金山区2014-2015学年第一学期期末质量检测初三数学试卷(含详细解答)
2014-2015学年九年级上数学期末试卷及答案解析
2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。
上海市2014金山区初三数学二模试卷(含答案)
2014年市金山区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)[四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸相应位置上]1.(4分)(2014•金山区二模)以下各数中是有理数的是()A.3.14 B.C.D.2.(4分)(2014•金山区二模)将直线y=x+2向下平移2个单位后,所得直线的解析式为()A.y=x+4 B.y=x﹣2 C.y=x D.y=x﹣43.(4分)(2014•金山区二模)以下一元二次方程中,有两个相等的实数根的是()A.x2+2x﹣1=0 B.x2﹣2x+1=0 C.x2+2x+4=0 D.x2﹣2x﹣4=04.(4分)(2014•金山区二模)在本学期的“献爱心”的捐款活动中,九(1)班学生捐款情况如图,那么捐款金额的众数和中位数分别是()A.15和13.5 B.8元和6.5元C.15和8元D.8元和8元5.(4分)(2014•金山区二模)以下命题中,真命题是()A.平行四边形是轴对称图形B.正多边形是中心对称图形C.正多边形都是轴对称图形D.是轴对称图形的四边形都是中心对称图形6.(4分)(2014•金山区二模)在同一平面,已知线段AO=2,⊙A的半径为r,将⊙A绕点O按逆时针方向旋转90°,得到的圆记作⊙B,如果⊙A与⊙B外切,那么r的值为()A.1B.2C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区二模)计算:(a3)2= _________ .8.(4分)(2014•宝坻区二模)计算:(a+2)(a﹣2)= _________ .9.(4分)(2014•金山区二模)方程=的解是_________ .10.(4分)(2014•金山区二模)计算:+2(+)= _________ .11.(4分)(2014•金山区二模)已知函数f(x)=,那么f()= _________ .12.(4分)(2014•金山区二模)已知反比例函数的图象经过点(﹣1,2),那么该反比例函数的图象的两个分支在第_________ 象限.13.(4分)(2012•)菱形的两条对角线长分别为6和8,则这个菱形的周长为_________ .14.(4分)(2014•金山区二模)某班共有学生36人,在迎新年庆祝会上,随机抽取1名一等奖,3名二等奖,5名三等奖,以上统称为等第奖,该班每一名学生获得等第奖的概率是_________ .15.(4分)(2014•金山区二模)为了了解学生课外阅读的喜好,某校随机抽取部分学生进行问卷调查,调查时要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍或者喜欢其他类型的书籍,则都选“其他”,图2是整理数据后绘制的不完整的统计图,如果还知道喜欢漫画的有60人,选“其他”的有30人,那么喜欢小说的人数为_________ .16.(4分)(2014•金山区二模)如图,在△ABC中,AB=4,BC=6,BD是∠ABC的角平分线,DE∥BC.DE 交AB于点E,那么DE的长为_________ .17.(4分)(2014•金山区二模)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为_________ .18.(4分)(2014•金山区二模)如图,在Rt△AB C中,∠ACB=90°,AC=4,BC=3,D是边AB上一点,联结CD,把△ACD沿CD所在的直线翻折,点A落在点E的位置,如果DE∥BC,那么AD的长为_________ .三、解答题:(本大题共7题,满分78分)第15题19.(10分)(2014•金山区二模)计算:﹣cos30°﹣2﹣1+(π﹣)0.20.(10分)(2014•金山区二模)解不等式组:,并把解集在数轴上表示出来.21.(10分)(2014•金山区二模)某市为鼓励居民节约用水,制定了分阶梯收费制度,按每年用水量分成两个阶梯,即年用水量不超过200立方米的部分和200立方米以上的部分按不同的价格收取水费,每户居民每年的水费y(元)和用水量x(立方米)的如图1和图2,(1)如果小家年用水量为160立方米,那么小王家的年水费是多少?(2)如果小王家年用水量为1500元,那么小王家的年用水量是多少?22.(10分)(2014•金山区二模)已知:如图,C是线段BD上一点,AB⊥BD,ED⊥BD,∠ACE=90°,tan∠ACB=2,AB=4,ED=3.求:(1)线段BD的长;(2)∠AEC的正切值.23.(12分)(2014•金山区二模)已知:如图,线段AB∥CD,AC⊥CD,AC、BD相交于点P,E、F分别是线段BP和DP的中点.(1)求证:AE∥CF;(2)如果AE和DC的延长线相交于点Q,M、N分别是线段AP和DQ的中点,求证:MN=CE.24.(12分)(2014•金山区二模)如图,在直角坐标系中,直线y=x+2与x轴交于点A,B是这条直线在第一象限上的一点,过点B作x轴的垂线,垂足为点D,已知△ABD的面积为18.(1)求点B的坐标;(2)如果抛物线的图象经过点A和点B,求抛物线的解析式;(3)已知(2)中的抛物线与y轴相交于点C,该抛物线对称轴与x轴交于点H,P是抛物线对称轴上一点,过点P作PQ∥AC交x轴交于点Q,如果点Q在线段AH上,并且AQ=CP,求点P的坐标.25.