带电流截止负反馈的转速单闭环直流调速系统的设计与仿真
单闭环直流调速系统的设计与仿真实验报告
比例积分控制的单闭环直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 仿真软件。
2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。
二、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析三、实验要求建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。
四、实验原理图4-1 带转速反馈的闭环直流调速系统原理图调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。
转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。
在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。
当t=0时突加输入U in时,由于比例部分的作用,输出量立即响应,突跳到U ex(t)=K P U in,实现了快速响应;随后U ex(t)按积分规律增长,U ex(t)=K P U in+ (t/τ)U in。
在t=t1时,输入突降为0,U in=0,U ex(t)=(t1/τ)U in,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。
五、实验各环节的参数及K P和1/τ的参数的确定各环节的参数:直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电动机电动势系数C e= min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s=。
电枢回路总电阻R=Ω,电枢回路电磁时间常数T l=电力拖动系统机电时间常数T m=。
转速反馈系数α= min/r。
对应额定转速时的给定电压U n∗=10V。
稳态性能指标D=20,s 5% 。
K P和1/τ的参数的确定:PI调节器的传递函数为W PI(s)=K Pτs+1τs=K Pτ1s+1τ1s其中,τ1=K Pτ。
单闭环直流调速系统的设计与仿真实验报告精修订
单闭环直流调速系统的设计与仿真实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]比例积分控制的单闭环直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 仿真软件。
2.通过改变比例系数K K 以及积分时间常数τ的值来研究K K 和τ对比例积分控制的直流调速系统的影响。
二、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析三、实验要求建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。
四、实验原理图4-1 带转速反馈的闭环直流调速系统原理图调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。
转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。
在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。
当t=0时突加输入K in 时,由于比例部分的作用,输出量立即响应,突跳到K ex (K )=K K K in ,实现了快速响应;随后K ex (K )按积分规律增长,K ex (K )=K K K in +(K /τ)K in 。
在K =K 1时,输入突降为0,K in =0,K ex (K )=(K 1/τ)K in ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。
五、实验各环节的参数及K K和1/τ的参数的确定各环节的参数:直流电动机:额定电压K N=220V,额定电流K dN=55A,额定转速K N=1000r/min,电动机电动势系数K e= min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数K s=。
电枢回路总电阻R=Ω,电枢回路电磁时间常数K l=电力拖动系统机电时间常数K m=。
带电流截止负反馈的转速单闭环可逆调速系统设计心得
带电流截止负反馈的转速单闭环可逆调速系统设计心得在设计带有电流截止负反馈的转速单闭环可逆调速系统时,我获得了一些有价值的心得。
这种系统通常用于电机控制,通过闭环反馈来实现对电机转速的精确控制。
首先,设计一个合适的电流截止负反馈环路非常重要。
电流截止是一种常用的控制策略,通过将电流与设定值进行比较,然后根据比较结果调整控制信号来实现对转速的控制。
在设计负反馈环路时,需要注意选择合适的比例和积分增益来实现稳定的控制。
其次,选择合适的转速控制策略也是至关重要的。
常见的转速控制策略包括PID 控制、模糊控制和神经网络控制等。
根据实际需求和系统特点,选择最适合的控制策略能够提高系统的控制性能和稳定性。
此外,设计合适的传感器和测量电路也是设计可逆调速系统的重要一环。
转速传感器的准确性对于精确控制转速至关重要。
在选择传感器时,需要考虑其测量范围、精度和响应速度等因素。
最后,合理设计控制回路,并对系统进行充分的仿真和实验。
通过仿真和实验可以验证设计的合理性和系统的性能。
在仿真和实验中,可以对系统进行各种工况的测试,以确保系统在各种条件下都能稳定工作。
总结起来,设计带有电流截止负反馈的转速单闭环可逆调速系统需要考虑多个因素,包括负反馈环路设计、转速控制策略选择、传感器选择和系统仿真与实验。
通过综合考虑这些因素,可以设计出高性能和稳定的转速控制系统。
带电流截止负反馈的转速单闭环直流调速系统
实验八带电流截止负反馈的转速单闭环直流调速系统一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试方法及电流截止负反馈的整定。
(3)通过实验,加深理解负反馈原理及转速负反馈电流截止负反馈的在调速系统中的作用。
二、实验所需挂件及附件三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U Ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U Ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。
电机的最高转速也由电流调节器的输出限幅所决定。
同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。
当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。
单闭环电流截止转速负反馈调速系统的建模与仿真(Un=10)
课程设计说明书
一、设计题目:
单闭环电流截止转速负反馈调速系统的建模与仿真
二、已知条件及控制对象的基本参数:
已知直流电动机额定参数为U nom=220V , l nom=136A,n n°m =1460r/min,4极,
R a=0.21Q, GD2=22.5Nm2。
励磁电压U f=220V,励磁电流I f=1.5A。
采用三相桥式整流电路,整流器内阻R rec=1•忑。
平波电抗器L p=200mH。
U n=10V。
三、设计要求
(1)分析系统结构、原理
(2)电流截止环节设计。
(3)设计反馈系数
(4)利用matlab/simulink绘制系统的仿真模型并对模块参数进行设置
(5 )对该调速系统进行仿真,并观察电动机在全压启动和启动后加额定负载时电动机的转
速、转矩和电流的变化情况。
四、参考文献
1. 王兆安,等•电•力电子技术[M〕.北京:机械工业出版社,2000.
