银杏叶提取物对大鼠高糖高胰岛素下视网膜Muller 细胞的保护作用

合集下载

银杏叶提取物的研究与应用

银杏叶提取物的研究与应用

银杏叶提取物的研究与应用银杏树是一种古老的落叶乔木,树龄长达千年,被誉为“长寿之树”,广泛分布于亚洲、欧洲、北美洲等地区。

银杏树的叶子因具有丰富的生物活性成分,被用于制药、化妆品、保健品等多个领域。

其中,银杏叶提取物是银杏树叶子中提取的一种物质,本文将就银杏叶提取物的研究与应用进行探讨。

一、银杏叶提取物的主要成分银杏叶提取物的主要成分是银杏酚类物质,包括黄酮类、儿茶酚类和类黄酮类等多种成分。

其中,黄酮类成分主要包括酚醛类、异酮类、黄酮类和长春酚类等,而儿茶酚类成分主要包括儿茶酚和咖啡酸等。

以Ginkgo biloba L.叶片为原料,现代药理学研究发现,银杏叶提取物具有以下几个方面的生物活性成分:1. 抗氧化作用:银杏叶提取物中含有大量的黄酮类物质,这些物质具有很强的抗氧化能力,可以中和人体内的自由基,抑制自由基的链反应,减少氧化应激损伤。

2. 改善记忆力:银杏叶提取物中的Ginkgo biloba L.叶黄酮和Ginkgo biloba L.叶甙等成分,可以提高脑功能,促进记忆力的增强,预防和治疗老年性痴呆等脑功能障碍疾病。

3. 改善循环功能:银杏叶提取物具有扩张血管、增加微循环、降低血粘度、抑制血小板聚集等功能,可以有效改善人体循环系统的功能,预防和治疗各种心脑血管疾病。

4. 抗炎和免疫调节:银杏叶提取物中的Ginkgo biloba L.叶黄酮等物质,可以调节人体免疫系统的功能,增强人体免疫力,抑制炎症反应。

二、银杏叶提取物的应用领域1. 医药领域银杏叶提取物广泛应用于医药领域。

例如,银杏叶提取物可以用来制备心血管疾病、脑部疾病、癌症、糖尿病等方面的药物,也可以用于制备抗氧化剂、免疫调节剂等保健品。

2. 化妆品领域银杏叶提取物具有良好的美容保健功能。

例如,银杏叶提取物可以用于抗氧化保湿、深层清洁、淡化色素等方面的化妆品中。

3. 食品领域银杏叶提取物可以用于制备功能性保健食品,促进人体健康。

银杏叶提取物的作用

银杏叶提取物的作用

银杏叶提取物的作用银杏在地球上已经生存了一亿五千万年多年的历史,它的寿命居其他植物之首。

自从发现银杏有不错的保健功效以后,银杏的身价开始倍增,银杏也被提取成了银杏叶提取物相关类保健品,目前银杏提取物的功效与作用已经获得大部分人的认可。

一、消除手脚麻木不管任何麻木,都因血液循环不良引起,在国外各大医院中,常常利用银杏叶提取物制剂来治疗,因为它能扩张血管,使血液循环恢复到正常从而能改善中年以后的手脚麻木现象,它之所以容易被人接受的另一个原因是没有任何副作用。

二、改善尿频症不论是何原因所引起泌尿系统功能不良,都可以服用银杏叶提取物制剂来治疗,因为它可以促使毛细血管正常化,血液流通顺畅,改善肾与膀胱之功能。

三、缓解糖尿病病情在好多医院中,给予糖尿病患者服用银杏叶提取物制剂后,发现症状可获得显著的改善,血液中之血糖质也显著降低,同时可以减少胰岛素注射量,且对毛细血管之扩张又有功效,显著的改善糖尿病患者的症状。

银杏叶提取物虽然是保健品,但是它的综合功能非常好,并且服用起来没有副作用,非常适合需要长期保健的人群。

可能大家平时缺乏对于银杏提取物的认知。

四、可消除因紧张所引起的头晕银杏叶提取物制剂可使大动脉,大静脉,毛细血管恢复畅通,血液粘度降低,促进脑循环功能,从而消除由于过度紧张而引起的不适经常服用,可使你精力旺盛,工作效率大大提高银杏叶提取物已成为现代激烈竞争中不可或缺的宝贝。

五、可以消除宿醉的痛苦实践证明,如果经常服用银杏叶提取物制剂,可促使动脉与末梢血管的功能正常化,使肝动脉或门脉之血液畅通,可使肝机能充分发挥,增强肝脏对酒精的代谢能力,可减少宿醉的程度甚至预防宿醉。

六、消除腰酸背痛一般性肩膀酸痛,大都是因疲劳而引起的,这时发生乳酸堆积在肌肉中,形成淤血状态,它的症状是在肩膀附近的肌肉细胞相互绷紧,呈现出坚硬状态,而产生疼痛,要想消除肩膀痛,就是将乳酸从组织中排出,所以我们必须改善血液循环不良,使血流活泼有朝气,银杏叶提取物可消除腰酸背疼,就是因为它能使血液循环良好,及时排除乳酸,提高肌肉供氧。

银杏叶提取物的药理作用

银杏叶提取物的药理作用

银杏叶提取物的药理作用银杏(Ginkgo biloba L.)为银杏科银杏属多年落叶乔木,别名白果树、公孙树、鸭掌树,是1.5亿年前冰川时期在地球上的孑遗植物之一,素有裸子植物“活化石”之称,是世界上最古老的珍稀树种之一。

我国是银杏的发源地,银杏资源居世界首位。

银杏的种子药用名白果,作为敛肺定喘、缩小便、止带浊的中药在我国应用已有很久历史。

银杏叶在我国宋朝就开始使用,用于治疗哮喘和支气管炎。

银杏叶为银杏的干燥叶,秋季叶尚绿时采收,及时干燥。

本品性平,味甘、苦、涩,归心、肺经,有敛肺、平喘、活血化淤、止痛之功,中医主要用于治疗肺虚咳喘;冠心病,心绞痛,高脂血症等[1]。

1 背景上世纪世界各国开始对银杏叶制剂进行研究。

1965年,德国威玛舒培博士(Dr. Willmar Schwabe)药厂正式上市全球第一个银杏叶提取物制剂TEBOONIN(通用名EGB761),用于治疗心脑血管疾病,且疗效显著。

银杏作为近代植物药开发研究的热点之一,其本身的特点在于:①作为侏罗纪的遗存植物“活化石”,保存了1.5亿年前的生态特征,银杏树的生命力特别强,被誉为长寿树,其近缘植物均于第4纪冰川期灭绝,因此成为一科一属的特殊植物;②从化学角度看,其重要的有效成分银杏内酯,迄今尚未发现存在于其他任何植物中,更重要的是银杏具有独特的生理作用和治疗价值。

2 银杏叶提取物的化学成分2.1 质量指标目前国际上标准的银杏叶提取物是指按德国Schwabe药厂专利工艺生产的EGB,厂家所制定的质量指标主要包括含黄酮苷24%以上,萜类内酯6%以上,银杏酸10 mg/kg以下。

《中国药典》2005版也采用这个标准。

2.2 主要成分最主要成分有两大类:银杏黄酮和萜类内酯。

银杏黄酮类是低分子量化合物,均衍生于其母体化合物黄酮,以糖苷和甲基化的形式存在。

银杏叶中含有约38种黄酮类化合物,其中双黄酮6种,黄酮苷元7种,黄酮苷17种,黄酮苷主要是槲皮素、山萘素、异鼠李素的糖苷,以及儿茶素类。

银杏叶提取物对2型糖尿病大鼠心肌保护机制的研究

银杏叶提取物对2型糖尿病大鼠心肌保护机制的研究

银杏叶提取物对2型糖尿病大鼠心肌保护机制的研究念红;宋宝辉;徐秋玲;吴红;李丽【期刊名称】《中国食物与营养》【年(卷),期】2011(017)005【摘要】目的:研究银杏叶提取物对2型糖尿病大鼠脂代谢及心肌细胞PPAR γ mRNA表达的影响,探讨银杏叶提取物对2型粮尿病的治疗作用.方法:用高糖-高脂肪饲料刺激加小剂量链脲佐菌素(STZ)制备2型糖尿病大鼠模型,将空腹血糖>16.6mmol/L的20只大鼠随机分为糖尿病组(10只)和治疗组(10只),另设正常组(10只).治疗组大鼠给予银杏叶提取物灌胃,糖尿病组和正常组给予0.9%氮化钠注射液灌胃.治疗10周后取血清测定血脂、空腹血糖(FBG)、血清胰岛素(INS),计算胰岛素抵抗指数(IRI);测定心肌组织丙二醛(MDA)、超氧化物岐化酶(SOD)含量;采用半定量逆转录-聚合酶链式反应(RT-PCR)检测正常组、糖尿病组和治疗组大鼠心肌细胞PPAR γ mRNA表达量.结果:与糖尿病组大鼠相比较,治疗组大鼠心肌组织PPAR γ mRNA表达量升高(P<0.05)、MDA降低(P<0.01),SOD升高(P<0.01);而FBG、INS及IRI显著降低(P<0.05或P<0.01).结论:银杏叶提取物能够明显降低2型糖尿病大鼠的高血糖,降低胰岛素抵抗水平,改善脂质过氧化状态,并且可以提高2型糖尿病大鼠心肌细胞PPAR γ mPNA的表达,对2型糖尿病有一定的治疗作用.【总页数】4页(P67-70)【作者】念红;宋宝辉;徐秋玲;吴红;李丽【作者单位】牡丹江医学院生理教研室,黑龙江牡丹江,157011;牡丹江医学院病原学教研室,黑龙江牡丹江,157011;牡丹江医学院生理教研室,黑龙江牡丹江,157011;牡丹江医学院生理教研室,黑龙江牡丹江,157011;牡丹江医学院生理教研室,黑龙江牡丹江,157011【正文语种】中文【相关文献】1.胰岛素对2型糖尿病心肌病大鼠的心肌保护机制 [J], 刘雅玲;周辰;潘晓东;尹冬华2.银杏叶提取物对2型糖尿病大鼠心肌非酶糖基化及氧化应激反应的影响 [J], 杨骄霞;张杰;杨旭东3.银杏叶提取物对实验性2型糖尿病大鼠心肌的保护作用 [J], 邹辉;杨旭芳;郭尚福4.银杏叶提取物对2型糖尿病大鼠心肌细胞钙通道基因表达的影响研究 [J], 念红; 宋宝辉; 吴红; 刘桂莲; 孙革5.参附注射液对大鼠急性心肌梗死I/R损伤的心肌保护机制研究 [J], 蓝洲;陀鹏;赵旋;梁镫月;韦宜宾因版权原因,仅展示原文概要,查看原文内容请购买。

