轴设计
机械设计-轴
第十三章 轴 轴设计的基本要求: 1、轴与轴上零件要有准确的相对位置,轴向、 周向定位可靠;
17
2、轴的加工、装配有良好的工艺性; 3、受力合理,轴结构有利于提高轴的强度和刚 度、减少应力集中;
第十三章 轴
18
一、轴上零件的轴向定位和固定
零件轴向定位的方式常取决于轴向力的大小
h h h
1.轴肩和轴环 要求: r<C<h r<R<h h=(0.07~0.1)d b=1.4h
第十三章 轴
34
四、阶梯轴的结构设计实例分析
F
等强度 1、拟定轴上零件装配方案 轴颈:装轴承处
阶梯轴
尺寸= 轴承内径; 直径与轮毂内径相当;
组成 轴头:装轮毂处
轴身:联接轴颈和轴头部分。
第十三章 轴
35
第十三章 轴
36
装配方案的比较:
第十三章 轴
37
例题:指出图中轴结构设计中的不合理之处,并绘 出改进后的结构图。 1.轴两端均未倒角;
3
Fa Ft tg 1960 tg12o 417N
d 118 3 4 / 130 36.78mm
考虑到联轴器的影响以及联轴器孔径系 列标准,取d=38mm
第十三章 轴 3. 齿轮上作用力的计算
50
T 9.55 106 4 / 130 294 103 Nmm
Ft 2T / d 2 29410 / 300 1960N
2.齿轮右侧未作轴向固定; 3.齿轮处键槽太短; 5.左轴承无法拆卸; 6.齿轮与右轴承装卸不便; 7.轴端挡圈未直接压在轴 端轮毂上。
4.键槽应开在同一条直线上;
第十三章 轴 轴系结构改错
38
四处错误
机械工程中的轴的设计与优化
机械工程中的轴的设计与优化在机械工程中,轴是一种常见且重要的零件,它承载着传动力和扭矩,将动力从一个地方传递到另一个地方。
轴的设计与优化对于机械系统的性能和可靠性至关重要。
本文将探讨轴的设计原则、材料选择以及优化方法。
一、轴的设计原则在设计轴时,有几个原则需要遵循。
首先是强度原则,轴必须足够强以承受所施加的载荷。
这可以通过计算所需的最大弯曲应力和剪切应力来确定轴的尺寸和形状。
其次是刚度原则,轴必须具有足够的刚度以保持传动系统的准确性和稳定性。
刚度可以通过增加轴的直径或改变轴的截面形状来提高。
最后是轻量化原则,轴应该尽可能轻量化,以减少系统的惯性负载和能耗。
二、轴的材料选择轴的材料选择是轴设计的重要一环。
常见的轴材料包括钢、铝合金和钛合金。
钢是最常用的轴材料,因为它具有良好的强度、刚度和耐磨性。
铝合金轴适用于重量要求较低的应用,它具有较低的密度和良好的耐腐蚀性。
钛合金轴则具有极高的强度和轻量化特性,但成本较高。
在选择轴材料时,需要考虑载荷、工作环境和成本等因素。
三、轴的优化方法轴的优化方法可以分为几个方面。
首先是几何形状的优化,通过改变轴的截面形状和尺寸,可以提高轴的强度和刚度。
例如,采用变径轴设计可以在轴的不同部位提供不同的强度和刚度。
其次是材料的优化,通过选择合适的材料和热处理工艺,可以提高轴的强度和耐磨性。
例如,采用表面渗碳处理可以增加轴的硬度和耐磨性。
最后是结构的优化,通过改变轴的结构形式,如中空轴、薄壁轴等,可以实现轻量化和刚度的平衡。
除了上述的设计原则和优化方法,还有一些其他的注意事项需要考虑。
例如,轴的表面质量和光洁度对于传动系统的性能和寿命有重要影响。
因此,在加工和装配过程中,需要注意轴的表面处理和润滑。
此外,轴的安装和对中也是轴设计中的重要环节,合理的轴承选择和安装方法可以减少轴和轴承的磨损和故障。
综上所述,轴的设计与优化在机械工程中具有重要意义。
合理的轴设计可以提高机械系统的性能和可靠性,同时满足轻量化和刚度的要求。
轴的结构设计,轴的强度计算,轴的刚度计算
详见 P311 图16.3
16.2 轴的结构设计
轴肩处
r C或R 定位轴肩h 3 ~ 5mm,但 C或R 采用套筒、轴端挡圈、 圆螺母处: l轴 B轮
➢ 轴肩由定位面和内圆角组成
b
D h
d D
h C d
k、k 弯矩和转矩作用的有效 应力集中系数 (见附录表1、2, 配合零件的综合影响系 数见附录表3)
16.3 轴的强度计算
a、 a
a
a弯bb 曲和((扭bb 转WMWM应)力) 幅,
MPa;
b b
m、 m 弯曲和扭转平均应力, MPa;
m 0
m
2
表面状态系数(附录表 4及5);
bmax b
16.2 轴的结构设计
2.轴上零件的周向固定 常用的周向固定方法有键、花键、成形、弹性环、销和过
盈配合等联接。
配合处+键可传递较大T 配合处设置大倒角 装方便(对中性 )
16.3 轴的强度计算
设计思路: (1)类比定结构 必要校核计算 (2)强度计算为依据 逐步结构细化(设计, 节约材料) 轴的强度计算主要由三种方法(据轴受载及对安全要求) (1)按许用切应力计算 (2)许用弯曲应力计算; (3)安全系数校核计算。 16.3.1 按许用切应力计算 1.应用(仅与T有关) (1)传动轴计算(主要T) (2)需初步结构化的转轴(只知T)
现在,又开发了一种可更换式主轴 系统, 具有一 机两用 的功效 ,用户 根据不 同的加 工对象 选择使 用,即 电主轴 和镗杆 可相互 更换使 用。这 种结构 兼顾了 两种结 构的不 足,还 大大降 低了成 本。是 当今卧 式镗铣 床的一 大创举 。电主 轴的优 点在于 高速切 削和快 速进给 ,大大 提高了 机床的 精度和 效率。
轴设计
轴设计主要内容1、轴的结构设计:影响轴结构的因素;轴的台阶化设计;轴的设计步骤。
2、轴的强度与刚度计算:轴上载荷及应力分析;轴的强度计算、刚度计算等。
基本要求1、了解轴的功用、类型、特点及应用。
2、掌握轴的结构设计方法。
3、掌握轴的三种强度计算方法:按扭转强度计算、按弯扭合成强度计算、按疲劳强度进行安全系数校核计算。