2. 张广溢,等.电机学[M]。
重庆:重庆大学出版社,2002.
3. 王军.自动控制原理[M]。
重庆:重庆大学出版社,2008.
4. 周渊深.交直流调速系统与Flat 1 ab 仿真[M].俨比京:中国电力出版社,2004.
5. 陈伯时,电力拖动自动控制系统(第2版)[M].北京:机械工业出版社.2005
6. 陈伯时.电力拖动自动控制系统一一运动控制系统(第3版)机械工业出版社
1。
带电流截止负反馈的转速单闭环直流调速系统设计与仿真运动控制实验报告
带电流截止负反馈的转速单闭环直流调速系统设计与仿真 一、设计要求系统稳定并无静差 二、给定参数17,220,3000/min N N N P kw U V n r ===,I N =87.3A ,电枢回路电阻0.087a R =Ω,电感0.0032a L H =,励磁回路电阻181.5Ω,电动机的转动惯量20.76.J Kg m =三、闭环直流调速系统稳态参数的计算 1)额定负载时的稳态速降应为:m i n/12.6min /)02.01(1002.03000)1(r r s D s n n N cl =-⨯⨯≤-=∆2)闭环系统应有的开环放大系数:计算电动机的电动势系数: r V r V n R I U C N a N N e min/071.0min/3000087.03.87220⋅=⋅⨯-=-=闭环系统额定速降为:min /97.106min /071.0087.03.87r r C R I n e N op =⨯==∆闭环系统的开环放大系数为:5.16112.697.1061=-≥-∆∆=clop n n K003.0/max max n ==n U α3)计算运算放大器的放大系数和参数 运算放大器放大系数K p 为:5.16/e p ≥=s K KC K α电枢回路的总电感为0.0032H电磁时间常数为037.0/l ==R L T 27/1l ==τK4)电流截止负反馈 四加电网扰动(第8s电压220→240)负载扰动给定值扰动五、将PI调节器参数改变1.电网扰动(第8s电压220→240)2.负载扰动3.给定值扰动转速、电流双闭环直流调速系统设计与仿真一、设计要求系统稳定并无静差 二、给定参数17,220,3000/min N N N P kw U V n r ===,I N =87.3A ,电枢回路电阻0.087a R =Ω,电感0.0032a L H =,励磁回路电阻181.5Ω,电动机的转动惯量20.76.J Kg m =三、电流调节器ACR 参数计算允许电流过载倍数λ=2;设调节器输入输出电压im nm **U U ==10V ,电力电子开关频率为f=l kHz .首先计算电流反馈系数β和转速反馈系数α:06.0 I n im *==ββλU N U n nm *α= α=0.003s T 001.0s = ,电流环小时间常数为s T T T oi 002.0s i =+=∑电流调节器超前时间常数为s T K l i 015.0/1i ===τ 而对电流环开环增益局l K =250/5.0=∑i T ,于是ACR 的比例系数为:94.4/i l i ==s K R K K βτ 四、转速调节器ASR 参数计算 选中频段宽度h=5。
带电流截止负反馈地转速直流调速matlab仿真
带电流截止负反馈转速单闭环直流调速系统建模与仿真2015年4月目录一、设计参数 (1)二、设计背景 (1)2.1问题的提出 (1)2.2解决办法 (1)三、带电流截止负反馈闭环直流调速系统 (2)3.1总原理图 (2)3.2电流截止反馈环节 (2)3.3带电流截止负反馈闭环直流调速系统结构框图和静特性 (3)四、参数设计 (5)4.1基本参数的计算 (5)4.2判别系统稳定性 (6)4.3PI调节器的设计 (7)4.4取样电阻的选择 (10)五、Matlab建模与仿真 (10)5.1带P I调节器的闭环直流调速系统 (10)5.2加入电流截止负反馈 (11)六、波形分析及结论 (16)6.1没有电流截止负反馈 (16)6.2加上电流截止负反馈 (16)6.3结论 (16)一、设计参数电动机:额定数据为3kW P N =,220V U N =,17.5A I N =,1500r/min n N =,电枢电阻Ω=1.2R a ,22m 3.53N GD ⋅=;晶闸管触发整流装置:三相桥式可控整流电路,整流变压器Y/Y 联结,二次线电压230V U 2l =,二次线电压电压放大系数44K s =;V-M 系统电枢回路总电阻2.8Ω;要求:生产机械要求调速范围10D =,静差率2%S ≤,21A I 2.1N ==dcr I ,A I I N dbl 3177.1==,10V U *n =二、设计背景2.1问题的提出众所周知,直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的电力电子器件来说,更是不能允许的。