银杏叶提取物的保健功效概述

银杏叶提取物的保健功效概述

银杏叶提取物的保健功效概述摘要】银杏叶是一种具有很高药用价值的植物。

银杏叶提取物具有多系统的药理活性,其单方或复方制剂广泛用于临床心脑血管疾病、衰老相关疾病等的治疗以及保健食品的开发。

本文对近年来银杏叶提取物的预防性应用进行综述,为银杏叶提取物的保健应用提供理论依据。

【关键词】银杏叶提取物保健预防【中图分类号】R96 【文献标识码】A 【文章编号】2095-1752(2014)07-0106-02银杏树又名白果树,是我国最古老的树种之一。

银杏是一种具有很高药用价值的植物,药用部分主要是叶和果,其叶在秋季尚绿时采收,干燥后使用。

银杏叶性味苦,涩,平,具敛肺平喘、活血化瘀的功能。

银杏叶提取物是银杏干燥叶的提取物,化学成分主要为银杏黄酮、萜类内酯以及有机酸等。

银杏叶提取物具有多系统的药理活性,其单方或复方制剂目前已广泛用于临床心脑血管疾病、衰老相关疾病等的治疗。

由于银杏叶广泛的药用功效及其使用的安全性,它被列为可用于保健食品的物品名单之内,很多保健食品都以银杏叶提取物作为主要成分。

保健食品的应用是针对未病之人,本质上是预防性用药。

本文对近年来银杏叶提取物的预防性应用进行综述,为银杏叶提取物的保健应用提供理论依据。

1. 心血管系统银杏叶提取物具有独特的抗自由基作用,对心肌缺血再灌注损伤有较显著的抑制作用,广泛应用于冠心病的临床治疗。

银杏叶提取物可预防高脂血症[1],降低动脉粥样硬化的发生率[2],减少发生冠心病及其他心脑血管疾病的危险因素。

动物模型研究显示,在心肌缺血再灌注造模前给予银杏叶提取物,可显著降低心肌损伤所致的MDA、NO含量上升,减轻心肌损伤[3],具有一定的预防作用。

2. 神经系统银杏叶提取物或以其为主要成分的制剂如金纳多、杏丁等已广泛应用于临床脑血管病的辅助治疗,取得临床一致认同的可靠疗效。

而用于脑血管病的预防作用,研究发现,服用银杏软胶囊持续用药1年,其改善血液流变学指标、预防动脉粥样硬化与脑梗死复发的效果与口服阿司匹林相当,且消化系统不良反应显著减少[4]。

