金山区2014-2015学年第一学期期末质量检测初三数学试卷(含详细解答)

合集下载

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。

上海市2014金山区初三数学二模试卷(含答案)

上海市2014金山区初三数学二模试卷(含答案)

2014年市金山区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)[四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸相应位置上]1.(4分)(2014•金山区二模)以下各数中是有理数的是()A.3.14 B.C.D.2.(4分)(2014•金山区二模)将直线y=x+2向下平移2个单位后,所得直线的解析式为()A.y=x+4 B.y=x﹣2 C.y=x D.y=x﹣43.(4分)(2014•金山区二模)以下一元二次方程中,有两个相等的实数根的是()A.x2+2x﹣1=0 B.x2﹣2x+1=0 C.x2+2x+4=0 D.x2﹣2x﹣4=04.(4分)(2014•金山区二模)在本学期的“献爱心”的捐款活动中,九(1)班学生捐款情况如图,那么捐款金额的众数和中位数分别是()A.15和13.5 B.8元和6.5元C.15和8元D.8元和8元5.(4分)(2014•金山区二模)以下命题中,真命题是()A.平行四边形是轴对称图形B.正多边形是中心对称图形C.正多边形都是轴对称图形D.是轴对称图形的四边形都是中心对称图形6.(4分)(2014•金山区二模)在同一平面,已知线段AO=2,⊙A的半径为r,将⊙A绕点O按逆时针方向旋转90°,得到的圆记作⊙B,如果⊙A与⊙B外切,那么r的值为()A.1B.2C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区二模)计算:(a3)2= _________ .8.(4分)(2014•宝坻区二模)计算:(a+2)(a﹣2)= _________ .9.(4分)(2014•金山区二模)方程=的解是_________ .10.(4分)(2014•金山区二模)计算:+2(+)= _________ .11.(4分)(2014•金山区二模)已知函数f(x)=,那么f()= _________ .12.(4分)(2014•金山区二模)已知反比例函数的图象经过点(﹣1,2),那么该反比例函数的图象的两个分支在第_________ 象限.13.(4分)(2012•)菱形的两条对角线长分别为6和8,则这个菱形的周长为_________ .14.(4分)(2014•金山区二模)某班共有学生36人,在迎新年庆祝会上,随机抽取1名一等奖,3名二等奖,5名三等奖,以上统称为等第奖,该班每一名学生获得等第奖的概率是_________ .15.(4分)(2014•金山区二模)为了了解学生课外阅读的喜好,某校随机抽取部分学生进行问卷调查,调查时要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍或者喜欢其他类型的书籍,则都选“其他”,图2是整理数据后绘制的不完整的统计图,如果还知道喜欢漫画的有60人,选“其他”的有30人,那么喜欢小说的人数为_________ .16.(4分)(2014•金山区二模)如图,在△ABC中,AB=4,BC=6,BD是∠ABC的角平分线,DE∥BC.DE 交AB于点E,那么DE的长为_________ .17.(4分)(2014•金山区二模)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为_________ .18.(4分)(2014•金山区二模)如图,在Rt△AB C中,∠ACB=90°,AC=4,BC=3,D是边AB上一点,联结CD,把△ACD沿CD所在的直线翻折,点A落在点E的位置,如果DE∥BC,那么AD的长为_________ .三、解答题:(本大题共7题,满分78分)第15题19.(10分)(2014•金山区二模)计算:﹣cos30°﹣2﹣1+(π﹣)0.20.(10分)(2014•金山区二模)解不等式组:,并把解集在数轴上表示出来.21.(10分)(2014•金山区二模)某市为鼓励居民节约用水,制定了分阶梯收费制度,按每年用水量分成两个阶梯,即年用水量不超过200立方米的部分和200立方米以上的部分按不同的价格收取水费,每户居民每年的水费y(元)和用水量x(立方米)的如图1和图2,(1)如果小家年用水量为160立方米,那么小王家的年水费是多少?(2)如果小王家年用水量为1500元,那么小王家的年用水量是多少?22.(10分)(2014•金山区二模)已知:如图,C是线段BD上一点,AB⊥BD,ED⊥BD,∠ACE=90°,tan∠ACB=2,AB=4,ED=3.求:(1)线段BD的长;(2)∠AEC的正切值.23.(12分)(2014•金山区二模)已知:如图,线段AB∥CD,AC⊥CD,AC、BD相交于点P,E、F分别是线段BP和DP的中点.(1)求证:AE∥CF;(2)如果AE和DC的延长线相交于点Q,M、N分别是线段AP和DQ的中点,求证:MN=CE.24.(12分)(2014•金山区二模)如图,在直角坐标系中,直线y=x+2与x轴交于点A,B是这条直线在第一象限上的一点,过点B作x轴的垂线,垂足为点D,已知△ABD的面积为18.(1)求点B的坐标;(2)如果抛物线的图象经过点A和点B,求抛物线的解析式;(3)已知(2)中的抛物线与y轴相交于点C,该抛物线对称轴与x轴交于点H,P是抛物线对称轴上一点,过点P作PQ∥AC交x轴交于点Q,如果点Q在线段AH上,并且AQ=CP,求点P的坐标.25.(14分)(2014•金山区二模)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,AB=4,AD=3,sin∠DCB=,P是边CD上一点(点P与点C、D不重合),以PC为半径的⊙P与边BC相交于点C和点Q.(1)如果BP⊥CD,求CP的长;(2)如果PA=PB,试判断以AB为直径的⊙O与⊙P的位置关系;(3)联结PQ,如果△ADP和△BQP相似,求CP的长.2014年市金山区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)[四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸相应位置上]1.(4分)(2014•金山区二模)以下各数中是有理数的是()A.3.14 B.C.D.考点:实数.分析:根据有理数是有限小数或无限循环小,可得答案.解答:解:A、是有限小数,故A是有理数;B、C、D是无限不循环小数,故B、C、D是无理数;应选:A.点评:此题考查了有理数,有限小数或无限循环小数是有理数.2.(4分)(2014•金山区二模)将直线y=x+2向下平移2个单位后,所得直线的解析式为()A.y=x+4 B.y=x﹣2 C.y=x D.y=x﹣4考点:一次函数图象与几何变换.分析:根据平移k值不变,只有b只发生改变解答即可.解答:解:根据题意知,平移后的直线解析式为:y=x+2﹣2=x,即y=x.应选:C.点评:此题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3.(4分)(2014•金山区二模)以下一元二次方程中,有两个相等的实数根的是()A.x2+2x﹣1=0 B.x2﹣2x+1=0 C.x2+2x+4=0 D.x2﹣2x﹣4=0考点:根的判别式.专题:计算题.分析:分别计算四个方程的根的判别式,然后根据判别式的意义进行判断.解答:解:A、△=22﹣4×(﹣1)=8>0,方程有两个不相等的实数根,所以A选项错误;B、△=22﹣4×1=0,方程有两个相等的实数根,所以B选项正确;C、△=22﹣4×4=﹣12<0,方程没有实数根,所以C选项错误;D、△=22﹣4×(﹣4)=20>0,方程有两个不相等的实数根,所以D选项错误.应选B.点评:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(4分)(2014•金山区二模)在本学期的“献爱心”的捐款活动中,九(1)班学生捐款情况如图,那么捐款金额的众数和中位数分别是()A.15和13.5 B.8元和6.5元C.15和8元D.8元和8元考点:条形统计图;中位数;众数.专题:计算题.分析:根据条形统计图中的数据求出众数与中位数即可.解答:解:根据条形统计图得到捐8元的学生数最多,为15个,故捐款金额的众数为8元,将捐款数按照从小到大顺序排列得到3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,10,10,10,其中最中间的两个数为5和8,平均数为6.5,即中位数为6.5,应选B点评:此题考查了条形统计图,众数,以与中位数,弄清题中的数据是解此题的关键.5.(4分)(2014•金山区二模)以下命题中,真命题是()A.平行四边形是轴对称图形B.正多边形是中心对称图形C.正多边形都是轴对称图形D.是轴对称图形的四边形都是中心对称图形考点:命题与定理.分析:根据轴对称图形和中心对称图形的定义以与平行四边形、正多边形和等腰梯形的性质分别进行判断.解答:解:A、平行四边形是中心对称图形,不是轴对称图形,所以A选项错误;B、当正多边形的边数为偶数时,它是中心对称图形,所以B选项错误;C、正多边形都是轴对称图形,所以C选项正确;D、等腰梯形是轴对称图形,但不是中心对称图形,所以D选项错误.