采用转速负反馈的闭环调速系统突然加上给定电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零,相当于偏差电压,差不多是其稳态工作值的 1+K 倍。
这时,由于放大器和变换器的惯性都很小,电枢电压一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。
带电流截止负反馈的转速直流调速matlab仿真
带电流截止负反馈转速单闭环直流调速系统建模与仿真2015年4月目录一、设计参数 (1)二、设计背景 (1)2.1问题的提出 (1)2.2解决办法 (1)三、带电流截止负反馈闭环直流调速系统 (2)3.1总原理图 (2)3.2电流截止反馈环节 (2)3.3带电流截止负反馈闭环直流调速系统结构框图和静特性 (3)四、参数设计 (5)4.1基本参数的计算 (5)4.2判别系统稳定性 (6)4.3PI调节器的设计 (7)4.4取样电阻的选择 (10)五、Matlab建模与仿真 (10)5.1带P I调节器的闭环直流调速系统 (10)5.2加入电流截止负反馈 (11)六、波形分析及结论 (16)6.1没有电流截止负反馈 (16)6.2加上电流截止负反馈 (16)6.3结论 (16)一、设计参数电动机:额定数据为3kW P N =,220V U N =,17.5A I N =,1500r/min n N =,电枢电阻Ω=1.2R a ,22m 3.53N GD ⋅=;晶闸管触发整流装置:三相桥式可控整流电路,整流变压器Y/Y 联结,二次线电压230V U 2l =,二次线电压电压放大系数44K s =;V-M 系统电枢回路总电阻2.8Ω;要求:生产机械要求调速范围10D =,静差率2%S ≤,21A I 2.1N ==dcr I ,A I I N dbl 3177.1==,10VU *n =二、设计背景2.1问题的提出众所周知,直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的电力电子器件来说,更是不能允许的。
采用转速负反馈的闭环调速系统突然加上给定电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零,相当于偏差电压,差不多是其稳态工作值的1+K 倍。
这时,由于放大器和变换器的惯性都很小,电枢电压一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。
单闭环直流调速系统的设计与仿真实验报告4.doc
单闭环直流调速系统的设计与仿真实验报告4比例积分控制的单闭环直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 仿真软件。
2.通过改变比例系数以及积分时间常数τ的值来研究和τ对比例积分控制的直流调速系统的影响。
二、实验内容1.调节器的工程设计2.仿真模型建立3.系统仿真分析三、实验要求建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。
四、实验原理图4-1 带转速反馈的闭环直流调速系统原理图调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。
转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。
在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。
当t=0时突加输入时,由于比例部分的作用,输出量立即响应,突跳到,实现了快速响应;随后按积分规律增长,。
在时,输入突降为0,=0,= ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。
五、实验各环节的参数及和1/τ的参数的确定5.1各环节的参数:直流电动机:额定电压=220V,额定电流=55A,额定转速=1000r/min,电动机电动势系数=0.192V •min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数=44,滞后时间常数=0.00167s。
电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数=0.00167s 电力拖动系统机电时间常数=0.075s。
转速反馈系数=0.01V •min/r。
对应额定转速时的给定电压=10V。
稳态性能指标D=20,s 5% 。
5.2 和1/τ的参数的确定:PI调节器的传递函数为其中,。