银杏叶提取物改善了肝细胞中由于高胰岛素处理引起的葡萄糖不耐受

银杏叶提取物改善了肝细胞中由于高胰岛素处理引起的葡萄糖不耐受

Ginkgo Biloba Extract (GBE) Enhances Glucose Tolerance in Hyperinsulinism-induced Hepatic CellsZaiqing Yang, Tao Xia, Li Gan, Xiaodong Chen, Lei ZhouCollege of Life Science and Technology, Huazhong Agricultural University, Wuhan city, Hubeiprovince, 430070, P.R.China yangzq@AbstractGinkgo biloba, an herbal medication, is capable of dropping glucose, fat and lipid peroxide and preventing atherosclerosis and complications in diabetic patients. In our studies, we tested the hypothesis that ginkgo biloba extract (GBE) prevents glucose intolerance induced by hyperinsulinismin hepatocytes. We investigated the effects of GBE on glucose ingestion, glucokinase activity and mRNA levels of key genes in glucose metabolism and insulin signaling pathway. To better show its efficacy, we included a control group that was treated with rosiglitazone, a kind of thiazolidinediones (TZDs). The data showed that GBE repressed glucose ingestion in normal status, whereas it dramatically improved glucose tolerance in insulin resistance status. Moreover, by analyzing gene expression, we suggested that GBE chiefly exerted its effects by stimulating IRS-2 transcription. It should be noted that, not like rosiglitazone, GBE didn’t stimulate overmuch glucose uptake in improving glucose tolerance. It is said that GBE treatment could avoid drug-induced obesity. The data suggested that GBE had potential efficacy to prevent insulin resistance induced by hyperinsulinism. Keywords: antidiabetic drugs, diabetes prevention, insulin resistance, liver, rosiglitazone Abbreviations: Glucose-6-P, glucose-6-phosphate; GK, glucokinase; G-6-Pase, glucose-6-phosphatase; IRS, insulin receptor substrate; GLUT, glucose transporter; PPAR, peroxisome proliferator-activated receptor; SREBP, sterol regulatory element-binding protein.1 INTRODUCTIONGinkgo biloba, an herb, has been used as traditional Chinese medicine for thousands of years. Ginkgo biloba extract (GBE) is being widely studied and applied for its beneficial properties in treatment or prevention of human diseases. Ginkgo biloba trees mainly distribute in China, France, and USA, producing a mass of dried leaves each year to meet the commercial demand of market [1]. GBE has been reported to drop glucose, fat and lipid peroxide and prevent atherosclerosis in animal model and human. To our knowledge, no systematic study illustrates the molecular mechanism of its efficacyon improving insulin sensitivity and enhancing glucose tolerance in insulin resistance model.In previous studies, GBE was found to have anti-inflammatory [2] and stimulate skin microcirculation [3]. And it was used as a therapeutic agent for some cardiovascular and neurological disorders. People also found it could attenuate the negative effects of some drugs [4, 5]. Recently, accumulating in vitro and in vivo evidence demonstrated that it had potential efficacy in lipid metabolism, glucose metabolism and diabetes mellitus. Saponara showed that GBE inhibited cAMP phosphodiesterase in rat adipose tissue [6]. Mario illustrated that the biflavones of ginkgo biloba stimulated lipolysis in fully differentiated 3T3-L1 adipocytes [7]. Boveris obtained the same results as Mario and further showed GBE inhibited lipid peroxidation [8]. By investigating diabetic rodent model, Nian hong et al. indicated that GBE dropped the after-dinner blood-glucose, decreased the contents ofThis work was supported by the High Education Doctorial Subject Research Program (No: 20010504003), the grants from the General Program (No: 30170674) and Key Program of NationalTC, TG and LDL, promoted SOD activity and relieved the damage of pancreatic islet [9]. Moreover, Li et al. found GBE could prevent and treat atherosclerosis by decreasing serum lipids levels, suppressing inflammatory response and protecting endothelial cells [10]. As we know, oxidation-modified LDL plays an important role in the pathogenesis of artherosclerosis with type II diabetes melllitus. GBE was also capable of inhibiting the oxidation of LDL [11, 12]. In addition, early detection of pathologic function of the retina plays very crucial role in monitoring of visual complications in diabetic patients. Researchers showed GBE prevented diabetic retinopathy and they thought it was a good adjuvant to patient with long lasting diabetes mellitus [13]. All data suggested that GBE was of value in diabetic therapy.Liver is an important organ for glucose metabolism and energy homeostasis. And hepatic insulin resistance is an important component in the development of type II diabetes mellitus. In this process, PPARs, GLUT, G6Pase, IRS and SREBPs play crucial roles. GLUT2 is the primary glucose-transporter isoform in liver and plays a key role in glucose homeostasis by mediating bidirectional transport of glucose [14]. PPARs and SREBPs are characterized well transcription factors. PPARγ was deemed the main isoform in adipocytes before, but now people found it might also mediate lipid metabolism and energy homeostasis by changing its expression in liver [15]. SREBP1c is crucial for the regulation of lipogenic gene. And recent studies also found that it was interrelated with insulin action [16]. G6Pase as the last enzyme in hepatic glucogenesis, is an important determinant of hepatic glucose fluxes. Moreover, IRS-2 was main isoform in liver. It compensated for the lack of IRS-1 in IRS-1-/- model [17]. So hepatic insulin signaling was mediated mainly through IRS-2, rather than IRS-1 [18].In this study, we tested the hypothesis that GBE involves in modulation of insulin action and enhances glucose tolerance. To better interpret its molecular mechanism, we assayed above gene expressions and glucokinase activity.2 MATERIALS and METHODS2.1 Materials.The powder form of GBE was purchased from Greensky Biological Tech Co., Ltd. (Hangzhou, China). The GBE contained 24% flavonoids, 6% terpenes and less than 1 ppm of ginkgolic acid. The composition of the flavonoids and terpenes in GBE was similar to that of EGb 761 used in European countries. TRIzol was obtained from Sangon Co., Ltd. (Shanghai, China). Mammalian Cell Protein Extraction kit was purchased from Shenergy Biocolor BioScience & Technology Co., Ltd. (Shanghai, China). Glucose Assay Kit was obtained from Shenergy-diasys Diagnostic Technology Co., Ltd. (Shanghai, China).2.2 Cell culture and treatment.L-02 cell line was derived from normal adult liver [19]. They were grown in DMEM supplemented with 10% fetal bovine serum at 5% CO2 and 37°C. For the relevant experiments, the density of cells was about 5×105 cells/well in 24-well culture plates for RNA extraction or 5 × 106 cells/dish in 60-mm Petri dishes for metabolite concentration assay. There were two group cells in experiments, namely A and B. A mimicked normal physiological status and included NC, NRT and NGT. All cells were treated with 10nM insulin. NC stood for Normal Control (NC); NRT was given 10µM rosiglitazone that was a kind of TZDs and stood for Normal Rosiglitazone Treatment (NRT); NGT was given 10mg/l GBE and stood for Normal GBE Treatment (NGT). B mimicked insulin resistance status by hyperinsulinaemic and hyperglycaemic treatment in vitro[20, 21].There were three kinds of B,designated AC, ART, AGT. AC, ART and AGT were given 100nM insulin and AC stood for Abnormal Control (AC). ART was given 10µM rosiglitazone and stood for Abnormal Rosiglitazone Treatment (ART). AGT was given GBE and stood for Abnormal GBE Treatment (AGT). All treatments are listed in table 1.Table 1. The description of cell treatment. + indicates that groups include relevant agents.Insulin(10nM) +++Insulin(100nM) +++ Rosiglitazone ++GBE ++2.3 RNA isolation.Total RNAs were isolated from L-02 cells using TRIzol after culturing the cells for 36h. All of the RNA samples were treated with Dnase I to digest the genomic DNA and stored at -80°C.2.4 Semi-quantitative RT-PCR.Semi-quantitative RT-PCR with glyseraldehyde- 3-phosphate dehydrogenase (GAPDH) as an internal control was performed to determine the levels of PPARγ, IRS-2, GLUT2, SREBP1c and G6Pase mRNA in L-02 cells. A 4μl RNA sample was reverse transcribed with oligo(dT)18. cDNA (2μl) was used for PCR amplification with 1U Taq DNA polymerase. The PCR products were run on a 1% agarose gel containing ethidium bromide and viewed under UV light. All primers are listed in table 2. Preliminary experiments were carried out with various amounts of PCR cycles to determine the linear range of amplification for all of the studied genes. The results for the expression of studied gene mRNAs are always presented relative to the expression of GAPDH.Table 2. The primers use for semi-quantitative RT-PCR.Gene name Size (bp) Forward and Reverse primer (5′-3′) accession numberPPARγ 195 F: TCTCCAGTGATATCGACCAGC BT007281R: TTTTATCTTCTCCCATCATTAAGGIRS-2 383 F: CACCTCCCCACGACAGTTGC NM_003749R: GGTGGGACAAGAAGTCAATGCTGGLUT2 398 F: TTTTCAGACGGCTGGTATCAGC J03810R: CACAGAAGTCCGCAATGTACTGGSREBP1c 248 F: CACCGTTTCTTCGTGGATGG BC057388R: CCCGCAGCATCAGAACAGCG6Pase 244 F: CGACCTACAGATTTCGGTGCTTG NM_000151R: AGATAAAATCCGATGGCGAAGCGAPDH 452 F: ACCACAGTCCATGCCATCAC BC083511R: TCCACCACCCTGTTGCTGTA2.5 Protein isolation and concentration assay.Proteins were isolated using the Mammalian Cell Protein Extraction kit. Protein concentrations were determined by Bradford assay [22].2.6 Glucose concentration assay.The glucose concentration in medium was assayed using the Glucose Assay Kit. Absorbance was assayed at 340nm using BECKMAN COULTER DU 800 UV/Visible spectrophotometer. All sample concentrations were normalized by each protein amount.2.7 Glucokinase assay.Enzymatic activity was assayed as described previously [23], using NAD as coenzyme and Glucose-6-phosphate dehydrogenase as coupling enzyme. The assay buffer contained 100mM triethanolamine hydrochloride (Tris-HCL, pH 7.8), 5mM MgCl2, 5mM ATP, 150mM KCl, 2mM dithiothreitol, 0.2% bovine serum albumin, 1mM NAD, and 1unit/ml of G6PDH. Correction for low hexokinase activity was applied by subtracting the activity measured at 0.5mM glucose from the activity measured at 100mM glucose. Absorbance was measured at 340nm using BECKMAN COULTER DU 800 UV/Visible spectrophotometer. Enzymatic activity was expressed in milliunits per mg of protein.2.8 Statistical analysis.Results are expressed as means ± S.E. of 3experiments. The comparison of different groups was carried out using Student’s t test. The significance level chosen was P < 0.05.3 RESULTS3.1 In normal status, GBE suppressed glucose ingestion and glucokinase activity.All cells were cultured in DMEM. NC was treated with 10nM insulin; NRT was treated with 10nM insulin and rosiglitazone; NGT was treated with 10nM insulin and GBE (as described in Materials and Methods). The glucose uptake and glucokinase activity were determined at 0h, 18h and 36h, respectively. The data indicated that GBE inhibited glucose uptake (36% reduction, p<0.05, 18h; 9% reduction, 36h) (Fig. 1A) and glucokinase activity (no effect, 18h; 5% reduction, 36h) (Fig. 1B) compared with control (NC). The trend was impaired with time. The decline of GBE concentration was a possible explanation for this phenomenon. Contrary to GBE, rosiglitazone stimulated glucose uptake (20% induction, 18h; 44% induction, p<0.01, 36h) (Fig. 1A) and glucokinase activity (1.8-fold induction, p<0.01, 18h; 27% induction, p<0.05, 36h) (Fig. 1B) compared with control (NC). The results suggested that in normal status, GBE decreased the risk of obesity by suppressing overmuch glucose ingestion.Fig. 1 In normal status, the effects of GBE and rosiglitazone on glucose ingestion and glucokinase activity. After plating, L-02 cells were cultured for 36h as described in Materials and Methods. After 0, 18, and 36h glucose ingestion (A) and GK activity (B) were determined. Results are the mean ± S.E. from values obtained from three independent cultures. A, ∗ (p < 0.05), ∗∗ (p < 0.01) indicates that glucose ingestion was greater or lower in treatment cells than in control cells (NC). B, ∗ (p < 0.05), ∗∗(p < 0.01) indicates that GK activity was greater or lower in treatment cells than in control cells (NC).3.2 In normal status, GBE increased mRNA levels of PPARγ, IRS-2 and G6Pase.To further understand the mechanism that GBE regulated glucose ingestion, the mRNA levels of PPARγ, G6Pase, GLUT2, SREBP1c and IRS-2 genes were measured. All cells were treated as described in Materials and Methods. After 36h, cell RNAs were isolated. The results from semi-quantitative RT-PCR (Fig. 2A) demonstrated that GBE stimulated expressions of PPARγ (30% induction; p<0.05), IRS-2 (69% induction; p<0.05) and G6Pase (1.2-fold induction; p<0.01) observably (Fig. 2B). PPARγ involved in insulin signaling pathway and could regulate insulin sensitivity. The increase of its expression would make cells be sensitive to insulin. IRS-2 was a crucial molecular in intracellular insulin signal transduction. It was able to elevate intracellular insulin sensitivity by enhancing its expression. The increases of PPARγ and IRS-2 indicated that GBE was able to enhance insulin sensitivity. As a result, cells would increase glucose ingestion. G6Pase as a key enzyme catalyzed the last step reaction in hepatic glucose synthesis. Its increase might lead to augment glucose output in liver. It was interesting, that GBE might enhance glucose ingestion and output at one time. The data suggested that GBE quickened cellular metabolic rate. Different to GBE, rosiglitazoneFig. 