征或特性,称之为属性。
多目标决策问题包含有三大要素:目标、方案和决策者。
1、多目标规划问题的模型结构
optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T s.t. g i ( X ) 0 hj (X ) 0
X ( x1 , x2 ,....,xn ) 为决策变量
在上述目标规划中,假定f1(X),f2(X),…,fp(X)具有相同的量纲, 按照一定的规则分别给fi赋予相同的权系数ωi,作线性加权和 评价函数 p
400x1 600x 2 20000 3 x 2 x 90 2 1 9 x1 4 x 2 240 4 x1 5 x 2 200 3 x1 10x 2 300 x1 , x 2 0
由主要目标法化为单目标问题max f1 ( X ) 70x1 120x 2 用单纯形法求得其最优解为
例题1 某工厂在一个计划期内生产甲、乙两种产品,各产品 都要消耗A,B,C三种不同的资源。每件产品对资源的单位 消耗、各种资源的限量以及各产品的单位价格、单位利润和 所造成的单位污染如下表。假定产品能全部销售出去,问每 期怎样安排生产,才能使利润和产值都最大,且造成的污染 最小?
资源A单位消耗 资源B单位消耗 资源C单位消耗 单位产品的价格 单位产品的利润 甲 9 4 3 400 70 乙 4 5 10 600 120 资源限量 240 200 300
如对于求极大(max)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≥F(X) 有效解:若不存在X,使得F(X*) ≤ F(X) 弱有效解:若不存在X,使得F(X*)<F(X)
§10.2 多目标规划问题的求解
1、主要目标法 在有些多目标决策问题中,各种目标的重要性程度 往往不一样。其中一个重要性程度最高和最为关键的 目标,称之为主要目标法。其余的目标则称为非主要 目标。 optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T
对于上述模型的三个目标,工厂 确定利润最大为主要目标。另两 个目标则通过预测预先给定的希 望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f 2 ( X ) 400x1 600x2 20000 f 3 ( X ) 3x1 2 x2 90
x1 12.5, x2 26.25, f1 ( x) 4025 , f 2 ( x) 20750 , f 3 (பைடு நூலகம்x) 90
2、线性加权和目标规划
optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T s.t. g i ( X ) 0 hj (X ) 0
相关文档
最新文档