(1)确定时间常数1)整流装置滞后时间常数;2)转速滤波时间常数;3)转速环小时间常数;(2)计算参数按跟随和抗扰性都较好的原则,取h=5,则调节器超前时间常数,即积分时间常数:,则由此可得开环增益:于是放大器比例放大系数:六、仿真模型的建立如图6-1为比例积分控制的无静差直流调速系统的仿真框图,根据仿真框图,利用MATLAB下的SMULINK软件进行系统仿真,建立的仿真模型如图6-2所示。
带电流截止负反馈的转速直流调速matlab仿真
带电流截止负反馈转速单闭环直流调速系统建模与仿真2015年4月目录一、设计参数 (1)二、设计背景 (1)2.1问题的提出 (1)2.2解决办法 (1)三、带电流截止负反馈闭环直流调速系统 (2)3.1总原理图 (2)3.2电流截止反馈环节 (2)3.3带电流截止负反馈闭环直流调速系统结构框图和静特性 (3)四、参数设计 (5)4.1基本参数的计算 (5)4.2判别系统稳定性 (6)4.3PI调节器的设计 (7)4.4取样电阻的选择 (10)五、Matlab建模与仿真 (10)5.1带P I调节器的闭环直流调速系统 (10)5.2加入电流截止负反馈 (11)六、波形分析及结论 (16)6.1没有电流截止负反馈 (16)6.2加上电流截止负反馈 (16)6.3结论 (16)一、设计参数电动机:额定数据为3kW P N =,220V U N =,17.5A I N =,1500r/min n N =,电枢电阻Ω=1.2R a ,22m 3.53N GD ⋅=;晶闸管触发整流装置:三相桥式可控整流电路,整流变压器Y/Y 联结,二次线电压230V U 2l =,二次线电压电压放大系数44K s =;V-M 系统电枢回路总电阻2.8Ω;要求:生产机械要求调速范围10D =,静差率2%S ≤,21A I 2.1N ==dcr I ,A I I N dbl 3177.1==,10V U *n =二、设计背景2.1问题的提出众所周知,直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的电力电子器件来说,更是不能允许的。
采用转速负反馈的闭环调速系统突然加上给定电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零,相当于偏差电压,差不多是其稳态工作值的 1+K 倍。
这时,由于放大器和变换器的惯性都很小,电枢电压一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。
带电流截止负反馈转速单闭环直流调速系统建模与仿真
目录摘要 (2)1.闭环调速控制系统构成 (3)1.1 主电路 (3)1.2 原理框图 (4)2带电流截止负反馈的转速负反馈的分析 (4)2.1电流截止负反馈的提出 (4)2.2 电流截止负反馈环节 (5)2.3 带电流截止负反馈调速系统结构框图和静特性 (6)3 参数设计 (8)3.1整体分析 (8)3.2稳定性参数计算和判断 (9)3.3 转速调节器校正 (10)3.3.1 PI调节器结构 (10)3.3.2 调节器的选择 (11)3.4 电流截止负反馈参数设计 (14)4. 电流MATLAB仿真 (15)4.1 将设计的参数进行仿真 (15)4.2 调节器参数调整 (16)5.电气总图 (17)6.结束语 (18)参考文献 (18)摘要为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。
而在对调速指标要求不高的场合,采用单闭环即可。
闭环系统较之开环系统能自动侦测把输出信号的一部分拉回到输入端,与输入信号相比较,其差值作为实际的输入信号;能自动调节输入量,能提高系统稳定性。
在对调速系统性能有较高要求的领域常利用直流电动机,但直流电动机开环系统稳定性不能够满足要求,可利用转速单闭环提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统静差,可采用积分调节器代替比例调节器。
关键词:直流调速单闭环稳态精度比例调节带电流截止负反馈转速单闭环直流调速系统建模与仿真1.闭环调速控制系统构成1.1 主电路本控制系统采用含电流截止负反馈的转速负反馈主电路结构,其原理图如图1所示。
+--+图1 含电流截止负反馈的转速负反馈原理图图中的电动机的电枢回路由晶闸管组成的三相桥式整流电路供电,通过与电动机同轴刚性连接的测速发电机TG 检测电动机的转速,并经转速反馈环节分压后取出合适的转速反馈信号n U ,此电压与转速给定信号*n U 经速度调节器ASR 综合调节,ASR 的输出作为移相触发器的控制电压c U ,由此组成转速负反馈单闭环直流调速系统。
带电流截止负反馈环节的单闭环直流调速系统设计
带电流截止负反馈环节的单闭环直流调速系统设计1设计目的(1)了解带电流截止负反馈的转速单闭环直流调速系统的工作原理,熟悉组成环节及每个环节的作用。