2 In normal status, the effects of GBE and rosiglitazone on gene expression. After plating, hepatocytes were cultured for 36h as described in Materials and Methods. After 36h, total RNA was extracted and analyzed for the expressions of PPARγ, IRS-2, GLUT2, SREBP1c and G6Pase (A). The quantification of blots for these gene expressions, obtained in 3 independent cultures is shown (B). GAPDH was used as an internal control to normalize the expression levels of these genes. ∗ (p < 0.05), ∗∗ (p < 0.01) indicates that expression level of gene was greater or lower in treatment cells than in control cells (NC).3.3 In insulin resistance status, GBE improved glucose ingestion and glucokinase activity.All cells were cultured in DMEM. NC was treated with 10nM insulin; AC was treated with 100nM insulin; ART was treated with 100nM insulin and rosiglitazone; AGT was treated with 100nM insulin and GBE (as described in Materials and Methods). The glucose uptake and glucokinase activity were determined at 0h, 18h and 36h, respectively. The results showed that 100nM insulin inhibited glucose uptake absolutely (Fig. 3A). The data indicated that GBE stimulated glucose ingestion dramatically (Fig. 3A). It suggested that GBE had potential efficacy in preventing insulin resistance. In addition, GBE enhanced glucokinase activity, but it was not significance. It meant glucokinase did not play a key role in GBE treatment. Rosiglitazone had the similar efficacy with GBE’s. It stimulated markedly glucose uptake (Fig. 3A) and glucokinase activity (Fig. 3B), too. But in this process, rosiglitazone made cells ingest overmuch glucose.Fig. 3 In insulin resistance status, the effects of GBE and rosiglitazone on glucose ingestion and glucokinase activity. After plating, L-02 cells were cultured for 36h as described in Materials and Methods. After 0, 18, and 36h glucose ingestion (A) and GK activity (B) were determined. Results are the mean ± S.E. from values obtained from three independent cultures. A, ∗ (p < 0.05), ∗∗ (p < 0.01) indicates that glucose ingestion was greater or lower in treatment cells than in control cells (NC); # (p < 0.05), ## (p < 0.01) indicates that glucose ingestion was greater or lower in treatment cells than in control cells (AC). B, ∗ (p < 0.05), ∗∗ (p < 0.01) indicates that GK activity was greater or lower in treatment cells than in control cells (NC); # (p < 0.05), ## (p < 0.01) indicates that GK activity was greater or lower in treatment cells than in control cells (AC).3.4 In insulin resistance status, GBE increased expressions of IRS-2 and GLUT2 and decreased SREBP1c expressions.To further understand the mechanism that GBE improved glucose tolerance, the mRNA levels of PPARγ, G6Pase, GLUT2, SREBP1c and IRS-2 genes were measured. All cells were treated as described in Materials and Methods. After 36h, cell RNAs were isolated. The results from semi-quantitative RT-PCR (Fig. 4A) demonstrated that GBE enhanced expressions of IRS-2 (1.5-fold induction; p<0.01) and GLUT2 (0.9-fold induction; p<0.01) and inhibited SREBP1c expression (27% reduction; p<0.05) in hyperinsulinaemic hepatocytes (Fig. 4B). As in normal status, GBE also stimulated IRS-2 expression. It was very important to improve insulin sensitivity. GLUT2 as a main glucose transporter in liver, the increase of its expression was helpful to cell for taking glucose. SREBP1c is crucial transcriptional factor to regulate lipid metabolism. On the one hand, the decrease of its expression would reduce lipid production; on the other hand, considering SREBP directly suppressed IRS-2 expression in transcriptional level, its decline might be a reason for augment of IRS-2 expression. Rosiglitazone had similar effect with GBE on genes expression. Different from GBE, PPARγ had a higher expression level and IRS-2 had a lower expression level in rosiglitazone treatment.Fig. 4 In insulin resistance status, the effects of GBE and rosiglitazone on gene expression. After plating, hepatocytes were cultured for 36h as described in Materials and Methods. After 36h, total RNA was extracted and analyzed for the expressions of PPARγ, IRS-2, GLUT2, SREBP1c and G6Pase (A). The quantification of blots for these gene expressions, obtained in 3 independent cultures is shown (B). GAPDH was used as an internal control to normalize the expression levels of these genes. ∗ (p < 0.05), ∗∗ (p < 0.01) indicates that expression level of gene was greater or lower in treatment cells than in control cells (AC).4 DISCUSSIONThis study proved that GBE had potential efficacy to prevent insulin resistance. And the proper molecular mechanism driving this process was discussed.As we known, TZDs were prevalent drugs used in type II diabetes mellitus therapy. They were thought as PPARγ agonists [24] and improved downstream insulin signaling in type II diabetic patients [25]. On the one hand, they improved glucose tolerance and enhanced insulin sensitivity; on the other hand, TZDs increased weight of patients, too [24, 26]. It is unclear whether gaining weight in this way could do further harm to diabetic patients. But it is well known that obesity is a major risk factor for insulin resistance and type II diabetes mellitus. By contrast, GBE suppressed overmuch glucose ingestion when enhancing glucose tolerance in our experiments. Moreover, although GBE decreased glucose ingestion in normal status, it didn’t induce insulin resistance. Longtime (3 months) ingestingGBE by normal glucose-tolerant individuals caused a significant increase in pancreatic beta-cell insulin response [27]. The effect of GBE on glucose (improved glucose tolerance and inhibited overmuch glucose uptake) made us believe that GBE has a potential role in diabetes therapy.Liver, as a key metabolic organ, is bifunctional in glucose metabolism, namely utilization and production of glucose. And it played a crucial role in regulating energy balance. So, the hepatic insulin resistance was deemed to be chiefly responsible for type II diabetes [28]. In our experiments, GBE improved glucose tolerance in hyperinsulinism-induced hepatocytes. It suggested that GBE prevented insulin resistance in liver. To further explore its signaling pathway, we determined mRNA levels of related genes and glucokinase activity. Our data showed that in normal status, GBE enhanced expressions of PPARγ, IRS-2 and G6Pase; in insulin resistance status, GBE stimulated expressions of IRS-2 and GLUT2, and repressed SREBP1c expression. Interesting, there was a paradoxical result in our data. On the one hand, GBE improved glucose tolerance. On the other hand, GBE also increased G6Pase expression, which was thought a key enzyme in glucose synthesis. Considering glucose ingestion was increased in insulin resistance status, a rational explanation for this result was that GBE enhanced glucose tolerance by accelerating metabolic rate, not by merely ingesting and depositing glucose [29].Glucokinase (GK) is main HKs in liver and plays key role in regulating glucose phosphatization. In our experiment, its activity did not change after GBE treatment. The data suggested that GBE did not exert its effects on glucokinase. It should be noted that IRS-2 expression was improved after GBE treatment both in normal status and insulin resistance status. Since IRS-2 was a crucial element in downstream insulin signaling, its expression was closely relational with insulin signaling transduction. Researchers found that deficiency of IRS-2 caused insulin resistance [30]. So we suggested that GBE exerted its effects mainly on IRS-2 expression. Moreover, our data showed that the increase of IRS-2 was followed by the decrease of SRBEP1c. It indicated there was an inner link between them. The results of Tomohiro supported our supposition. They found SREBP1c directly suppressed IRS-2 transcription in hepatocytes [31]. So we suggested that GBE mainly improved insulin action by enhancing IRS-2 transcription.In summary, our data support the notion that GBE improves glucose tolerance in hyperinsulinism-induced L-02 cells. And the study also provides a base to further explore its signaling pathway.REFERENCES[1] Schmid, W. Ginkgo thrives. Nature 1997; 386: 755.[2] Della Loggia R, Sosa S, Tubaro A, et al. Anti-inflammatory activity of some Ginkgo biloba constituents and of their phospholipid-complexes. Fitoterapia 1996; 67: 257-264.[3] Bombardelli E, Cristoni A, Curri SB. Activity of phospholipid-complex of Ginkgo biloba dimeric flavonoids on the skin microcirculation. Fitoterapia. 1996; 67: 265-273.[4] Kazumasa Shinozuka, Keizo Umegaki, Yoko Kubota, Naoko Tanaka, Hideya Mizuno, Jun Yamauchi, Kazuki Nakamura, Masaru Kunitomo. Feeding of Ginkgo biloba extract (GBE) enhances gene expression of hepatic cytochrome P-450 and attenuates the hypotensive effect of nicardipine in rats. Life Sciences. 2002; 70: 2783-2792.[5] Tomomi Sugiyama, Yoko Kubota, Kazumasa Shinozuka, Shizuo Yamada, Jian Wu, Keizo Umegaki. Ginkgo biloba extract modifies hypoglycemic action of tolbutamide via hepatic cytochrome P450 mediated mechanism inaged rats. Life Sciences. 2004; 75: 1113-1122.[6] Saponara R, Bosisio E. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue. Journal of Natural Products 1998; 61: 1386-1387.[7] Mario Dell’Agli, Enrica Bosisio. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes. Planta Med. 2002; 68: 76-79.[8] Boveris, A. D., Galatro, A., Puntarulo, S. Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals. Biol Res. 2000; 33: 159-165.[9] Nian hong, Song Baohui and Wang Wan. Antioxidative Hress Effect of Ginkgo Biloba Extract to Experimental Diabetes Rats. Journal of Mudanjiang Medical College 2004; 25: 3-6.[10] Li Xin, Liao Xinxue and Liao Xiaoxing. The preventive and therapeutic effect of Ginkgo extract on atherosclerosis. Chin J Emerg Med. 2004; 13: 609-611.[11] Huang Peili, Feng Gaoqian, Zhang Shuhua, Wang Hui. Effect of Ginkgo Biloba L Leaves on Oxidation of Human Low Density Lipoproteins in vitro. Journal of Hygiene Research 2004; 33: 453-454.[12] Ni Haixiang, Luo susheng and Huang qi. Effect of GBE on Plasma Oxidization-modified Low Density Lipoprotein in Patients with Type-2 Diabetes Mellitus. Zhe Jiang Zhong Xi Yi Jie He Za Zhi 2000; 10: 454-456. [13] Bernardczyk-Meller, J., Siwiec-Proscinska, J., Stankiewicz, W., et al. Influence of Eqb 761 on the function of the retina in children and adolescent with long lasting diabetes mellitus--preliminary report. Klin Oczna. 2004; 106: 569-571.[14] Bell GI, Kayano T, Buse JB, et al. Molecular biology of mammalian glucose transporters. Diabetes Care 1990; 13: 198-208.[15] Riaz A. Memon, Laurence H. Tecott, Katsunori Nonogaki, et al. Up-Regulation of Peroxisome Proliferator-Activated Receptors (PPAR-a) and PPAR-g Messenger Ribonucleic Acid Expression in the Liver in Murine Obesity: Troglitazone Induces Expression of PPAR-g-Responsive Adipose Tissue-Specific Genes in the Liver of Obese Diabetic Mice. Endocrinology 2000; 141: 4021-4031.[16] Jay D. Horton, Joseph L. Goldstein, and Michael S. Brown. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002; 109: 1125–1131.[17] Patti Mary-Elizabeth, Sun Xiao-Jian, Bruening Jens C., et al. 4PS/Insulin Receptor Substrate (IRS)-2 Is the Alternative Substrate of the Insulin Receptor in IRS-1-deficient Mice. J. Biol. Chem. 1995; 270: 24670-24673. [18] Kristina I. Rother, Yumi Imai, Matilde Caruso, et al.Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J. Biol. Chem. 1998; 273:17491–17497.[19] Yeh Hsiu-jeng, Chu Ten-ho and Shen Tin-wu. Ultrastructure of Continuously Cultured Adult Human Liver Cell. Acta Biologiac Experimentalis Sinica 1980; 13: 361-364.[20] Garvey, W. T., Olefsky, J. M. and Marshall, S. Insulin Receptor Down-regulation Is Linked to an Insulin-induced Postreceptor Defect in the Glucose Transport System in Rat Adipocytes. J. Clin. Invest. 1985; 76: 22-30.[21] PR Pryor, SC Liu, AE Clark, et al. Chronic insulin effects on insulin signaling and GLUT4 endocytosis are reversed by metformin. Biochem. J. 2000; 348: 83-91.[22] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-54.[23] Zhou Jianxin, Zhong Xiaolin, LI Rongfen, et al. Changes of hepatic glucokinase, muscular hexokinase, blood glucose, plasma lactate, and erythrocytic ATP after scalding in rats. Acta Academiae Medicinae Militaris Tertive 1994; 16: 178-180.[24] Hannele Yki-Jarvinen. Thiazolidinediones. N Engl J Med. 2004; 351: 1106-18.[25] Yoshinori Miyazaki, Helen He, Lawrence J. Mandarino, and Ralph A. DeFronzo. Rosiglitazone ImprovesDownstream Insulin Receptor Signaling in Type 2 Diabetic Patients. Diabetes 2003; 52: 1943–1950.[26] YUTAKA MORI, YUICHI MURAKAWA, KAZUHISA OKADA, et al. Effect of Troglitazone on Body Fat Distribution in Type 2 Diabetic Patients. Diabetes Care 1999; 22: 908–912.[27] Kudolo GB. The effect of 3-month ingestion of ginkgo biloba extract on pancreatic beta-cell function in response to glucose loading in normal glucose tolerant individuals. Journal of Clinical Pharmacology 2000; 40: 647-654.[28] Cullen M. Taniguchi, Kohjiro Ueki and C. Ronald Kahn. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J. Clin. Invest. 2005; 115: 718–727.[29] Kudolo GB. The effect of 3-month ingestion of ginkgo biloba extract (EGb 761) on pancreatic beta-cell function in response to glucose loading in individuals with non-insulin-dependent diabetes mellitus. Journal of Clinical Pharmacology 2001; 41: 600-611.[30] Naoto Kubota, Kazuyuki Tobe, Yasuo Terauchi, et al. Disruption of Insulin Receptor Substrate 2 Causes Type 2 Diabetes Because of Liver Insulin Resistance and Lack of Compensatory β-Cell Hyperplasia. Diabetes 2000; 49: 1880–1889.[31] Tomohiro Ide, Hitoshi Shimano, Naoya Yahagi, et al. SREBPs suppress IRS-2-mediated insulin signaling in the liver. Nat Cell Biol. 2004; 6: 351-357.。