(14分)(2014•金山区二模)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,AB=4,AD=3,sin∠DCB=,P是边CD上一点(点P与点C、D不重合),以PC为半径的⊙P与边BC相交于点C和点Q.(1)如果BP⊥CD,求CP的长;(2)如果PA=PB,试判断以AB为直径的⊙O与⊙P的位置关系;(3)联结PQ,如果△ADP和△BQP相似,求CP的长.2014年市金山区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)[四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸相应位置上]1.(4分)(2014•金山区二模)以下各数中是有理数的是()A.3.14 B.C.D.考点:实数.分析:根据有理数是有限小数或无限循环小,可得答案.解答:解:A、是有限小数,故A是有理数;B、C、D是无限不循环小数,故B、C、D是无理数;应选:A.点评:此题考查了有理数,有限小数或无限循环小数是有理数.2.(4分)(2014•金山区二模)将直线y=x+2向下平移2个单位后,所得直线的解析式为()A.y=x+4 B.y=x﹣2 C.y=x D.y=x﹣4考点:一次函数图象与几何变换.分析:根据平移k值不变,只有b只发生改变解答即可.解答:解:根据题意知,平移后的直线解析式为:y=x+2﹣2=x,即y=x.应选:C.点评:此题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3.(4分)(2014•金山区二模)以下一元二次方程中,有两个相等的实数根的是()A.x2+2x﹣1=0 B.x2﹣2x+1=0 C.x2+2x+4=0 D.x2﹣2x﹣4=0考点:根的判别式.专题:计算题.分析:分别计算四个方程的根的判别式,然后根据判别式的意义进行判断.解答:解:A、△=22﹣4×(﹣1)=8>0,方程有两个不相等的实数根,所以A选项错误;B、△=22﹣4×1=0,方程有两个相等的实数根,所以B选项正确;C、△=22﹣4×4=﹣12<0,方程没有实数根,所以C选项错误;D、△=22﹣4×(﹣4)=20>0,方程有两个不相等的实数根,所以D选项错误.应选B.点评:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(4分)(2014•金山区二模)在本学期的“献爱心”的捐款活动中,九(1)班学生捐款情况如图,那么捐款金额的众数和中位数分别是()A.15和13.5 B.8元和6.5元C.15和8元D.8元和8元考点:条形统计图;中位数;众数.专题:计算题.分析:根据条形统计图中的数据求出众数与中位数即可.解答:解:根据条形统计图得到捐8元的学生数最多,为15个,故捐款金额的众数为8元,将捐款数按照从小到大顺序排列得到3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,10,10,10,其中最中间的两个数为5和8,平均数为6.5,即中位数为6.5,应选B点评:此题考查了条形统计图,众数,以与中位数,弄清题中的数据是解此题的关键.5.(4分)(2014•金山区二模)以下命题中,真命题是()A.平行四边形是轴对称图形B.正多边形是中心对称图形C.正多边形都是轴对称图形D.是轴对称图形的四边形都是中心对称图形考点:命题与定理.分析:根据轴对称图形和中心对称图形的定义以与平行四边形、正多边形和等腰梯形的性质分别进行判断.解答:解:A、平行四边形是中心对称图形,不是轴对称图形,所以A选项错误;B、当正多边形的边数为偶数时,它是中心对称图形,所以B选项错误;C、正多边形都是轴对称图形,所以C选项正确;D、等腰梯形是轴对称图形,但不是中心对称图形,所以D选项错误.应选C.点评:此题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.(4分)(2014•金山区二模)在同一平面,已知线段AO=2,⊙A的半径为r,将⊙A绕点O按逆时针方向旋转90°,得到的圆记作⊙B,如果⊙A与⊙B外切,那么r的值为()A.1B.2C.D.考点:圆与圆的位置关系.分析:根据旋转的性质得到△OAB为等腰直角三角形,则AB=OA=2,从而求得线段AB的长,然后利用两圆外切两圆的圆心距等于两圆的半径之和直接求解.解答:解:∵⊙A绕点O按逆时针方向旋转90°得到的⊙B,∴△OAB为等腰直角三角形,∵AO=2,∴OB=OA=2,AB=2,∵⊙A、⊙B外切,∴AB等于两圆半径之和,∴r=.应选C.点评:此题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区二模)计算:(a3)2= a6.考点:幂的乘方与积的乘方.分析:按照幂的乘方法则:底数不变,指数相乘计算.即(a m)n=a mn(m,n是正整数)解答:解:(a3)2=a6.故答案为:a6.点评:此题考查了幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),牢记法则是关键.8.(4分)(2014•宝坻区二模)计算:(a+2)(a﹣2)= a2﹣4 .考点:平方差公式.分析:利用平方差公式直接求解即可求得答案.解答:解:(a+2)(a﹣2)=a2﹣4.故答案为:a2﹣4.点评:此题考查了平方差公式.注意运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9.(4分)(2014•金山区二模)方程=的解是x=﹣1 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2=1,解得:x=1或x=﹣1,经检验x=1是增根,分式方程的解为x=﹣1.