应选C.点评:此题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.(4分)(2014•金山区二模)在同一平面,已知线段AO=2,⊙A的半径为r,将⊙A绕点O按逆时针方向旋转90°,得到的圆记作⊙B,如果⊙A与⊙B外切,那么r的值为()A.1B.2C.D.考点:圆与圆的位置关系.分析:根据旋转的性质得到△OAB为等腰直角三角形,则AB=OA=2,从而求得线段AB的长,然后利用两圆外切两圆的圆心距等于两圆的半径之和直接求解.解答:解:∵⊙A绕点O按逆时针方向旋转90°得到的⊙B,∴△OAB为等腰直角三角形,∵AO=2,∴OB=OA=2,AB=2,∵⊙A、⊙B外切,∴AB等于两圆半径之和,∴r=.应选C.点评:此题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区二模)计算:(a3)2= a6.考点:幂的乘方与积的乘方.分析:按照幂的乘方法则:底数不变,指数相乘计算.即(a m)n=a mn(m,n是正整数)解答:解:(a3)2=a6.故答案为:a6.点评:此题考查了幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),牢记法则是关键.8.(4分)(2014•宝坻区二模)计算:(a+2)(a﹣2)= a2﹣4 .考点:平方差公式.分析:利用平方差公式直接求解即可求得答案.解答:解:(a+2)(a﹣2)=a2﹣4.故答案为:a2﹣4.点评:此题考查了平方差公式.注意运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9.(4分)(2014•金山区二模)方程=的解是x=﹣1 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2=1,解得:x=1或x=﹣1,经检验x=1是增根,分式方程的解为x=﹣1.故答案为:x=﹣1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(4分)(2014•金山区二模)计算:+2(+)= 3+2.考点:*平面向量.分析:先去掉括号,然后进行加法运算即可.解答:解:+2(+)=+2+2=3+2.故答案为:3+2.点评:此题考查了平面向量,主要是向量的加法运算,是基础题.11.(4分)(2014•金山区二模)已知函数f(x)=,那么f()=.考点:函数值.分析:把x=代入函数解析式进行计算即可得解.解答:解:f()==.故答案为:.点评:此题考查了函数值求解,把自变量的值代入函数关系式计算即可,比较简单.12.(4分)(2014•金山区二模)已知反比例函数的图象经过点(﹣1,2),那么该反比例函数的图象的两个分支在第二、四象限.考点:反比例函数的性质.分析:根据反比例函数图象在一、三象限或在二、四象限,根据(﹣1,2)所在象限即可作出判断.解答:解:点(﹣1,2)在第二象限,则该反比例函数的图象的两个分支在第二、四象限.故答案是:二、四.点评:此题考查了反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限.13.(4分)(2012•)菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .考点:菱形的性质;勾股定理.分析:根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解答:解:如下图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.点评:此题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.14.(4分)(2014•金山区二模)某班共有学生36人,在迎新年庆祝会上,随机抽取1名一等奖,3名二等奖,5名三等奖,以上统称为等第奖,该班每一名学生获得等第奖的概率是.考点:概率公式.分析:共36人,其中有1+3+5=9个等第奖,利用概率公式直接求解即可.解答:解:∵共36人,其中有1+3+5=9个等第奖,∴该班每一名学生获得等第奖的概率是=,故答案为:.点评:综合考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.15.(4分)(2014•金山区二模)为了了解学生课外阅读的喜好,某校随机抽取部分学生进行问卷调查,调查时要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍或者喜欢其他类型的书籍,则都选“其他”,图2是整理数据后绘制的不完整的统计图,如果还知道喜欢漫画的有60人,选“其他”的有30人,那么喜欢小说的人数为120 .考点:扇形统计图.专题:计算题.分析:根据扇形统计图,列出算式,计算即可得到结果.解答:解:根据题意得:(30÷10%)﹣60﹣30﹣(30÷10%)×30%=300﹣60﹣30﹣90=120(人),则喜欢小说的人数为120人.故答案为:120.点评:此题考查了扇形统计图,弄清题中的数据是解此题的关键.16.(4分)(2014•金山区二模)如图,在△ABC中,AB=4,BC=6,BD是∠ABC的角平分线,DE∥BC.DE 交AB于点E,那么DE的长为 2.4 .考点:相似三角形的判定与性质;等腰三角形的判定与性质.分析:根据平行线的性质和角平分线定义求出∠EDB=∠EBD,推出DE=BE,设DE=BE=x,证相似,得出比例式,代入求出即可.解答:解:∵DE∥BC,∴∠EDB=∠CBD,∵BD是∠ABC的角平分线,∴∠CBD=∠ABD,∴∠EDB=∠EBD,∴DE=BE,设DE=BE=x,∵DE∥BC,∴△AED∽△ABC,∴=,∴=,解得:x=2.4,∴DE=2.4,故答案为:2.4.点评:此题考查了等腰三角形的性质和判定,平行线的性质,相似三角形的性质和判定的应用,解此题的关键是求出BE=DE和求出△AED∽△ABC.17.(4分)(2014•金山区二模)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为或.考点:勾股定理;锐角三角函数的定义.专题:分类讨论.分析:分两种情况考虑,当斜边为直角边2倍时,当直角边为直角边2倍时,求出最小角的正切值即可.解答:解:如图1所示,AC=2AB,∴最小角为∠C,根据勾股定理得:BC==AB,则tanC===;如图2所示,BC=2AB,∴tanC==,综上,这个直角三角形的较小的锐角的正切值为或.故答案为:或.点评:此题考查了勾股定理,锐角三角函数定义,熟练掌握勾股定理是解此题的关键.18.(4分)(2014•金山区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是边AB上一点,联结CD,把△ACD沿CD所在的直线翻折,点A落在点E的位置,如果DE∥BC,那么AD的长为 2 .考点:翻折变换(折叠问题).专题:计算题.分析:连结CE交AB于F点,根据勾股定理得AB=5,再根据折叠的性质得CE=CA=4,DE=AD,∠E=∠A,有DE∥BC得到∠1=∠B,则∠1+∠E=90°,得到CE⊥AB,于是可根据面积法计算出CF=,所以EF=CE﹣CF=,然后证明△DEF∽△BCF,利用相似比可计算出DE=2,于是得到AD=2.解答:解:连结CE交AB于F点,如图,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵△ACD沿CD所在的直线翻折,点A落在点E的位置,∴CE=CA=4,DE=AD,∠E=∠A,∵DE∥BC,∴∠1=∠B,而∠A+∠B=90°,∴∠1+∠E=90°,∴∠DFE=90°,∴CE⊥AB,∵CF•AB=AC•BC,∴CF==,∴EF=CE﹣CF=4﹣=,∵DE∥BC,∴△DEF∽△BCF,∴DE:BC=EF:CF,即DE:3=:,∴DE=2,∴AD=2.故答案为2.点评:此题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、相似三角形的判定与性质.三、解答题:(本大题共7题,满分78分)第15题19.(10分)(2014•金山区二模)计算:﹣cos30°﹣2﹣1+(π﹣)0.考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=﹣﹣+1,然后合并即可.解答:解:原式=﹣﹣+1=0.点评:此题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.20.(10分)(2014•金山区二模)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,再找出不等式组的解集即可.解答:解:∵解不等式x﹣2>﹣3得:x>﹣1,解不等式3﹣x≥得:x≤4,∴不等式组的解集为﹣1<x≤4,在数轴上表示为:.点评:此题考查了解一元一次不等式,在数轴上表示不等式组的解集的应用,关键是能求出不等式组的解集.21.(10分)(2014•金山区二模)某市为鼓励居民节约用水,制定了分阶梯收费制度,按每年用水量分成两个阶梯,即年用水量不超过200立方米的部分和200立方米以上的部分按不同的价格收取水费,每户居民每年的水费y(元)和用水量x(立方米)的如图1和图2,(1)如果小家年用水量为160立方米,那么小王家的年水费是多少?