重点难点1、轴的结构设计,强度计算。
2、转轴设计程序问题。
3、弯扭合成强度计算中的应力校正系数 。
§7-1 轴概述一、轴的功能和分类轴是组成机器的重要零件之一,其主要功能是支持作回转运动的传动零件(如齿轮、蜗轮等),并传递运动和动力。
1、按受载情况分根据轴的受载情况的不同轴可分为转轴、传动轴和心轴三类。
转轴:既受弯矩又受转矩的轴;传动轴:主要受转矩,不受弯矩或弯矩很小的轴;心轴:只受弯矩而不受转矩的轴;根据轴工作时是否转动,心轴又可分为转动心轴和固定心轴。
转动心轴:工作时轴承受弯矩,且轴转动固定心轴:工作时轴承受弯矩,且轴固定2、按轴线形状分根据轴线形状的不同轴又可分为曲轴、直轴和钢丝软轴。
图7-2 曲轴曲轴:各轴段轴线不在同一直线上,主要用于有往复式运动的机械中,如内燃机中的曲轴(图7-2)。
图7-3 直轴直轴:各轴段轴线为同一直线。
直轴按外形不同又可分为:光轴:形状简单,应力集中少,易加工,但轴上零件不易装配和定位。
常用于心轴和传动轴(图7-3左)。
阶梯轴:特点与光轴相反,常用于转轴(图7-3右)。
图7-4 钢丝软轴钢丝软轴:由多组钢丝分层卷绕而成,具有良好挠性,可将回转运动灵活地传到不开敞的空间位置。
二、轴的材料及选择轴的材料种类很多,选择时应主要考虑如下因素:1、轴的强度、刚度及耐磨性要求;2、轴的热处理方法及机加工工艺性的要求;3、轴的材料来源和经济性等。
轴的常用材料是碳钢和合金钢。
碳钢比合金钢价格低廉,对应力集中的敏感性低,可通过热处理改善其综合性能,加工工艺性好,故应用最广,一般用途的轴,多用含碳量为0.25~0.5%的中碳钢。
轴设计的主要内容和轴的设计步骤
轴设计的主要内容和轴的设计步骤轴设计是机械设计中十分重要的一部分,它直接关系到机械系统的性能和寿命。
轴的设计需要考虑多方面因素,包括载荷、转速、材料强度和刚度等。
在进行轴设计时,一般可以遵循以下步骤:步骤一:确定轴的基本参数在开始设计之前,需要明确轴的功能和使用要求,并确定关键参数,包括轴的类型、长度、直径等。
此外,还要考虑系统的使用条件,如载荷、转速、工作环境等。
步骤二:选择材料材料的选择是轴设计非常重要的一部分。
要选择合适的材料,需要考虑载荷、转速、工作温度等因素。
通常,常用的轴材料有碳钢、合金钢、不锈钢和铝合金等。
步骤三:计算载荷根据轴所承受的载荷,可以进行静力学和强度学的计算。
静力学计算主要包括转矩、弯矩和扭矩等,而强度学计算则包括轴的强度和刚度等。
步骤四:计算尺寸在计算尺寸时,需要根据载荷和材料的强度来确定轴的直径。
直径的选择要满足强度和刚度要求,并考虑到材料的废料和经济性。
步骤五:计算转速转速是轴设计中的重要参数之一。
要保证系统的正常运行,需要根据转速和轴材料的强度来选择合适的直径和材料。
步骤六:进行验算设计完成后,还需进行验算,包括强度验算、刚度验算等。
强度验算主要是对轴的强度进行验证,以确保它能够承受所需的载荷。
而刚度验算主要是对轴的刚度进行验证,以满足系统运动的要求。
步骤七:进行优化根据验算结果,进行必要的优化。
可以通过增加轴的直径、改变材料或者增加支撑点等来改善轴的性能。
步骤八:绘制图纸设计完成后,需要绘制详细的轴图纸。
图纸上应包含轴的主要尺寸、材料、工艺要求等。
步骤九:选择工艺在轴设计完成后,还需要选择合适的工艺进行制造。
常用的轴制造工艺包括铸造、锻造、机械加工等。
轴设计的主要内容包括确定轴的基本参数、选择合适的材料、计算载荷、计算尺寸、计算转速、进行验算、进行优化、绘制图纸以及选择合适的制造工艺。
通过这些步骤,可以设计出满足系统要求的轴,确保机械系统的正常运行。
轴的设计与校核
轴的设计与校核轴是一种常见的机械元件,其功能是将机械能从一个部件传递到另一个部件。
轴承受着多种负载,例如转矩、弯曲和剪切力,因此轴的设计与校核至关重要。
本文将介绍轴的设计与校核的基本概念和步骤。
1. 轴的设计轴的设计应该考虑到其所处的应用环境和负载类型。
在设计轴时需要考虑以下因素:1.1 操作条件轴所处的应用环境会影响其设计。
例如,轴可能暴露在腐蚀、高温或高湿度的环境中,此时需要选择相应的材料进行设计。
仔细分析操作条件是设计安全、可靠轴的第一步。
1.2 构造要素轴的长度、直径、几何形状和连接方式都会影响其设计。
例如,长而细的轴可能需要增加强度以避免扭曲,而大直径的轴可能需要更多的材料才能承受负载。
1.3 负载类型设计轴的最重要的因素是负载类型。
例如,将风机的力转换成排气段中的风压会产生弯曲和扭矩负载。
加强轴的弯曲刚度是应对此类负载的一种解决方案。
1.4 材料轴的材料通常是金属,且通常是钢。
轴的材料应该优先考虑强度和韧性。
强度指轴在负载下不会破裂的能力,而韧性指轴在承受重力时不会断裂的能力。
在选择材料时,还需要考虑轴是否需要抗疲劳。
2. 轴的校核校核是确定轴是否安全承受负荷的计算和实验过程。
当确定轴的设计后,需要进行校核以确保轴能够在操作条件下正常工作。
2.1 轴的应力分析轴的应力分析是校核的第一步。
应力分析确定轴受到的应力类型、大小和分布。
轴所需承受的负载类型将决定考虑什么样的应力(例如弯曲,剪切,轴向拉伸或压缩)。
2.2 轴的强度计算在进行强度计算时,需要考虑轴的几何形状、材料和应力情况。
在轴设计中,我们通常会为轴选择一种合适的材料,然后计算它在应用环境和负载条件下受到的应力。
然后,我们将应力值与轴材料的强度值进行比较,以确定轴是否能满足负载条件并安全操作。
校核轴应该考虑在负载下发生的弯曲和扭矩情况。
应该计算轴所需要的弯曲刚度和扭矩刚度以确保轴不会在负载下弯曲或扭曲过度。
轴的疲劳寿命计算是校核的最后一步。
轴 的 设 计
圆螺母