故答案为:x=﹣1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(4分)(2014•金山区二模)计算:+2(+)= 3+2.考点:*平面向量.分析:先去掉括号,然后进行加法运算即可.解答:解:+2(+)=+2+2=3+2.故答案为:3+2.点评:此题考查了平面向量,主要是向量的加法运算,是基础题.11.(4分)(2014•金山区二模)已知函数f(x)=,那么f()=.考点:函数值.分析:把x=代入函数解析式进行计算即可得解.解答:解:f()==.故答案为:.点评:此题考查了函数值求解,把自变量的值代入函数关系式计算即可,比较简单.12.(4分)(2014•金山区二模)已知反比例函数的图象经过点(﹣1,2),那么该反比例函数的图象的两个分支在第二、四象限.考点:反比例函数的性质.分析:根据反比例函数图象在一、三象限或在二、四象限,根据(﹣1,2)所在象限即可作出判断.解答:解:点(﹣1,2)在第二象限,则该反比例函数的图象的两个分支在第二、四象限.故答案是:二、四.点评:此题考查了反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限.13.(4分)(2012•)菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .考点:菱形的性质;勾股定理.分析:根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解答:解:如下图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.点评:此题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.14.(4分)(2014•金山区二模)某班共有学生36人,在迎新年庆祝会上,随机抽取1名一等奖,3名二等奖,5名三等奖,以上统称为等第奖,该班每一名学生获得等第奖的概率是.考点:概率公式.分析:共36人,其中有1+3+5=9个等第奖,利用概率公式直接求解即可.解答:解:∵共36人,其中有1+3+5=9个等第奖,∴该班每一名学生获得等第奖的概率是=,故答案为:.点评:综合考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.15.(4分)(2014•金山区二模)为了了解学生课外阅读的喜好,某校随机抽取部分学生进行问卷调查,调查时要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍或者喜欢其他类型的书籍,则都选“其他”,图2是整理数据后绘制的不完整的统计图,如果还知道喜欢漫画的有60人,选“其他”的有30人,那么喜欢小说的人数为120 .考点:扇形统计图.专题:计算题.分析:根据扇形统计图,列出算式,计算即可得到结果.解答:解:根据题意得:(30÷10%)﹣60﹣30﹣(30÷10%)×30%=300﹣60﹣30﹣90=120(人),则喜欢小说的人数为120人.故答案为:120.点评:此题考查了扇形统计图,弄清题中的数据是解此题的关键.16.(4分)(2014•金山区二模)如图,在△ABC中,AB=4,BC=6,BD是∠ABC的角平分线,DE∥BC.DE 交AB于点E,那么DE的长为 2.4 .考点:相似三角形的判定与性质;等腰三角形的判定与性质.分析:根据平行线的性质和角平分线定义求出∠EDB=∠EBD,推出DE=BE,设DE=BE=x,证相似,得出比例式,代入求出即可.解答:解:∵DE∥BC,∴∠EDB=∠CBD,∵BD是∠ABC的角平分线,∴∠CBD=∠ABD,∴∠EDB=∠EBD,∴DE=BE,设DE=BE=x,∵DE∥BC,∴△AED∽△ABC,∴=,∴=,解得:x=2.4,∴DE=2.4,故答案为:2.4.点评:此题考查了等腰三角形的性质和判定,平行线的性质,相似三角形的性质和判定的应用,解此题的关键是求出BE=DE和求出△AED∽△ABC.17.(4分)(2014•金山区二模)如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为“倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为或.考点:勾股定理;锐角三角函数的定义.专题:分类讨论.分析:分两种情况考虑,当斜边为直角边2倍时,当直角边为直角边2倍时,求出最小角的正切值即可.解答:解:如图1所示,AC=2AB,∴最小角为∠C,根据勾股定理得:BC==AB,则tanC===;如图2所示,BC=2AB,∴tanC==,综上,这个直角三角形的较小的锐角的正切值为或.故答案为:或.点评:此题考查了勾股定理,锐角三角函数定义,熟练掌握勾股定理是解此题的关键.18.(4分)(2014•金山区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是边AB上一点,联结CD,把△ACD沿CD所在的直线翻折,点A落在点E的位置,如果DE∥BC,那么AD的长为 2 .考点:翻折变换(折叠问题).专题:计算题.分析:连结CE交AB于F点,根据勾股定理得AB=5,再根据折叠的性质得CE=CA=4,DE=AD,∠E=∠A,有DE∥BC得到∠1=∠B,则∠1+∠E=90°,得到CE⊥AB,于是可根据面积法计算出CF=,所以EF=CE﹣CF=,然后证明△DEF∽△BCF,利用相似比可计算出DE=2,于是得到AD=2.