曲线运动 万有引力与航天复习 高考物理复习

合集下载

高考物理《万有引力与航天》综合复习练习题(含答案)

高考物理《万有引力与航天》综合复习练习题(含答案)

高考物理《万有引力与航天》综合复习练习题(含答案)一、单选题1.月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,他们都围绕月球连线上某点O做匀速圆周运动.据此观点,可知月球与地球绕O 点运动的线速度大小之比约为()A.1:6400 B.1:80C.80:1 D.6400:12.2022年5月,我国成功完成了天舟四号货运飞船与空间站的对接,形成的组合体在地球引力作用下绕地球做圆周运动,周期约90分钟。

下列说法正确的是()A.组合体中的货物处于超重状态B.组合体的速度大小略大于第一宇宙速度C.组合体的角速度大小比地球同步卫星的大D.组合体的加速度大小比地球同步卫星的小3.“天问一号”从地球发射后,在如图甲所示的P点沿地火转移轨道到Q点,再依次进入如图乙所示的调相轨道和停泊轨道,则天问一号()A.发射速度介于7.9km/s与11.2km/s之间B.从P点转移到Q点的时间小于6个月C.在环绕火星的停泊轨道运行的周期比在调相轨道上小D.在地火转移轨道运动时的速度均大于地球绕太阳的速度4.如图,地球赤道上的山丘e,近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。

设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则()A.v1>v2>v3B.v1<v2<v3C.a1>a2>a3D.a1<a3<a25.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v,假设宇航员在该行星表面用弹簧测力计测量一质量为m的物体的重力,当物体处于竖直静止状态时,弹簧测力计的示数为F,已知引力常量为G,则这颗行星的质量为()A.2mvGFB.4mvGFC.2FvGMD.4FvGm6.一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为A.124π3Gρ⎛⎫⎪⎝⎭B.1234πGρ⎛⎫⎪⎝⎭C.12πGρ⎛⎫⎪⎝⎭D.123πGρ⎛⎫⎪⎝⎭7.为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器萤火一号.假设探测器在离火星表面高度分别为1h和2h的圆轨道上运动时,周期分别为1T和2T.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出A.火星的密度和火星表面的重力加速度B.火星的质量和火星对萤火一号的引力C.火星的半径和萤火一号的质量D.火星表面的重力加速度和火星对萤火一号的引力8..图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是A.发射“嫦娥一号”的速度必须达到第三宇宙速度B.在绕月圆轨道上,卫星的周期与卫星质量有关C.卫星受月球的引力与它到月球中心距离的平方成反比D.在绕月圆轨道上,卫星受地球的引力大于受月球的引力二、多选题9.关于开普勒行星运动定律,下列说法正确的是()A.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上B.地球绕太阳在椭圆轨道上运行,在近日点和远日点运行的速率相等C.表达式32RkT=,k与中心天体有关D.表达式32RkT=,T代表行星运动的公转周期10.下列关于力的说法正确的是A.作用力和反作用力作用在同一物体上B.太阳系中的行星均受到太阳的引力作用C.运行的人造地球卫星所受引力的方向不变D.伽利略的理想实验说明了力不是维持物体运动的原因11.在力学理论建立的过程中,有许多伟大的科学家做出了贡献。

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X ­ 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。

2023届高考物理三轮重点题型2万有引力与曲线运动

2023届高考物理三轮重点题型2万有引力与曲线运动

高考三轮:重点题型--万有引力与曲线运动(2)❶万有应力的应用:万有引力定律、天体问题、双星问题、宇宙速度、同步卫星❷曲线运动的综合应用:平抛运动、匀速圆周运动、曲线运动中的能量与动量问题1我国已成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。

该卫星()A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度C.发射速度大于第二宇宙速度D.若发射到近地圆轨道所需能量较少解析D 同步卫星只能位于赤道正上方,A 错误;由GMm r 2=mv 2r 可得v =GM r ,可知卫星的轨道半径越大,环绕速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 错误;同步卫星的发射速度大于第一宇宙速度、小于第二宇宙速度,C 错误;若该卫星发射到近地圆轨道,所需发射速度较小,所需能量较少。

2世界首颗量子科学实验卫星“墨子号”在圆满完成4个月的在轨测试任务后,正式交付用户单位使用。

如图为“墨子号”变轨示意图,轨道A 与轨道B 相切于P 点,轨道B 与轨道C 相切于Q 点,以下说法正确的是()A.“墨子号”在轨道B 上由P 向Q 运动的过程中速率越来越大B.“墨子号”在轨道C 上经过Q 点的速率大于在轨道A 上经过P 点的速率C.“墨子号”在轨道B 上经过P 点时的向心加速度大于在轨道A 上经过P 点时的向心加速度D.“墨子号”在轨道B 上经过Q 点时受到的地球的引力小于经过P 点时受到的地球的引力解析D “墨子号”在轨道B 上由P 向Q 运动的过程中,逐渐远离地心,速率越来越小,故选项A 错误;“墨子号”在A 、C 轨道上运行时,轨道半径不同,根据G Mm r2=m v 2r 可得v =GM r ,轨道半径越大,线速度越小,故选项B 错误;“墨子号”在A 、B 两轨道上经过P 点时,离地心的距离相等,受地球的引力相等,所以加速度是相等的,故选项C 错误;“墨子号”在轨道B 上经过Q 点比经过P 点时离地心的距离要远些,受地球的引力要小些,故选项D 正确。

高考专题复习第5单元-曲线运动 万有引力与航天-物理

高考专题复习第5单元-曲线运动 万有引力与航天-物理

L 2 例 2 (1)垂直河岸 u +v2; v u L (2)偏上游与河岸夹角 α=arccosv v2-u2
L v
L
第22讲 │ 要点探究
[解析] (1)为使渡河时间最短, 必须使垂直于河岸的分速度 尽可能大,即应沿垂直于河岸的方向划船,则渡河经历的时间 L 为 t1 = v , uL 小船沿平行河岸的分位移为 s′=ut1= v , L 2 2 2 所以小船渡河位移 x1= L +s′ = v u +v2.
第22讲 │ 要点探究
变式题 2 A [解析] 船头正对对岸时,时间最短, d 为 t1= ;船相对于水的速度大于水速,所以最短位移等 v船 d 于河的宽度 d,渡河时间为 t2= 2 2 ;联立以上方程 v船-v水 v船 t2 可以解得: = 2 2,A 选项正确. v水 t2-t1
第22讲 │ 考点整合
(2)a 恒定:性质为匀变速运动,可分为三类: 匀加速直线 ①初速度 v 与 a 同向,性质为____________运动; ②初速度 v 与 a 反向,性质为____________运动; 匀减速直线 ③初速度 v 与 a 成一定角度(不为 0° 180° 或 ),性 质为____________运动(轨迹在 v、a 之间, 速度方向逐 匀变速曲线 渐向 a 的方向接近,但不可能达到).
第22讲 │ 要点探究
变式题 1 A [解析] 橡皮在水平方向运动与铅笔的 运动相同,为匀速直线运动.因绳的长度不变,水平部分 绳的长度随时间均匀增大, 所以竖直部分绳的长度随时间 均匀减小,橡皮在竖直方向也做匀速直线运动.因此橡皮 的合运动是匀速直线运动.
第22讲 │ 要点探究
[2010· 同安一中] 某人横渡一河流,船滑行相对于谁的速 度和水流动速度一定,此人过河最短时间为 t1;若船相对于水 的速度大于水速,则船相对于水的速度与水速大小之比为 ( )

原创名师讲解高三物理一轮复习四_曲线运动万有引力与航天53张ppt课件

原创名师讲解高三物理一轮复习四_曲线运动万有引力与航天53张ppt课件


分运动
合运动
方法技巧
运动分解的基本方法: 先确定合运动速度方向(这里有一个简单原则,物体的实际运动方向就是
合速度的方向),然后分析由这个合速度所产生的实际效果,以确定两个分速 度方向.
二、巩固训练
【练习1】 . (教学案第107页练习1)我国嫦娥一号探月卫星经过无数人的协作和 努力,终于在2007年10月24日晚6点05分发射升空。如图所示,嫦娥一号探月 卫星在由地球飞向月球时,沿曲线从M点向N点飞行的过程中,速度逐渐减小, 在此过程中探月卫星所受合力的方向可能的是 ( )
说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率 将 ,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动 的速率将 .
增大
减小
2、运动的合成分解
(1)、合运动与分运动
一个物体的实际运动往往参与几个运动,我们把这几个运动叫做实际运动

,把这个实际运动叫做这几个分运动 的
N
MF
A
N F
M B
N
F M
C
c
N
MF D
【练习2】关于不在同一直线的两个初速度不为零的匀变速直线运动的合运动,
下列说法正确的是(

A.一定是直线运动
C、D
B.一定是曲线运动
C.可能是直线运动,也可能是曲线运动
D.一定是匀变速运动
【的速练度习3连】续玻不璃断板地生向产前线行上进,,宽在9切m的割玻工璃序板处以,4金刚m钻/的s走刀速度为3 8m/s,为了使
3vA
30°
A'
A
F
60°
B'
B
一、知识要点