可承受较大轴向力 螺纹处应力集中较大 两零件的间距较大时,可用圆螺母定位 防松措施
2~3
弹性挡圈、紧钉螺钉、锁紧挡圈
可承受不 大轴向力
锁 紧 挡 圈
弹 性 挡 圈
紧 钉 螺 钉
圆 锥 面 定 位
机械设计基础
②确定各轴段的直径。如下图所示,轴段①(外伸端) 直径最小,d1=35mm;
考虑到要对安装在轴段①上的联器进行定位, 轴段②上应有轴肩,同时为能很顺利地在轴段②上 安装轴承,轴段②必须满足轴承内径的标准,故取 轴段②的直径d2=40mm;
用相同的方法确定轴段③、④的直径d3= 45mm、d4=55mm;为了便于拆卸左轴承,可 查出6208型滚动轴承的安装高度为35mm,取d5 =47mm。
③确定各轴段的长度。齿轮轮毂宽度为60mm, 为保证齿轮固定可靠,轴段③的长度应略短于齿轮轮 毂宽度,取为58mm;为保证齿轮端面与箱体内壁不 相碰,齿轮端面与箱体内壁应留有一定的间距,取该 间距为15mm;为保证轴承安装在箱体轴承座孔中( 轴承宽度为18mm),并考虑到轴承的润滑,取轴承 端面距箱体内壁的距离5mm,所以轴段④的长度取为 20mm,轴承支点距离d=118mm;
根据箱体结构及联轴器距轴承盖要有一定距离的 要求,取d′=75mm;查阅有关的联轴器手册取d″为 70mm;在轴段①③上分别加工出键槽,使两键槽处 于同一圆柱母线上,键槽的长度比相应的轮毂宽度小 约5~10mm,键槽的宽度按轴段直径查手册得到。
④选定轴的结构细节,如圆角、倒角、退刀槽 等的尺寸。按设计结果画出结构草图,如上图 所示。
解: (1)选择轴的材料,确定许用应力。由已知条件 知减速器传递中小功率,对材料无特殊要求,故选 用45钢并经调质处理。由表10.4查得强度极限σs =650MPa,由表10.2得许用弯曲应力[σ-1] =60MPa。
轴的设计知识范文
轴的设计知识范文轴是一种用于传递和转动动力的机械元件,广泛应用于各个行业和领域。
在轴的设计中,需要考虑到材料的选择、尺寸的确定、结构的设计等因素。
本文将介绍轴的设计知识,并详细讨论这些因素。
首先,材料的选择对轴的设计至关重要。
常见的轴材料有钢、铜、铝等。
钢材具有优异的机械性能,强度高、刚性好,因此常被用于制作轴。
在选择材料时,不仅需要考虑到材料的机械性能,还需要考虑到材料的耐磨性、耐腐蚀性等特性,以满足实际应用的需求。
其次,尺寸的确定也是轴设计的关键。
轴的尺寸设计包括直径、长度、轴颈位置等方面。
首先,轴的直径应根据承载力和刚度要求进行确定。
一般来说,轴的直径越大,其承载能力越高,但同时也会增加轴的重量和制造成本。
此外,轴的长度也需要根据应用需求进行合理设计。
如果轴过长,容易发生挠曲和变形;如果轴过短,会影响其刚度和承载能力。
轴颈位置的确定则与安装和传动装置的设计相关,需要综合考虑到传递力矩和受力平衡等因素。
结构的设计也是轴设计的关键。
具体而言,结构设计包括轴上的各种传动部件(如键槽、轴肩等)和连接方式(如销轴、铆接、焊接等)。
为了确保轴与其他零件的连接可靠性,需要选用合适的连接方式。
例如,大型机械设备通常采用销轴连接,而小型机械设备则常采用铆接或焊接连接。
此外,为了提高轴的刚度和耐疲劳性能,设计者还可以采用加强筋、斜槽等措施。
另外,轴的表面处理也是轴设计的一个重要环节。
轴的表面处理可以改善其表面质量、硬度和耐磨性。
常见的轴表面处理方法包括热处理、渗碳、表面镀层等。
其中,最常用的是热处理,通过控制轴的加热温度和冷却方式,可以改变轴的组织结构,提高其硬度和耐磨性。
除了上述基本的设计知识外,还有一些注意事项需要考虑。
首先,轴与轴承的配合是轴设计中的一个重要环节。
轴与轴承的配合直接影响轴的运转和使用寿命。
其次,需要注意轴的平衡性。
由于轴承的存在,轴在运转时会产生一定的离心力。
如果轴的质量分布不均匀,会导致轴的弯曲和振动,从而影响轴的运转稳定性。
轴的设计
1.轴的用途及分类轴是组成机器的主要零件之一。
一切作回转运动的传动零件(例如齿轮,涡轮等),都必须安装在轴上才能进行运动及动力的传递。
因此轴的主要功用是支承回转零件及传递运动的动力。
按照承受载荷的不同,轴可分为转轴、心咒和传动轴三类。
工作中既承受弯矩又承受扭矩的轴称为转轴。
这类轴在各种机器中最为常见。
只承受弯矩而不承受扭矩的轴称为心轴。
心轴又分为转动心轴和固定心轴。
只承受扭矩而不承受弯矩(或弯矩很小)的轴称为传动轴。
轴还可按照轴线形状的不同,分为曲轴和直轴。
曲轴通过连杆可以将旋转运动改变为往复直线运动,或作相反的运动变换。
直轴根据外形的不同,可分为光轴和阶梯轴。
光轴形状简单,加工容易,应力集中源少,但轴上的零件不易装配及定位;阶梯轴则正好与光轴相反。
因此光轴主要用于心轴和传动轴,阶梯轴则常用于转轴。
直轴一般都制成实心的。
在那些由于机器结构的要求而需在轴中装设其他零件或者减小轴的质量具有特别重大作用的场合,则将轴制成空心的。
在空心轴内径与外径的比值通常为0.5~0.6,以保证轴的刚度及扭转稳定性。
此外,还有一种钢丝软轴,又称钢丝挠性轴,它是由多组钢丝分层卷绕而成的,具有良好的挠性,可以把回转运动灵活的传到不开敞的空间位置。
2.轴设计的主要内容轴的设计也和其他零件的设计相似,包括结构设计和工作能力计算两方面的内容。
轴的结构设计是根据轴上零件的安装、定位以及轴的制造工艺等方面的要求,合理地确定轴的结构形式和尺寸。
轴的结构设计不合理,会影响轴的工作能力和轴上零件的工作可靠性,还会增加轴的制造成本和轴上零件装配的困难等。
因此,轴的结构设计是轴设计中的重要内容。
轴的工作能力计算指的是轴的强度、刚度和振动稳定性等方面的计算。
多数情况下,轴的工作能力取决于轴的强度。