解答:解:连结CE交AB于F点,如图,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵△ACD沿CD所在的直线翻折,点A落在点E的位置,∴CE=CA=4,DE=AD,∠E=∠A,∵DE∥BC,∴∠1=∠B,而∠A+∠B=90°,∴∠1+∠E=90°,∴∠DFE=90°,∴CE⊥AB,∵CF•AB=AC•BC,∴CF==,∴EF=CE﹣CF=4﹣=,∵DE∥BC,∴△DEF∽△BCF,∴DE:BC=EF:CF,即DE:3=:,∴DE=2,∴AD=2.故答案为2.点评:此题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、相似三角形的判定与性质.三、解答题:(本大题共7题,满分78分)第15题19.(10分)(2014•金山区二模)计算:﹣cos30°﹣2﹣1+(π﹣)0.考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=﹣﹣+1,然后合并即可.解答:解:原式=﹣﹣+1=0.点评:此题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.20.(10分)(2014•金山区二模)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,再找出不等式组的解集即可.解答:解:∵解不等式x﹣2>﹣3得:x>﹣1,解不等式3﹣x≥得:x≤4,∴不等式组的解集为﹣1<x≤4,在数轴上表示为:.点评:此题考查了解一元一次不等式,在数轴上表示不等式组的解集的应用,关键是能求出不等式组的解集.21.(10分)(2014•金山区二模)某市为鼓励居民节约用水,制定了分阶梯收费制度,按每年用水量分成两个阶梯,即年用水量不超过200立方米的部分和200立方米以上的部分按不同的价格收取水费,每户居民每年的水费y(元)和用水量x(立方米)的如图1和图2,(1)如果小家年用水量为160立方米,那么小王家的年水费是多少?(2)如果小王家年用水量为1500元,那么小王家的年用水量是多少?考点:一次函数的应用.分析:(1)根据图象可得当x≤200时,水价与水费成正比例函数关系,设y=kx,再把(200,700)代入可得k的值,进而得到函数解析式,然后再代入x=160,算出y即可;(2)根据函数图象可得x≥200时,水价与水费成一次函数关系,设y=ax+b,再把(200,700),(300,1200),代入算出a、b的值,进而得到函数解析式,然后再把y=1500代入算出x即可.解答:解:(1)当x≤200时,水价与水费成正比例函数关系,设y=kx,∵图象经过(200,700),∴700=200k,解得:k=3.5,∴y=3.5x,把x=160代入:y=160×3.5=560(元),答:小王家的年水费是560元;(2)当x≥200时,水价与水费成一次函数关系,设y=ax+b,∵图象经过(200,700),(300,1200),∴,解得:,∴y=5x﹣300,把y=1500代入:1500=5x﹣300,解得:x=360,答:小王家的年用水量是360立方米.点评:此题主要考查了一次函数的应用,关键是正确掌握待定系数法求一次函数解析式.22.(10分)(2014•金山区二模)已知:如图,C是线段BD上一点,AB⊥BD,ED⊥BD,∠ACE=90°,tan∠ACB=2,AB=4,ED=3.求:(1)线段BD的长;(2)∠AEC的正切值.考点:解直角三角形.专题:计算题.分析:(1)利用同角的余角相等得到一对角相等,再由一对直角相等,得到三角形ABC与三角形DCE 相似,由相似得比例,根据锐角三角函数定义与tan∠ACB的值,求出BC与CD的值,根据BC+CD 求出BD的值即可;(2)由三角形ABC与三角形DCE相似,根据AB与CD长求出相似比,进而求出AC与CE的比值,即为∠AEC的正切值.解答:解:(1)∵∠ACE=90°,AB⊥BD,ED⊥BD,∴∠ACB+∠ECD=90°,∠ACB+∠BAC=90°,∠B=∠D=90°,∴∠BAC=∠ECD,∴△ABC∽△CDE,∴=,∵tan∠ACB==2,AB=4,ED=3,∴=2,即BC=2,CD=6,则BD=BC+CD=2+6=8;(2)∵△ABC∽△CDE,∴===,则tan∠AEC==.点评:此题属于解直角三角形题型,涉与的知识有:锐角三角函数定义,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解此题的关键.23.(12分)(2014•金山区二模)已知:如图,线段AB∥CD,AC⊥CD,AC、BD相交于点P,E、F分别是线段BP和DP的中点.(1)求证:AE∥CF;(2)如果AE和DC的延长线相交于点Q,M、N分别是线段AP和DQ的中点,求证:MN=CE.考点:相似三角形的判定与性质.分析:(1)根据直角三角形斜边上中线性质求出AE=BE=PE,CF=PF,推出∠EAP=∠EPA,∠CPF=∠FCP,求出∠EAP=∠FCP,根据平行线的判定推出即可;(2)求出ME∥CN,EN∥CM,得出矩形MCNE,根据矩形的判定推出即可.解答:(1)证明:∵AB∥CD,AC⊥CD,∴∠BAP=∠DCP=90°,∵E、F分别是线段BP和DP的中点,∴AE=PE=BE,CF=PF,∴∠EAP=∠EPA,∠CPF=∠FCP,∵∠EPA=∠CPF,∴∠EAP=∠FCP,∴AE∥CF;(2)证明:连接EM、EN,∵M、E分别为AP、BP的中点,∴EM∥AB,∵AB∥CD,∴ME∥DC,即EM∥CN,∵AB∥CD,∴△AEB∽△QED,∴=,∵AE=BE,∴DE=EQ,∵N为DQ的中点,∴EN⊥AQ,∵∠ACD=90°,∴EN∥MC,∴四边形MCNE是矩形,∴MN=CE.