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第2讲 抛体运动的规律及应用学生用书

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第2讲 抛体运动的规律及应用学生用书

第2讲抛体运动的规律及应用一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在________作用下的运动.2.性质:平抛运动是加速度为g的________曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解.(1)水平方向:________直线运动;(2)竖直方向:________运动.4.基本规律:如图所示,以抛出点O为坐标原点,以初速度v0方向(水平方向)为x轴正方向,竖直向下为y轴正方向.(1)位移关系(2)速度关系(3)常用推论:①图中C点为水平位移中点;②tan θ=2tan α.注意θ与α不是2倍关系.二、斜抛运动1.定义:将物体以初速度v0________或斜向下方抛出,物体只在________作用下的运动.如图所示.2.性质:斜抛运动是加速度为g的________曲线运动,运动轨迹是________.3.研究方法:运动的合成与分解(1)水平方向:________直线运动;(2)竖直方向:________直线运动.,生活情境1.一架投放救灾物资的飞机在受灾区域的上空水平地匀速飞行,从飞机上投放的救灾物资在落地前的运动中(不计空气阻力)(1)速度和加速度都在不断改变.( )(2)速度和加速度方向之间的夹角一直减小.( )(3)在相等的时间内速度的改变量相等.( )(4)在相等的时间内速率的改变量相等.( )(5)在相等的时间内动能的改变量相等.( )教材拓展2.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有( )A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A球在水平方向上做匀速直线运动考点一平抛运动规律的应用用“化曲为直”的思想处理平抛运动中落点在水平面上的问题时,将研究对象抽象为质点平抛运动模型,处理平抛运动的基本方法是运动的分解(化曲为直).即同时又要注意合运动与分运动的独立性、等时性.例1.[2021·河北卷,2]铯原子钟是精确的计时仪器.图1中铯原子从O点以100 m/s 的初速度在真空中做平抛运动,到达竖直平面MN所用时间为t1;图2中铯原子在真空中从P点做竖直上抛运动,到达最高点Q再返回P点,整个过程所用时间为t2.O点到竖直平面MN、P点到Q点的距离均为0.2 m.重力加速度取g=10m.则t1∶t2为( )s2A.100∶1 B.1∶100跟进训练1.在高空中匀速飞行的轰炸机,每隔时间t投放一颗炸弹,若不计空气阻力,则投放的炸弹在空中的位置是选项中的(图中竖直的虚线将各图隔离)( )2.[2022·陕西五校联考]墙网球又叫壁球,场地类似于半个网球场,如图所示,在场地一侧立有一竖直墙壁,墙壁上离地面一定高度的位置画了水平线(发球线),在发球区发出的球必须击中发球线以上位置才有效,假设运动员在某个固定位置将球发出,发球速度(球离开球拍时的速度)方向与水平面的夹角为θ,球击中墙壁位置离地面的高度为h,球每次都以垂直墙壁的速度撞击墙壁,设球撞击墙壁的速度大小为v,球在与墙壁极短时间的撞击过程中无机械能损失,球撞到墙壁反弹后落地点到墙壁的水平距离为x,不计空气阻力,球始终在与墙壁垂直的平面内运动,则下列说法正确的是( )A.h越大,x越大B.v越小,x越大C.h越大,θ越大 D.v越大,h越大考点二平抛运动与各种面结合问题角度1落点在斜面上分解位移,构建位移三例2. [2022·江西八校联考](多选)如图所示,小球A从斜面顶端水平抛出,落在斜面上的Q点,在斜面底端P点正上方水平抛出小球B,小球B也刚好落在斜面上的Q点,B球,A、B 抛出点离斜面底边的高度是斜面高度的一半,Q点到斜面顶端的距离是斜面长度的23两球均可视为质点,不计空气阻力,则A、B两球( )A.平抛运动的时间之比为2∶1B.平抛运动的时间之比为3∶1C.平抛运动的初速度之比为1∶2D.平抛运动的初速度之比为1∶1角度2落点在曲面上例3. [2022·浙江温州一模]如图所示为某种水轮机的示意图,水平管出水口的水流速度恒定为v 0,当水流冲击到水轮机上某挡板时,水流的速度方向刚好与该挡板垂直,该档板的延长线过水轮机的转轴O ,且与水平方向的夹角为30°.当水轮机圆盘稳定转动后,挡板的线速度恰为冲击该挡板的水流速度的一半.忽略挡板的大小,不计空气阻力,若水轮机圆盘的半径为R ,则水轮机圆盘稳定转动的角速度大小为( )A.v 02R B .v0RC .√3v 0RD .2v 0R跟进训练.3 [2022·浙江名校统测]如图所示,水平地面有一个坑,其竖直截面为y =kx 2的抛物线(k =1,单位为m -1),ab 沿水平方向,a 点横坐标为-3s2,在a 点分别以初速度v 0、2v 0(v 0未知)沿ab 方向抛出两个石子并击中坑壁,且以v 0、2v 0抛出的石子做平抛运动的时间相等.设以v 0和2v 0抛出的石子做平抛运动的时间为t ,击中坑壁瞬间的速度分别为v 1和v 2,下落高度为H ,仅s 和重力加速度g 为已知量,不计空气阻力,则(选项中只考虑数值大小,不考虑单位)( )A .不可以求出tB .可求出t 的大小为 √4sg C .可以求出v 1的大小为 √3g+16gs 24D .可求出H 的大小为2s 2考点三 生活中的平抛运动(STSE 问题)素养提升情境1投篮游戏[2021·新疆第二次联考]如图甲所示,投篮游戏是小朋友们最喜欢的项目之一,小朋友站立在水平地面上双手将皮球水平抛出,皮球进入篮筐且不擦到篮筐就能获得一枚小红旗.如图乙所示,篮筐的半径为R,皮球的半径为r,篮筐中心和出手处皮球的中心高度为h1和h2,两中心在水平地面上的投影点O1、O2之间的距离为d.忽略空气的阻力,已知重力加速度为g.设出手速度为v,要使皮球能入筐,则下列说法中正确的是( )A.出手速度大的皮球进筐前运动的时间也长B.速度v只能沿与O1O2连线平行的方向C.速度v的最大值为(d+R-r)√g2(h2−h1)D.速度v的最小值为(d-R+r)√2gh2−h1[思维方法]1.处理平抛运动中的临界问题要抓住两点(1)找出临界状态对应的临界条件;(2)用分解速度或者分解位移的思想分析平抛运动的临界问题.2.平抛运动临界极值问题的分析方法(1)确定研究对象的运动性质;(2)根据题意确定临界状态;(3)确定临界轨迹,画出轨迹示意图;(4)应用平抛运动的规律结合临界条件列方程求解.情境2农林灌溉农林灌溉需要扩大灌溉面积,通常在水管的末端加上一段尖管,示意图如图所示,尖管,尖管水平,不考虑空气阻力的影响,下列说法正确的是( )的直径是水管直径的13A.由于增加尖管,单位时间的出水量增加2倍B.由于增加尖管,水平射程增加3倍C.增加尖管前后,空中水的质量不变D.由于增加尖管,水落地时的速度大小增加8倍情境3海鸥捕食[2021·山东卷,16] 海鸥捕到外壳坚硬的鸟蛤(贝类动物)后,有时会飞到空中将它丢下,利用地面的冲击打碎硬壳.一只海鸥叼着质量m=0.1 kg的鸟蛤,在H=20 m的高度、,以v0=15 m/s的水平速度飞行时,松开嘴巴让鸟蛤落到水平地面上.取重力加速度g=10ms2忽略空气阻力.(1)若鸟蛤与地面的碰撞时间Δt =0.005 s ,弹起速度可忽略,求碰撞过程中鸟蛤受到的平均作用力的大小F ;(碰撞过程中不计重力)(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度L =6 m 的岩石,以岩石左端为坐标原点,建立如图所示坐标系.若海鸥水平飞行的高度仍为20 m ,速度大小在15~17 m/s 之间,为保证鸟蛤一定能落到岩石上,求释放鸟蛤位置的x 坐标范围.第2讲 抛体运动的规律及应用必备知识·自主排查一、 1.重力 2.匀变速3.(1)匀速 (2)自由落体 4.(1)12gt 2√x 2+y 2yx(2)√v x 2+v y 2 v y v x二、1.斜向上方 重力 2.匀变速 抛物线 3.(1)匀速 (2)匀变速生活情境1.(1)× (2)√ (3)√ (4)× (5)× 教材拓展2.解析:根据合运动与分运动的等时性和独立性特点可知,两球应同时落地,为减小实验误差,应改变装置的高度,多次做实验,选项B 、C 正确;平抛运动的实验与小球的质量无关,选项A 错误;此实验只能说明A 球在竖直方向做自由落体运动,选项D 错误.答案:BC关键能力·分层突破例1 解析:设距离d =0.2 m ,铯原子做平抛运动时有d =v 0t 1,做竖直上抛运动时有d =12g (t 22)2,解得t 1t 2=1200.故A 、B 、D 错误,C 正确.答案:C1.解析:由题意可知,炸弹被投放后做平抛运动,它在水平方向上做匀速直线运动,与飞机速度相等,所以所有离开飞机的炸弹与飞机应在同一条竖直线上,故A 、C 错误;炸弹在竖直方向上做自由落体运动,从上至下,炸弹间的距离越来越大.故B 正确,D 错误.答案:B 2.解析:将球离开球拍后撞向墙壁的运动反向视为平抛运动,该平抛运动的初速度大小为v ,反弹后球做平抛运动的初速度大小也为v ,两运动的轨迹有一部分重合,运动员在某个固定位置发球,因此不同的发球速度对应击中墙壁的不同高度h ,但所有轨迹均经过发球点,如图所示,h 越大,球从发球点运动到击墙位置的运动时间越长,墙壁到发球点的水平位移x ′相同,则v 越小,由图可知,反弹后球做平抛运动的水平位移x 越小,选项A 、B 、D 错误;设球击中墙壁的位置到发球点的高度为h ′,由平抛运动的推论可知2h ′x ′=tan θ,则h ′越大,即h 越大,θ越大,选项C 正确.答案:C例2 解析:依题意及几何关系可知,小球A 下落的高度为斜面高度的23,小球B 下落高度为斜面高度的12再减去斜面高度的13,则根据公式h =12gt 2,可知A 、B 两球平抛运动时间之比为tA tB =2,选项A 正确,B 错误;两小球在水平方向做匀速直线运动,有x =v 0t ,小球A水平分位移为斜面宽度的23,小球B 水平分位移为斜面宽度的13,代入上式联立可得v 0A v 0B=1,选项C 错误,D 正确.答案:AD 例3 解析:由几何关系可知,水流冲击挡板时,水流的速度方向与水平方向成60°角,则有vy v 0=tan 60°,所以水流速度为v =√v 02+v y2 =2v 0,根据题意知被冲击后的挡板的线速度为v ′=12v =v 0,所以水轮机圆盘稳定转动的角速度大小为ω=v ′R=v0R,选项B 正确.答案:B3.解析:由题可知,两个石子做平抛运动,运动时间一样,则下落的高度H 一样,又因为落在抛物线上,a 、b 是关于y 轴对称的点,可得如下关系3s 2-v 0t =2v 0t -3s2,可得v 0t =s ,可分别得出落在坑壁上两个石子的横坐标分别为-s 2和s2,由y =kx 2,可得初始高度为9s 24,可求得此时高度为s 24,所以利用高度值差可求得H =2s 2,由H =12gt 2可求出平抛运动的运动时间t = √2Hg =2s √1g ,故选项D 正确,A 、B 错误;由前面可求出v 0=st =√g2,竖直方向上的速度v y =gt =2s √g ,由运动的合成可得v 1=√v 02+v y2 =√g+16gs 24,故选项C 错误.答案:D情境1 解析:本题考查平抛,属于应用性题.平抛运动的时间由下落的高度决定,则进筐的皮球运动时间相同,A 错误;与O 1O 2连线方向成一个合适的角度投出的皮球也可能进筐,B 错误;皮球沿与O 1O 2连线平行的方向投出,下落的高度为h 2-h 1,水平射程临界分别为d +R -r 和d +r -R ,则投射的最大速度为v max =√2(h 2−h 1)g=(d +R -r ) √g2(h 2−h 1)最小速度为v min =√2(h 2−h 1)g=(d -R +r ) √g2(h 2−h 1)C 正确,D 错误. 答案:C情境2 解析:单位时间的出水量与单位时间输入水管的量有关,与是否增加尖管无关,选项A 错误;设尖管中水的流速为v 0,水管中水的流速为v ,水管的半径为r ,根据相同时间Δt 内水的流量相同可得,π(r3)2v 0Δt =πr 2v Δt ,得水管、尖管中水的流速之比为v v 0=19,根据平抛运动规律,有h =12gt 2,增加尖管后水平射程x 0=v 0t =v 0√2hg ,不加尖管时水平射程x =vt =v √2hg,可得xx 0=19,Δx =x 0-x =8x ,故由于增加尖管,水平射程增加8倍,选项B 错误;不加尖管时,空中水的质量m =ρπr 2x ,加尖管时空中水的质量为m 0=ρ·π(r 3)2·x 0=πρr 2x ,则m =m 0,选项C 正确;由动能定理有mgh =12mv 12-12mv 2、m 0gh =12m 0v −2212m 0v 02,解得增加尖管前后水落地时的速度分别为v1=√2g ℎ+v 2、v2=√2g ℎ+v 02 ,v 2−v 1v 1≠8,选项D 错误.答案:C情境3 解析:(1)设平抛运动的时间为t,鸟蛤落地前瞬间的速度大小为v.竖直方向gt2,v y=gt,v=√v02+v y2.分速度大小为v y,根据运动的合成与分解得H=12在碰撞过程中,以鸟蛤为研究对象,取速度v的方向为正方向,由动量定理得-FΔt =0-mv联立并代入数据得F=500 N(2)若释放鸟蛤的初速度为v1=15 m/s,设击中岩石左端时,释放点的x坐标为x1,击中岩石右端时,释放点的x坐标为x2,则有x1=v1t,x2=x1+L联立并代入数据得x1=30 m,x2=36 m若释放鸟蛤时的初速度为v2=17 m/s,设击中岩石左端时,释放点的x坐标为x′1,击中岩石右端时,释放点的x坐标为x′2,则有x′1=v2t,x′2=x′1+L联立并代入数据得x′1=34 m,x′2=40 m综上得x坐标范围为[34 m,36 m].。