(2)如果小王家年用水量为1500元,那么小王家的年用水量是多少?考点:一次函数的应用.分析:(1)根据图象可得当x≤200时,水价与水费成正比例函数关系,设y=kx,再把(200,700)代入可得k的值,进而得到函数解析式,然后再代入x=160,算出y即可;(2)根据函数图象可得x≥200时,水价与水费成一次函数关系,设y=ax+b,再把(200,700),(300,1200),代入算出a、b的值,进而得到函数解析式,然后再把y=1500代入算出x即可.解答:解:(1)当x≤200时,水价与水费成正比例函数关系,设y=kx,∵图象经过(200,700),∴700=200k,解得:k=3.5,∴y=3.5x,把x=160代入:y=160×3.5=560(元),答:小王家的年水费是560元;(2)当x≥200时,水价与水费成一次函数关系,设y=ax+b,∵图象经过(200,700),(300,1200),∴,解得:,∴y=5x﹣300,把y=1500代入:1500=5x﹣300,解得:x=360,答:小王家的年用水量是360立方米.点评:此题主要考查了一次函数的应用,关键是正确掌握待定系数法求一次函数解析式.22.(10分)(2014•金山区二模)已知:如图,C是线段BD上一点,AB⊥BD,ED⊥BD,∠ACE=90°,tan∠ACB=2,AB=4,ED=3.求:(1)线段BD的长;(2)∠AEC的正切值.考点:解直角三角形.专题:计算题.分析:(1)利用同角的余角相等得到一对角相等,再由一对直角相等,得到三角形ABC与三角形DCE 相似,由相似得比例,根据锐角三角函数定义与tan∠ACB的值,求出BC与CD的值,根据BC+CD 求出BD的值即可;(2)由三角形ABC与三角形DCE相似,根据AB与CD长求出相似比,进而求出AC与CE的比值,即为∠AEC的正切值.解答:解:(1)∵∠ACE=90°,AB⊥BD,ED⊥BD,∴∠ACB+∠ECD=90°,∠ACB+∠BAC=90°,∠B=∠D=90°,∴∠BAC=∠ECD,∴△ABC∽△CDE,∴=,∵tan∠ACB==2,AB=4,ED=3,∴=2,即BC=2,CD=6,则BD=BC+CD=2+6=8;(2)∵△ABC∽△CDE,∴===,则tan∠AEC==.点评:此题属于解直角三角形题型,涉与的知识有:锐角三角函数定义,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解此题的关键.23.(12分)(2014•金山区二模)已知:如图,线段AB∥CD,AC⊥CD,AC、BD相交于点P,E、F分别是线段BP和DP的中点.(1)求证:AE∥CF;(2)如果AE和DC的延长线相交于点Q,M、N分别是线段AP和DQ的中点,求证:MN=CE.考点:相似三角形的判定与性质.分析:(1)根据直角三角形斜边上中线性质求出AE=BE=PE,CF=PF,推出∠EAP=∠EPA,∠CPF=∠FCP,求出∠EAP=∠FCP,根据平行线的判定推出即可;(2)求出ME∥CN,EN∥CM,得出矩形MCNE,根据矩形的判定推出即可.解答:(1)证明:∵AB∥CD,AC⊥CD,∴∠BAP=∠DCP=90°,∵E、F分别是线段BP和DP的中点,∴AE=PE=BE,CF=PF,∴∠EAP=∠EPA,∠CPF=∠FCP,∵∠EPA=∠CPF,∴∠EAP=∠FCP,∴AE∥CF;(2)证明:连接EM、EN,∵M、E分别为AP、BP的中点,∴EM∥AB,∵AB∥CD,∴ME∥DC,即EM∥CN,∵AB∥CD,∴△AEB∽△QED,∴=,∵AE=BE,∴DE=EQ,∵N为DQ的中点,∴EN⊥AQ,∵∠ACD=90°,∴EN∥MC,∴四边形MCNE是矩形,∴MN=CE.点评:此题考查了直角三角形斜边上中线性质,矩形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较好,难度适中.24.(12分)(2014•金山区二模)如图,在直角坐标系中,直线y=x+2与x轴交于点A,B是这条直线在第一象限上的一点,过点B作x轴的垂线,垂足为点D,已知△ABD的面积为18.(1)求点B的坐标;(2)如果抛物线的图象经过点A和点B,求抛物线的解析式;(3)已知(2)中的抛物线与y轴相交于点C,该抛物线对称轴与x轴交于点H,P是抛物线对称轴上一点,过点P作PQ∥AC交x轴交于点Q,如果点Q在线段AH上,并且AQ=CP,求点P的坐标.考点:二次函数综合题.分析:(1)由直线y=x+2可知斜率为1,则AD=BD,然后根据三角形的面积求得B点的纵坐标,因为直线与x轴交点是(2,0)求得OA的长,从而求得OD的长,最后求得P点的坐标.(2)用待定系数法把A、B的坐标代入即可.(3)由A、C点的坐标可得AC的斜率为3,设PQ直线为y=3x+b,可解出b值以与Q点的x坐标,AQ可得,CP可用勾股定理获得,然后AQ=CP,求出点P的坐标.解答:解:(1)∵直线y=x+2的斜率为1,∴AD=BD,∴S△ABC=AD•BD=BD2,∴18=BD2,解得BD=6,∴AD=BD=6,∵直线y=x+2与x轴的交点A的坐标为(﹣2,0),∴OD=4,∴点B的坐标为(4,6).(2)把A、B点的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(3)可设P点为(a,),可得AC的斜率为3,设PQ直线为y=3x+b,可解出b 值以与Q点的x坐标,AQ可得,CP可用勾股定理获得,然后AQ=CP,求出点P的坐标∵抛物线的解析式为y=﹣x2+2x+6与y轴的交点C为(0,6),对称轴为x=2.∴直线AC的斜率为3,∵PQ∥AC,∴直线PQ的斜率也为3,设直线PQ的解析式为y=3x+b,则Q(﹣,0),∴AQ=2﹣,当x=2时,y=3x+b=6+b,∴P(2,6+b),∴PC2=22+[6﹣(6+b)]2=4+b2,当y=0时,y=3x+b的x=﹣,∴AQ=2﹣,∵AQ=CP,∴(2﹣)2=4+b2,解得:b=﹣,∴P(2,)点评:此题考查了二次函数的综合运用,考查用待定系数法求二次函数解析式以与勾股定理的应用;25.(14分)(2014•金山区二模)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,AB=4,AD=3,sin∠DCB=,P是边CD上一点(点P与点C、D不重合),以PC为半径的⊙P与边BC相交于点C和点Q.(1)如果BP⊥CD,求CP的长;(2)如果PA=PB,试判断以AB为直径的⊙O与⊙P的位置关系;(3)联结PQ,如果△ADP和△BQP相似,求CP的长.考点:圆的综合题.专题:综合题.分析:(1)作DH⊥BC于H,如图1,利用矩形的性质得DH=4,BH=3,在Rt△DHC中,利用正弦的定义可计算出DC=5,再利用勾股定理计算出CH=3,则BC=BH+CH=6,然后证明Rt△DCH∽Rt△BCP,利用相似比可计算出PC=;(2)作PE⊥AB于E,如图2,由于PA=PB,根据等腰三角形的性质得AE=BE=AB=2,也可判断PE为梯形ABCD的中位线,所以PD=PC=,PE=(AD+BC)=,于是得到EA+PC=PE,根据两圆外切的判定方法得到以AB为直径的⊙O与⊙P外切;(3)如图1,作PF⊥BC于F,根据垂径定理得CF=QF,设PC=x,则DP=5﹣x,先证明△CPF∽△CDH,利用相似比可计算出CF=,则CQ=2CF=,BQ=BC﹣CQ=6﹣,由PQ=PC得∠PQC=∠PCQ,而∠ADP+∠PCQ=180°,∠PQC+∠PQB=180°,所以∠ADP=∠PQB,然后讨论:当△ADP∽△BQP,根据相似的性质得,解得x1=,x2=10(舍去),得到PC=;当△ADP∽△PQB,利用相似的性质得=,解得x1=,x2=5(舍去),得到PC=.解答:解:(1)作DH⊥BC于H,如图1,∵AD∥BC,AB⊥BC,AB=4,AD=3,∴DH=4,BH=3,在Rt△DHC中,sin∠DCH==,∴DC=5,∴CH==3,∴BC=BH+CH=6,∵BP⊥CD,∴∠BPC=90°,而∠DCH=∠BCP,∴Rt△DCH∽Rt△BCP,∴=,即=,∴PC=;(2)作PE⊥AB于E,如图2,∵PA=PB,∴AE=BE=AB=2,∵PE∥AD∥BC,∴PE为梯形ABCD的中位线,∴PD=PC,PE=(AD+BC)=(3+6)=,∴PC=BC=,∴EA+PC=PE,∴以AB为直径的⊙O与⊙P外切;(3)如图1,作PF⊥BC于F,则CF=QF,设PC=x,则DP=5﹣x,∵PF∥DH,∴△CPF∽△CDH,∴=,即=,解得CF=,∴CQ=2CF=,∴BQ=BC﹣CQ=6﹣,∵PQ=PC,∴∠PQC=∠PCQ,∵AD∥BC,∴∠ADP+∠PCQ=180°,而∠PQC+∠PQB=180°,∴∠ADP=∠PQB,当△ADP∽△BQP,∴=,即=,整理得2x2﹣25x+50=0,解得x1=,x2=10(舍去),经检验x=是原分式方程的解.∴PC=;当△ADP∽△PQB,∴=,即=整理得5x2﹣43x+90=0,解得x1=,x2=5(舍去),经检验x=是原分式方程的解.∴PC=,∴如果△ADP和△BQP相似,CP的长为或.点评:此题考查了圆的综合题:熟练掌握垂径定理、圆与圆的位置关系和梯形的性质;会运用勾股定理和相似比进行几何计算.参与本试卷答题和审题的老师有:金岭;gsls;2300680618;zjx111;sjzx;sd2011;zhjh;星期八;bjf;HJJ;sks;yangwy;nhx600(排名不分先后)菁优网2014年6月9日。