这时只需要对轴进行强度计算,以防止断裂或塑性变形。
而对刚度要求高的轴(如车床主轴)和受力很大的细长轴,还应进行刚度甲酸,以防止工作时产生过大的弹性变形。
轴的设计计算
轴的设计计算
轴的设计计算主要包括以下步骤:
1.确定轴上零件的布局:根据工作要求确定轴上零件的位置和装配关系,为后续计算提供依据。
2.确定各轴段的直径:根据轴上零件的布局和载荷情况,确定各轴段的直径。
通常情况下,轴段直径与轴上零件的尺寸有关,需要考虑轴的弯曲刚度和疲劳强度等因素。
3.确定轴的结构细节:根据轴上零件的布局和装配要求,确定轴的结构细节,如轴承盖、密封件、联轴器等。
这些细节对轴的设计计算和制造都有重要影响。
4.计算轴的载荷:根据轴的工作要求和载荷情况,计算轴的载荷。
需要考虑径向载荷、轴向载荷和扭矩等,为后续的强度校核提供依据。
5.强度校核:根据轴的载荷和材料特性,进行强度校核。
通常需要进行弯扭合成校核和剪切校核等,以确保轴的强度满足工作要求。
6.确定支承方式:根据轴的工作要求和载荷情况,确定合适的支承方式。
支承方式的选择对轴的稳定性和疲劳寿命有很大影响。
7.确定润滑方式:根据轴的工作要求和润滑剂特性,选择合适的润滑方式。
润滑方式的选择对轴的摩擦磨损性能和寿命有很大影响。
以上是轴的设计计算的主要步骤,具体计算过程需要根据实际情况进行调整和完善。
轴设计的主要内容和轴的设计步骤
轴设计的主要内容和轴的设计步骤一、轴设计的主要内容轴是指工程、机械、汽车等设备中用来传递动力和承受载荷的一个重要组成部分。
轴的设计是指根据设备的工作原理、运行条件、载荷等要求,确定轴的几何形状、尺寸、材料等参数的过程。
良好的轴设计能够保证设备的稳定运行和寿命,提高设备的性能和效率。
轴设计的主要内容包括轴的几何形状、尺寸、材料和连接方式等方面。
1. 轴的几何形状:轴的几何形状通常是圆柱形,也可以是多边形、椭圆形等。
合理的几何形状能够降低应力集中,提高轴的强度和刚度。
2. 轴的尺寸:轴的尺寸包括直径、长度等参数。
根据设备的功率、转速、载荷等要求,确定轴的尺寸,确保轴的强度和刚度满足设计要求。
3. 轴的材料:轴的材料选择应根据设备的工作条件和要求进行。
常用的轴材料有碳素钢、合金钢、不锈钢等。
根据不同的工作条件,选择合适的轴材料,以满足轴的强度和耐磨性等要求。
4. 轴的连接方式:轴的连接方式是指轴与其他部件(如轴套、轴承、齿轮等)的连接形式。
常见的连接方式有键连接、螺纹连接、温度收缩连接等。
根据设备的工作负荷和要求,选择合适的连接方式,确保连接的牢固性和可靠性。
二、轴的设计步骤轴的设计是一个复杂的过程,需要根据具体设备的工作要求和条件来进行。
一般而言,轴的设计步骤包括设计任务确认、轴的受力分析、轴的尺寸计算、轴的校核和轴的优化设计等。
1. 设计任务确认:在轴的设计前,需要明确设计的任务和要求。
包括设备的工作条件、载荷特点、工作环境等方面的要求。
根据这些要求,确定轴的设计指标,为后续的设计提供依据。
2. 轴的受力分析:根据受力分析原理,对轴的受力情况进行计算和分析。
考虑到设备的工作条件和载荷特点,确定轴的受力形式和大小。
根据受力分析结果,选取合适的材料和几何形状。
3. 轴的尺寸计算:根据轴的受力分析结果,进行轴的尺寸计算。
轴的尺寸计算包括轴径的确定、轴长的确定和轴的过盈量的确定等。
根据设备的工作要求和载荷特点,计算得到轴的合理尺寸。
轴的设计
7
11
10
8
试指出图中结构不合理的地方,并予以改正。
2Leabharlann 35621 10
1 11
4
7 8, 9
正确
§12-4 轴的强度和刚度计算
一、按扭转强度计算——适用于传动轴、转轴初算
价廉,对应力集中不敏感,良好的加工性。
2、合金钢:40Cr、40MnB、20CrMnTi等,强度高、寿命 长,对应力集中敏感,价格较贵。用于重载、
小尺寸的轴。
种类
注意:钢材
对钢材弹性模量E影响很小,
热处理
∴用 热处理 不能提高轴的刚度。 合金钢
3、合金铸铁、QT:铸造成形,吸振,可靠性低,品质
难控制,常用于凸轮轴、曲轴。
正确答案
1
2
3
1. 轮毂宽度上插键槽; 2.套筒无法安装; 3. 轴颈处不应有键槽。
正确答案
2 1
1.左侧键太长, 套筒无法装入
2.多个键应位于 同一母线上
正确答案
下图为双级斜齿圆柱齿轮减速器输出轴的轴系结构图,齿轮用 油润滑,轴承采用脂润滑。试分析轴系结构的错误,在有错误 处标明序号,说明原因并提出改正方法。
F
F
不合理结构
合理结构
2)使转矩合理分配
输出轮 输入轮
1
Tmax= T2 + T3 + T4
不合理的布置
T 4 T 3 T 2
T 1
T 4 T 3
T 1
T 2
输出轮 输入轮 输出轮
Tmax= T3 + T4
合理布置
3)改进轴上零件结构,减轻轴的载荷
齿轮 轴承
齿轮
轴承
卷筒
2024年机械设计基础课程教案讲义轴的设计教案
2024年机械设计基础课程教案讲义轴的设计教案一、教学内容本节课选自《机械设计基础》教材第四章第二节,主题为轴的设计。
详细内容包括:轴的类型与结构特点、轴的材料选择、轴的强度计算、轴的刚度计算、轴的振动分析等。
二、教学目标1. 理解并掌握轴的类型、结构特点及其在机械系统中的应用。
2. 学会根据工作条件选择合适的轴材料,并进行轴的强度和刚度计算。
3. 了解轴的振动原因及防治措施,提高轴的设计水平。
三、教学难点与重点重点:轴的材料选择、强度计算、刚度计算。
难点:轴的振动分析及防治措施。
四、教具与学具准备1. 教具:PPT、黑板、粉笔。
2. 学具:计算器、教材、笔记本。
五、教学过程1. 实践情景引入(5分钟):通过展示不同类型的轴及其在机械设备中的应用,激发学生对轴设计的学习兴趣。