高考物理总复习 曲线运动万有引力与航天万有引力定律及其应用

高考物理总复习 曲线运动万有引力与航天万有引力定律及其应用

高考物理总复习曲线运动万有引力与航天、万有引力定律及其应用宇宙航行课后练习(1)1. 2021年10月7日电,美国宇航局(NASA)的斯皮策(Spitzer)太空望远镜近期发现土星外环绕着一个巨大的漫射环。

该环比已知的由太空尘埃和冰块组成的土星环要大得多。

据悉,这个由细小冰粒及尘埃组成的土星环温度接近-157°C,结构非常松散,难以反射光线,所以此前一直未被发现,而仅能被红外探测仪检测到。

这一暗淡的土星环由微小粒子构成,环内侧距土星中心约600万公里,外侧距土星中心约1800万公里。

若忽略微粒间的作用力,假设土环上的微粒均绕土星做圆周运动,则土环内侧、外侧微粒的() A.线速度之比为3:1 B.角速度之比为1:1 C.周期之比为1:1 D.向心加速度之比为9:12.若航天飞机在一段时间内保持绕地球地心做匀速圆周运动则() A.它的速度大小不变B.它不断地克服地球对它的万有引力做功 C.它的动能不变,重力势能也不变D.它的速度大小不变,加速度等于零3.未发射的卫星放在地球赤道上随地球自转时的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动时的线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。

则v1、v2、v3和a1、a2、a3的大小关系是()A.v2>v3>vl a2>a3>al B.v3>v2>v1 a2>a3>al C.v2>v3=v1 a2=a1>a3D.v2>v3>vl a3>a2>a14.若神舟系列飞船都绕地球做匀速圆周运动,则离地面越近的飞船( ) A.线速度越小 B.加速度越小 C.角速度越大 D.周期越大5.我国发射的“天链一号01星”是一颗同步卫星,其运动轨道与地球表面上的() A.某一纬度线(非赤道)是共面的同心圆 B.某一经度线是共面的同心圆C.赤道线是共面同心圆,且卫星相对地面是运动的 D.赤道线是共面同心圆,且卫星相对地面是静止的6.在地球(看作质量均匀分布的球体)上空有许多同步卫星,下面的说法中正确的是() A.它们的质量可能不同 B.它们的速度可能不同 C.它们的向心加速度可能不同 D.它们离地心的距离可能不同7.我国第一颗月球探测卫星“嫦娥一号”在西昌卫星发射中心发射成功.在卫星绕月球做匀速圆周运动的过程中,下列说法中正确的是()A.如果知道探测卫星的轨道半径和周期,再利用万有引力常量,就可以估算出月球的质量B.如果有两颗这样的探测卫星,只要它们的绕行速率相等,不管它们的质量、形状差别多大,它们绕行半径与周期都一定是相同的C.如果两颗探测卫星在同一轨道上一前一后沿同一方向绕行,只要后一卫星向后喷出气体,则两卫星一定会发生碰撞D.如果一绕月球飞行的宇宙飞船,宇航员从舱中缓慢地走出,并离开飞船,飞船因质量减小,所受万有引力减小,则飞船速率减小8.天文学家如果观察到一个星球独自做圆周运动,那么就想到在这个星球附近存在着一个看不见的星体──黑洞。

高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件

高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件

解析:工件同时参与了水平向右的匀速运动和竖直方向的匀速 运动,水平和竖直方向的速度都不变,根据矢量合成的平行四 边形法则,合速度大小和方向均不变。
考点一 物体做曲线运动的条件及轨迹分析
1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方 向不共线。 2.曲线运动的类型 (1)匀变速曲线运动:合力(加速度)恒定不变。 (2)变加速曲线运动:合力(加速度)变化。 3.合外力方向与轨迹的关系:物体做曲线运动的轨迹一定夹 在合外力方向与速度方向之间,速度方向与轨迹相切,合外力 方向指向轨迹的“凹”侧。
[解析] (1)小船参与了两个分运动,即船随水漂流的运动和船在 静水中的运动。因为分运动之间具有独立性和等时性,故小船
渡河的时间等于垂直于河岸方向的分运动的时间,即
t
=d= v船
200 4
s=50 s。小船沿水流方向的位移 s 水=v 水t=2×50 m=100 m,
即船将在正对岸下游 100 m 处靠岸。
小船渡河的时间为
t=v船sdin
,当 θ
θ=90°,即船头与河岸垂直时,
渡河时间最短,最短时间为 tmin=50 s。
(4)因为 v 船=3 m/s<v 水=5 m/s,所以船不
可能垂直于河岸横渡,不论航向如何,总
被水流冲向下游。如图丙所示,设船头(v 船)
与上游河岸成 θ 角,合速度 v 与下游河岸成
考点三 运动分解中的两类模型
1.小船渡河模型 渡河时 间最短
当船头方向垂直于河岸时,渡河时间最短, 最短时间 tmin=vd船
渡河位 移最短
如果 v 船>v 水,当船头方向与上游夹角 θ 满 足 v 船 cos θ=v 水时,合速度垂直于河岸,渡 河位移最短,等于河宽 d 如果 v 船<v 水,当船头方向(即 v 船方向)与合 速度方向垂直时,渡河位移最短,等于dv水

新课标2023版高考物理一轮总复习第四章曲线运动万有引力与航天第4讲第2课时“天体运动四大热点问题”

新课标2023版高考物理一轮总复习第四章曲线运动万有引力与航天第4讲第2课时“天体运动四大热点问题”

2.[反向运动卫星的“追及相遇”问题]
(多选)如图所示,有 A、B 两颗卫星绕地心 O 做圆周运动,运
动方向相反。A 卫星的周期为 T1,B 卫星的周期为 T2,在某一
时刻两卫星相距最近,则(引力常量为 G)
()
A.两卫星下一次相距最近需经过时间 t=TT1+1TT2 2
B.两颗卫星的轨道半径之比为
2.[卫星与赤道上物体各运行参量的比较]
(多选)有 a、b、c、d 四颗地球卫星,卫星 a 还未发射,在
赤道表面上随地球一起转动,卫星 b 是近地轨道卫星,卫
星 c 是地球同步卫星,卫星 d 是高空探测卫星,它们均做匀速圆周运动,各卫星
排列位置如图所示,则
()
A.卫星 a 的向心加速度等于重力加速度 g,卫星 c 的向心加速度大于卫星 d 的
且重力远大于向心力,故卫星 a 的向心加速度远小于重力加速度 g,对于卫星
b、c、d,根据牛顿第二定律,万有引力提供向心力,GMr2m=man,解得向心
加速度 an=GrM2 ,由于卫星 d 的轨道半径大于卫星 c 的轨道半径,所以卫星 c
的向心加速度大于卫星 d 的向心加速度,A 错误;地球同步卫星 c 绕地球运动
由 GMr2m=mvr2得 v= 线速度
v1>v2
GrM,故 v1>v2>v3
向心加 速度
由 GMr2m=ma 得 a=GrM2 ,故 a1>a2 a1>a2>a3
由 v=rω 得 v2>v3
由 a=ω2r 得 a2>a3
热点(二) 天体中的“追及相遇”问题 1.[同向运动星体的“追及相遇”问题]
夹角的轨道卫星,它的运转周期也是24小时,如图所示,关于该北斗导航卫星说