2014年上海市金山区中考数学一模试卷

2014年上海市金山区中考数学一模试卷

2014年上海市金山区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)2.(4分)(2014•金山区一模)如果向量与单位向量方向相反,且长度为,那么向量用单位向量表示为.C D.24.(4分)(2014•金山区一模)在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得D.6.(4分)(2014•金山区一模)在平面直角坐标系中,抛物线y=﹣(x﹣2)2+1的顶点是点P,对称轴与x轴相交二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区一模)如果2x=3y,那么=_________.8.(4分)(2014•金山区一模)已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,=,那么的值等于_________.9.(4分)(2014•金山区一模)计算:=_________.10.(4分)(2014•金山区一模)抛物线y=x2+2x的对称轴是_________.11.(4分)(2014•金山区一模)二次函数y=2x2+t的图象向下平移2个单位后经过点(1,3),那么t=_________.12.(4分)(2014•金山区一模)已知在△ABC中,∠C=90°,AB=12,点G为△ABC的重心,那么CG=_________.13.(4分)(2014•金山区一模)已知在Rt△ABC中,∠C=90°,BC=AC,那么∠A=_________度.15.(4分)(2014•金山区一模)已知内切两圆的圆心距为6,其中一个圆的半径为4,那么另一个圆的半径为_________.16.(4分)(2014•金山区一模)如果正n边形的每一个内角都等于144°,那么n=_________.17.(4分)(2014•金山区一模)正六边形的边长为a,面积为S,那么S关于a的函数关系式是_________.18.(4分)(2014•历下区二模)在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么=_________.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•金山区一模)计算:.20.(10分)(2014•金山区一模)已知一个二次函数y=x2+bx+c的图象经过点(4,1)和(﹣1,6).(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴.21.(10分)(2014•金山区一模)如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.22.(10分)(2014•坪山新区模拟)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(12分)(2014•金山区一模)如图,在▱ABCD中,E是AB的中点,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.(1)求证:AB=3FG;(2)若AB:AC=:,求证:DF2=DG•DA.24.(12分)(2014•金山区一模)已知,二次函数y=ax2+bx的图象经过点A(﹣5,0)和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.(1)求点B的坐标;(2)求二次函数的解析式;(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.25.(14分)(2014•金山区一模)如图1,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,PA为半径的⊙P与射线AC的另一个交点为D,射线PD交射线BC于点E.(1)如图2,若点E在线段BC的延长线上,设AP=x,CE=y,①求y关于x的函数关系式,并写出x的取值范围;②当以BE为直径的圆和⊙P外切时,求AP的长;(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.2014年上海市金山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)2.(4分)(2014•金山区一模)如果向量与单位向量方向相反,且长度为,那么向量用单位向量表示为.C D.与单位向量方向相反,且长度为,根据向量的定义,即可求得答案.解:∵向量方向相反,且长度为,24.(4分)(2014•金山区一模)在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得D.sinA=,代入求出即可.,=6.(4分)(2014•金山区一模)在平面直角坐标系中,抛物线y=﹣(x﹣2)2+1的顶点是点P,对称轴与x轴相交二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区一模)如果2x=3y,那么=2.==28.(4分)(2014•金山区一模)已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,=,那么的值等于.==;然后利用比例的性质求得的值.====故答案是:9.(4分)(2014•金山区一模)计算:=.=2+4=2.+10.(4分)(2014•金山区一模)抛物线y=x2+2x的对称轴是直线x=﹣1.;抛物线与11.(4分)(2014•金山区一模)二次函数y=2x2+t的图象向下平移2个单位后经过点(1,3),那么t=3.12.(4分)(2014•金山区一模)已知在△ABC中,∠C=90°,AB=12,点G为△ABC的重心,那么CG=4.×=413.(4分)(2014•金山区一模)已知在Rt△ABC中,∠C=90°,BC=AC,那么∠A=60度.tanA=,继而可求得∠tanA==14.(4分)(2014•金山区一模)已知在Rt△ABC中,∠C=90°,cotB=,BC=3,那么AC=9.cotB==15.(4分)(2014•金山区一模)已知内切两圆的圆心距为6,其中一个圆的半径为4,那么另一个圆的半径为10.16.(4分)(2014•金山区一模)如果正n边形的每一个内角都等于144°,那么n=10.=1017.(4分)(2014•金山区一模)正六边形的边长为a,面积为S,那么S关于a的函数关系式是.×故答案为:18.(4分)(2014•历下区二模)在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么=.cosB=,设BH=H=BH=cosB==cosB==xH=BH=x=,即,=故答案为三、解答题:(本大题共7题,满分78分)19.(10分)(2014•金山区一模)计算:.=.20.(10分)(2014•金山区一模)已知一个二次函数y=x2+bx+c的图象经过点(4,1)和(﹣1,6).(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴.)由题意得,21.(10分)(2014•金山区一模)如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.=422.(10分)(2014•坪山新区模拟)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(12分)(2014•金山区一模)如图,在▱ABCD中,E是AB的中点,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.(1)求证:AB=3FG;(2)若AB:AC=:,求证:DF2=DG•DA.)平行四边形的性质、线段中点的定义推知,所以)根据已知条件可以设,则=)设,24.(12分)(2014•金山区一模)已知,二次函数y=ax2+bx的图象经过点A(﹣5,0)和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.(1)求点B的坐标;(2)求二次函数的解析式;(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.,)根据题意得解这个方程组,得由题意得AB=,那么,那么AP=的坐标为()或(,25.(14分)(2014•金山区一模)如图1,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,PA为半径的⊙P与射线AC的另一个交点为D,射线PD交射线BC于点E.(1)如图2,若点E在线段BC的延长线上,设AP=x,CE=y,①求y关于x的函数关系式,并写出x的取值范围;②当以BE为直径的圆和⊙P外切时,求AP的长;(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.,,且得到x+4﹣质得到﹣(﹣﹣x(﹣x﹣x x+16=x=,由此得到的长为;PQ=x x得到﹣=,由于<的长为=5x+3),即==x+4﹣外切时,﹣x+4=x+x+3,即的长为;x+4﹣﹣(﹣x+3=((﹣x+16 x+16=x,;﹣(﹣x﹣(﹣x+3=(xx+16=x(舍去)或。