详细内容:介绍汽车传动轴、涡轮轴、曲轴等轴的类型及结构特点。
2. 理论讲解(15分钟):讲解轴的材料选择、强度计算、刚度计算及振动分析。
详细内容:(1)轴的材料选择:介绍常用轴材料及其性能,如碳钢、合金钢等。
(2)轴的强度计算:讲解轴的扭转强度、弯曲强度计算方法。
(3)轴的刚度计算:介绍轴的扭转刚度、弯曲刚度计算方法。
(4)轴的振动分析:分析轴振动的原因、危害及防治措施。
3. 例题讲解(15分钟):讲解一道轴的设计计算题,巩固所学知识。
详细内容:某汽车传动轴设计计算。
4. 随堂练习(10分钟):布置一道轴设计计算题目,让学生独立完成。
详细内容:某涡轮轴设计计算。
六、板书设计1. 轴的类型与结构特点2. 轴的材料选择3. 轴的强度计算4. 轴的刚度计算5. 轴的振动分析七、作业设计1. 作业题目:(1)简述轴的类型及结构特点。
(2)某轴的材料为45钢,直径为50mm,工作扭矩为1000N·m,试计算其扭转强度。
(3)某轴的材料为40Cr,直径为60mm,工作弯矩为1000N·m,试计算其弯曲强度。
2. 答案:(2)扭转强度计算公式:τ = T/(πd^3/16),其中T为扭矩,d为轴径。
轴的设计计算
轴的设计计算轴是一种用于传递力矩和转动的零件,广泛应用于机械工程和其他工程领域。
轴设计的主要目标是确保轴的强度、刚度和耐久性,以保证其可靠地工作,并满足特定的工程要求。
轴的设计计算涉及到一系列技术和公式,需要综合考虑材料的强度、载荷分析、刚度要求等因素。
轴的设计计算包括以下几个方面:1.强度计算:轴的强度是指其能承受的最大应力。
在轴的设计过程中,需要根据轴的尺寸、材料的强度和载荷分析等因素,确定轴的强度是否足够。
常用的轴的强度计算公式有临界转矩和弯曲应力公式。
2.载荷分析:轴的设计应根据实际载荷条件进行载荷分析。
载荷分析是指对轴所受到的各种载荷进行计算和分析,确定轴的受力情况。
常见的轴的载荷包括弯矩、扭矩和轴向力等。
3.刚度要求:轴的刚度是指轴对扭转和弯曲的抵抗能力。
在设计过程中,需要根据实际要求确定轴的刚度,保证轴能够满足工程要求。
4.材料选择:轴的材料选择是轴设计中重要的一环。
材料的强度、韧性和耐磨性等性能都会影响轴的使用寿命和可靠性。
根据实际工程要求,选择适合的材料是轴设计计算的关键。
轴的设计计算是一个复杂而综合的过程,需要综合考虑多个因素,并使用适当的计算方法和公式。
以下是一个简单的轴设计计算过程的示例:1.确定载荷条件:根据实际工程要求,确定轴所受到的载荷条件,包括弯矩、扭矩和轴向力等。
2.强度计算:使用弯曲应力公式和扭转应力公式,计算轴在不同载荷条件下的最大应力。
3.强度校核:将计算得到的最大应力与轴材料的强度进行比较,判断轴的强度是否足够。
4.刚度计算:根据实际要求,计算轴的刚度,确保其能够满足工程要求。
5.材料选择:根据实际情况,选择适合的轴材料,保证轴的强度和韧性。
6.轴直径计算:根据载荷条件和强度要求,计算轴的直径。
7.轴长度计算:根据载荷条件和刚度要求,计算轴的长度。
以上仅是轴设计计算的基本步骤和方法,实际的设计计算过程可能更为复杂,需要综合考虑多个因素和条件。
轴的设计计算需要结合实际工程要求,运用适当的计算方法和公式,确保轴的强度、刚度和耐久性,以保证其可靠地工作。
机械设计-轴设计
e b2 4 2
M W
2 4 T 2W
2
M2 T2 W
对于直径为 d 的实心轴:
b
M W
M
d 3 / 32
M 0.1d 3
T WT
d
T 3/
16
T 0.2d 3
T 2W
由于b 与 的循环特征可能不同,需引进校正系数α将 折
合成对称循环变应力。
e
M 2 (T )2
W
Me 0.1d 3
轴肩或轴环 定位轴肩:h=(0.07~0.1)d > R 或 C 非定位轴肩:h=1~2 mm,作用是 便于轴上零件的装拆 为保证定位准确,R 或 C > r 轴环宽度一般取:b =1.4 h
套筒
对轴上零件起固定作用。 常用于近距离的两个零件间的固定。
注意:
为保证固定可靠, 应使:与轮毂相配 的轴段长度比轮毂 宽度短2~3 mm,
一般的轴
扭转强度
扭剪应力:
T
T
WT
9.55 106 P / n
d 3 /16
9.55 106 P 0.2d 3n
T
轴的抗扭
剖面系数
扭转强度设计式:
d 3
9.55106 3 0.2T
P n
C3
P n
mm
令其为系数 C
系数 C 与轴的材料和承载情况有关
轴的材料 Q235A,20
35
[τT] /MPa 12~20
2、根据初算轴径,进行轴的结构设计。 N
3、按弯扭合成强度校核轴的危险截面。
弯扭合成强度校核
● 画出空间受力图,求出支反力;
● 分别作出水平面受力图和垂直面受力图;
● 分别作出水平面弯矩图MH和垂直面弯矩图MV ;
轴的结构设计教案
轴的结构设计教案一、教学目标:1.了解轴的结构和功能。
2.掌握轴的设计原则和方法。
3.能够应用所学知识进行轴的结构设计。
二、教学内容:1.轴的基本概念和分类。
2.轴的结构设计原则和方法。
3.轴的实际设计案例。
4.轴的模拟仿真和优化设计。
三、教学过程:一、轴的基本概念和分类(20分钟)1.引入轴的基本概念和分类。
轴是一种常见的机械零部件,是用于支承、传动或连接其他部件的旋转零件。
根据不同的用途和形状,轴可分为直轴、芯轴、动力轴、中性轴等。
2.介绍轴的结构和功能。
轴的结构包括轴身、端面、轴孔、轴键等。
轴的功能是支撑和传递力矩,保持各部件的相对位置和相互的运动配合。
二、轴的结构设计原则和方法(30分钟)1.讲解轴的结构设计原则。
2.介绍轴的结构设计方法。
三、轴的实际设计案例(30分钟)1.列举一些典型的轴的设计案例。