高考物理一轮复习 第五章 曲线运动 万有引力与航天 专题提升(六)天体运动中的三类典型问题教案

高考物理一轮复习 第五章 曲线运动 万有引力与航天 专题提升(六)天体运动中的三类典型问题教案

专题提升(六) 天体运动中的三类典型问题近地卫星、同步卫星及赤道上物体的运动问题赤道上物体、近地卫星、同步卫星的动力学特点赤道上的物体近地卫星同步卫星向心力来源万有引力的分力万有引力线速度v1=Rω1v2=GMRv3=(R+h)ω3=GMR h+v1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=3GMRω3=3()GMR h+ω1=ω3<ω2向心加速度a1=21ωRa2=22ωR=2GMRa3=23ω(R+h)=2()GMR h+a1<a3<a2[例1](多选)如图所示,A是静止在赤道上的物体,B,C是同一平面内两颗人造卫星.B位于离地高度等于地球半径的圆形轨道上,C是地球同步卫星.则以下判断正确的是( CD)A.卫星B的速度大小等于地球的第一宇宙速度B.A,B的线速度大小关系为v A>v BC.周期大小关系为T A=T C>T BD.若卫星B要靠近C所在轨道,需要先加速审题指导:解此题注意三点:(1)地面上的物体随地球自转,与地球和地球同步卫星有相同的角速度. (2)近地卫星和同步卫星都满足卫星运行规律.(3)近地卫星与地面上物体比较时要借助地球同步卫星这一桥梁.解析:第一宇宙速度为近地卫星的环绕速度,为最大环绕速度,所以B 的速度小于第一宇宙速度,故A 错误;A,C 相比较,角速度相等,由v=ωr,可知v A <v C ,根据卫星的线速度公式得v C <v B ,则v A <v C <v B ,故B 错误;同理,根据可知T C >T B ,有T A =T C >T B ,故C 正确;卫星要想从低轨道到达高轨道,需要加速做离心运动,故D 正确. 1.(2016·四川卷,3)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1,a 2,a 3的大小关系为( D ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2D.a 1>a 2>a 3解析:由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,可得a 2=r 2ω2,而a 3=r 3ω2, 由于r 2>r 3,则可得a 2>a 3. 又由万有引力定律G2Mmr =ma 和题目中数据可得r 1<r 2, 则可以得出a 2<a 1,故选项D 正确.2.(多选)已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a3.设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍.则以下结论正确的是( BCD ) A.23v v =6 B.13v v =17C.23a a =49 D.13a a =17解析:近地卫星和同步卫星都绕地球做匀速圆周运动,根据万有引力提供向心力有G2Mm r=m 2v r ,解得v=GM r ,两卫星的轨道半径之比为1∶7,所以23v v =71,故A 错误;地球赤道上的物体和同步卫星具有相同的周期和角速度,根据v=ωr,地球的半径与同步卫星的轨道半径之比为1∶7,所以13v v =17,故B 正确;根据万有引力提供向心力得G 2Mm r =ma,a=2GMr,两卫星的轨道半径之比为1∶7,则23a a =49,C 正确;同步卫星与随地球自转的物体具有相同的角速度,根据a=rω2,地球的半径与同步卫星的轨道半径之比为1∶7,所以13a a =17,故D 正确. 航天器的变轨问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道.如图所示,发射卫星的过程大致有以下几个步骤:(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上. (2)在A 处点火加速,由于速度变大,进入椭圆轨道Ⅱ. (3)在B 处(远地点)再次点火加速进入圆形轨道Ⅲ. 2.卫星变轨的实质 两类变轨 离心运动近心运动变轨起因 卫星速度突然增大卫星速度突然减小受力分析 G2Mm r <m 2v r G2Mmr >m 2v r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动能量分重力势能、机械能均增加重力势能、机械能均减小析角度1 变轨过程中各物理量的变化[例2](2019·河北唐山模拟)(多选)如图所示,地球卫星a,b分别在椭圆轨道、圆形轨道上运行,椭圆轨道在远地点A处与圆形轨道相切,则( AD)A.卫星a的运行周期比卫星b的运行周期短B.两颗卫星分别经过A点处时,a的速度大于b的速度C.两颗卫星分别经过A点处时,a的加速度小于b的加速度D.卫星a在A点处通过加速可以到圆轨道上运行解析:由于卫星a的运行轨道的半长轴比卫星b的运行轨道半径短,根据开普勒第三定律,卫星a的运行周期比卫星b的运行周期短,选项A正确;两颗卫星分别经过A点处时,a的速度小于b的速度,若卫星a在A点处加速后万有引力恰好提供向心力,则可以做匀速圆周运动,选项B错误,D正确;两颗卫星分别经过A点处,a的加速度等于b的加速度,选项C错误.分析卫星变轨问题的三点注意(1)卫星变轨时半径的变化,要根据万有引力与所需向心力的大小关系判断.决定.(2)卫星稳定在新轨道上的运行速度由v=GMr(3)卫星通过不同轨道的同一点(切点)时的速度大小关系可根据离心或向心运动的条件分析得出.角度2 变轨问题中能量分析[例3] (多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( BD)A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服气体阻力做的功小于引力势能的减小解析:卫星在轨道半径逐渐变小的过程中,由于地球引力做正功,引力势能一定减小,故B正确;卫星的环绕速度当半径r减小时,运行速度增大,卫星的动能增大,选项A错误;由于气体阻力做负功,地球引力做正功,根据功能关系,机械能(引力势能和动能之和)减小,选项C错误;由于卫星的动能增大,地球引力做的正功大于卫星克服气体阻力做的功,选项D 正确.1.(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( ACD)A.该卫星在P点的速度大于7.9 km/s,小于11.2 km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9 km/sC.在轨道Ⅰ上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ解析:卫星在P点做圆周运动的速度为7.9 km/s,卫星在P点的速度大于7.9 km/s会做离心运动,运动轨迹为椭圆,但必须小于11.2 km/s,否则就会脱离地球束缚,故A正确;环绕地球做圆周运动的人造卫星,最大的运行速度是7.9 km/s,故B错误;P点比Q点离地球近,故在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度,C 正确;卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ,故D 正确.2.(2019·河南南阳月考)(多选)若“嫦娥四号”从距月面高度为100 km 的环月圆形轨道Ⅰ上的P 点实施变轨,进入近月点为15 km 的椭圆轨道Ⅱ,由近月点Q 落月,如图所示.关于“嫦娥四号”,下列说法正确的是( AD )A.沿轨道Ⅰ运动至P 时,需制动减速才能进入轨道ⅡB.沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期C.沿轨道Ⅱ运行时,在P 点的加速度大于在Q 点的加速度D.在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变解析:要使“嫦娥四号”从环月圆形轨道Ⅰ上的P 点实施变轨进入椭圆轨道Ⅱ,需制动减速做近心运动,A 正确;由开普勒第三定律知,沿轨道Ⅱ运行的周期小于沿轨道Ⅰ运行的周期,B 错误;根据牛顿第二定律,有G2Mm r =ma,解得a=G 2Mr,沿轨道Ⅱ运行时,在P 点的加速度小于在Q 点的加速度,C 错误;月球对“嫦娥四号”的万有引力指向月球,所以在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变,D 正确.双星或多星模型1.宇宙双星问题(1)特点:如图(甲)所示绕公共圆心转动的两个星体组成的系统,我们称之为双星系统. (2)动力学规律①各自所需的向心力由彼此间的万有引力提供,即122Gm m L=m 1r 121ω, 122Gm m L=m 2r 222ω; ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2; ③两颗星的轨道半径与它们之间的距离关系为:r 1+r 2=L. (3)两颗星到圆心的距离r 1,r 2与星体质量成反比,即12m m =21r r . 2.宇宙三星问题(1)三颗质量均为m 的星体位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行[如图(乙)所示].其中一个环绕星由其余两颗星的引力提供向心力:22Gm R +22(2)Gm R =ma.(2)三颗质量均为m 的星体位于等边三角形的三个顶点上[如图(丙)所示].每颗星体运动所需向心力都由其余两颗星体对其万有引力的合力来提供.2×22Gm L cos 30°=ma,其中L=2Rcos 30°.3.宇宙四星问题(1)其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动[如图(丁)所示].(2)另一种是三颗星体始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O 做匀速圆周运动[如图(戊)所示].三颗星体转动的方向相同,周期、角速度、线速度的大小相等.4.宇宙多星的分析思路 角度1 双星问题 [例4]宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至于因为万有引力的作用而吸引到一起.如图所示,某双星系统中A,B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( A ) A.质量之比m A ∶m B =2∶1 B.角速度之比ωA ∶ωB =1∶2 C.线速度大小之比v A ∶v B =2∶1 D.向心力大小之比F A ∶F B =2∶1审题指导:(1)双星做匀速圆周运动的周期相同. (2)公式G122m m r 中的r 是两星间的距离,而不是轨道半径. 解析:双星绕连线上的一点做匀速圆周运动,其角速度相同,周期相同,两者之间的万有引力提供向心力,F=m A r A ω2=m B r B ω2,所以m A ∶m B =2∶1,选项A 正确,B,D 错误;由v=rω可知,线速度大小之比v A ∶v B =1∶2,选项C 错误.(1)双星系统中,两星的向心力大小一定相等,等于它们之间的万有引力,向心力不会因为两星质量、轨道半径不同而不同.(2)万有引力定律表达式中的r 表示双星间的距离,此处应该是L;而向心力表达式中的r 表示它们各自做圆周运动的半径,此处为r 1,r 2,千万不可混淆. 角度2 三星问题 [例5]三颗相同的质量都是M 的星球位于边长为L 的等边三角形的三个顶点上.如果它们中的每一颗都在相互的引力作用下沿外接于等边三角形的圆轨道运行而保持等边三角形不变,下列说法正确的是( B )A.23G MB.其中一个星球受到另外两个星球的万有引力的合力指向圆心OC.3LD.2GML解析:根据万有引力定律,任意两颗星球之间的万有引力为F 1=22GM L ,方向沿着它们的连线.其中一个星球受到另外两个星球的万有引力的合力为F=2F 1cos 23G M ,方向指向圆心,选项A 错误,B 正确;三个星球运行的轨道半径r=2cos30L3L,选项C 错误;23G M =M 2v r可得GML选项D 错误. (1)多星问题中,质量相同的各星处于同一圆轨道上,绕某一点做匀速圆周运动,或处于同一直线上的三星绕其中一颗做匀速圆周运动,某一星体所需向心力是其他星体对它万有引力的矢量和.(2)解题时首先明确多星系统中各星体的位置及周期关系,再分析各星做匀速圆周运动的向心力的来源和轨道半径.1.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( C )A.质量大的天体线速度较大B.质量小的天体角速度较大C.两个天体的向心力大小相等D.若在圆心处放一个质点,它受到的合力为零解析:双星系统做匀速圆周运动的角速度ω相等,选项B 错误.两个天体之间的万有引力提供向心力,所以两个天体的向心力大小相等,选项C 正确.由万有引力定律及牛顿运动定律得G122m m L =m 1r 1ω2=m 2r 2ω2,其中r 1+r 2=L,故r 1=212m m m +L,r 2=112m m m +L,则12v v =12r r =21m m ,故质量大的星球线速度小,故选项A 错误.若在圆心处放一个质量为m 的质点,质量为m 1的天体对它的万有引力为F 1=G 121mm r ,质量为m 2的天体对它的万有引力为F 2=G 222mmr ,由A 项分析知m 1r 1=m 2r 2,则F 2=G1132mm r r ,显然,F 2≠F 1,即圆心处放的质点受到的合力不为零,选项D 错误. 2.(多选)宇宙中有这样一种三星系统,系统由两个质量为m 的小星体和一个质量为M 的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法正确的是( BC )A.在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力B.在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧C.小星体运行的周期为32rD.小星体运行的周期为32r解析:在稳定运行的情况下,对某一个环绕星体而言,受到其他两个星体的万有引力,两个万有引力的合力提供环绕星体做圆周运动的向心力,选项A 错误;在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧,选项B 正确;对某一个小星体有2GMm r +2(2)Gmmr =mr,解得小星体运行的周期32选项C 正确,D 错误. 1.(2019·北京卷,18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( D ) A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度C.发射速度大于第二宇宙速度D.若发射到近地圆轨道所需能量较少解析:同步卫星只能位于赤道正上方,故A 错误;由2GMmr=m 2v r 知,卫星的轨迹半径越大,环绕速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),故B 错误;同步卫星的发射速度大于第一宇宙速度、小于第二宇宙速度,故C 错误;若该卫星发射到近地圆轨道,所需发射速度较小,所需能量较少,故D 正确.2.(2018·全国Ⅰ卷,20)(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( BC ) A.质量之积 B.质量之和 C.速率之和 D.各自的自转角速度解析:两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,即转速n=12 r/s,角速度ω=2πn,中子星运动时,由万有引力提供向心力得122Gm m l =m 1r 1ω2,122Gm m l =m 2r 2ω2,l=r 1+r 2,联立可得122()G m m l +=ω2l,所以m 1+m 2=23l G ω,质量之和可以估算;由线速度与角速度的关系v=ωr 得,v 1=ωr 1,v 2=ωr 2,解得v 1+v 2=(r 1+r 2)ω=ωl,速率之和可以估算;质量之积和各自自转的角速度无法求解,故B,C 正确,A,D 错误. 3.(2016·天津卷,3)我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( C )A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接解析:使飞船与空间实验室在同一轨道上运行,然后飞船加速,则向心力变大,飞船将脱离原轨道而进入更高的轨道,不能实现对接;若空间实验室减速,则向心力变小,空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,故选项A,B 错误;要想实现对接,可使飞船在比空间实验室半径小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C 正确;若飞船在比空间实验室半径小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D 错误.4.(2019·福建泉州质检)(多选)如图,虚线Ⅰ,Ⅱ,Ⅲ分别表示地球卫星的三条轨道,其中轨道Ⅰ为与第一宇宙速度7.9 km/s 对应的近地环绕圆轨道,轨道Ⅱ为椭圆轨道,轨道Ⅲ为与第二宇宙速度11.2 km/s 对应的脱离轨道,a,b,c 三点分别位于三条轨道上,b 点为轨道Ⅱ的远地点,b,c 点与地心的距离均为轨道Ⅰ半径的2倍,则( CD )A.卫星在轨道Ⅱ的运行周期为轨道Ⅰ的2倍B.卫星经过a 点的速率为经过bC.卫星在a 点的加速度大小为在c 点的4倍D.质量相同的卫星在b 点的机械能小于在c 点的机械能解析:由开普勒第三定律可得21T T ,故A 错误;卫星在轨道Ⅰ做匀速圆周运动,半径为r,Ⅱ轨道为椭圆,卫星经过b 点可以加速后做匀速圆周运动,由,卫星经过a 点的速率大于经过b ,故B 错误;由公式a=2GM r 可知,卫星在a 点的加速度大小为在c 点的4倍,故C 正确;卫星越高,发射过程中要克服引力做功越多,所以质量相同的卫星在b 点的机械能小于在c 点的机械能,故D 正确.。