点评:此题考查了直角三角形斜边上中线性质,矩形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,题目比较好,难度适中.24.(12分)(2014•金山区二模)如图,在直角坐标系中,直线y=x+2与x轴交于点A,B是这条直线在第一象限上的一点,过点B作x轴的垂线,垂足为点D,已知△ABD的面积为18.(1)求点B的坐标;(2)如果抛物线的图象经过点A和点B,求抛物线的解析式;(3)已知(2)中的抛物线与y轴相交于点C,该抛物线对称轴与x轴交于点H,P是抛物线对称轴上一点,过点P作PQ∥AC交x轴交于点Q,如果点Q在线段AH上,并且AQ=CP,求点P的坐标.考点:二次函数综合题.分析:(1)由直线y=x+2可知斜率为1,则AD=BD,然后根据三角形的面积求得B点的纵坐标,因为直线与x轴交点是(2,0)求得OA的长,从而求得OD的长,最后求得P点的坐标.(2)用待定系数法把A、B的坐标代入即可.(3)由A、C点的坐标可得AC的斜率为3,设PQ直线为y=3x+b,可解出b值以与Q点的x坐标,AQ可得,CP可用勾股定理获得,然后AQ=CP,求出点P的坐标.解答:解:(1)∵直线y=x+2的斜率为1,∴AD=BD,∴S△ABC=AD•BD=BD2,∴18=BD2,解得BD=6,∴AD=BD=6,∵直线y=x+2与x轴的交点A的坐标为(﹣2,0),∴OD=4,∴点B的坐标为(4,6).(2)把A、B点的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(3)可设P点为(a,),可得AC的斜率为3,设PQ直线为y=3x+b,可解出b 值以与Q点的x坐标,AQ可得,CP可用勾股定理获得,然后AQ=CP,求出点P的坐标∵抛物线的解析式为y=﹣x2+2x+6与y轴的交点C为(0,6),对称轴为x=2.∴直线AC的斜率为3,∵PQ∥AC,∴直线PQ的斜率也为3,设直线PQ的解析式为y=3x+b,则Q(﹣,0),∴AQ=2﹣,当x=2时,y=3x+b=6+b,∴P(2,6+b),∴PC2=22+[6﹣(6+b)]2=4+b2,当y=0时,y=3x+b的x=﹣,∴AQ=2﹣,∵AQ=CP,∴(2﹣)2=4+b2,解得:b=﹣,∴P(2,)点评:此题考查了二次函数的综合运用,考查用待定系数法求二次函数解析式以与勾股定理的应用;25.(14分)(2014•金山区二模)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,AB=4,AD=3,sin∠DCB=,P是边CD上一点(点P与点C、D不重合),以PC为半径的⊙P与边BC相交于点C和点Q.(1)如果BP⊥CD,求CP的长;(2)如果PA=PB,试判断以AB为直径的⊙O与⊙P的位置关系;(3)联结PQ,如果△ADP和△BQP相似,求CP的长.考点:圆的综合题.专题:综合题.分析:(1)作DH⊥BC于H,如图1,利用矩形的性质得DH=4,BH=3,在Rt△DHC中,利用正弦的定义可计算出DC=5,再利用勾股定理计算出CH=3,则BC=BH+CH=6,然后证明Rt△DCH∽Rt△BCP,利用相似比可计算出PC=;(2)作PE⊥AB于E,如图2,由于PA=PB,根据等腰三角形的性质得AE=BE=AB=2,也可判断PE为梯形ABCD的中位线,所以PD=PC=,PE=(AD+BC)=,于是得到EA+PC=PE,根据两圆外切的判定方法得到以AB为直径的⊙O与⊙P外切;(3)如图1,作PF⊥BC于F,根据垂径定理得CF=QF,设PC=x,则DP=5﹣x,先证明△CPF∽△CDH,利用相似比可计算出CF=,则CQ=2CF=,BQ=BC﹣CQ=6﹣,由PQ=PC得∠PQC=∠PCQ,而∠ADP+∠PCQ=180°,∠PQC+∠PQB=180°,所以∠ADP=∠PQB,然后讨论:当△ADP∽△BQP,根据相似的性质得,解得x1=,x2=10(舍去),得到PC=;当△ADP∽△PQB,利用相似的性质得=,解得x1=,x2=5(舍去),得到PC=.解答:解:(1)作DH⊥BC于H,如图1,∵AD∥BC,AB⊥BC,AB=4,AD=3,∴DH=4,BH=3,在Rt△DHC中,sin∠DCH==,∴DC=5,∴CH==3,∴BC=BH+CH=6,∵BP⊥CD,∴∠BPC=90°,而∠DCH=∠BCP,∴Rt△DCH∽Rt△BCP,∴=,即=,∴PC=;(2)作PE⊥AB于E,如图2,∵PA=PB,∴AE=BE=AB=2,∵PE∥AD∥BC,∴PE为梯形ABCD的中位线,∴PD=PC,PE=(AD+BC)=(3+6)=,∴PC=BC=,∴EA+PC=PE,∴以AB为直径的⊙O与⊙P外切;(3)如图1,作PF⊥BC于F,则CF=QF,设PC=x,则DP=5﹣x,∵PF∥DH,∴△CPF∽△CDH,∴=,即=,解得CF=,∴CQ=2CF=,∴BQ=BC﹣CQ=6﹣,∵PQ=PC,∴∠PQC=∠PCQ,∵AD∥BC,∴∠ADP+∠PCQ=180°,而∠PQC+∠PQB=180°,∴∠ADP=∠PQB,当△ADP∽△BQP,∴=,即=,整理得2x2﹣25x+50=0,解得x1=,x2=10(舍去),经检验x=是原分式方程的解.∴PC=;当△ADP∽△PQB,∴=,即=整理得5x2﹣43x+90=0,解得x1=,x2=5(舍去),经检验x=是原分式方程的解.∴PC=,∴如果△ADP和△BQP相似,CP的长为或.点评:此题考查了圆的综合题:熟练掌握垂径定理、圆与圆的位置关系和梯形的性质;会运用勾股定理和相似比进行几何计算.参与本试卷答题和审题的老师有:金岭;gsls;2300680618;zjx111;sjzx;sd2011;zhjh;星期八;bjf;HJJ;sks;yangwy;nhx600(排名不分先后)菁优网2014年6月9日。