例如:汽车发动机曲轴、电机转轴、车床主轴等。
2.分析实际设计案例中的问题和解决方法。
例如:曲轴的强度和刚度问题、转轴的平衡和配合问题、主轴的动态平衡和热平衡问题。
四、轴的模拟仿真和优化设计(40分钟)1.介绍轴的模拟仿真方法。
轴的模拟仿真是通过计算机辅助设计软件,实现对轴的结构和性能进行分析和优化。
2.进行轴的模拟仿真实践。
通过实际案例,指导学生使用专业软件进行轴的模拟仿真,优化轴的结构和性能。
四、教学总结和展望(10分钟)1.总结本节课的重点内容和要点。
2.展望下一节课的教学内容和任务。
四、教学方法:1.讲述法:通过讲解轴的概念、原则和方法,使学生理解轴的结构设计的基本知识。
2.案例分析法:通过分析实际设计案例,引导学生运用轴的结构设计原则和方法,解决实际问题。
3.实践操作法:通过轴的模拟仿真实践,让学生运用所学知识进行实际操作和优化设计。
五、教学资源:1.教材:轴的结构设计教材。
2.软件:轴的模拟仿真和优化设计软件。
六、教学评价:1.课堂表现评价:根据学生的参与程度、课堂提问和解答情况进行评价。
轴的设计思路
轴的设计思路以轴的设计思路为标题,我们来探讨一下轴的设计过程和要点。
一、轴的设计思路轴作为机械传动中常见的元件,其设计旨在传递转矩和承受载荷。
在轴的设计过程中,我们需要考虑以下几个方面的因素。
1. 轴的材料选择轴的材料选择是轴设计的基础。
一般来说,轴的材料应具备高强度、高硬度、耐磨和耐腐蚀的特点。
常见的轴材料有碳钢、合金钢、不锈钢等。
根据轴所处的工作环境和工作要求,选择合适的材料可以保证轴的使用寿命和性能。
2. 轴的几何形状轴的几何形状对于轴的传动效率和强度有重要影响。
在设计轴的几何形状时,需要考虑轴的直径、长度、轴肩、轴端形式等因素。
此外,为了提高轴的刚性和强度,可以采用加大轴的直径或设置轴肩的设计手段。
3. 轴的轴向约束轴的轴向约束是为了保证轴在工作过程中不发生轴向位移。
常见的轴向约束方式有轴承、轴套、键槽等。
根据轴的工作条件和载荷大小,选择合适的轴向约束方式可以确保轴的稳定性和传动效率。
4. 轴的转动精度轴的转动精度直接影响到整个机械传动系统的工作效率和稳定性。
在轴的设计过程中,需要考虑轴的圆度、轴向偏差、圆锥度等因素。
通过合理的轴的设计和加工工艺,可以提高轴的转动精度,减小传动误差。
5. 轴的表面处理轴的表面处理是为了提高轴的耐磨性和耐腐蚀性。
常见的轴的表面处理方式有淬火、渗碳、镀铬等。
根据轴的工作环境和使用要求,选择合适的表面处理方式可以延长轴的使用寿命和提高轴的性能。
二、轴的设计要点在轴的设计过程中,需要注意以下几个要点。
1. 轴的强度计算轴的强度计算是轴设计的重要环节。
根据轴所承受的转矩和载荷,通过计算轴的弯曲应力、剪切应力和扭转应力,确定轴的尺寸和材料。
轴的强度计算要充分考虑轴的工作条件和设计寿命,确保轴能够承受工作载荷并保持稳定。
2. 轴的轴向约束设计轴的轴向约束设计是为了保证轴在工作过程中不发生轴向位移。
根据轴所承受的轴向载荷和工作条件,选择合适的轴向约束方式,并计算轴的轴向约束力。
轴的设计 毕业论文
轴的设计毕业论文轴的设计毕业论文引言:在机械设计中,轴是一种常见的零件,用于传递动力和承载负荷。
轴的设计对于机械系统的性能和可靠性至关重要。
本文将探讨轴的设计原理和方法,以及一些常见的轴设计问题和解决方案。
一、轴的基本原理轴是连接两个旋转部件的零件,其主要功能是传递转矩和承载负荷。
轴的设计需要考虑到以下几个方面:1. 轴的材料选择:轴的材料应具有足够的强度和刚度,以承受工作条件下的负荷和应力。
常见的轴材料包括碳钢、合金钢和不锈钢等。
2. 轴的几何形状:轴的几何形状应根据具体的工作条件和要求进行选择。
常见的轴形状有圆柱形、圆锥形和棒状等。
3. 轴的支撑方式:轴的支撑方式对于轴的稳定性和刚度有重要影响。
常见的轴支撑方式包括轴承支撑、滑动支撑和固定支撑等。
二、轴的设计方法轴的设计通常遵循以下步骤:1. 确定工作条件:首先需要明确轴所处的工作条件,包括转速、负荷和工作环境等。
这些条件将决定轴的材料和尺寸。
2. 计算轴的强度和刚度:根据工作条件和轴的几何形状,可以进行强度和刚度的计算。
这些计算可以通过应力分析和有限元分析等方法进行。
3. 选择轴的材料和尺寸:根据强度和刚度的计算结果,选择合适的轴材料和尺寸。
这需要考虑到材料的可获得性、成本和加工性能等因素。
4. 设计轴的支撑方式:根据轴的工作条件和要求,选择合适的轴支撑方式。
这需要考虑到支撑方式的可靠性、刚度和摩擦损失等因素。
5. 进行轴的结构设计:根据以上步骤的结果,进行轴的结构设计。
这包括轴的几何形状、加工工艺和表面处理等。
三、常见的轴设计问题和解决方案在轴的设计过程中,常会遇到一些问题,如轴的振动、疲劳和磨损等。
以下是一些常见的问题和相应的解决方案:1. 轴的振动问题:轴的振动会导致噪音和能量损失。
解决轴的振动问题可以采用减振措施,如增加轴的刚度、改变支撑方式和使用减振装置等。
2. 轴的疲劳问题:轴的疲劳会导致轴的断裂和失效。