高考物理复习 曲线运动 万有引力与航天(二)

高考物理复习 曲线运动 万有引力与航天(二)

曲线运动 万有引力与航天【知识框架】曲线运动 万有引力与航天曲线运动 运动的合成与分解 合成与分解的法则:平行四边形定则合运动与分运动的关系 等时性独立性等效性平抛运动 轨迹:一条抛物线运动规律位移速度平抛运动的条件:仅受重力、初速度水平v x =v 0,v=22y x v v +v y =gt,tan θ=xy v v =v gt x=v 0t,s=22y x +y=21gt 2,tan Ф=x y =02v gt 匀速圆周运动线速度:v=s/t=2πr/T=ωr角速度:ω=Ф/t=2π/T向心加速度:a=v 2/r=ω2r=4π2r/T 2 向心力:F=mv 2/r=m ω2r=m4π2r/T 2万有引力与航天万有引力万有引力定律公式:F=G2r Mm适用条件:真空中的两个质点之间测定天体质量 M=4π2r 3/GT 2 发现未知天体 应用人造地球卫星同步卫星的特点:高度、周期、速度大小、运行方向G2rMm= mrv 2mr ω2 m4π4/T宇宙速度第一宇宙速度:v 1=7.9km/s 第二宇宙速度:v 2=11.2km/s 第三宇宙速度:v 3=16.7km/s【复习策略】本章考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用、对万有引力定律及其在天文学上的应用。

在复习中,要将基础知识、基本概念与牛顿运动定律相结合,抓住处理问题的基本方法即运动的合成与分解,深刻理解平抛运动。

对竖直面内的圆周运动处理,要注意与能量守恒定律相结合,解决临界问题。

对于天体运动的问题,抓好公式的灵活变形。

【疑难应用】例1.(2011年高考·全国卷新课标版)一带负电荷的质点,在电场力作用下沿曲线abc 从a运动到c,已知质点的速率是递减的。

关于b点电场强度E的方向,下列图示中可能正确的是(虚线是曲线在b点的切线)A .B .C .D .解析:主要考查电场力方向和曲线运动所受合外力与轨迹的关系。

2020年高考物理一轮复习专题04曲线运动、万有引力与航天考点归纳

2020年高考物理一轮复习专题04曲线运动、万有引力与航天考点归纳

专题04 曲线运动、万有引力与航天目录第一节曲线运动运动的合成与分解 (2)【基本概念、规律】 (2)【重要考点归纳】 (2)考点一对曲线运动规律的理解 (2)考点二运动的合成及合运动性质的判断 (2)【思想方法与技巧】 (3)两种运动的合成与分解实例 (3)第二节抛体运动 (4)【基本概念、规律】 (4)【重要考点归纳】 (5)考点一平抛运动的基本规律及应用 (5)考点二与斜面相关联的平抛运动 (6)考点三与圆轨道关联的平抛运动 (6)第三节圆周运动 (7)【基本概念、规律】 (7)【重要考点归纳】 (8)考点一水平面内的圆周运动 (8)考点二竖直面内的圆周运动 (8)考点三圆周运动的综合问题 (8)【思想方法与技巧】 (9)竖直平面内圆周运动的“轻杆、轻绳”模型 (9)第四节万有引力与航天 (10)【基本概念、规律】 (10)【重要考点归纳】 (11)考点一天体质量和密度的估算 (11)考点二卫星运行参量的比较与运算 (11)考点三卫星(航天器)的变轨问题 (12)考点四宇宙速度的理解与计算 (13)【思想方法与技巧】 (13)双星系统模型 (13)求极值的六种方法 (14)第一节曲线运动运动的合成与分解【基本概念、规律】一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.二、运动的合成与分解1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.(3)等效性:各分运动叠加起来与合运动有完全相同的效果.【重要考点归纳】考点一对曲线运动规律的理解1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变.(2)变加速曲线运动:合力(加速度)变化.2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大;(2)当合力方向与速度方向的夹角为钝角时,速率减小;(3)当合力方向与速度方向垂直时,速率不变.考点二运动的合成及合运动性质的判断1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则.2.合运动的性质判断⎩⎨⎧加速度或合外力⎩⎪⎨⎪⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动3.两个直线运动的合运动性质的判断4.成运算.【思想方法与技巧】两种运动的合成与分解实例一、小船渡河模型 1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度). (3)两个极值①过河时间最短:v 1⊥v 2,t min =dv 1(d 为河宽).②过河位移最小:v ⊥v 2(前提v 1>v 2),如图甲所示,此时x min =d ,船头指向上游与河岸夹角为α,cos α=v 2v 1;v 1⊥v (前提v 1<v 2),如图乙所示.过河最小位移为x min =d sin α=v 2v 1d .3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解. (3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关. 二、绳(杆)端速度分解模型 1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎪⎨⎪⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.第二节 抛体运动【基本概念、规律】 一、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t . (2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2.(3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. ②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=yx =gt2v 0.二、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt . 【重要考点归纳】考点一 平抛运动的基本规律及应用1.飞行时间:由t =2hg知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v yv x=2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解. (2)运用运动合成的方法求出平抛运动的速度、位移等.考点二 与斜面相关联的平抛运动1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:速度方向与关,分解速度,构速度方向与关,分解速度,构位移方向与关,分解位移,构2.(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角; (2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系. 考点三 与圆轨道关联的平抛运动在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解. 平抛运动的临界问题(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.(2)对于平抛运动,已知平抛点高度,又已知初速度和水平距离时,要进行平抛运动时间的判断,即比较t 1=2h g 与t 2=xv 0,平抛运动时间取t 1、t 2的小者.(3)本题中,两发子弹不可能打到靶上同一点的说明: 若打到靶上同一点,则子弹平抛运动时间相同, 即t =Lv 0+v =L -90v,L =3 690 m ,t =4.5 s >2hg=0.6 s ,即子弹0.6 s 后就已经打到地上.第三节 圆周运动【基本概念、规律】一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f.4.向心加速度:描述线速度方向变化的快慢.a n =r ω2=v 2r =ωv =4π2T2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动.2.供需关系与运动如图所示,F 为实际提供的向心力,则 (1)当F =m ω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出; (3)当F <m ω2r 时,物体逐渐远离圆心; (4)当F >m ω2r 时,物体逐渐靠近圆心. 【重要考点归纳】考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题.4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件;(2)确定圆周运动的圆心和半径;(3)应用相关力学规律列方程求解.考点二竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.考点三圆周运动的综合问题圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.【思想方法与技巧】竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析绳、杆模型常涉及临界问题,分析如下:过最高点的23.(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点.(3)定规律:用牛顿第二定律列方程求解.第四节 万有引力与航天【基本概念、规律】 一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =Gm 1m 2r2,其中G =6.67×10-11 N·m 2/kg 2. 3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离.二、宇宙速度三、经典力学的时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的. 2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界. 【重要考点归纳】考点一 天体质量和密度的估算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR2=mg (g 表示天体表面的重力加速度). 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r3GT 2;②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二卫星运行参量的比较与运算1.卫星的各物理量随轨道半径变化的规律2.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星、近地卫星和同步卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)同步卫星①轨道平面一定:轨道平面和赤道平面重合.②周期一定:与地球自转周期相同,即T=24 h=86 400 s.③角速度一定:与地球自转的角速度相同.④高度一定:卫星离地面高度h=3.6×104 km.⑤速率一定:运动速度v=3.07 km/s(为恒量).⑥绕行方向一定:与地球自转的方向一致.考点三卫星(航天器)的变轨问题1.轨道的渐变做匀速圆周运动的卫星的轨道半径发生缓慢变化,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动.解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化.2.轨道的突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GM r可知其运行速度比原轨道时减小. (2)当卫星的速度突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GM r可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.不论是轨道的渐变还是突变,都将涉及功和能量问题,对卫星做正功,卫星机械能增大,由低轨道进入高轨道;对卫星做负功,卫星机械能减小,由高轨道进入低轨道.考点四 宇宙速度的理解与计算1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法: (1)GMm R 2=m v 21R ,所以v 1=GM R. (2)mg =mv 21R,所以v 1=gR . 【思想方法与技巧】双星系统模型1.模型特点(1)两颗星彼此相距较近,且间距保持不变.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.2.模型分析(1)双星运动的周期和角速度相等,各以一定的速率绕某一点转动,才不至于因万有引力作用而吸在一起.(2)双星做匀速圆周运动的向心力大小相等,方向相反.(3)双星绕共同的中心做圆周运动时总是位于旋转中心的两侧,且三者在一条直线上.(4)双星轨道半径之和等于它们之间的距离.3.(1)解决双星问题时,应注意区分星体间距与轨道半径:万有引力定律中的r 为两星体间距离,向心力公式中的r 为所研究星球做圆周运动的轨道半径.(2)宇宙空间大量存在这样的双星系统,如地月系统就可视为一个双星系统,只不过旋转中心没有出地壳而已,在不是很精确的计算中,可以认为月球绕着地球的中心旋转求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.二、二次函数极值法对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a .也可以采取配方法求解.三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.。