2014-2015年第一学期九年级数学试题答案

2014-2015年第一学期九年级数学试题答案

2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。

上海市金山区2014年中考一模(即期末)数学试题及答案(word版本)

上海市金山区2014年中考一模(即期末)数学试题及答案(word版本)

2013学年第一学期期末质量检测初三数学试卷(测试时间:100分钟,满分:150分) 2014.01考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)1.两个相似三角形的面积比为1∶4,那么这两个三角形的周长比为( ) (A )1∶2; (B )1∶4;(C )1∶8;(D )1∶16.2.如果向量a 与单位向量e方向相反,且长度为12,那么向量a 用单位向量e表示为( ) (A )12a e = ; (B )2a e =;(C )12a e =- ; (D )2a e =-.3.将抛物线2y x =向右平移1个单位,所得新抛物线的函数解析式是( ) (A )2(1)y x =+; (B )2(1)y x =-; (C )21y x =+; (D )21y x =-.4.在Rt △ABC 中,∠A =90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B 的正切值( ) (A )扩大2倍; (B )缩小2倍; (C )扩大4倍; (D )大小不变 . 5.已知在Rt △ABC 中,∠C =90°,∠A =a ,BC =m ,那么AB 的长为( ) (A )sin m α;(B )cos m α; (C )sin mα; (D )cos mα. 6.在平面直角坐标系中,抛物线()221y x =--+的顶点是点P ,对称轴与x 轴相交于点Q ,以点P 为圆心,PQ 长为半径画⊙P ,那么下列判断正确的是( ) (A )x 轴与⊙P 相离; (B )x 轴与⊙P 相切; (C )y 轴与⊙P 与相切; (D )y 轴与⊙P 相交. 二、填空题:(本大题共12题,每题4分,满分48分) 7.如果23x y =,那么22x yx y+-= ▲ . 8.已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,35DE BC =,那么CE AE的值等于 ▲ .9.计算:()223a b b +-=▲ .10.抛物线22y x x =+的对称轴是 ▲ .11.二次函数22y x t =+的图像向下平移2个单位后经过点(1,3),那么t = ▲ . 12.已知在△ABC 中,∠C =90°,AB =12,点G 为△ABC 的重心,那么CG = ▲ . 13.已知在Rt △ABC 中,∠C =90°,BC,那么∠A = ▲ 度. 14.已知在Rt △ABC 中,∠C =90°,1cot 3B =,BC =3,那么AC = ▲ .15.已知内切两圆的圆心距为6,其中一个圆的半径为4,那么另一个圆的半径为 ▲ . 16.如果正n 边形的每一个内角都等于144°,那么n = ▲ .17.正六边形的边长为a ,面积为S ,那么S 关于a 的函数关系式是 ▲ . 18.在Rt △ABC 中,∠C =90°,3cos 5B =, 把这个直角三角形绕顶点C 旋转后得到 Rt △A'B'C ,其中点B' 正好落在AB 上, A'B'与AC 相交于点D ,那么B DCD'= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:222sin 60cos 45tan 60cos30tan 30cot 45---20.(本题满分10分, 其中第(1)小题6分,第(2)小题4分)已知一个二次函数2y x b x c =++的图像经过点(4,1)和(1-,6). (1)求这个二次函数的解析式;(2)求这个二次函数图像的顶点坐标和对称轴. 21.(本题满分10分)如图,已知AB 是⊙O 的弦,点C 在线段AB 上,OC =AC =4,CB =8. 求⊙O 的半径. 22.(本题满分10分)第18题图如图,某超市从底楼到二楼有一自动扶梯,右图是侧面示意图。