银杏叶提取物治疗挫伤性视网膜病变的疗效

银杏叶提取物治疗挫伤性视网膜病变的疗效

银杏叶提取物治疗挫伤性视网膜病变的疗效【摘要】本研究旨在探讨银杏叶提取物对挫伤性视网膜病变的治疗效果。

通过对银杏叶提取物的来源、成分及在疾病治疗中的作用机制进行分析,结合临床研究分析和治疗方案评估,发现银杏叶提取物具有显著的治疗效果。

临床研究显示,该物质能有效减轻症状,促进病变恢复。

在治疗方案和效果评估部分,银杏叶提取物被证实为一种有效的治疗药物。

结论部分总结,银杏叶提取物对挫伤性视网膜病变的疗效良好,展望其在临床应用中的潜力。

本研究为临床实践提供了重要参考,为疾病治疗提供新思路。

【关键词】银杏叶提取物、挫伤性视网膜病变、病因、症状、作用机制、临床研究、治疗方案、效果评估、疗效评估、临床应用、前景展望、研究结论。

1. 引言1.1 背景介绍挫伤性视网膜病变是一种常见的眼部疾病,通常是由于外界物体对眼球的直接撞击或挤压造成的。

这种病变会导致视网膜组织的损伤和破坏,进而影响视力和眼部功能。

目前,对于挫伤性视网膜病变的治疗主要包括手术和药物治疗,但是这些治疗方法存在一定的副作用和局限性。

本研究旨在探讨银杏叶提取物在治疗挫伤性视网膜病变中的疗效及作用机制,为临床治疗提供更有效的方案和借鉴。

1.2 研究目的本研究的目的是探讨银杏叶提取物在治疗挫伤性视网膜病变中的疗效及作用机制,为临床提供更有效的治疗方案和指导。

通过对银杏叶提取物的来源、成分以及其在挫伤性视网膜病变中的作用机制进行深入研究,我们旨在为医学界提供更多关于该治疗方法的科学依据,推动银杏叶提取物在临床实践中的应用,并进一步完善治疗挫伤性视网膜病变的方法。

通过临床研究和分析,我们将评估银杏叶提取物在治疗挫伤性视网膜病变中的实际效果,并为医生和患者提供更多选择的可能性。

本研究的目的在于探索银杏叶提取物作为治疗挫伤性视网膜病变的新途径,为患者带来更好的治疗效果和生活质量。

1.3 研究意义挫伤性视网膜病变是一种临床常见的视网膜疾病,患者常常面临着视力下降、视野缺损等严重后果。

银杏叶提取物的药用价值及其研究进展

银杏叶提取物的药用价值及其研究进展

银杏叶提取物的药理作用及其研究进展摘要:银杏是最古老的中生代植物,我国自古以来就将其用作中药,银杏叶提取物近年来引起了国内外高度关注。

本文对银杏叶提取物防治中枢神经系统、心脑血管系统;肝脏、肿瘤等疾病研究资料进行了分类概述。

从银杏叶提取物的药理作用、作用机制等进行综述,为银杏叶的临床应用提供参考依据。

关键词:银杏叶、银杏叶提取物、药理作用银杏(GinkgobilobaL)又名白果、公孙树、鸭脚子、鸭掌树,为落叶高大乔木,最早出现于3.45亿年前的石炭纪,第四纪大陆冰川之后成为中国的特有树种,是世界上最古老的孑遗植物之一,原产于中国,于1710年左右引入欧洲,素有“活化石”、“植物界的熊猫”之称[1]。

银杏叶的化学成分很复杂,迄今已发现170多种化合物,银杏叶提取物(GinkgoBilobaextract,GBE)中主要活性成分为黄酮类和萜类内酯[2-3],这使得银杏叶兼具有黄酮类与萜类内酯的药理作用,所以银杏叶提取物的药用价值极为广泛,药理学研究表明银杏叶提取物除具有显著的抗血小板活化因子(PAF)外,还具有抗脑缺血、清除自由基、抗炎、抗肿瘤及增强神经系统活性等作用,对冠心病、高血压、动脉粥样硬化、脑功能减退、老年性痴呆、记忆减退、衰老等与心脑血管循环有关的疾病有显著的预防和治疗效果。

中医中,银杏叶常用于治疗记忆丢失,胃部疼痛,痢疾,高血压、精神紧张和呼吸道问题如哮喘,支气管炎和循环不良及其引起的焦虑[4]。

1.对心血管系统的作用银杏叶提取物被广泛用于缺血性心、脑血管病的防治中并取得了良好效果。

应用GBE 治疗于动物及人体的研究中,均显示出较好的心功能改善作用。

银杏叶提取物有保护心脏,扩张血管的作用,对心脏缺血和感染性休克等均有显著的疗效[5]。

1.1对心脏保护作用熊年,韦晟等[6]实验发现,在缺血再灌注前连续给药银杏内酯B(GB)能缩小缺血再灌注损伤造成的梗死面积,改善心功能。

这一保护作用可能是通过抗氧化和抗凋亡信号通路综合作用实现的。

银杏叶提取物的药用价值及其研究进展

银杏叶提取物的药用价值及其研究进展

银杏叶提取物的药用价值及其研究进展银杏叶提取物,是指从银杏(Ginkgo biloba)的叶片中提取出的一系列化合物。

银杏叶提取物因其丰富的药用价值而备受关注,并在传统医学中被广泛用于治疗各种疾病。

近年来,关于银杏叶提取物的研究取得了长足的进展,本文将从药用价值和研究进展两个方面进行阐述。

1.改善记忆和认知功能:银杏叶提取物中含有丰富的活性成分,例如银杏内酯和银杏酚等,这些成分具有改善脑血流量和神经元功能的作用,可以帮助改善记忆和认知功能,尤其是在老年人中常被用于预防和治疗轻度认知障碍和阿尔茨海默病。