物理必修2曲线运动和万有引力与航天检测专题复习

物理必修2曲线运动和万有引力与航天检测专题复习

高三物理一轮复习曲线运动练习1.关于曲线运动,下列说法中正确的是( )A.曲线运动一定是变速运动B.曲线运动速度的方向不断变化,但速度的大小可以不变C.曲线运动的速度方向可能不变D.曲线运动的速度大小和方向一定同时改变2.物体做曲线运动的条件为( )A.物体运动的初速度不为零B.物体所受的合外力为变力C.物体所受的合外力的方向与速度的方向不在同一条直线上D.物体所受的合外力的方向与加速度的方向不在同一条直线上3.如图所示,物体在恒力F 作用下沿曲线从A 运动到B ,这时突然使它所受力反向、大小不变,即由F 变为-F ,在此力作用下,关于物体以后的运动情况,下列说法正确的是()A.物体可能沿曲线Ba 运动B.物体可能沿直线Bb 运动C.物体可能沿曲线Bc 运动 D .物体可能沿原曲线由B 返回A4、如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A 的受力情况是( )A .绳的拉力大于A 的重力B .绳的拉力等于A 的重力C .绳的拉力小于A 的重力D .绳的拉力先大于A 的重力,后变为小于重力 5、.小船在静水中的速度已知,今小船要渡过一条河,渡河时小船船头垂直指向河岸,若船行到河中间时,水流速度突然增大,则( )A.小船渡河时间不变B.小船渡河时间增加C.小船到达对岸地点在预定点下游某处D.无法确定渡河时问及到达对岸地点如何变化6.一架飞机水平地匀速飞行.从飞机上每隔1s 释放一个铁球,先后共释放4个.若不计空气阻力,从飞机上观察4个球( )A.在空中任何时刻总是排成抛物线,它们的落地点是等间距的B.在空中任何时刻总是排成抛物线,它们的落地点是不等间距的C.在空中任何时刻总是在飞机正下方排成竖直的直线,它们的落地点是等间距的D.在空中任何时刻总是在飞机正下方排成竖直的直线,它们的落地点是不等间距的7.平抛运动是( )A.匀速率曲线运动B.匀变速曲线运动C.加速度不断变化的曲线运动D.加速度恒为重力加速度的曲线运动8.以速度v 0水平抛出一物体,当其竖直分位移与水平分位移相等时,此物体的( )A.竖直分速度等于水平分速度B.0 C.运动时间为02v g D.发生的位移为20g9.如图所示,以9.8m /s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在斜角为30°的斜面上,可知物体完成这段飞行的时间是()ABC .2D s10、如图所示倾角为θ的斜面长为L ,在顶端A 点水平抛出一石子,它刚好落在这个斜面底端B 点,则抛出石子的初速度v 0=________.(第511、如图所示,在与水平方向成θ的山坡上的A点,以初速度V0水平抛出的一个物体最后落在山坡的B点,则AB之间的距离和物体在空中飞行的时间各是多少?12.关于质点做匀速圆周运动的说法,以下正确的是( )A.因为2var=,所以向心加速度与转动半径成反比 B.因为2a rω=,所以向心加速度与转动半径成正比C.因为vrω=,所以角速度与转动半径成反比D.因为2nωπ=(n为转速),所以角速度与转速成反比13.如图所示,小物体A与水平圆盘保持相对静止,跟着圆盘一起做匀这圆周运动,则A的受力情况是( )A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.重力、支持力、向心力、摩擦力D.以上均不正确4.如图所示.在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是( )A.重力B.弹力C.静摩擦力D.滑动摩擦力15.如图所示的圆锥摆中,小球的质量m=50g,绳长为1m,小球做匀速运动的半径r=0.2m,转速n=120r/min,(1)小球的向心力加速度是多大?(2)所受向心力是多大?16.如图所示的皮带传动装置中,轮A和B同轴,A、B、C分别是三个轮边缘上的质点,且r A=r C=2r B,则三个质点的向心加速度之比a A:a B:a C等于( )A.4:2:1B.2:1:2C.1:2:4D.4:1:417.用长短不同、材料相同的同样粗细的绳子各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,如图所示,则( )A.两个小球以相同的线速度运动时,长绳易断B.两个小球以相同的角速度运动时,短绳易断C.两个小球以相同的角速度运动时,长绳易断D.以上说法都不对18.一木块放于水平转盘上,与转轴的距离为r若木块与盘面问的最大静摩擦力是木块重力的μ倍,则转盘转动的角速度最大是________。