【数学】上海市金山区2015届高三上学期期末考试(一模).docx

【数学】上海市金山区2015届高三上学期期末考试(一模).docx

上海市金山区 2014— 2015 学年第一学期期末考试高三数学试卷(满分: 150 分,完卷时间: 120 分钟 )(答题请写在答题纸上)一、填空题(本大题满分56 分)本大题共有 14 题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得 4 分,否则一律得零分.1.若集合 M={ y | yx 25 ,x R }, N={ y | yx 2 , x ≥ –2},则 M ∩N=▲.2.计算: lim 3n2n n 1n 1 =▲.n3 211 的解是▲.3.不等式:x4.如果复数 z = 2bi ( b R )的实部与虚部相等,则 z 的共轭复数 z =▲.1 i5.方程: sinx+cosx=1 在 [0, π]上的解是▲.6.等差数列 {a n }中, a 2=8, S 10=185,则数列 {a n }的通项公式 a n =▲ (n N* ).a 17.当 a>0, b>0 且 a+b=2 时,行列式的值的最大值是▲.1b8.若 ( x22 )12的二项展开式中的常数项为m ,则 m= ▲.x9.从一堆苹果中任取 5 只,称得它们的质量分别是:(单位:克 )125,124,121,123,127,则该样本的标准差是▲克.10.三棱锥 O –ABC 中, OA=OB=OC=2,且∠ BOC=45 ,则三棱锥 O –ABC 体积的最大值是▲.11.从集合 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 中任取两个数,欲使取到的一个数大于 k ,另一个数小于 k(其中 k {5, 6, 7, 8, 9})的概率是 2,则 k=▲.512.已知点 A(–3,–2)和圆 C :(x –4)2+(y –8)2=9,一束光线从点 A 发出,射到直线 l :y=x –1 后反射(入射点为 B),反射光线经过圆周 C 上一点 P ,则折线 ABP 的最短长度是▲.AD13.如图所示,在长方体 ABCD –EFGH 中,AD=2,AB=AE=1, BMCM 为矩形 AEHD 内的一点,如果∠ MGF=∠ MGH , MGEH和平面 EFG 所成角的正切值为1,那么点 M 到平面F第 13 题图G2EFGH 的距离是▲.14. 已知点 P(x 0, y 0) 在椭圆 C :x 2 y 2 1(a>b>0)上,如果经过点 P 的直线与椭圆只有 a2b2一个公共点时,称直线为椭圆的切线,此时点P 称为切点,这条切线方程可以表示为:x 0 x y 0 y a 2b 2 1.根据以上性质,解决以下问题:已知椭圆 L :x 2y 2 1,若 Q(u ,v)是椭圆 L 外一点 (其中 u ,v 为定值 ),经过 Q 点作169椭圆 L 的两条切线,切点分别为 A 、 B ,则直线 AB 的方程是▲.二、选择题(本大题满分20 分)本大题共有 4 题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5 分,否则一律得零分.15.复数 z 1 = a+bi(a 、b R ,i 为虚数单位 ),z 2= –b+i ,且 | z 1|<| z 2| ,则 a 的取值范围是( ▲ ).(A)a > 1 (B)a >0 (C)–l < a < 1 (D)a < –1 或 a >116.用 1, 2, 3, 4, 5 组成没有重复数字的五位数,其中偶数有( ▲ ). (A) 60 个(B) 48 个 (C) 36 个 (D) 24 个17.设 k>1,f(x)=k(x –1) (x R ),在平面直角坐标系 xOy 中,函数 y=f(x)的图像与 x 轴交于 A点,它的反函数y=f –1(x)的图像与 y 轴交于 B 点,并且这两个函数的图像相交于P 点 . 已知四边形 OAPB 的面积是 3,则实数 k 等于 ( ▲ ).(A) 33 4 6(B)(C)(D)23518.若集合 A 1、 A 2 满足 A 1∪ A 2=A ,则称 (A 1,A 2)为集合 A 的一个分拆,并规定:当且仅当 A 1=A 2 时, (A 1 ,A 2 )与 (A 2,A 1)为集合 A 的同一种分拆,则集合 A={a 1,a 2,a 3}的不同分拆种数是( ▲ ).(A)8 (B)9 (C)26 (D)27三、解答题(本大题满分 74 分)本大题共有 5 题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分 12 分 )a 、b 、c 分别是锐角△ ABC 的内角 A 、B 、C 的对边,向量 p =(2–2sinA ,cosA+sinA),q =(sinA –cosA ,1+sinA),且 p ∥ q .已知 a= 7 ,△ ABC 面积为3 3,求 b 、 c 的大小.220.(本题满分14 分 )本题共有 2 个小题,第 1 小题满分8 分,第 2 小题满分 6 分.如图,在四棱锥P–ABCD的底面梯形ABCD中, AD∥ BC, AB⊥ BC, AB=2, AD=3,∠ ADC=45 .已知 PA⊥平面 ABCD, PA=1.求: (1)异面直线PD与 AC所成角的大小(结果用反三角函数值表示);(2)三棱锥 C–APD 的体积.PA DB C第 20 题图21.(本题满分14 分 ) 本题共有 2 个小题,第 1 小题满分7 分,第 2 小题满分 7 分 .已知 a>0 且 a1,数列 {a n}是首项与公比均为 a 的等比数列,数列{b n}满足 b n=a n lga n(n N* ).(1)若 a=3,求数列 {b n}的前 n 项和 S n;(2)若对于 n N* ,总有b n<b n+1,求a的取值范围.22.(本题满分16 分)本题共有 3 个小题,第 1 小题满分 4 分,第 2 小题满分 6 分,第3小题满分 6 分.动点 P 与点F (0,1)的距离和它到直线l : y1的距离相等,记点P 的轨迹为曲线 C .(1)求曲线 C 的方程;(2) 设点A 0,a (a 2 ) ,动点T在曲线C上运动时,A T 的最短距离为 a 1,求a的值以及取到最小值时点T 的坐标;(3) 设P1,P2为曲线C的任意两点,满足OP1OP2(O为原点),试问直线 P1 P2是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.23.(本小题满分18 分 ) 本题共有 3 个小题,第 1 小题满分 4 分,第 2 小题满分 6 分,第 3小题满分 8 分 .设函数 f(x)=2ka x+(k–3)a–x(a>0 且 a1)是定义域为R的奇函数.(1)求 k 值;(2)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2–x)+f(tx+4)<0 恒成立的t 的取值范围;(3)若 f(2)=3,且 g(x)=2x+2–x–2mf (x)在[ 2,+∞)上的最小值为–2,求 m 的值.参考答案4一、填空 (本大 分56 分)本大 共有 14 ,考生 在答 相 号的空格内直接填写 果,每个空格填 得4 分,否 一律得零分.1.[0, 5] ; 1 ;3.0<x<1;4. 1–i ;5. 或 0; 6. 3n+2;7. 02. 328.7920;9.2;10. 2 2 ;11.7;12.10; 13.2;14.uxvy 132169二、 (本大 分 20 分)本大 共有 4 ,每 有且只有一个正确答案,考生 在答 的相 号上,将代表答案的小方格涂黑, 得 5 分,否 一律得零分 .15. C ;16. B ;17. B ;18. D三、解答 (本大 分74 分)本大 共有 5 ,解答下列各 必 在答 相 号的定区域内写出必要的步 .19. (本 分 12 分 )解: p2 2sin A,cos A sin A , q sin A cos A,1 sin A ,又 p ‖ q(2–2sinA)(1+sinA)–(cosA+sinA)(sinA –cosA)=0,即: 4 sin 2A3 0又A 角,3sin A2,所以∠ A=60 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分因 △ ABC 面33 ,所以 1 bcsinA= 3 3,即 bc=6,2 22222 2又 a= 7 ,所以 7=b +c –2bccosA , b +c =13,b 3 b2 12 分解之得:或c⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯c 2320. (本 分 14 分 )本 共有 2 个小 ,第 1 小 分 8 分,第 2 小 分 6 分.解: (1) 点 C 作 CF ∥ AB 交 AD 于点 F ,延 BC 至 E ,使得 CE=AD , 接 DE , AC ∥ DE ,所以∠ PDE 就是异面直PD 与 AC 所成的角或其 角,⋯⋯⋯⋯⋯⋯2 分因 ∠ ADC=45,所以 FD=2,从而 BC=AF=1,且 DE=AC= 5 ,AE=20 , PE= 21 , PD= 10 , 在 △ PDE中 ,PAF DBC E3 2 cos PDE,所以,异面直 PD 与 AC 所成角的10大小 arccos32⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分10(2) 因 V C –APD =V P –ACD ,△1CF AD=32S ACD = PA ⊥底面 ABCD ,三棱 P –ACD 的高 PA=1,V P –ACD = 1S △ACD PA=1,3所以,三棱 C –APD 的体 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分21. (本 分14 分 ) 本 共有 2 个小 ,第 1 小 分 7 分,第 2 小 分 7 分 .(1) 由已知有 a n3n , b n a n lg a n n 3n lg 3S n [3 2 32 3 33(n 1)3n 1n 3n ] lg 3 ,3S n [322 33 (n 1)3n n 3n 1 ] lg 3 ,所以2S n(3 32333n 13nn 3n 1 ) lg 3 ,S n3lg 3 (2n 1) 3n 1 lg 3 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分4 4(2) b nb n 1 即 na n lg a (n 1)a n 1 lg a .由 a 0 且 a1 ,得 n lg a(n 1)a lg a ,lg a或lg a 0所以(n 1)a n 0( n 1)a n 00 a 1 a 1即an 或an 任意 nN* 成立,n1n 1且 1n 11,所以 0 a1 或 a 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分n 2222.(本 分 16 分)本 共有3 个小 ,第 1 小 分4 分,第 2小 分 6 分,第 3小 分6 分.(1) 根据抛物 的定 可知 , 点 P 的 迹是抛物所以曲 C 的方程x 2=4y ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2) 点 T(x 0, y 0), x 02=4y 0(y 0≥ 0),| AT|= ( x 0 0)2 ( y 0 a)2 = [ y 0 ( a 2)] 24a 4 ,a –2>0, 当 y 0=a –2 , | AT| 取得最小 2 a 1 ,2 a1 =a –1, a 2–6a+5=0, a=5 或 a=1 (舍去 ),所以 y 0=a –2=3, x 0=23 ,所以 T 坐 ( 23 , 3);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分(3) 然直 OP 1 、OP 2 的斜率都必 存在,1 ,k ,ky kx4 ,4),同理 P 2(–4k, 4k 2),x 2,解之得 P 1(4 yk k 2直 P 1P 2 的斜率1k 2 ,直 P 1P 2 方程 : y 4k 21 k 2(x 4k)kk整理得: k(y –4)+(k 2–1)x=0,所以直 P 1 P 2 恒 点 (0, 4)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 16 分23. (本小 分 18 分 )本 共有 3 个小 ,第 1 小 分4 分,第 2 小 分 6 分,第 3小 分 8分 .解(1) 因 f(x)是定 域 R 的奇函数,所以 f(0)= 0,所以 2k+(k –3)=0,即 k=1, 知,符合条件⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分x–x且 a 1)(2) f(x)=2(a –a )(a>0因 f(2)<0, a21 <0,又 a>0 且 a1,所以 0<a<1a2因 y=a x 减, y=a –x 增,故 f(x)在 R 上 减。