(2)应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
(3)应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
2设计参数采用晶闸管三相桥式全控整流电路供电,基本数据如下:直流电动机UN=220V, IN=65A,nN =1000r/min,电枢电阻Ra=0.15Ω,电枢电感La=0.0002H,励磁电压Uf=220V,励磁电流If=1.5A,电枢绕组和励磁绕组互感Laf=0.82H,供电电源电压U2=130V;晶闸管装置Ts=0.00167s,放大系数Ks=40;电枢回路总电阻R=0.5Ω;电枢回路总电感L=15mH;电动机轴上的总飞轮惯量GD2=12.5N·m2;转速调节器最大给定值*nmU=10V;3 设计任务(1)分析电流截止负反馈环节的工作原理,画出系统稳态结构图;(2)在MATLAB中建立带电流截止负反馈环节的单闭环直流调速系统;(3调节控制器参数,确定最佳调节参数。
将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。
比较带电流截止负反馈环节和不带电流截止负反馈环节启动过程的差异。
4设计要求1.稳态指标:转速无静差;2.动态指标:启动电流的最大值150 A。
空载启动到额定转速的转速超调量σn≤15%。
4 设计基本内容4.1问题的提出在转速反馈控制直流调速系统中存在一个问题,在启动、制动过程和堵转状态时,电枢电流会过大。
为了解决反馈闭环调速系统的起动和堵转时电流过大的问题,系统中必须有自动限制电枢电流的环节。
引入电流负反馈,可以使它不超过允许值。
但这种作用只应在起动和堵转时存在,在正常的稳速运行时又得取消,让电流随着负载的增减而变化。
带电流截止负反馈的转速单闭环直流调速系统的设计和仿真
带电流截止负反馈的转速单闭环直流调速系统的设计和仿真1.设计原理带电流截止负反馈的转速单闭环直流调速系统由速度反馈环和电流反馈环组成。
其基本原理是,通过测量电机驱动器的输出转速,并与给定的转速进行比较,从而产生误差信号。
误差信号经过比例、积分和微分三个环节进行处理后,作为电机驱动器的控制量,用于调节电机的输入电压。
具体的设计步骤如下:(1)确定电机的调速要求和性能指标,包括稳态误差、调速范围、动态响应时间等。
(2)根据电机的参数和特性曲线,确定理想的速度控制系统传递函数。
(3)选择合适的调节器类型和参数,并确定反馈信号的获取方式。
(4)设计速度环和电流环的控制回路,包括比例、积分和微分环节的参数设置。
(5)进行系统稳态和动态性能的仿真和分析。
2.仿真过程在进行仿真前,需要先确定电机的参数和特性曲线,并建立相应的数学模型。
然后,在Simulink等软件中搭建整个调速系统的模型。
具体步骤如下:(1)根据电机的特性曲线确定电机的传递函数模型,例如:Gs=1/(Js+B)其中,Gs为电机的机械转速传递函数,J为转动惯量,B为阻尼系数。
(2)设计速度环的控制回路,包括比例环节、积分环节和微分环节。
通常采用PID控制器,其传递函数为:Gc=Kp+Ki/s+Kd*s其中,Kp、Ki和Kd分别为比例、积分和微分环节的增益。
(3)设计电流环的控制回路,采用电流截止负反馈的方式。
电流环的控制器传递函数为:Gc=Kc*(1+s*Rf)其中,Kc为增益,Rf为电流截止反馈的滤波器。
(4)将速度环和电流环相连接,构成整个闭环控制系统。
(5)进行系统的仿真,观察系统的稳态和动态响应,并根据需要进行参数调整和优化。
3.仿真结果和分析根据以上步骤进行仿真后,可以得到系统的稳态和动态响应曲线。
通过观察和分析这些曲线,可以评估系统的性能和效果。
首先,可以通过误差曲线来评估系统的稳态性能,即在给定转速下是否存在稳态误差。
如果误差较大,需要调整PID控制器的参数来改善系统的稳定性。
带电流截止负反馈的转速闭环的数字式直流调速系统的仿真与设计
带电流截止负反馈的转速闭环的数字式直流调速系统的仿真与设计一、设计目的应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
二、设计参数1、直流电动机各参数如下:输出功率为:7.5Kw,电枢额定电压220V电枢额定电流 36A,额定励磁电流2A额定励磁电压110V,功率因数0.85电枢电阻0.2欧姆,电枢回路电感100mH电机机电时间常数2S,电枢允许过载系数1.5额定转速1430rpm2、环境条件:电网额定电压:380/220V,电网电压波动:10%环境温度:-40~+40摄氏度,环境湿度:10~90%3、控制系统性能指标:电流超调量小于等于5%空载起动到额定转速时的转速超调量小于等于30%调速范围D=20,静差率小于等于0.03.三、反馈控制闭环直流调速系统的工作原理1、限流保护—电流截止负反馈为了解决反馈闭环调速系统的起动和堵转时电流过大问题,系统中必须有自动限制电枢电流的环节。