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第1讲 曲线运动 运动的合成与分解学生用书

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第1讲 曲线运动 运动的合成与分解学生用书

第1讲曲线运动运动的合成与分解一、曲线运动1.速度的方向:质点在某一点的速度,沿曲线在这一点的________.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是________运动.3.运动的条件:二、运动的合成与分解1.分运动和合运动:一个物体同时参与几个运动,参与的这几个运动即________,物体的实际运动即________.2.运动的合成:已知________________,包括位移、速度和加速度的合成.3.运动的分解:已知________________,解题时应按实际效果分解或正交分解.4.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循________________.,生活情境右图为建筑工地塔吊示意图,在驾驶工人的操作下,小车A可在起重臂上左右移动,同时又可使重物上下移动,若起重臂不转动,则(1)小车A向左匀速运动,同时拉重物的绳子匀速缩短,则重物相对地面为直线运动.( )(2)小车A向左匀加速运动,同时拉重物的绳子匀速缩短,则重物相对地面为曲线运动.( )(3)小车A向左运动的速度v1,重物B向上运动的速度v2,则重物B对地速度为v=√v12+v22.( )(4)做曲线运动的物体.其速度时刻变化,所以物体所受合力一定不为零.( )(5)两个互成角度的初速度均为零的匀加速直线运动的合运动一定是直线运动.( )考点一物体做曲线运动的条件及轨迹分析1.合力方向与轨迹的关系无力不拐弯,拐弯必有力.曲线运动的轨迹始终夹在合力方向与速度方向之间,而且向合力的方向弯曲,或者说合力的方向总是指向轨迹的“凹”侧.2.合力方向与速率变化的关系跟进训练1.[人教版必修2P6演示实验改编]在演示“做曲线运动的条件”的实验中,有一个在水平桌面上向右做直线运动的小钢球,第一次在其速度方向上放置条形磁铁,第二次在其速度方向上的一侧放置条形磁铁,如图所示,虚线表示小球的运动轨迹.观察实验现象,以下叙述正确的是( )A.第一次实验中,小钢球的运动是匀变速直线运动B.第二次实验中,小钢球的运动类似平抛运动,其轨迹是一条抛物线C.该实验说明做曲线运动物体的速度方向沿轨迹的切线方向D.该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上2.(多选)一个质点在恒力F的作用下,由O点运动到A点的轨迹如图所示,在A点时的速度方向与x轴平行,则恒力F的方向可能沿图示中( )A.F1的方向 B.F2的方向C.F3的方向 D.F4的方向3.春节期间人们放飞孔明灯表达对新年的祝福.如图所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动.孔明灯的运动轨迹可能为图乙中的( )A.直线OA B.曲线OBC.曲线OC D.曲线OD考点二运动的合成与分解运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则.跟进训练4.如图所示,乒乓球从斜面上滚下,它以一定的速度做直线运动,在与乒乓球路径相垂直的方向上放一个纸筒(纸筒的直径略大于乒乓球的直径),当乒乓球经过筒口时,对着乒乓球横向吹气,则关于乒乓球的运动,下列说法中正确的是( )A.乒乓球将偏离原有的运动路径,但不能进入纸筒B.乒乓球将保持原有的速度方向继续前进C.乒乓球一定能沿吹气方向进入纸筒D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒5.2020年3月3日消息,国网武汉供电公司每天用无人机对火神山医院周边线路进行巡检,一次最长要飞130分钟,它们是火神山医院的电力“保护神”.如图所示,甲、乙两图分别是某一无人机在相互垂直的x方向和y方向运动的v­t图象.在0~2 s内,以下判断正确的是( )A.无人机的加速度大小为10 m/s2,做匀变速直线运动B.无人机的加速度大小为10 m/s2,做匀变速曲线运动C.无人机的加速度大小为14 m/s2,做匀变速直线运动D.无人机的加速度大小为14 m/s2,做匀变速曲线运动6.[2022·广东深圳模拟]我国五代战机“歼­20”再次闪亮登场.表演中,战机先水平向右,再沿曲线ab向上(如图所示),最后沿陡斜线直入云霄.设飞行路径在同一竖直面内,飞行速率不变,则沿ab段曲线飞行时,战机( )A.所受合外力大小为零B.所受合外力方向竖直向上C.竖直方向的分速度逐渐增大D.水平方向的分速度不变考点三小船渡河模型和关联速度模型素养提升角度1小船渡河问题1.合运动与分运动合运动→船的实际运动v合→平行四边形对角线分运动→船相对静水的运动v船水流的运动v水→平行四边形两邻边.两类问题、三种情景例1.如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各x(m/s)(x的单位为m),让小船船头垂点到较近河岸的距离为x,v水与x的关系为v水=3400直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法正确的是( ) A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s角度2关联速度问题例2. 如图所示,一辆货车利用跨过光滑定滑轮的轻质缆绳提升一箱货物,已知货箱的质量为m0,货物的质量为m,货车以速度v向左做匀速直线运动,在将货物提升到图示的位置时,下列说法正确的是( )A.货箱向上运动的速度大于vB.缆绳中的拉力F T等于(m0+m)gC.货箱向上运动的速度等于v cos θD.货物对货箱底部的压力等于mg[思维方法]绳(杆)关联问题的解题技巧(1)先确定合速度的方向(物体实际运动方向).(2)分析合运动所产生的实际效果;一方面使绳(杆)伸缩;另一方面使绳(杆)转动.(3)确定两个分速度的方向:沿绳(杆)方向的分速度和垂直绳(杆)方向的分速度,而沿绳(杆)方向的分速度大小相同.跟进训练7.如图所示,小球a、b用一细直棒相连,a球置于水平地面,b球靠在竖直墙面上,释放后b球沿竖直墙面下滑,当滑至细直棒与水平面成θ角时,两小球的速度大小之比为( )A.v av b =sin θ B.v av b=cos θC.v av b =tan θ D.v av b=1tanθ8.如图所示,一船夫以摇船载客为生往返于河的两岸.若该船夫摇船从河岸A点以v1的速度用最短的时间到对岸B点.第二次该船以v2的速度从同一地点以最短的路程过河到对岸B点,船轨迹恰好与第一次船轨迹重合.假设河水速度保持不变,则该船两次过河所用的时间之比是 ( )A.v1∶v2 B.v2∶v1C.v:12v22D.v22 v12第1讲曲线运动运动的合成与分解必备知识·自主排查一、1.切线方向2.变速二、1.分运动合运动2.分运动求合运动3.合运动求分运动4.平行四边形定则生活情境(1)√(2)√(3)√(4)√(5)√关键能力·分层突破1.解析:本题考查曲线运动的轨迹问题.第一次实验中,小钢球受到沿着速度方向的吸引力作用,做直线运动,并且随着距离的减小吸引力变大,加速度变大,则小钢球的运动是非匀变速直线运动,选项A错误;第二次实验中,小钢球所受的磁铁的吸引力方向总是指向磁铁,方向与大小均改变,是变力,故小钢球的运动不是类似平抛运动,其轨迹也不是一条抛物线,选项B错误;该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上,但是不能说明做曲线运动物体的速度方向沿轨迹的切线方向,故选项C错误,D正确.答案:D2.解析:曲线运动受到的合力总是指向曲线凹的一侧,但和速度永远不可能达到平行的方向,所以合力可能沿着F3的方向、F4的方向,不可能沿着F1的方向或F2的方向,C、D 正确,A、B错误.答案:CD3.解析:孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,则合外力沿Oy方向,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知运动轨迹可能为曲线OD,故D正确.答案:D4.解析:当乒乓球经过筒口时,对着乒乓球横向吹气,乒乓球沿着原方向做匀速直线运动的同时也会沿着吹气方向做加速运动,实际运动是两个运动的合运动,故一定不会进入纸筒,要提前吹气才会进入纸筒,故A正确,B、C、D错误.答案:A5.解析:在0~2 s内,由速度-时间图象可知,x方向初速度为v0x=0,加速度为a x =6 m/s2,y方向初速度为v0y=0,加速度为a y=8 m/s2,根据平行四边形定则可以得到合初速度为v=0,合加速度为a=10 m/s2,而且二者方向在同一直线上,可知合运动为匀变速直线运动,故A正确,B、C、D错误.答案:A6.解析:战机在同一竖直面内做曲线运动,且运动速率不变,由于速度方向是变化的,则速度是变化的,故战机的加速度不为零,根据牛顿第二定律可知,战机所受的合力不为零,故A错误;战机在同一竖直平面内做匀速率曲线运动,所受合力与速度方向垂直,由于速度方向时刻在变化,则合外力的方向也时刻在变化,故B错误;由以上分析可知,战机所受合力始终都与速度方向垂直,斜向左上方,对合力和速度进行分解,竖直方向上做加速运动,水平方向上做减速运动,即竖直分速度增大,水平分速度减小,所以选项C正确,D错误.答案:C例1 解析:小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,速度与加速度不共线,小船的合运动是曲线运动,选项A错误;当小船运动到河中间时,东西方向上的分速度最大,v水=3 m/s,此时小船的合速度最大,最大值v m=5 m/s,选项B正确;小船在距南岸200 m处的速度等于在距北岸200 m处的速度,选项C错误;小船的渡河时间t=dv船=8004s=200 s,选项D错误.答案:B例2 解析:将货车的速度进行正交分解,如图所示.由于绳子不可伸长,货箱和货物整体向上运动的速度和货车速度沿着绳子方向的分量相等,有v1=v cos θ,故选项C正确;由于θ不断减小,v1不断增大,故货箱和货物整体向上做加速运动,加速度向上,故选项A错误;拉力大于(m0+m)g,故选项B错误;货箱和货物整体向上做加速运动,加速度向上,属于超重,故箱中的物体对箱底的压力大于mg,故选项D错误.答案:C7.解析:如图所示,将a球速度分解成沿着杆与垂直于杆方向,同时b球速度也是分解成沿着杆与垂直于杆两方向.对于a球v=v acos θ,对于b球v=v bsin θ,由于同一杆,则有v acosθ=v bsin θ,所以v av b=tan θ,故选C.答案:C8.解析:由题意可知,船夫两次驾船的轨迹重合,知合速度方向相同,第一次船的静水速度垂直于河岸,第二次船的静水速度与合速度垂直,如图所示.船两次过河的合位移相等,则渡河时间之比等于船两次过河的合速度之反比,则t1 t2=v2合v1合=v2tanθv1sinθ=v2v1cos θ,而cos θ=v2v1可得t1t2=v22v12,故D项正确.答案:D。

高三物理一轮复习必备精品:曲线运动万有引力与航天

高三物理一轮复习必备精品:曲线运动万有引力与航天

第4章曲线运动万有引力与航天课标导航课程内容标准:1.会用运动的合成与分解的方法分析抛体运动。

2.会描述匀速圆周运动,知道向心加速度。

3.能用牛顿第二定律分析匀速圆周运动的向心力,分析生活和生产中的离心现象。

4.关注抛体运动和圆周运动的规律与日常生活得联系。

5.通过有关事实了解万有引力的发现过程,知道万有引力定律,认识其发展的重要意义,体会科学定律对人类探索未知世界的作用。

6.会计算人造卫星的环绕速度,知道第二宇宙速度、第三宇宙速度。

7.体会科学研究方法对人们认识自然地重要作用,举例说明物体学的进展对于自然科学的促进作用。

复习导航本部分内容是每年高考的热点和重点,是牛顿运动定律在曲线运动中的具体应用,而万有引力定律又是力学中一个独立的基本定律,复习好本章的概念和规律,将加深对速度、加速度及其关系的理解,加深对牛顿第二定律的理解,提高牛顿运动定律分析解决实际问题的能力,同时对复习振动和波、交流电、电磁振荡、带电粒子在电场或磁场中的运动做好充分的准备。

1.在复习中应侧重于曲线运动分析方法,将复杂的曲线运动转化成直线运动。

例如:平抛运动可以视为水平方向的匀速直线运动和竖直方向的自由落体运动的合成。

2.竖直平面内的圆周运动问题,涉及的知识面较广,既涉及圆周运动的临界问题又涉及机械能守恒问题,是一个知识难点与重点。

在有关圆周运动最高点的各种情况下各物理量的临界值的分析和计算应该作为复习中重点突破的内容。

3.人造卫星问题涉及的关系较多,如卫星线速度同轨道半径的关系,周期同半径的关系,人造卫星变轨问题。

在复习时应注意到卫星的题目虽然千变万化,但有一点却是一个最基本不变的关系,即万有引力作为向心力4.万有引力定律的另一个重要的作用,就是估算天体的质量。

计算时的取舍和等效处理等手法,要在练习中反复体会。

第1课时 曲线运动 运动的合成与分解1、高考解读真题品析知识:曲线运动、运动的分解例1. 2008年(江苏省 物理)13.(15分)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L 、网高h ,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g ) (1)若球在球台边缘O 点正上方高度为h 1处以速度1v ,水平发出,落在球台的P 1点(如图 实线所示),求P 1点距O 点的距离x 1。

高一物理必修二知识点归纳

高一物理必修二知识点归纳

高一物理必修二知识点归纳一、曲线运动(一)曲线运动的速度方向曲线运动中质点在某一点的速度方向,就是沿曲线在这一点的切线方向。

(二)曲线运动的条件当物体所受合外力的方向跟它的速度方向不在同一直线上时,物体做曲线运动。

(三)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动。

2、性质:平抛运动是加速度为重力加速度(g)的匀变速曲线运动。

3、平抛运动的规律(1)水平方向:做匀速直线运动,速度 vx = v0,位移 x = v0t。

(2)竖直方向:做自由落体运动,速度 vy = gt,位移 y = 1/2gt²。

(3)合速度:v =√(vx²+ vy²) ,方向与水平方向夹角的正切值tanθ = vy / vx 。

(4)合位移:s =√(x²+ y²) ,方向与水平方向夹角的正切值tanα = y / x 。

(四)圆周运动1、线速度 v:描述物体沿圆周运动的快慢,v = s / t ,单位:m/s 。

2、角速度ω:描述物体绕圆心转动的快慢,ω =φ / t ,单位:rad/s 。

3、周期 T:物体沿圆周运动一周所用的时间,单位:s 。

4、频率 f:单位时间内物体完成圆周运动的次数,f = 1 / T ,单位:Hz 。

5、向心加速度 an:描述线速度方向变化快慢的物理量,an = v²/ r =ω²r ,方向始终指向圆心。

6、向心力 Fn:产生向心加速度的力,Fn = m v²/ r =m ω²r ,方向始终指向圆心。

二、万有引力与航天(一)开普勒行星运动定律1、第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

2、第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

3、第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,即 a³/ T²= k ,k 是一个对所有行星都相同的常量。

高考物理总复习(曲线运动 万有引力与航天)之 平抛运动 课件

高考物理总复习(曲线运动 万有引力与航天)之 平抛运动  课件

×10×12 m=5 m,A正确,B错误.
答案:AD
2.如图所示,一小球以v0=10
m/s的速度水平抛出,在
落地之前经过空中A、B两点.在A点小球速度方向与水平方 向的夹角为45° ,在B点小球速度方向与水平方向的夹角为 60° (空气阻力忽略不计,g取10 ( ) m/s2),以下判断中正确的是
高考物理总复习 曲线运动 万有引力与航天
第二节
平抛运动
突破考点01
突破考点02
突破考点04
课时作业 高考真题
突破考点03
突破考点01
平抛运动规律及应用
自主练透
1.性质 加速度为重力加速度g的________运动,运动轨迹是抛物 线.
2.基本规律
以抛出点为原点,水平方向(初速度v0方向)为x轴,竖直 向下方向为y轴,建立平面直角坐标系,如图所示,则:
2h g ,即水平射程由初速度v0
和下落高度h共同决定,与其他因素无关.
2 2 3.落地速度:vt= v2 + v = v x y 0+2gh ,以α表示落地速
vy 2gh 度与x轴正方向的夹角,有tanα= v = ,所以落地速度也 v x 0 只与初速度v0和下落高度h有关.
4.速度改变量:因为平抛运动的加速度为重力加速度 g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改 变量Δv=gΔt相同,方向恒为竖直向下,如图所示.
直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b 和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻 力,则( )
A.a的飞行时间比b的长 B.b和c的飞行时间相同 C.a的水平速度比b的小 D.b的初速度比c的大
(1)平抛运动的物体运动时间由竖直高度决定. (2)从水平位移和下落时间分析初速度的大小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线运动 万有引力与航天复习 高考物理复习第四章 ⎪⎪⎪曲线运动 万有引力与航天第1节曲线运动__运动的合成与分解(1)速度发生变化的运动,一定是曲线运动。