2.抗氧化和抗炎作用:银杏叶提取物富含抗氧化物质,可以中和体内自由基,减少氧化应激对细胞的损伤。

同时,它还能够抑制炎症反应,降低炎症介质的生成,从而减轻炎症相关疾病的症状。

3.抗衰老作用:银杏叶提取物中的活性成分可以促进细胞的新陈代谢,增强细胞的活力,减缓细胞老化进程。

同时,它还可以增强心血管系统的功能,提高心脏供血能力,从而延缓机体的衰老过程。

4.改善循环系统功能:银杏叶提取物能够扩张血管,增加血管弹性,降低血液黏稠度,改善微循环,从而有助于治疗心脑血管疾病,如高血压、糖尿病和动脉硬化等。

在银杏叶提取物的研究方面1.临床研究成果:大量的临床研究已经证实了银杏叶提取物在认知功能改善、抗衰老和心脑血管保护等方面的药效。

例如,一项对老年人进行的随机双盲安慰剂对照试验表明,长期服用银杏叶提取物可以显著改善老年人的记忆和认知功能。

另外,一些研究还发现,银杏叶提取物能够减轻高血压患者的血压和心脏负荷。

2.药理研究发现:银杏叶提取物的主要活性成分包括银杏内酯和银杏酚等,这些成分通过多种途径发挥药效,包括抗氧化、抗炎、抗血小板聚集、改善脑血流等。

近年来,研究人员还发现了银杏叶提取物对神经元发育、分化和修复等方面的促进作用。

3.药物开发进展:基于银杏叶提取物的药用价值和研究进展,一些药物已经被研发出来并进行了临床应用。

动物实验中胰岛素抵抗检测的几个问题

动物实验中胰岛素抵抗检测的几个问题
PPARa
及PPAR Y双激动剂等等,都是在动物实验研究时取得了良好的结果,甚至被奉为经典药物, 但在临床上却都遇到了问题,或者是临床无效,或者毒副反应过大,不能进入临床或迅即退 出。因此对于减轻IR的药物(包括中药及其复方)的实验研究,必须对其研究的方法学经过 详细的推敲,才能得出初步结论。动物实验即使有效,还应该进行慎重的临床研究,才能推 广。
(五)葛根素葛根属于解肌清热中药。我们曾研究过葛根素抑制醛糖还原酶的作用。 毕会民等对高脂饲料诱导的胰岛素抵抗大鼠模型用葛根素腹腔注射,用计算法可见胰岛素敏 感指数改善,骨骼肌的超微结构也有改善。
(六)桑叶总黄酮桑叶属于疏风清热中药,与之有关的桑白皮等中药早已发现有降糖 作用,其作用可能通过抑制a一糖苷酶来实现,而桑叶的提取物亦有类似作用。近年桑叶总 黄酮对糖尿病大鼠小肠双糖酶抑制作用的研究结果表明,桑叶总黄酮对蔗糖酶、麦芽糖酶、 乳糖酶活性的抑制率依次为68.O%、47.1%及27.896,效果与阿卡波糖相似。
胰岛素测定还有一个问题要注意,即体内胰岛素分泌呈脉冲式。故严格的科研要求间隔 5min抽3次血测定后取平均值,除非样本较多(>30例)时可考虑一次抽血测定。而小鼠抽 一次血即很困难,不可能做到这一点,即使大鼠要达到这一要求也很不容易。
二、检测IR的方法 目前临床上检测IR的方法很多,从主要是根据测定内源性胰岛素的作用,还是根据测 定外源性胰岛素的作用不同,而分为两大类型,即间接方法及直接方法两类。 间接方法需要测定内源性胰岛素。又可因机体是在受刺激状态下还是基础状态下(空腹 8h以上)再分为两类。前者如微小模型(M咖)及多次静脉抽血葡萄糖耐量试验(FSIVGl'T)、持 续静脉输注葡萄糖模型评估法(CIGMA)及口服葡萄糖耐量试验(0G1vr)等。后者如:1/空腹胰岛 素(FINS)、空腹血糖(FPG)/FINS、1/(FPG×FINs)、稳态模型评估的胰岛素抵抗(HOMA-IR) 及定量胰岛素敏感性检测指数(QUICKI)等公式。间接方法由于要测定体内胰岛素,因动物胰 岛素与人胰岛素化学结构不同,实验研究必然会遇到上述的测定难题。即使鼠类实验应用鼠 胰岛素药盒,也会遇到以下一些问题。 1.MMM、FSIVGTT、CIGMA等法:这些都是数学模型,都是根据人的研究数据而建立的, 因而并不适合于各种动物。从技术上说,频繁的抽血在小动物也很难做到。 2.oGl’T测胰岛素:有些动物实验用0G1vr法计算胰岛素曲线下面积。即使用鼠胰岛素药 盒,鼠的“口服”问题、所用葡萄糖的剂量问题等也未统一,另外也要多次抽血测胰岛素。 3.1/FINS、FPG/FINS:这些公式有很多缺点,根本不适合科研应用。 4.1/(FPGXFINS):这是1993年李光伟教授等提出的,称为胰岛素敏感性指数(IAI),国 外称为Bennett指数,是国内应用较多的公式。此值非正态分布,应取其自然对数。此公式 也是基于人的研究数据,并非动物的数据。李光伟教授认为适合于大样本的流行 病学研究。 5.HOMA—IR:简化公式为(FPGXFINS)/22.5。这是目前各种公式中用得最多的一个。但 1998年原作者Matthews等认为此线性公式只能定性,说明有无IR,而不能精确定量。他们 将此公式称为HOMAl一IR,以后综合近年所得许多非线性公式数据后,得出另一非线性公式, 称为HOMA2-IR。此非线性公式很难手工计算,故他们免费提供计算机运算。但HOMA2-IR要 把胰岛素值单位换为pmol/L。不论是HOMAI-IR还是HOMA2一IR都是非正态分布,统计时要 经过对数转换。这些公式所根据的资料都是人的研究结果,因而并不适合动物研究。至今还 未见将动物的钳夹试验结果与测定动物胰岛素的2种HOMA—IR公式作对比,因而即使用鼠胰

银杏叶提取物对实验性2型糖尿病大鼠心肌的保护作用

银杏叶提取物对实验性2型糖尿病大鼠心肌的保护作用

tesrm adm o a im. o cuin : nk i b x at a ep t t no ycrim o y e2daee h u ycr u C n ls s g gobl aet c h s h r e i n m oadu f p ibt e n d o i o r t o co T s r s h ep t t no n k i b xr t nm oa i m y erl e s p r gtep cet l dc a a .T r e i f gobl aet c o ycr u t o co i g o a d m ab a di a i a ra cie a l r e t tr i n h n e i st n e-
Zo uiea u h t l
( hr i D pr etM d ni gM d a cl g el g a gMu aj n P am c eat n , u aj n e i l o eeH i nj n dni g m a c l o i a
17 11 5 0 ) 1
2 Meh d :h d fye2daee t w sm d y h t vnu jci i al o f t p zt i . to sT e moeo p i t r s a a eb e nr e osi et nwt as l ds o r t o cn t b s a t i a n o h m e se o o
・9 ・
银杏 叶提取物 对 实验性 2型 糖尿病 大 鼠心肌 的保 护作 用
邹 辉 杨旭 江
牡丹江
17 1 ) 50 1
【 要】 目的: 摘 观察银杏叶提取物对实验性Ⅱ 型糖尿病大鼠心肌损伤的保护作用。方法: 采用小剂量链脲佐菌素加 高脂高热

银杏叶提取物注射液治疗糖尿病背景性视网膜病变的临床研究

银杏叶提取物注射液治疗糖尿病背景性视网膜病变的临床研究

龙源期刊网
银杏叶提取物注射液治疗糖尿病背景性视网膜病变的临床研究
作者:关红邵红林永丽
来源:《中国实用医药》2012年第11期
【摘要】目的研究银杏叶提取物注射液对糖尿病背景性视网膜病变的治疗效果。

方法 26名2型糖尿病患者,临床分期为背景性视网膜病变52眼,随机分成2组,每组各26眼,治疗组:银杏叶提取物注射液20 ml,加入%氯化钠注射液250 ml内静脉点滴,1次/d,15 d 为1疗程,间隔15 d再进行下一个疗程,共治疗90 d。

结果治疗组患者眼底微血管瘤数目明显减少,出血及渗出明显吸收,视力明显改善。

结论银杏叶提取物注射液可改善眼底微循
环,促进微血管瘤及出血斑的吸收,对早期糖尿病性视网膜病变患者视力及眼底病变方面均有一定的治疗作用。

【关键词】糖尿病;视网膜病变;银杏叶提取物。

银杏叶提取物的药理作用

银杏叶提取物的药理作用

银杏叶提取物的药理作用作者:高华荣来源:《中国实用医药》2010年第16期银杏(Ginkgo biloba L.)为银杏科银杏属多年落叶乔木,别名白果树、公孙树、鸭掌树,是1.5亿年前冰川时期在地球上的孑遗植物之一,素有裸子植物“活化石”之称,是世界上最古老的珍稀树种之一。

我国是银杏的发源地,银杏资源居世界首位。

银杏的种子药用名白果,作为敛肺定喘、缩小便、止带浊的中药在我国应用已有很久历史。

银杏叶在我国宋朝就开始使用,用于治疗哮喘和支气管炎。

银杏叶为银杏的干燥叶,秋季叶尚绿时采收,及时干燥。

本品性平,味甘、苦、涩,归心、肺经,有敛肺、平喘、活血化淤、止痛之功,中医主要用于治疗肺虚咳喘;冠心病,心绞痛,高脂血症等[1]。

1 背景上世纪世界各国开始对银杏叶制剂进行研究。

1965年,德国威玛舒培博士(Dr. Willmar Schwabe)药厂正式上市全球第一个银杏叶提取物制剂TEBOONIN(通用名EGB761),用于治疗心脑血管疾病,且疗效显著。

银杏作为近代植物药开发研究的热点之一,其本身的特点在于:①作为侏罗纪的遗存植物“活化石”,保存了1.5亿年前的生态特征,银杏树的生命力特别强,被誉为长寿树,其近缘植物均于第4纪冰川期灭绝,因此成为一科一属的特殊植物;②从化学角度看,其重要的有效成分银杏内酯,迄今尚未发现存在于其他任何植物中,更重要的是银杏具有独特的生理作用和治疗价值。

2 银杏叶提取物的化学成分2.1 质量指标目前国际上标准的银杏叶提取物是指按德国Schwabe药厂专利工艺生产的EGB,厂家所制定的质量指标主要包括含黄酮苷24%以上,萜类内酯6%以上,银杏酸10 mg/kg以下。

《中国药典》2005版也采用这个标准。

2.2 主要成分最主要成分有两大类:银杏黄酮和萜类内酯。

银杏黄酮类是低分子量化合物,均衍生于其母体化合物黄酮,以糖苷和甲基化的形式存在。

银杏叶中含有约38种黄酮类化合物,其中双黄酮6种,黄酮苷元7种,黄酮苷17种,黄酮苷主要是槲皮素、山萘素、异鼠李素的糖苷,以及儿茶素类。

银杏叶精功效

银杏叶精功效

银杏叶精功效Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一片银杏叶给人类带来的神奇功效一、全面保护脑健康,改善记忆力,改善脑功能障碍快速恢复记忆力,银杏提取物可以使记忆力得到迅速改善。

法国对18名平均69岁的老年男女进行了一项双盲实验,这些人都患有轻度的记忆力障碍。

在实验前一个小时,研究人员给参加实验的人服用了320毫克的银杏或600毫克的安稳剂,结果发现,银杏使用者大脑处理信息的速度几乎提高了一半。

二、防治老年痴呆症西雅图自然产品研究咨询会主任布郎博士说:“银杏叶提取物是不多的老年痴呆领域几种真正能够被称为物超所值的好药。

”巴西着名神经科学专家桑托斯博士率领的科研小组发现,银杏有助于治疗老年痴呆症,以及延缓人体大脑衰老。

三、心脑血管疾病其一是银杏苦内酯可选择性地抵抗血小板活化因子。

血小板活化因子是人体内一种很强的可引发血小板聚集和形成血栓的内源性活性物质,是诱发心血管疾病,特别是引起中风、心肌梗塞的隐形杀手,危险性很高,而银杏苦内酯则是血小板活化因子的克星。

其二银杏黄酮甙已被证实能有效地对抗和清除自由基,并起到延缓衰老的作用。

其三是银杏内酯和黄酮甙两者协同作用。

活化血液、可扩张血管、抗血栓、增加血流量,促进血液循环,在缺氧情况下保护脑和心肌细胞;另外可降低血液中的甘油三酯,并提高高密度脂蛋白含量,提高红细胞超氧化歧化酶的活性,因此银杏叶提取物对冠心病、心绞痛、高血脂以及脑震荡、脑外伤后遗症等有良好的功效。