2014年上海市金山区中考数学一模试卷
2014年上海市金山区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)2.(4分)(2014•金山区一模)如果向量与单位向量方向相反,且长度为,那么向量用单位向量表示为.C D.24.(4分)(2014•金山区一模)在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得D.6.(4分)(2014•金山区一模)在平面直角坐标系中,抛物线y=﹣(x﹣2)2+1的顶点是点P,对称轴与x轴相交二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区一模)如果2x=3y,那么=_________.8.(4分)(2014•金山区一模)已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,=,那么的值等于_________.9.(4分)(2014•金山区一模)计算:=_________.10.(4分)(2014•金山区一模)抛物线y=x2+2x的对称轴是_________.11.(4分)(2014•金山区一模)二次函数y=2x2+t的图象向下平移2个单位后经过点(1,3),那么t=_________.12.(4分)(2014•金山区一模)已知在△ABC中,∠C=90°,AB=12,点G为△ABC的重心,那么CG=_________.13.(4分)(2014•金山区一模)已知在Rt△ABC中,∠C=90°,BC=AC,那么∠A=_________度.15.(4分)(2014•金山区一模)已知内切两圆的圆心距为6,其中一个圆的半径为4,那么另一个圆的半径为_________.16.(4分)(2014•金山区一模)如果正n边形的每一个内角都等于144°,那么n=_________.17.(4分)(2014•金山区一模)正六边形的边长为a,面积为S,那么S关于a的函数关系式是_________.18.(4分)(2014•历下区二模)在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么=_________.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•金山区一模)计算:.20.(10分)(2014•金山区一模)已知一个二次函数y=x2+bx+c的图象经过点(4,1)和(﹣1,6).(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴.21.(10分)(2014•金山区一模)如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.22.(10分)(2014•坪山新区模拟)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(12分)(2014•金山区一模)如图,在▱ABCD中,E是AB的中点,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.(1)求证:AB=3FG;(2)若AB:AC=:,求证:DF2=DG•DA.24.(12分)(2014•金山区一模)已知,二次函数y=ax2+bx的图象经过点A(﹣5,0)和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.(1)求点B的坐标;(2)求二次函数的解析式;(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.25.(14分)(2014•金山区一模)如图1,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,PA为半径的⊙P与射线AC的另一个交点为D,射线PD交射线BC于点E.(1)如图2,若点E在线段BC的延长线上,设AP=x,CE=y,①求y关于x的函数关系式,并写出x的取值范围;②当以BE为直径的圆和⊙P外切时,求AP的长;(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.2014年上海市金山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)2.(4分)(2014•金山区一模)如果向量与单位向量方向相反,且长度为,那么向量用单位向量表示为.C D.与单位向量方向相反,且长度为,根据向量的定义,即可求得答案.解:∵向量方向相反,且长度为,24.(4分)(2014•金山区一模)在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得D.sinA=,代入求出即可.,=6.(4分)(2014•金山区一模)在平面直角坐标系中,抛物线y=﹣(x﹣2)2+1的顶点是点P,对称轴与x轴相交二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•金山区一模)如果2x=3y,那么=2.==28.(4分)(2014•金山区一模)已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,=,那么的值等于.==;然后利用比例的性质求得的值.====故答案是:9.(4分)(2014•金山区一模)计算:=.=2+4=2.+10.(4分)(2014•金山区一模)抛物线y=x2+2x的对称轴是直线x=﹣1.;抛物线与11.