解决轴的疲劳问题可以采用增加轴的强度、改变材料和设计合适的过载保护装置等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.计算功率:75.95.73.1=⨯=⨯=P KACAPk A --------工作情况系数,查表取值1.3;机械设计第八版156页 p --------电动机的额定功率2.选择带型 根据75.9=PCA,n=971,可知选择B 型;机械设计第八版157页由表8-6和表8-8取主动轮基准直径 mm dd 1401=则从动轮的直径为 4202=d d据表8-8,取4502=b d mm3.验算带的速度1000601⨯=nv ddπ=10006097114014.3⨯⨯⨯=7.11m/s机械设计第八版157页 7.11m/s 〈25m/sV 带的速度合适4、确定普通V 带的基准长度和传动中心矩 根据0.7(d d 1+dd 2)<a<2(d d 1+dd 2),初步确定中心矩机械设计第八版152页oa=1000mm5.计算带所需的基准长度:d L=212214/)(2/)(2addddad d d d -=++π=)10004/()140450(2/)140450(14.3100022⨯-++⨯+⨯=2950.6mm机械设计第八版158页由表8-2选带的基准长度Ld=3150mm6.计算实际中心距a2/)(0dodLLaa -+==2/)6.29503150(1000-+/2=1100mm机械设计第八版158页验算小带轮上的包角1αa d d d d /3.57)(18001201⨯--=α=09.163 o 90〉7.确定带的根数Z Z =kk p p plcaα)(0∆+ 机械设计第八版158页由min /971r n =, 3,1401==i mm d d 查表8-4a 和表8-4b得p=1.68,p∆=0.31查表8-5得:=k α0.955,查表8-2得:=k l1.07,则Z =kk p p plcaα)(0∆+=9.75/(1.68+0.31)0.955 ⨯1.07=4.794 取Z=5根 8.计算预紧力vk pF q VZca20)15.2(500+-=α机158页查表8-3得q=0.18(kg/m )则2011.718.0)1955.05.2(511.775.9500⨯+-⨯⨯⨯=F =230.8N9.计算作用在轴上的压轴力==)2/sin(210αzF Fp095.81sin 8.23052⨯⨯⨯=2285.2N 机械设计第八版158页五.带轮结构设计 七.轴的设计与校核 高速轴的计算。
(1)选择轴的材料选取45钢,调制处理,参数如下: 硬度为HBS =220抗拉强度极限σB =650MPa 屈服强度极限σs =360MPa 弯曲疲劳极限σ-1=270MPa剪切疲劳极限τ-1=155MPa 许用弯应力[σ-1]=60MPa 二初步估算轴的最小直径 由前面的传动装置的参数可知1n= 323.6 r/min; 1p=6.5184(KW);查表可取OA=115; 机械设计第八版370页表15-3==311minnpAdo 3323.66.518115⨯=31.26mm 三.轴的机构设计(1)拟定轴上零件的装配方案如图(轴1),从左到右依次为轴承、轴承端盖、小齿轮1、轴套、轴承、带轮。
(2)根据轴向定位的要求确定轴的各段直径和长度 1.轴的最小直径显然是安装带轮处的直径1d,取∏-I d=32 mm ,为了保证轴端挡圈只压在带轮上而不压在端面上,,故Ⅰ段的长度应比带轮的宽度略短一些,取带轮的宽度为50 mm ,现取47l mm Ⅰ=。
带轮的右端采用轴肩定位,轴肩的高度111.0~07.0ddh =,取h =2.5 mm ,则Ⅲ-∏d=37 mm 。
轴承端盖的总宽度为20 mm ,根据轴承端盖的拆装及便于对轴承添加润滑脂的要求,取盖端的外端面与带轮的左端面间的距离l =30 mm ,故取∏l=50 mm.2.初步选责滚动轴承。
因为轴主要受径向力的作用,一般情况下不受轴向力的作用,故选用深沟球滚动轴承,由于轴Ⅲ-∏d=37 mm ,故轴承的型号为6208,其尺寸为=d 40mm ,=D 80mm, 18=B mm.所以ⅣⅢ-d=ⅣⅢ-d=40mm ,ⅣⅢ-l = ⅧⅦ-l=18mm3.取做成齿轮处的轴段Ⅴ–Ⅵ的直径ⅥⅤ-d=45mm ,ⅥⅤ-l=64mm取齿轮距箱体内壁间距离a =10mm , 考虑到箱体的铸造误差, 4.在确定滚动轴承位置时,应距箱体内壁一段距离s , 取s =4mm ,则=-V IV l s+a =4mm +10mm =14mmⅤⅣ-d=48mm同理ⅦⅥ-l=s+a=14mm ,ⅦⅥ-d=43 mm至此,已经初步确定了各轴段的长度和直径 (3)轴上零件的轴向定位齿轮,带轮和轴的轴向定位均采用平键链接(详细的选择见后面的键的选择过程)(4)确定轴上的倒角和圆角尺寸参考课本表15-2,取轴端倒角为1×45°,各轴肩处的圆角半径 R=1.2mm(四)计算过程1.根据轴的结构图作出轴的计算简图,如图,对于6208深沟球 滚轴承的mm a 9=,简支梁的轴的支承跨距: L=32LL+=l llllⅧⅦⅦⅥⅥⅤⅤⅣⅣⅢ-----++++-2a=18+14+64+14+18-2 ⨯9=120mm1L=47+50+9=106mm ,2L=55 mm, 3L=65mm2.作用在齿轮上的力dT F t 212==4203.1952⨯=916.6N ==βαcos tan ntrFF333.6NN FF t a6.916==计算支反力水平方向的ΣM =0,所以055.110.2=-F F t H N ,F HN 2=458.3N=-65.110.1F F t NH 0, FNH 1=541.6N垂直方向的ΣM =0,有=-65.110.1F F r NV 0, FNV 1=197N =-55.110.2F Fr NV 0,FNV 2=166.8N计算弯矩 水平面的弯矩32LF MNH CH⨯== 653.458⨯=29789.5mm N ⋅垂直面弯矩=⨯=⨯=55197211L F M NV CV 10840 mm N ⋅ =⨯=⨯=658.166322L F MNV CV 10840mm N ⋅合成弯矩1C M =122CV CH M M +=31700mm N ⋅ 2C M =222CV CH M M +=31700mm N ⋅根据轴的计算简图做出轴的弯矩图和扭矩图,可看出C 为危险截面,现将计算出的截面C 处的H V M M 、及M 的值列于下表:3.按弯扭合成应力校核轴的硬度进行校核时,通常只校核轴上承受最大弯距和扭距的截面(即危险截面C )的强度。