四、高血压、高血脂现代医学研究证实,银杏提取物能使血清甘油三酯(TG)显着降低。

对高血压、高脂血症的疗效是非常显着的,它能使动脉和静脉血管扩张,从而促进血液循环;同时它还能稀释血液,减少血液凝结。

1965年,美国科学家用银杏叶提取物治疗10位心血管疾病患者,结果表明,银杏叶提取物可使外周血管和毛细血管扩张,降低血压,并提高小血管和毛细血管的血流量。

银杏叶提取物作用

银杏叶提取物作用

银杏叶提取物作用银杏叶提取物作用银杏树,又名白果树,是世界上最古老的植物之一,其叶子在秋季变成金黄色非常美丽。

银杏叶提取物,也称为银杏叶黄酮提取物,是从银杏叶中提取的一种天然物质。

近年来,它在医药、保健品和美容领域中受到了广泛的关注和研究。

银杏叶提取物富含一种叫做银杏黄酮的成分,它是一种水不溶性物质,具有很强的抗氧化作用。

抗氧化是指抵御自由基对人体细胞的侵害,减少因氧化产物而引起的各种疾病。

银杏叶提取物可以保护细胞免受自由基的损害,并提高细胞对抗外界环境的能力。

银杏叶提取物的主要作用之一是促进血液循环。

它可以扩张血管,增加血液灌注量,并改善微循环。

这对于改善记忆力、增加注意力和缓解疲劳都非常有效。

此外,银杏叶提取物还能减少血小板聚集,降低血液黏稠度,预防心血管疾病的发生。

银杏叶提取物还具有抗炎作用。

它能够抑制炎症反应,减少炎症介质的释放,并保护细胞免受炎症的侵害。

因此,它在治疗炎症性疾病,如风湿性关节炎、皮肤过敏等方面起到很好的作用。

此外,银杏叶提取物还被广泛应用于美容领域。

它具有保湿、美白和抗衰老的功效。

银杏黄酮可以抑制黑色素的合成,改善黑斑、雀斑和色斑等问题。

此外,它还可以刺激胶原蛋白的生成,增加皮肤弹性和光泽度,减少皱纹和细纹的出现。

此外,银杏叶提取物还可以增强免疫力。

它能够调节免疫功能,增加人体对病原体的抵抗能力。

这不仅对于预防感冒、增强身体抵抗力很有益处,还对于癌症的预防也有一定的帮助。

总之,银杏叶提取物具有多种作用,包括抗氧化、促进血液循环、抗炎、美容和增强免疫力等。

它是一种非常有价值的天然物质,在医药、保健品和美容领域中得到了广泛的应用。

然而,尽管它具有许多好处,但仍然需要在医生或专业人士的指导下使用,以确保安全和效果。

银杏叶提取物在高脂血症治疗中的作用研究

银杏叶提取物在高脂血症治疗中的作用研究

银杏叶提取物在高脂血症治疗中的作用研究高脂血症是一种常见的代谢性疾病,是指在人体血液中胆固醇、甘油三酯等脂肪物质含量过高,容易导致心血管疾病等疾病的发生。

在过去的治疗中,常规药物治疗已经逐渐成为主流,但是也有一些自然疗法被发现能够缓解病症,其中银杏叶提取物是一种备受关注的疗法。

银杏树是一种古老而神秘的树木,它拥有长寿的特点,并被认为对血液循环系统有益。

从树叶中提取出的银杏叶提取物具有活血化瘀、改善微循环等功效,并且还可以调节血脂水平,缓解高脂血症等病症。

银杏叶提取物对心血管系统的作用已经被广泛研究,其中包括对高血压和心脏病的治疗。

研究表明,银杏叶具有多种作用,包括抗氧化、抗炎、抗血小板凝集、促进血管内皮细胞增殖等。

这些作用的结合使得银杏叶提取物对高脂血症的治疗产生了积极的影响。

关于银杏叶提取物与高脂血症的作用,近年来有越来越多的研究被展开。

一项针对动物的研究结果表明,银杏叶提取物能够显著降低血脂水平,同时也明显增加了高密度脂蛋白胆固醇的含量,还能够增加脂肪氧化和糖原合成。

这些结果表明,银杏叶提取物可以通过调节脂质代谢的多个环节来发挥缓解高脂血症的作用。

不仅如此,银杏叶提取物对高脂血症的治疗也受到了人体临床试验的证明。

一项临床试验研究显示,通过给予高胆固醇饮食的人群口服银杏叶提取物,可以明显降低血脂水平。

同时,还可以改善患者的胰岛素敏感性。

这些结果表明了银杏叶提取物对高脂血症患者的治疗具有一定的潜力。

当然,银杏叶提取物作为一种天然物质,并不是可以随意使用的药物。

虽然它对高脂血症的治疗具有一定的作用,但是还需要进行更多的科学验证。

此外,患者应该在医生的建议下,选择适当的治疗方案。

因此,银杏叶提取物只能作为高脂血症治疗中的辅助疗法,不能替代常规治疗。

总之,银杏叶提取物作为一种自然疗法,在缓解高脂血症方面具有一定的作用。

虽然还需要进行更多的研究,但是其作用已得到初步证实。

患者应该在医生的指导下选择适合自己的治疗方法,以达到缓解病情的目的。

银杏叶提取物对糖尿病大鼠血清学指标的影响

银杏叶提取物对糖尿病大鼠血清学指标的影响

中国图书分类号R587.1Q591.5Q956文献标识码A文章编号1004-5503(2009)02-0171-03【治疗制品】银杏叶提取物对糖尿病大鼠血清学指标的影响杨淑娟任淑萍陈强丁亚春修佳祺范洪学【摘要】目的研究银杏叶提取物(GbE)对糖尿病大鼠血清学指标的影响,探讨其在糖尿病大鼠脂代谢过程中的作用。

方法通过腹腔注射链脲佐菌素(STZ)(50mg/kg)建立糖尿病大鼠模型。

将模型大鼠随机分为模型对照组(DM)和GbE组,GbE 组每日给予GbE提取物,0.83ml/只,DM组每日给予等剂量的生理盐水,均为腹腔注射,另设1组正常大鼠对照。

于注射银杏叶提取物的第1和15天采血,检测各组大鼠血清甘油三酯(TG)、高密度脂蛋白(HDL-C)、低密度脂蛋白(LDL-C)水平,第15天检测大鼠血清中胰岛素和C-肽水平。

结果DM组大鼠血清中TG和LDL-C水平随着时间的延长逐渐升高;注射后第15天,GbE组大鼠血清中TG和LDL-C水平均显著低于DM组,HDL-C和C-肽水平显著高于DM组,胰岛素水平与DM组比较,差异无统计学意义。

结论银杏叶提取物对糖尿病大鼠的脂代谢具有调节作用,对高糖导致的损伤具有保护作用。

【关键词】银杏叶;提取物;糖尿病;脂代谢Effect of Ginkgo biloba Extract on Serological Indexes of Diabetic RatsYANG Shu-juan,REN Shu-ping,CHEN Qiang,et al(Department of Toxicology,School of Public Health,Jilin University,Changchun130021,China)【Abstract】Objective To study the effect of Ginkgo biloba extract(GbE)on serological indexes as well as its role in lipid metabolism of diabetic rats.Methods Rat model of diabetes was established by injecting i.p.with streptozotocin(STZ).The diabet-ic rats were divided into GbE and model control(DM)groups and daily injected.i.p.with0.83ml of GbE and physiological saline respectively for14d.Healthy rats were served as normal control.The serum samples of rats in various groups were collected on days 1and15after the first injection for determination of triglyceride(TG),high density lipoprotein(HDL-C)and low density lipoprotein (LDL-C).The insulin and C-peptide levels in sera of rats were determined on day15after the first injection.Results The TG level in sera of rats in DM group increased gradually as the time goes on.On day15after the first injection,the TG and LDL-C levels in sera of rats in GbE group were significantly lower,while HDL-C and C-peptide levels were significantly higher than those in DM group.However,no significant difference was observed in the insulin levels of the two groups.Conclusion GbE showed regulatory effect on lipid metabolism of diabetic rats and protective effect on injury caused by high blood suger.【Key words】Ginkgo biloba;Extract;Diabetes;Lipid metabolism糖尿病是以慢性血糖升高为主要特征的代谢疾病。

银杏叶总黄酮对胰岛素抵抗大鼠糖脂代谢和肝功能的影响

银杏叶总黄酮对胰岛素抵抗大鼠糖脂代谢和肝功能的影响

银杏叶总黄酮对胰岛素抵抗大鼠糖脂代谢和肝功能的影响唐嘉航;叶希韵;刘江;李萍;张倩;胡静婕【摘要】目的探讨银杏叶总黄酮对胰岛素抵抗大鼠糖脂代谢及肝脏功能的影响.方法 40只SD大鼠随机分为正常对照组、模型组、银杏叶总黄酮组和罗格列酮组(阳性药物对照组),每组10只.模型组、银杏叶总黄酮组和罗格列酮组大鼠以高糖、高脂饮食诱导建立胰岛素抵抗模型.分组处理12周后检测各组大鼠血糖、血脂水平和胰岛素抵抗、肝功能及肝脏抗氧化指标;肝脏组织脂肪染色观察组织学改变.结果银杏叶总黄酮组大鼠血糖水平、胰岛素抵抗指数(HOMA-IR)、胰岛素敏感指数(IAI)、血清总胆固醇(TC)、甘油三酯(TG)、肝脏丙二醛(MDA)含量以及血清转氨酶活力等均明显低于模型组(P<0.01);而高密度脂蛋白胆固醇(HDL-C)、血清总抗氧化能力(T-AOC)、肝脏超氧化物歧化酶(SOD)含量均显著高于模型组(P<0.01).组织学观察显示,与模型组比较,银杏叶总黄酮组和罗格列酮组大鼠肝细胞内脂滴少且小.结论对于胰岛素抵抗大鼠,银杏叶总黄酮能有效调节血糖和血脂水平;增加胰岛素敏感性;减轻肝脏脂肪变性程度并改善肝功能,同时提高抗氧化能力.【期刊名称】《上海交通大学学报(医学版)》【年(卷),期】2009(029)002【总页数】4页(P150-153)【关键词】银杏叶总黄酮;大鼠;胰岛素抵抗;脂肪肝【作者】唐嘉航;叶希韵;刘江;李萍;张倩;胡静婕【作者单位】华东师范大学,生命科学学院,上海,200062;华东师范大学,生命科学学院,上海,200062;华东师范大学,生命科学学院,上海,200062;华东师范大学,生命科学学院,上海,200062;华东师范大学,生命科学学院,上海,200062;华东师范大学,生命科学学院,上海,200062【正文语种】中文【中图分类】R587;R28;R-33代谢综合征是一系列相互关联的由代谢问题引起的异常状态,是由心血管风险因子和异常代谢状态组成的症候群,其中肥胖与代谢障碍是两个相互影响的因素,后者的典型表现是胰岛素抵抗[1]。