(4分)(2014•金山区一模)二次函数y=2x2+t的图象向下平移2个单位后经过点(1,3),那么t=3.12.(4分)(2014•金山区一模)已知在△ABC中,∠C=90°,AB=12,点G为△ABC的重心,那么CG=4.×=413.(4分)(2014•金山区一模)已知在Rt△ABC中,∠C=90°,BC=AC,那么∠A=60度.tanA=,继而可求得∠tanA==14.(4分)(2014•金山区一模)已知在Rt△ABC中,∠C=90°,cotB=,BC=3,那么AC=9.cotB==15.(4分)(2014•金山区一模)已知内切两圆的圆心距为6,其中一个圆的半径为4,那么另一个圆的半径为10.16.(4分)(2014•金山区一模)如果正n边形的每一个内角都等于144°,那么n=10.=1017.(4分)(2014•金山区一模)正六边形的边长为a,面积为S,那么S关于a的函数关系式是.×故答案为:18.(4分)(2014•历下区二模)在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么=.cosB=,设BH=H=BH=cosB==cosB==xH=BH=x=,即,=故答案为三、解答题:(本大题共7题,满分78分)19.(10分)(2014•金山区一模)计算:.=.20.(10分)(2014•金山区一模)已知一个二次函数y=x2+bx+c的图象经过点(4,1)和(﹣1,6).(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴.)由题意得,21.(10分)(2014•金山区一模)如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.=422.(10分)(2014•坪山新区模拟)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(12分)(2014•金山区一模)如图,在▱ABCD中,E是AB的中点,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.(1)求证:AB=3FG;(2)若AB:AC=:,求证:DF2=DG•DA.)平行四边形的性质、线段中点的定义推知,所以)根据已知条件可以设,则=)设,24.(12分)(2014•金山区一模)已知,二次函数y=ax2+bx的图象经过点A(﹣5,0)和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.(1)求点B的坐标;(2)求二次函数的解析式;(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.,)根据题意得解这个方程组,得由题意得AB=,那么,那么AP=的坐标为()或(,25.(14分)(2014•金山区一模)如图1,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,PA为半径的⊙P与射线AC的另一个交点为D,射线PD交射线BC于点E.(1)如图2,若点E在线段BC的延长线上,设AP=x,CE=y,①求y关于x的函数关系式,并写出x的取值范围;②当以BE为直径的圆和⊙P外切时,求AP的长;(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.,,且得到x+4﹣质得到﹣(﹣﹣x(﹣x﹣x x+16=x=,由此得到的长为;PQ=x x得到﹣=,由于<的长为=5x+3),即==x+4﹣外切时,﹣x+4=x+x+3,即的长为;x+4﹣﹣(﹣x+3=((﹣x+16 x+16=x,;﹣(﹣x﹣(﹣x+3=(xx+16=x(舍去)或。
2014-2015年第一学期九年级数学试题答案
2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
上海市金山区2014年中考一模(即期末)数学试题及答案(word版本)
2013学年第一学期期末质量检测初三数学试卷(测试时间:100分钟,满分:150分) 2014.01考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)1.两个相似三角形的面积比为1∶4,那么这两个三角形的周长比为( ) (A )1∶2; (B )1∶4;(C )1∶8;(D )1∶16.2.如果向量a 与单位向量e方向相反,且长度为12,那么向量a 用单位向量e表示为( ) (A )12a e = ; (B )2a e =;(C )12a e =- ; (D )2a e =-.3.将抛物线2y x =向右平移1个单位,所得新抛物线的函数解析式是( ) (A )2(1)y x =+; (B )2(1)y x =-; (C )21y x =+; (D )21y x =-.4.在Rt △ABC 中,∠A =90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B 的正切值( ) (A )扩大2倍; (B )缩小2倍; (C )扩大4倍; (D )大小不变 . 5.已知在Rt △ABC 中,∠C =90°,∠A =a ,BC =m ,那么AB 的长为( ) (A )sin m α;(B )cos m α; (C )sin mα; (D )cos mα. 6.在平面直角坐标系中,抛物线()221y x =--+的顶点是点P ,对称轴与x 轴相交于点Q ,以点P 为圆心,PQ 长为半径画⊙P ,那么下列判断正确的是( ) (A )x 轴与⊙P 相离; (B )x 轴与⊙P 相切; (C )y 轴与⊙P 与相切; (D )y 轴与⊙P 相交. 