2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。

1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。

2014-2015年上海市金山区高一上学期数学期末试卷和解析

2014-2015年上海市金山区高一上学期数学期末试卷和解析

2014-2015学年上海市金山区高一(上)期末数学试卷一、填空题(本大题满分36分)本大题共有12题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分)1.(3.00分)已知全集U=R,A={x|x≥2},则∁U A=.2.(3.00分)函数y=lg的定义域是.3.(3.00分)函数y=x+(x>0)的最小值为.4.(3.00分)若集合A={﹣1,0,1},集合B={x|x=t2,t∈A},用列举法表示B=.5.(3.00分)若4x﹣2x+1=0,则x=.6.(3.00分)已知关于x的不等式x2﹣(a﹣1)x+(a﹣1)>0的解集是R,则实数a取值范围是.7.(3.00分)已知函数y=a x﹣1+1(a>0,a≠1)的图象经过一个定点,则顶点坐标是.8.(3.00分)已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,则满足f(m)<f(1)的实数m的范围是.9.(3.00分)用二分法求函数f(x)=3x﹣x﹣4的一个零点,其参考数据如下:据此数据,可得方程3x﹣x﹣4=0的一个近似解(精确到0.01)是.10.(3.00分)方程|x2+4x+3|﹣a=0有2解,则实数a的取值范围是.11.(3.00分)已知y=f(x)是定义在R上的奇函数,且当x≥0时,,则此函数的值域为.12.(3.00分)设a+b=3,b>0,则当a=时,取得最小值.二、选择题(本大题满分18分)本大题共6题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.(3.00分)下列命题中,与命题“如果x2+3x﹣4=0,那么x=﹣4或x=1”等价的命题是()A.如果x2+3x﹣4≠0,那么x≠﹣4或x≠1B.如果x≠﹣4或x≠1,那么x2+3x﹣4≠0C.如果x≠﹣4且x≠1,那么x2+3x﹣4≠0D.如果x=﹣4或x=1,那么x2+3x﹣4=014.(3.00分)已知实数a,b满足ab>0,则“<成立”是“a>b成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(3.00分)若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.C. D.16.(3.00分)如图所示曲线是幂函数y=x a在第一象限内的图象,其中a=±,a=±2,则曲线C1,C2,C3,C4对应a的值依次是()A.、2、﹣2、﹣B.2、、﹣、﹣2 C.﹣、﹣2、2、D.2、、﹣2、﹣17.(3.00分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=﹣|x|(x∈R)B.y=﹣x3﹣x(x∈R)C.D.18.(3.00分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),称f(x)为“局部奇函数”,若f(x)=4x﹣m2x+1+m2﹣3为定义域R上的“局部奇函数”,则实数的取值范围是()A.1﹣≤m≤1+B.1﹣≤m≤2C.﹣2≤m≤2D.﹣2≤m≤1﹣三、解答题(本大题满分46分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(6.00分)本题共有2题,第1小题满分4分,第2小题满分2分已知集合A={x||x﹣1|≤1},B={x|x≥a}.(1)当a=1时,求集合A∩B;(2)若A⊆B,求实数a的取值范围.20.(8.00分)已知a≠0,试讨论函数f(x)=在区间(0,1)上单调性,并加以证明.21.(8.00分)某商场对顾客实行购物优惠活动,规定一次购物总额:(1)如果不超过500元,那么不予优惠;(2)如果超过500元但不超过1000元,那么按标价给予8折优惠;(3)如果超过1000元,那么其中1000元给予8折优惠,超过1000元部分按5折优惠.设一次购物总额为x元,优惠后实际付款额为y元.(1)试写出用x(元)表示y(元)的函数关系式;(2)某顾客实际付款1600元,在这次优惠活动中他实际付款比购物总额少支出多少元?22.(12.00分)已知函数f(x)=3x+k(k为常数),A(﹣2k,2)是函数y=f1(x)图象上的点.(1)求实数k的值及函数y=f1(x)的解析式:(2)将y=f1(x)的图象向右平移3个单位,得到函数y=g(x)的图象,若2f1(x+﹣3)﹣g(x)≥1对任意的x>0恒成立,试求实数m的取值范围.23.(12.00分)已知集合H是满足下列条件的函数f(x)的全体:在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立.(1)幂函数f(x)=x﹣1是否属于集合H?请说明理由;(2)若函数g(x)=lg∈H,求实数a的取值范围;(3)证明:函数h(x)=2x+x2∈H.2014-2015学年上海市金山区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分)1.(3.00分)已知全集U=R,A={x|x≥2},则∁U A={x|x<2} .【解答】解:∵全集U=R,A={x|x≥2},∴∁U A={x|x<2},故答案为:{x|x<2}2.(3.00分)函数y=lg的定义域是(﹣∞,﹣1)∪(1,+∞).【解答】解:∵函数y=lg,∴x应满足:;解得0<x<1,或x>1,∴函数y的定义域是(﹣∞,﹣1)∪(1,+∞).故答案为:(﹣∞,﹣1)∪(1,+∞).3.(3.00分)函数y=x+(x>0)的最小值为2.【解答】解:∵x>0,∴≥2,当且仅当x=时取等号,此时x=,即函数的最小值是2,故答案为:2.4.(3.00分)若集合A={﹣1,0,1},集合B={x|x=t2,t∈A},用列举法表示B= {0,1} .【解答】解:当t=±1时,x=1,当t=0时,x=0,∴B={0,1},故答案为:{0,1}.5.(3.00分)若4x﹣2x+1=0,则x=1.【解答】解:∵4x﹣2x+1=0,∴2x(2x﹣2)=0,∴2x﹣2=0,解得x=1.故答案为:16.(3.00分)已知关于x的不等式x2﹣(a﹣1)x+(a﹣1)>0的解集是R,则实数a取值范围是(1,5).【解答】解:∵关于x的不等式x2﹣(a﹣1)x+(a﹣1)>0的解集是R,∴△<0,即(a﹣1)2﹣4(a﹣1)<0;整理得(a﹣1)(a﹣5)<0,解得1<a<5;∴实数a取值范围是(1,5).故答案为:(1,5).7.(3.00分)已知函数y=a x﹣1+1(a>0,a≠1)的图象经过一个定点,则顶点坐标是(1,2).【解答】解:当x=1时,f(1)=a1﹣1+1=a0+1=2,∴函数f(x)=a x﹣1+1的图象一定经过定点(1,2).故答案为:(1,2).8.(3.00分)已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,则满足f(m)<f(1)的实数m的范围是﹣1<m<1.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(m)<f(1)等价为f(|m|)<f(1),即|m|<1,∴﹣1<m<1,即实数m的取值范围是﹣1<m<1,故答案为:﹣1<m<1.9.(3.00分)用二分法求函数f(x)=3x﹣x﹣4的一个零点,其参考数据如下:据此数据,可得方程3x﹣x﹣4=0的一个近似解(精确到0.01)是 1.56.【解答】解:由表格作数轴如下,故f(1.5625)f(1.5563)<0;故方程3x﹣x﹣4=0的一个近似解在(1.5563,1.5625)之间,故可取(1.5563+1.5625)=1.5594≈1.56作为近似解.故答案为:1.56.10.(3.00分)方程|x2+4x+3|﹣a=0有2解,则实数a的取值范围是a=0或a >1.【解答】解:方程|x2+4x+3|﹣a=0有2解可化为y=|x2+4x+3|与y=a有两个交点,作函数y=|x2+4x+3|的图象如右图,故当a=0或a>1时,有两个交点;故答案为:a=0或a>1.11.(3.00分)已知y=f(x)是定义在R上的奇函数,且当x≥0时,,则此函数的值域为.【解答】解:设t=,当x≥0时,2x≥1,∴0<t≤1,f(t)=﹣t2+t=﹣+,∴0≤f(t)≤,故当x≥0时,f(x)∈[0,];∵y=f(x)是定义在R上的奇函数,∴当x≤0时,f(x)∈[﹣,0];故函数的值域时[﹣,].12.(3.00分)设a+b=3,b>0,则当a=﹣时,取得最小值.【解答】解:∵a+b=3,b>0,∴b=3﹣a>0,即a<3,当0<a<3时,=+=++≥+=+=,当且仅当a=取等号,故当a=时,取得最小值;当a<0时,=﹣﹣=﹣﹣﹣≥﹣+2=﹣+=,当且仅当a=﹣取等号,故当a=﹣时,取得最小值;综上所述a的值为﹣时,取得最小值.故答案为:﹣.