根据反馈控制原理,要维持哪一个物理量基本不变,就应该引入那个物理量的负反馈。
那么引入电流负反馈,应该能够保持电流基本不变,使它不超过允许值。
但是这种作用只应在起动和堵转时存在,在正常运行时又得取消,让电流自由地随着负载增减,这样的当电流大到一定程度时才出现的电流负反馈叫做电流截止负反馈,简称截流反馈。
为了实现截流反馈,须在系统中引入电流截止负反馈环节。
如图1所示,电流反馈信号取自串人电动机电枢回路的小阻值电阻R S,IdR S 正比于电流。
设Idcr为临界的截止电流,当电流大于Idcr时将电流负反馈信号加到放大器的输入端,当电流小于Idcr时将电流反馈切断。
带电流截止负反馈的转速单闭环直流调速系统的设计与仿真
专业课程实践训练报告本次实践训练的要求是“带电流截止负反馈的转速闭环直流调速系统的设计与仿真”。
(一)设计参数1)电动机:额定数据为10kv,220v,52A,1460r/min,电枢电阻RS=0.5Ω,飞轮力矩GD2=10N.m2。
2)晶闸管装置:三相桥式可控整流电路,整流变压器Y/Y联结,二次线电压E2t=230v,触发整流环节的放大系数Ks=40。
3)V-M系统主电路总电阻R=1Ω。
4)测速发电机:永磁式,ZYS231/110型;额定数据为23.1w,110v,0.18A,1800r/min。
5)系统静动态指标:稳态无静差,调速指标D=10,s≤56)电流截止负反馈环节:要求加入合适的电流截止负反馈环节,使电动机的最大电流限制(1.5-2)I N。
(二)设计要求1)闭环系统稳定。
2)在给定和扰动信号作用下,系统稳态无静差。
(三)设计任务1) 根据题目要求,分析论证确定系统的组成,画出系统组成的原理框图;2) 对转速单闭环直流调速系统进行稳态分析及参数设计计算;3) 绘制原系统的动态结构图;4) 动态稳定性判断,校正,选择转速调节器并进行设计;5) 绘制校正后系统的动态结构图;6) 应用MATLAB软件对转速单闭环直流调速系统进行仿真,验证所设计的调节器是否符合设计要求;7) 加入电流截止负反馈环节;8) 应用MATLAB软件对带电流截至负反馈的转速单闭环直流调速系统进行仿真,完善系统。
(四) 原理1) 闭环调速系统组成原理与电动机同轴安装一个测速发电机,从而产生与转速成正比的负反馈电压U n,与给定电压U n*相比较后,得到转速偏差电压,经过放大器A,产生电力电子变换器UPE所需的控制电压U c,用以控制电动机的转速。
PI 调节器作用是使系统无静差电流截止负反馈的作用是在电动机发生超载或堵转的时候电流截止负反馈和给定信号相比较抵消。
使电动机处于停止运行状态,以保护电机。
(五)闭环直流调速系统稳态参数的计算 1)额定负载时的稳态速降应为: 7.68r/minmin /68.7min /)05.01(1005.01460)1(r r s D s n n N cl =-⨯⨯≤-=∆ 2)闭环系统应有的开环放大系数:计算电动机的电动势系数:0.1329V.min/rr V r V n R I U C N a N N e min/1329.0min/14605.052220⋅=⋅⨯-=-=闭环系统额定速降为:391.27r/minmin /27.391min /1329.0152r r C R I n e N op =⨯==∆ 闭环系统的开环放大系数为:49.99.49168.727.3911=-≥-∆∆=clop n n K 3)计算转速负反馈环节的反馈系数和参数测速发电机的电动势:0.0611V.min/rr V min/0611.01800r/min110VC etg ⋅==转速反馈电压:16.05 V (α=α2C etg α2取0.18)转速反馈系数为:0.010998 V.min/r4) 计算运算放大器的放大系数和参数 运算放大器放大系数K p 为: 12.27运算放大器型号:R 0=40K Ω,R 1=490.8 K Ω 5)判断系统的稳定性计算:电枢回路的总电感为17.70mHmin2693.0d I U L = V V U U l 8.1323230322===系统中各环节的时间常数: 电磁时间常数T l:0.018S机电时间常数T m :0.158Ss C C R GD T me m 158.01329.0301329.03751103752=⨯⨯⨯⨯==π晶闸管装置的滞后时间常数T s :0.00167S63.10300167.0017698.000167.0)00167.0017698.0(158.0)(22=⨯+⨯⨯=++s l s s l m T T T T T T K计算出开环放大系数应满足的稳定条件为K ≤103.48,又因为 K=40.6,所以系统稳定。
带电流截止负反馈转速单闭环直流调速系统设计..