根据课本式15-5及上表中的值,并扭转切应力为脉动循环变应力,取α=0.6,轴的计算应力WT Mc ca 22)(ασ+==321000)3.1956.0(7.31332d π⨯⨯+=13.51QMPa已由前面查得许用弯应力[σ-1]=60Mpa,因]1[][-<σσ,故安全。
4.精确校核轴的疲劳强度 截面A ,Ⅱ,Ⅲ,B 只受扭矩作用,虽然键槽、轴肩及过渡配合所引起应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以截面A ,Ⅱ,Ⅲ,B 均无需校核。
从应力集中对轴的疲劳强度的影响来看,截面和V 和VI 处的过盈配合引起的应力集中最严重;从受载的情况看,截面C 上的应力最大。
截面VI 的应力集中的影响和截面V 的相近,但截面VI 不受扭距作用,同时轴径也较大,故可不必作强度校核。
截面C 上虽然应力最大,但应力集中不大(过盈配合及槽引起的应力集中均在两端),而且这里轴的直径最大,故截面C 不必校核。
因而只需校核截面V 的左侧即可,因为V 的右侧是个轴环直径比较大,故可不必校核。
2)截面V 左侧抗弯截面系数:W =0.1d 3=0.1×453=9112.5mm 3 抗扭截面系数:WT =0.2d 3=0.2×453=18225mm 3 截面V 左侧的弯矩为=-⨯=55325531700M 13256.36 截面V 上的扭矩为T3=195300截面上的弯曲应力5.911236.13256==W M b σ=1.45Mpa 截面上的扭转切应力WT TT1=τ=21.45Mpa轴的材料为45号钢,调质处理,由表可查得σB=640 MPa, 1-τ=155 MPa,1-σ=275Mpa过盈配合处的σσε/k 的值,由课本附表3-8用插入法求出,并取8.0/=ττεk σσε/k ,σσε/k =2.18则=ττε/k 0.8×2.18=1.744轴按磨削加工,由课本附图3-4查得表面质量系数τσββ==0.92 故得综合系数值为:σk =11-+σσσβεk =192.0118.2-+=2.267 τk =11-+τττβεk =192.01744.1-+=1.831 又由课本§3-1及§3-2得炭钢得特性系数σϕ=0.1~0.2 ,取 σϕ =0.1 τϕ=0.05~0.1 ,取 τϕ=0.05所以轴在截面V 左侧的安全系数为=+=-σϕσσσσσMaK S 1.0831.145.1267.2275⨯+⨯=83.6maK S ττϕττττ+=-1=2/45.2105.02/45.21831.1155⨯+⨯=7.68=+⨯=+=222268.76.8368.76.83τστσS S S S S ca 7.652>>S=1.6(因计算精度较低,材料不够均匀,故选取s =1.6)故该轴在截面V 左侧的强度也是足够的。
因无大的瞬时过载及严重的应力循环不对称性,故可略去静强度校核。
八.低速轴的计算6.精确校核轴的疲劳强度 1)判断危险截面截面A ,Ⅱ,Ⅲ,B 只受扭矩作用,虽然键槽、轴肩及过渡配合所引起应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以截面A ,Ⅱ,Ⅲ,B 均无需校核。
从应力集中对轴的疲劳强度的影响来看,截面和IV 和V 处的过盈配合引起的应力集中最严重;从受载的情况看,截面C 上的应力最大。
截面IV 的应力集中的影响和截面V 的相近,但截面V 不受扭距作用,同时轴径也较大,故可不必作强度校核。
截面C 上虽然应力最大,但应力集中不大(过盈配合及槽引起的应力集中均在两端),而且这里轴的直径最大,故截面C 不必校核。
因而只需校核截面IV 的右侧即可,因为IV 的左侧是个轴环直径比较大,故可不必校核。
2)截面IV 右侧抗弯截面系数:W =0.1d 3=0.1×853=61412.5mm 3 抗扭截面系数:WT =0.2d 3=0.2×853=122825mm 3 弯矩M 及弯曲应力为: M =197190×652365-=100112 N·mm b σ=W M = MPa 61412.5055.30970=1.63MPa 截面上的扭矩m N T ⋅=13071 截面上的扭转切力:T τ=TW T 1=MPa 1228251307000=10.6Mpa 过盈配合处的σσε/k 的值,由课本附表3-8用插入法求出,并取8.0/=ττεk σσε/k ,σσε/k =2.20则=ττε/k 0.8×2.20=1.76轴按磨削加工,由课本附图3-4查得表面质量系数τσββ==0.92 故得综合系数值为:σk =11-+σσσβεk =192.0120.2-+=2.29 τk =11-+τττβεk =192.0176.1-+=1.85 又由课本§3-1及§3-2得炭钢得特性系数σϕ=0.1~0.2 ,取 σϕ =0.1 τϕ=0.05~0.1 ,取 τϕ=0.05所以轴在截面Ⅵ的右侧的安全系数为1.0078.129.22551⨯+⨯=+=-σψσσσσσmaK S =103.302/60.505.02/60.585.11401⨯+⨯=+=-τψτττττmaK S =26.32=+⨯=+=222232.2630.10332.2630.103τστσS S S S S ca 25.505>S =1.6(因计算精度较低,材料不够均匀,故选取s =1.6)故该轴在截面Ⅳ右侧的强度也是足够的。