二、选择题(本大题满分18分)本大题共6题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.(3.00分)下列命题中,与命题“如果x2+3x﹣4=0,那么x=﹣4或x=1”等价的命题是()A.如果x2+3x﹣4≠0,那么x≠﹣4或x≠1B.如果x≠﹣4或x≠1,那么x2+3x﹣4≠0C.如果x≠﹣4且x≠1,那么x2+3x﹣4≠0D.如果x=﹣4或x=1,那么x2+3x﹣4=0【解答】解:原命题与其逆否命题等价,故命题“如果x2+3x﹣4=0,那么x=﹣4或x=1”等价的命题是:如果x≠﹣4且x≠1,那么x2+3x﹣4≠0,故选:C.14.(3.00分)已知实数a,b满足ab>0,则“<成立”是“a>b成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:ab>0,<⇔⇔b<a.∴实数a,b满足ab>0,则“<成立”是“a>b成立”的充要条件.故选:C.15.(3.00分)若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.C. D.【解答】解:对于A;a2+b2≥2ab所以A错对于B,C,虽然ab>0,只能说明a,b同号,若a,b都小于0时,所以B,C 错∵ab>0∴故选:D.16.(3.00分)如图所示曲线是幂函数y=x a在第一象限内的图象,其中a=±,a=±2,则曲线C1,C2,C3,C4对应a的值依次是()A.、2、﹣2、﹣B.2、、﹣、﹣2 C.﹣、﹣2、2、D.2、、﹣2、﹣【解答】解:根据幂函数y=x a在第一象限内的图象,知;当a=2时,幂函数y=x2在第一象限内是增函数,图象向上靠近y轴,符合C1特征;当a=时,幂函数y=在第一象限内是增函数,图象向右靠近x轴,符合C2特征;当a=﹣时,幂函数y=在第一象限内是减函数,图象向右靠近x轴,符合C3特征;当a=﹣2时,幂函数y=x﹣2在第一象限内是减函数,图象向右更靠近x轴,符合C4特征.综上,曲线C1,C2,C3,C4对应a的值依次是2、、﹣、﹣2.故选:B.17.(3.00分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=﹣|x|(x∈R)B.y=﹣x3﹣x(x∈R)C.D.【解答】解:A选项不正确,因为y=﹣|x|(x∈R)是一个偶函数,且在定义域内不是减函数;B选项正确,y=﹣x3﹣x(x∈R)是一个奇函数也是一个减函数;C选项不正确,是一个减函数,但不是一个奇函数;D选项不正确,是一个奇函数,但在定义域上不是减函数.综上,B选项正确故选:B.18.(3.00分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),称f(x)为“局部奇函数”,若f(x)=4x﹣m2x+1+m2﹣3为定义域R上的“局部奇函数”,则实数的取值范围是()A.1﹣≤m≤1+B.1﹣≤m≤2C.﹣2≤m≤2D.﹣2≤m≤1﹣【解答】解:根据“局部奇函数”的定义可知,函数f(﹣x)=﹣f(x)有解即可,即f(﹣x)=4﹣x﹣m2﹣x+1+m2﹣3=﹣(4x﹣m2x+1+m2﹣3),∴4x+4﹣x﹣2m(2x+2﹣x)+2m2﹣6=0,即(2x+2﹣x)2﹣2m⋅(2x+2﹣x)+2m2﹣8=0有解即可.设t=2x+2﹣x,则t=2x+2﹣x≥2,∴方程等价为t2﹣2m⋅t+2m2﹣8=0在t≥2时有解,设g(t)=t2﹣2m⋅t+2m2﹣8,对称轴x=,①若m≥2,则△=4m2﹣4(2m2﹣8)≥0,即m2≤8,∴﹣2,此时2,②若m<2,要使t2﹣2m⋅t+2m2﹣8=0在t≥2时有解,则,即,解得1﹣,综上:1﹣.故选:B.三、解答题(本大题满分46分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(6.00分)本题共有2题,第1小题满分4分,第2小题满分2分已知集合A={x||x﹣1|≤1},B={x|x≥a}.(1)当a=1时,求集合A∩B;(2)若A⊆B,求实数a的取值范围.【解答】解:由题意,A={x||x﹣1|≤1}=[0,2],(1)B={x|x≥1},故A∩B=[1,2].(2)∵A⊆B,∴a≤0.20.(8.00分)已知a≠0,试讨论函数f(x)=在区间(0,1)上单调性,并加以证明.【解答】解:a<0时,f(x)在(0,1)上是减函数,a>0时,f(x)在(0,1)上是增函数;证明如下:任取x1,x2∈(0,1),且x1<x2;∴f(x1)﹣f(x2)=﹣=;∵0<x1<x2<1,∴x1+x2>0,x1﹣x2<0,(1﹣)(1﹣)>0;∴当a<0时,f(x1)﹣f(x2)>0,f(x)在(0,1)上是减函数;当a>0时,f(x1)﹣f(x2)<0,f(x)在(0,1)上是增函数.综上,a<0时,f(x)在(0,1)上是减函数,a>0时,f(x)在(0,1)上是增函数.21.(8.00分)某商场对顾客实行购物优惠活动,规定一次购物总额:(1)如果不超过500元,那么不予优惠;(2)如果超过500元但不超过1000元,那么按标价给予8折优惠;(3)如果超过1000元,那么其中1000元给予8折优惠,超过1000元部分按5折优惠.设一次购物总额为x元,优惠后实际付款额为y元.(1)试写出用x(元)表示y(元)的函数关系式;(2)某顾客实际付款1600元,在这次优惠活动中他实际付款比购物总额少支出多少元?【解答】解:(1)由题可知:y=.(6分)(2)∵y=1600>900,∴x>1000,∴500+400+0.5(x﹣1000)=1600,解得,x=2400,2400﹣1600=800,故此人在这次优惠活动中他实际付款比购物总额少支出800元.…(12分)22.(12.00分)已知函数f(x)=3x+k(k为常数),A(﹣2k,2)是函数y=f1(x)图象上的点.(1)求实数k的值及函数y=f1(x)的解析式:(2)将y=f1(x)的图象向右平移3个单位,得到函数y=g(x)的图象,若2f1(x+﹣3)﹣g(x)≥1对任意的x>0恒成立,试求实数m的取值范围.【解答】解:(1)∵函数f(x)=3x+k(k为常数),且A(﹣2k,2)是函数y=f1(x)图象上的点;∴32+k=﹣2k,解得k=﹣3;∴f(x)=3x﹣3,∴函数y=f1(x)=log3(x+3);(2)将y=f1(x)=log3(x+3)的图象向右平移3个单位,得到函数y=g(x)的图象,∴y=g(x)=log3x;∵2f1(x+﹣3)﹣g(x)≥1,即2log3(x+﹣3+3)﹣log3x≥1,∴log3≥1;即≥3对任意的x>0恒成立,∴x+2+≥3,即x++2≥3对任意的x>0恒成立;∵x>0,∴x+≥2,当且仅当x=时取“=”,∴函数h(m)=x++2≥2+2=4,令4≥3,解得m≥,∴实数m的取值范围[,+∞).23.(12.00分)已知集合H是满足下列条件的函数f(x)的全体:在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立.(1)幂函数f(x)=x﹣1是否属于集合H?请说明理由;(2)若函数g(x)=lg∈H,求实数a的取值范围;(3)证明:函数h(x)=2x+x2∈H.【解答】(1)解:若f(x)=x﹣1∈H,则有,即,而此方程无实数根,所以f(x)=x﹣1∉H.(4分)(2)解:由题意有实数解即,也即有实数解.当a=2时,有实数解.当a≠2时,应有.综上得,a的取值范围为.(3)证明:∵,∴令m(x)=2x+2x﹣2,∵m(x)在R上连续不断,且m(0)=﹣1<0,m(1)=2>0,∴存在x0∈(0,1),使得m(x0)=0成立.∴存在x0∈(0,1),使得h(x0+1)=h(x0)+h(1)成立.∴h(x)∈H.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 9
O
x
y
O x
y
O
x
y
O x
y
金山区2014-2015学年第一学期期末质量检测初三数
学试卷
2015.1
(时间100分钟,满分150分)
一、选择题(本题共6小题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.抛物线
122
x
y 的顶点坐标是(

(A ))1,2(;(B ))1,0(;(C ))0,1(;
(D ))2,1(.
2.在ABC Rt 中,90C
,3,5BC
AB ,那么A sin 的值等于(

(A )4
3;
(B )
3
4;
(C )
5
3;
(D )
5
4.
3.已知
ABC ∽DEF ,点A 、B 、C 对应点分别是D 、E 、F ,4:9:DE AB ,那

DEF ABC
S S
:等于(

(A )3:2;(B )9:4;
(C )16:81;
(D )81:16.4.正多边形的中心角是36o ,那么这个正多边形的边数是(

(A )10;
(B )8;
(C );6
(D )5.
5.已知⊙M 与⊙N 的半径分别为1和5,若两圆相切,那么这两圆的圆心距MN 的长等于


(A )4;(B )6;(C )4或5;(D )4或6
6.已知反比例函数)0(a x
a y
,当0x 时,它的图像
y 随x 的增大而减小,那么二次函

ax ax
y 2
的图像只可能是(

(A)
(B)
(C)
(D)
二、填空题(本题共12题,每小题4分,满分48分)
7.已知
23
x y
,那么
y
x
y x。

相关文档
最新文档