目录摘要 (2)1主电路的设计 (2)1.1变压器参数的设计与计算 (2)1.2平波电抗器参数的设计与计算 (3)1.3晶闸管元件参数的计算 (3)1.4保护电路的设计 (4)2反馈调速及控制系统 (4)2.1闭环调速控制系统 (4)2.2带电流截止负反馈闭环控制系统 (5)2.3调节器设定 (8)2.4控制及驱动电路设计 (9)3参数计算 (10)3.1基本参数计算 (10)3.2电流截止负反馈环节参数计算与设计 (12)3.3调节器的参数设计与计算 (12)3.4调节器串联校正设计 (15)4总电气图 (16)5心得体会 (18)参考资料 (18)带电流截止负反馈转速单闭环直流调速系统设计摘要直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,并且直流调速系 统在理论和实践上都比较成熟,是研究其它调速系统的基础。
在直流电动机中,带电流 截止负反馈直流调速系统应用也最为广泛,其广泛应用于轧钢机、冶金、印刷、金属切 割机床等很多领域的自动控制。
本次课设就带电流截止负反馈转速单闭环直流调速系统 进行参数的设计。
1主电路的设计1.1变压器参数的设计与计算变压器副边电压采用如下公式进行计算:U d max nU TAP COS 。
mh -CU11=1.05 X 287X 0.861/3.45=75A 12=0.861 X 287=247A已知U d max 上=1I2N=2207,取 U T =1VC =0.5 则 U 2n = 2 A =2.34220 2 1-=0.9 -::min = 10 U sh = 0.052.34 0.9(0.9848 -0.5 0.05 1)_110V因此变压器的变比近似为:K 貝=型=3.45U 2 110一次侧和二次侧电流 I 1和丨2的计算变压器容量的计算S=mUI i =3X 380X 75=85.5kVA S=mUI 2=3X 110X 247=81.5kVAS=0.5 X (S i +S)=0.5 X (85.5+81.5)=83.5kVA因此整流变压器的参数为:变比 K=3.45,容量S=83.5kVA1.2平波电抗器参数的设计与计算U d =2.34U 2COS :U220U d =U=220V,取:=0°U2=d 220=94.0171V2.34 cos0 2.34I dmin =(5%-10%)l N 这里取 10% 则1.3晶闸管元件参数的计算晶闸管的额定电压通常选取断态重复峰值电压 U D R M 和反向重复峰值电压U.RM 中较小 的标值作为该器件的额定电压。
第二节 带电流截止负反馈的转速单闭环直流调速系统实训
第二节带电流截止负反馈的转速单闭环直流调速系统实训一、实训目的(1) 了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2) 掌握单闭环直流调速系统的调试方法及电流截止负反馈的整定。
(3) 加深理解转速负反馈在系统中的作用。
(4) 能对一些常见故障进行分析与处理。
二、实训所需挂件及附件三、实训线路及原理转速单闭环直流调速系统是将反映转速变化的电压信号作为反馈信号,经“速度变换”后接到“调节器Ⅱ”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U Ct,用作控制整流桥的“触发电路”,触发脉冲经功率放大后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由“调节器Ⅱ”的输出限幅所决定。
在本系统中“调节器Ⅱ”可采用PI(比例积分)调节器或者P(比例)调节器,当采用P(比例)调节器时属于有静差调速系统,增加“调节器Ⅱ”的比例放大系数即可提高系统的静特性硬度。
为了防止在启动和运行过程过程中出现过大的电流冲击,系统引入了电流截止负反馈。
由电流变换器FBC取出与电流成正比的电压信号(FBC+FA的“3”端),当电枢电流超过一定值时,将“调节器Ⅱ”的“5”端稳压管击穿,送出电流反馈信号进入“调节器Ⅱ”进行综合调节,以限制电流不超过其允许的最大值。
图4-1 带电流截止负反馈的转速单闭环直流调速系统四、实训内容(1) 三相晶闸管触发电路的调试。
(2) 测定和比较直流电动机开环机械特性和转速单闭环直流调速系统的静特性。
(3) 整定电流截止负反馈的转折点,并检验电流负反馈效应。
用慢扫描示波器观察和记录系统加入电流截止负反馈后,突加给定启动时电流Id和转速n的波形。
(4) 带电流截止负反馈的转速单闭环直流调速系统的排故训练。
五、实训方法(1) 系统的故障设置与分析请参考第二章相关内容。
(2) PDC-11和PDC-12上的“触发电路”调试①打开PDC01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业课程实践训练报告
本次实践训练的要求是“带电流截止负反馈的转速闭环直流调速系统的设计与仿真”。