(×)(2)做曲线运动的物体加速度一定是变化的。

(×)(3)做曲线运动的物体速度大小一定发生变化。

(×)(4)曲线运动可能是匀变速运动。

(√)(5)两个分运动的时间一定与它们的合运动的时间相等。

(√)(6)合运动的速度一定比分运动的速度大。

(×)(7)只要两个分运动为直线运动,合运动一定是直线运动。

(×)(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则。

(√)突破点(一)物体做曲线运动的条件与轨迹分析1.运动轨迹的判断(1)若物体所受合力方向与速度方向在同一直线上,则物体做直线运动。

(2)若物体所受合力方向与速度方向不在同一直线上,则物体做曲线运动。

2.合力方向与速率变化的关系[题点全练]1.关于物体的受力和运动,下列说法中正确的是()A.物体在不垂直于速度方向的合力作用下,速度大小可能一直不变B.物体做曲线运动时,某点的加速度方向就是通过这一点曲线的切线方向C.物体受到变化的合力作用时,它的速度大小一定改变D.做曲线运动的物体,一定受到与速度不在同一直线上的外力作用解析:选D如果合力与速度方向不垂直,必然有沿速度方向的分力,速度大小一定改变,故A错误;物体做曲线运动时,某点的速度方向就是通过这一点的曲线的切线方向,而不是加速度方向,故B错误;物体受到变化的合力作用时,它的速度大小可以不改变,比如匀速圆周运动,故C错误;物体做曲线运动的条件是一定受到与速度不在同一直线上的外力作用,故D正确。

2.[多选](2018·南京调研)如图所示,甲、乙两运动物体在t1、t2、t3时刻的速度矢量分别为v1、v2、v3和v1′、v2′、v3′,下列说法中正确的是()A.甲做的不可能是直线运动B.乙做的可能是直线运动C.甲可能做匀变速运动D.乙受到的合力不可能是恒力解析:选ACD甲、乙的速度方向在变化,所以甲、乙不可能做直线运动,故A正确,B错误;甲的速度变化量的方向不变,知加速度的方向不变,则甲的加速度可能不变,甲可能作匀变速运动,选项C正确;乙的速度变化量方向在改变,知加速度的方向改变,所以乙的合力不可能是恒力,故D 正确。

3.[多选](2018·苏州一模)某同学做了一个力学实验,如图所示,将一金属球通过一轻质弹簧悬挂于O 点,并用一水平方向的细绳拉住,然后将水平细绳剪断,经观察发现,水平细绳剪断后金属球在第一次向左摆动以及回摆过程的一段运动轨迹如图中虚线所示。

根据运动轨迹以及相关的物理知识,该同学得出以下几个结论,其中正确的是( )A .水平细绳剪断瞬间金属球的加速度方向一定水平向左B .金属球运动到悬点O 正下方时所受合力方向竖直向上C .金属球速度最大的位置应该在悬点O 正下方的左侧D .金属球运动到最左端时速度为零,而加速度不为零解析:选AC 未剪断细绳前,小球受向下的重力、弹簧的拉力和细绳的水平拉力作用,剪断细绳后的瞬间,弹簧弹力不变,则弹力和重力的合力应该水平向左,故此时金属球的加速度方向一定水平向左,选项A 正确;金属球运动到悬点O 正下方时,合力指向轨迹的凹侧,故合力方向竖直向下,选项B 错误;当轨迹的切线方向与合力方向垂直时,小球的速度最大,由轨迹图可知金属球速度最大的位置应该在悬点O 正下方的左侧,选项C 正确;金属球运动到最左端时,由轨迹的切线可知,速度方向向上,不为零,因小球做曲线运动,故其加速度不为零,选项D 错误。

突破点(二) 运动的合成与分解的应用1.合运动与分运动的关系运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则。

3.合运动的性质和轨迹的判断(1)若合加速度不变,则为匀变速运动;若合加速度(大小或方向)变化,则为非匀变速运动。

(2)若合加速度的方向与合初速度的方向在同一直线上,则为直线运动,否则为曲线运动。

[典例] [多选](2018·镇江模拟)将一物体由坐标原点O 以初速度v 0抛出,在恒力作用下轨迹如图所示,A为轨迹最高点,B为轨迹与水平x轴交点,假设物体到B点时速度为v B,v0与x轴夹角为α,v B与x轴夹角为β,已知OA水平距离x1小于AB水平距离x2,则()A.物体在B点的速度v B大于v0B.物体从O到A时间大于从A到B时间C.物体在O点所受合力方向指向第四象限D.α可能等于β[思路点拨]将物体运动分解为水平方向和竖直方向上都为匀变速运动的分运动,然后根据A为最高点,O、B在x轴上得到上升、下降运动时间相同,进而得到竖直速度变化关系;再根据水平位移得到加速度方向,进而得到两点的速度大小及方向的关系,亦可由加速度方向得到合外力方向。

[解析]从图中可知物体在竖直方向上做竖直上抛运动,在水平方向上做初速度不为零的匀加速直线运动,故到B点合外力做正功,物体在B点的速度v B大于v0,A正确;由于合运动和分运动具有等时性,根据竖直上抛运动的对称性可知物体从O到A时间等于从A 到B时间,B错误;物体受到竖直向下的重力,水平向右的恒力,故合力在O点指向第四象限,C正确;只有在只受重力作用下,α=β,由于水平方向上合力不为零,故两者不可能相等,D错误。

[答案]AC[集训冲关]1.[多选](2018·常州检测)如图所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点)。

将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α。

则红蜡块R的()A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D.tan α与时间t成正比解析:选BD 由题意可知,y 轴方向,y =v 0t ;而x 轴方向,x =12at 2,联立可得:x =a 2v 02y 2,故A 错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 02+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;设合速度的方向与y 轴夹角为α,则有:tan α=at v 0=a v 0t ,故D 正确。

2.(2018·衡阳联考)如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE 匀速运动。

现从t =0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t 1时刻,乘客看到雨滴从B 处离开车窗,乙种状态启动后t 2时刻,乘客看到雨滴从F 处离开车窗,F 为AB 的中点。

则t 1∶t 2为( )A .2∶1B .1∶ 2C .1∶ 3D .1∶(2-1)解析:选A 雨滴在竖直方向的分运动为匀速直线运动,其速度大小与水平方向的运动无关,故t 1∶t 2=AB v ∶AF v=2∶1,选项A 正确。

突破点(三) 小船渡河问题1.小船渡河问题的分析思路2.小船渡河的两类问题、三种情景[典例] (2018·镇江质检)小船匀速横渡一条河流,当船头垂直对岸方向航行时,在出发后10 min 到达对岸下游120 m 处;若船头保持与河岸成α角向上游航行,出发后12.5 min 到达正对岸。

求:(1)水流的速度;(2)小船在静水中的速度、河的宽度以及船头与河岸间的夹角α。

[解析] (1)船头垂直对岸方向航行时,如图甲所示。

由x =v 2t 1得v 2=x t 1=120600 m /s =0.2 m/s 。

(2)船头保持与河岸成α角航行时,如图乙所示。

由图甲可得d =v 1t 1v 2=v 1cos αd =v 1t 2sin α联立解得α=53°,v 1≈0.33 m/s ,d =200 m 。

[答案] (1)0.2 m /s (2)0.33 m/s 200 m 53°[易错提醒](1)船的航行方向即船头指向,是分运动;船的运动方向是船的实际运动方向,是合运动,一般情况下与船头指向不一致。

(2)渡河时间只与船垂直于河岸方向的分速度有关,与水流速度无关。

(3)船沿河岸方向的速度为船在静水中的速度沿岸方向的分速度与水流速度的合速度,而船头垂直于河岸方向时,船沿河岸方向的速度等于水流速度。

[集训冲关]1.[多选](2018·淮安模拟)小船横渡一条两岸平行的河流,船在静水中的速度大小不变,船头始终垂直指向河的对岸,水流速度方向保持与河岸平行,若小船的运动轨迹如图所示,则()A.越接近河岸水流速度越大B.越接近河岸水流速度越小C.小船渡河的时间会受水流速度变化的影响D.小船渡河的时间不会受水流速度变化的影响解析:选BD从轨迹曲线的弯曲形状上可以知道,小船先具有向下游的加速度,小船后具有向上游的加速度,故加速度是变化的,由于水流是先加速后减速,即越接近河岸水流速度越小,故A错误,B正确。

由于船身方向垂直于河岸,无论水流速度是否变化,这种渡河方式耗时最短,即船渡河的时间不会受水流速度变化的影响,选项C错误,D正确。

2.(2018·如东、丰县联考)一只小船渡河,运动轨迹如图所示。

水流速度各处相同且恒定不变,方向平行于岸边;小船相对于静水分别做匀加速、匀减速、匀速直线运动,船相对于静水的初速度大小均相同、方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定() A.船沿AD轨迹运动时,船相对于静水做匀加速直线运动B.船沿三条不同路径渡河的时间相同C.船沿AB轨迹渡河所用的时间最短D.船沿AC轨迹到达对岸前瞬间的速度最大解析:选D当沿AD轨迹运动时,则加速度方向与船在静水中的速度方向相反,因此船相对于水做匀减速直线运动,故A错误;船相对于水的初速度大小均相同,方向垂直于岸边,因运动的性质不同,则渡河时间也不同,故B错误;沿AB轨迹,做匀速直线运动,则渡河所用的时间大于沿AC轨迹运动渡河时间,故C错误;沿AC轨迹,垂直河岸方向船是做匀加速运动,则船到达对岸的速度最大,故D正确。

3.(2018·徐州三中月考)某物理兴趣小组的同学在研究运动的合成和分解时,驾驶一艘快艇进行了实地演练。

如图所示,在宽度一定的河中的O点固定一目标靶,经测量该目标靶距离两岸的最近距离分别为MO=15 m、NO=12 m,水流的速度平行河岸向右,且速度大小为v1=8 m/s,快艇在静水中的速度大小为v2=10 m/s。

现要求快艇从图示中的下方河岸出发完成以下两个过程:第一个过程以最短的时间运动到目标靶;第二个过程由目标靶以最小的位移运动到图示中的上方河岸。

相关文档
最新文档