银杏叶提取物对胰岛素抵抗的影响

银杏叶提取物对胰岛素抵抗的影响

银杏叶提取物对胰岛素抵抗的影响
李明山
【期刊名称】《中医药临床杂志》
【年(卷),期】2011(23)8
【摘要】胰岛素抵抗(Insulin resistance,IR)与多种心脑血管病及代谢性疾病的发生、发展及预后密切相关,而糖耐量减退患者(IGT)与IR呈正相关,提高机体对胰岛素的敏感性可有效地减轻或控制胰岛素抵抗。

银杏叶提取物(Extract Ginkgo biloba,EGb)是从银杏叶中提取的天然活性物质,传统医学早已证实具有润肺、平喘、止咳等功效。

【总页数】2页(P746-747)
【关键词】银杏叶提取物;胰岛素抵抗;综述
【作者】李明山
【作者单位】安徽省合肥市第三人民医院
【正文语种】中文
【中图分类】R285.5
【相关文献】
1.银杏叶提取物对脂质诱导胰岛素抵抗大鼠模型的干预性研究 [J], 夏瑾玮;钟远;黄高忠;张华;陈雅娟
2.银杏叶提取物对脂质诱导胰岛素抵抗大鼠脂肪肝的干预作用 [J], 夏瑾玮;黄高忠;张秀珍;叶希韵;陈雅娟;钟远
3.银杏叶提取物对高脂胰岛素抵抗大鼠血清瘦素、脂联素的影响 [J], 王敬;宋光耀;高宇;曲东明;胡淑国
4.银杏叶提取物对高脂喂养胰岛素抵抗大鼠胰岛β细胞凋亡的保护作用 [J], 董丽;刘敏;宋光耀;王敬
5.银杏叶提取物对胰岛素抵抗大鼠骨骼肌蛋白激酶B表达的影响 [J], 宋光耀; 王敬; 曲东明; 高宇; 刘晶
因版权原因,仅展示原文概要,查看原文内容请购买。

银杏叶提取物对实验性2型糖尿病大鼠胰腺的保护作用

银杏叶提取物对实验性2型糖尿病大鼠胰腺的保护作用

银杏叶提取物对实验性2型糖尿病大鼠胰腺的保护作用陈培;杨旭芳;王莞【期刊名称】《牡丹江医学院学报》【年(卷),期】2008(29)6【摘要】目的:观察银杏叶提取物对实验性2型糖尿病大鼠胰腺损伤的保护作用.方法:采用小剂量链脲佐菌素加高脂高热量饲料喂养的方法建立Wistar大鼠2型糖尿病模型,成模后治疗组按8mg/kg·d剂量腹腔注射银杏叶提取物(extract gingko biloba,EGb),(北京双鹤天然药物有限公司,批号(319163-0405),正常对照组及糖尿病组腹腔注射等容积生理盐水,每天1次,连续8周.检测血糖、血胰岛素,胰腺组织中一氧化氮(NO)、一氧化氮合酶(NOS)及超氧化物歧化酶(SOD)、丙二醛(MDA)含量,并在光镜下观察大鼠胰腺形态学改变.结果:治疗组大鼠血糖、血胰岛素、NO、MDA含量及NOS的活力明显降低,而SOD活力显著提高,并可改善2型糖尿病大鼠的胰腺病变.结论:银杏叶提取物对实验性2型糖尿病大鼠胰腺损伤具有一定保护作用,可能与其清除自由基,抗脂质过氧化作用有关.【总页数】3页(P16-18)【作者】陈培;杨旭芳;王莞【作者单位】牡丹江医学院病生教研室,黑龙江,牡丹江,157011;牡丹江医学院病生教研室,黑龙江,牡丹江,157011;牡丹江医学院病生教研室,黑龙江,牡丹江,157011【正文语种】中文【中图分类】R58【相关文献】1.银杏叶提取物对实验性2型糖尿病大鼠肝脏的保护作用 [J], 王蓉蓉;谢琳;吴晓烨;王文艳;王芳;雷康福;方周溪;陈国荣2.银杏叶提取物对实验性2型糖尿病大鼠脑组织的保护作用 [J], 杨旭芳;赵永光;杨云芳3.银杏叶提取物对实验性2型糖尿病大鼠心肌的保护作用 [J], 邹辉;杨旭芳;郭尚福4.豹皮樟总黄酮对实验性2型糖尿病大鼠胰腺的保护作用及部分机制研究 [J], 周卫凤;汪凌云;孙玉秀;鲁云霞;陈冠军5.银杏叶提取物对实验性2型糖尿病大鼠肾脏的保护作用 [J], 张婷;李善昌;梁衍锋;王芳芳因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e f e c t s o f E GB 7 6 1 Mi l l e r c e l l s ’a c t i v i t y . he T r e w e r e t h r e e c o n c e n t r a t i o n s :0 t z g / mL, 6 0 t , g / mL, 1 2 0 /  ̄/mL .Af t e r 4 8 h o u r s i n c u b a i t o n ,t he a s —

t r e a t e d w i t h g l u c o s e 3 0 mmo l / L a n d ( o r )i n s li u n 2 0 0 U/ L f o r 4 8 h o u r s .T he y w e r e d i v i d e d i n t o t h r e e g r o u p s :h i g h g l u c o s e a n d h i g h i n s u l i n
g r o u p it w h g l u c o s e 5 mmo t / I a n d n o i n s li u n .Di f e r e n t c o n c e n t r a t i o n s o f E GB 7 6 1 w e r e a d d e d t o t h e, me d i l M Y l i n l a l g r o u p s nd a i n v e s t i g a t e d he t
浙江实用医学 2 0 1 4年 2月第 1 9卷第 l 期 Z h e j i m a g P r a c t i c  ̄Me d i c i n e F e b r u a r y , 2 0 1 4 , V o 1 . 1 9 , N o . 1

论 著・
银杏 叶提 取物对大 鼠高糖高胰 岛素下视 网膜 M a i l e r 细胞 的保护作 用
s t u d y t h e e fe c t s o f EGB 7 61 Mi l l e r c e ls’a c t i v i t y.M e t ho d s Mi l l e r c e ls f r o m r a t r e t i n a we r e c o l l e c t e d a n d c lt u u r e d i n v i t r o.Th e y we r e
5 r r no a V L ) 。提 前 0 . 5 小 时加入 6 0  ̄ g / m L 、 1 2 0 t  ̄ g / m L的 E G B 7 6 1 , 观察对 各组 细胞 的保 护作 用 , 4 8小时后 用 M活性 。结果
高糖高浓度 胰岛素处理后 M i l l e r 细 胞活性 降低 , 与对照组 相 比差异 有统计学 意义( P<0 . 0 5 ) 。而 高浓度葡 萄糖 和高胰岛素在短期 内可使视 网膜 Mi l l e r 细胞 的
用3 0 m m o l / L葡萄糖和 ( 或) 2 0 0 U / L的胰 岛素处 理大 鼠视 网膜 Mi l e r 细胞 4 8小时 , 分为高糖
性的改变及其保护作用 。方法
高胰 岛素组 : 2 0 0 U / I 胰岛 素 +3 0 n u n o [ / I 葡萄糖; 高 胰 岛素 组 : 2 0 0 U / L胰 岛 素 ; 对 照组 : 普通 低 糖 型 D M E M培 养 ( 含 葡 萄糖
【 关键词】 视 网膜 M i l l e r 细胞 ; 银杏 叶提 取物 ; 胰 岛素 ; 葡萄糖
【 A b s t r a c t 】 O b j e c t i v e T o i n v e s t i g a t e t h e a c t i v i t y o f c u l t u r e d r e t i n a l Mi l l e r c e l l u n d e r h i g h g l u c o s e a n d h i g h i n s l u i n c o n d i t i o n ,a n d
楼 继先 胡 昕倩 李 韧 张 志勇 王 关钗
( 浙江医院, 浙江 杭 州 3 1 0 0 1 3 )
【 摘
要】 目的
观察银杏叶提取物 ( e x t r a c t o f g i n k g o b i l o b a l e a f , E G B 7 6 1 ) 在 高糖高胰 岛素作用下 对视 网膜 Mi l l e r 细胞 活
6 0 或 1 2 0 /  ̄ g / m L的 E G B 7 6 1 能上 调高浓度葡萄糖和高胰 岛素处理 后的视 网膜 M i l l e r 细胞 的活力 , 且在单纯高胰岛素组 中更佳 ,
与无 E G B 7 6 1 处理组相 比差异有统计学 意义( P<0 . 0 5 ) 。结论
活性降低 , 一定浓度 的 E G B 7 6 1 可减轻高糖高胰岛素对视 网膜 M i f l l e r 细胞 的损伤 。
g r o u p it w h i n s u l i n 2 0 0 U / I a n d g l u c o s e 3 0 e r o t o l / L ;h i g h i su n l i n a n d l o w g l u c o s e g r o u p it w h i n s li u n 2 0 0 U / L nd a l g u c o s e 5 m m o VL ;c o n t r o l
相关文档
最新文档