(一)设计参数
1)电动机:额定数据为10kv,220v,52A,1460r/min,电枢电阻RS=0.5
Ω,飞轮力矩GD2=10N.m2。
2)晶闸管装置:三相桥式可控整流电路,整流变压器Y/Y联结,
二次线电压E2t=230v,触发整流环节的放大系数Ks=40。
3)V-M系统主电路总电阻R=1Ω。
4)测速发电机:永磁式,ZYS231/110型;额定数据为23.1w,110v,
0.18A,1800r/min。
5)系统静动态指标:稳态无静差,调速指标D=10,s≤5
6)电流截止负反馈环节:要求加入合适的电流截止负反馈环节,使
电动机的最大电流限制(1.5-2)I N。
(二)设计要求
1)闭环系统稳定。
2)在给定和扰动信号作用下,系统稳态无静差。
(三)设计任务
1) 根据题目要求,分析论证确定系统的组成,画出系统组成的原
理框图;
2) 对转速单闭环直流调速系统进行稳态分析及参数设计计算;
3) 绘制原系统的动态结构图;
4) 动态稳定性判断,校正,选择转速调节器并进行设计;
5) 绘制校正后系统的动态结构图;
6) 应用MATLAB软件对转速单闭环直流调速系统进行仿真,验
证所设计的调节器是否符合设计要求;
7) 加入电流截止负反馈环节;
8) 应用MATLAB软件对带电流截至负反馈的转速单闭环直流
调速系统进行仿真,完善系统。
(四) 原理
1) 闭环调速系统组成原理
与电动机同轴安装一个测速发电机,从而产生与转速成正比的负反馈电压U n,与给定电压U n*相比较后,得到转速偏差电压,经过放大器A,产生电力电子变换器UPE所需的控制电压U c,用以控制电动
机的转速。
PI 调节器作用是使系统无静差
电流截止负反馈的作用是在电动机发生超载或堵转的时候电流截止负反馈和给定信号相比较抵消。
使电动机处于停止运行状态,以保护电机。
(五)闭环直流调速系统稳态参数的计算
1)额定负载时的稳态速降应为: 7.68r/min
min /68.7min /)
05.01(1005.01460)1(r r s D s n n N cl =-⨯⨯≤-=∆ 2)闭环系统应有的开环放大系数:
计算电动机的电动势系数:0.1329V .min/r
r V r V n R I U C N a N N e min/1329.0min/1460
5.052220⋅=⋅⨯-=-= 闭环系统额定速降为:391.27r/min
min /27.391min /1329
.0152r r C R I n e N op =⨯==∆ 闭环系统的开环放大系数为:49.9
9.49168
.727.3911=-≥-∆∆=cl op
n n K 3)计算转速负反馈环节的反馈系数和参数
测速发电机的电动势:0.0611V .min/r
r V min/0611.01800r/min
110V C etg ⋅== 转速反馈电压:16.05 V (α=α2C etg α2取0.18)
转速反馈系数为:0.010998 V .min/r
4) 计算运算放大器的放大系数和参数
运算放大器放大系数K p 为: 12.27
运算放大器型号:R 0=40K Ω,R 1=490.8 K Ω
5)判断系统的稳定性计算:
电枢回路的总电感为17.70mH
min
2693.0d I U L = V V U U l 8.1323
230322===
系统中各环节的时间常数:
电磁时间常数T l :0.018S
机电时间常数T m :0.158S
s C C R GD T m e m 158.01329.0301329.0375*******=⨯⨯⨯⨯==π
晶闸管装置的滞后时间常数T s :0.00167S
63.10300167.0017698.000167.0)00167.0017698.0(158.0)(2
2
=⨯+⨯⨯=++s l s s l m T T T T T T K 计算出开环放大系数应满足的稳定条件为K ≤103.48,又因为 K=40.6,所以系统稳定。
6) PI 调节器设计
原始系统的开环传递函数
)
1)(1()(2+++=s T s T T s T K s W m l m s 原始闭环系统的开环传递函数
)
100167.0)(10203.0)(11377.0(50)(+++=s s s s W
参数计算
11126.71377.011-===s s
T ω 12225.490203.011-===
s s T ω 133********.011-===s s
T ω W c2=119.82s -1
L 1=31.5dB
K pi =0.3265
τ=0.4227
PI 调节器的传递函数为 W pi (s)= (0.13799s+1)/ 0.42s
(六) 仿真
1)单闭环直流系统的结构图
观看示波器的波形
2)加入PI调节器后仿真,经调整系数后仿真波形
3)加入电流截止负反馈后仿真波形
4)加入负载后
(七) 总结。