二、填空题:(本大题共12题,每题4分,满分48分) 7.如果23x y =,那么22x yx y+-= ▲ . 8.已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,35DE BC =,那么CE AE的值等于 ▲ .9.计算:()223a b b +-=▲ .10.抛物线22y x x =+的对称轴是 ▲ .11.二次函数22y x t =+的图像向下平移2个单位后经过点(1,3),那么t = ▲ . 12.已知在△ABC 中,∠C =90°,AB =12,点G 为△ABC 的重心,那么CG = ▲ . 13.已知在Rt △ABC 中,∠C =90°,BC,那么∠A = ▲ 度. 14.已知在Rt △ABC 中,∠C =90°,1cot 3B =,BC =3,那么AC = ▲ .15.已知内切两圆的圆心距为6,其中一个圆的半径为4,那么另一个圆的半径为 ▲ . 16.如果正n 边形的每一个内角都等于144°,那么n = ▲ .17.正六边形的边长为a ,面积为S ,那么S 关于a 的函数关系式是 ▲ . 18.在Rt △ABC 中,∠C =90°,3cos 5B =, 把这个直角三角形绕顶点C 旋转后得到 Rt △A'B'C ,其中点B' 正好落在AB 上, A'B'与AC 相交于点D ,那么B DCD'= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:222sin 60cos 45tan 60cos30tan 30cot 45---20.(本题满分10分, 其中第(1)小题6分,第(2)小题4分)已知一个二次函数2y x b x c =++的图像经过点(4,1)和(1-,6). (1)求这个二次函数的解析式;(2)求这个二次函数图像的顶点坐标和对称轴. 21.(本题满分10分)如图,已知AB 是⊙O 的弦,点C 在线段AB 上,OC =AC =4,CB =8. 求⊙O 的半径. 22.(本题满分10分)第18题图如图,某超市从底楼到二楼有一自动扶梯,右图是侧面示意图。
【数学】上海市金山区2015届高三上学期期末考试(一模).docx
上海市金山区 2014— 2015 学年第一学期期末考试高三数学试卷(满分: 150 分,完卷时间: 120 分钟 )(答题请写在答题纸上)一、填空题(本大题满分56 分)本大题共有 14 题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得 4 分,否则一律得零分.1.若集合 M={ y | yx 25 ,x R }, N={ y | yx 2 , x ≥ –2},则 M ∩N=▲.2.计算: lim 3n2n n 1n 1 =▲.n3 211 的解是▲.3.不等式:x4.如果复数 z = 2bi ( b R )的实部与虚部相等,则 z 的共轭复数 z =▲.1 i5.方程: sinx+cosx=1 在 [0, π]上的解是▲.6.等差数列 {a n }中, a 2=8, S 10=185,则数列 {a n }的通项公式 a n =▲ (n N* ).a 17.当 a>0, b>0 且 a+b=2 时,行列式的值的最大值是▲.1b8.若 ( x22 )12的二项展开式中的常数项为m ,则 m= ▲.x9.从一堆苹果中任取 5 只,称得它们的质量分别是:(单位:克 )125,124,121,123,127,则该样本的标准差是▲克.10.三棱锥 O –ABC 中, OA=OB=OC=2,且∠ BOC=45 ,则三棱锥 O –ABC 体积的最大值是▲.11.从集合 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 中任取两个数,欲使取到的一个数大于 k ,另一个数小于 k(其中 k {5, 6, 7, 8, 9})的概率是 2,则 k=▲.512.已知点 A(–3,–2)和圆 C :(x –4)2+(y –8)2=9,一束光线从点 A 发出,射到直线 l :y=x –1 后反射(入射点为 B),反射光线经过圆周 C 上一点 P ,则折线 ABP 的最短长度是▲.AD13.如图所示,在长方体 ABCD –EFGH 中,AD=2,AB=AE=1, BMCM 为矩形 AEHD 内的一点,如果∠ MGF=∠ MGH , MGEH和平面 EFG 所成角的正切值为1,那么点 M 到平面F第 13 题图G2EFGH 的距离是▲.14. 已知点 P(x 0, y 0) 在椭圆 C :x 2 y 2 1(a>b>0)上,如果经过点 P 的直线与椭圆只有 a2b2一个公共点时,称直线为椭圆的切线,此时点P 称为切点,这条切线方程可以表示为:x 0 x y 0 y a 2b 2 1.根据以上性质,解决以下问题:已知椭圆 L :x 2y 2 1,若 Q(u ,v)是椭圆 L 外一点 (其中 u ,v 为定值 ),经过 Q 点作169椭圆 L 的两条切线,切点分别为 A 、 B ,则直线 AB 的方程是▲.二、选择题(本大题满分20 分)本大题共有 4 题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5 分,否则一律得零分.15.复数 z 1 = a+bi(a 、b R ,i 为虚数单位 ),z 2= –b+i ,且 | z 1|<| z 2| ,则 a 的取值范围是( ▲ ).(A)a > 1 (B)a >0 (C)–l < a < 1 (D)a < –1 或 a >116.用 1, 2, 3, 4, 5 组成没有重复数字的五位数,其中偶数有( ▲ ). (A) 60 个(B) 48 个 (C) 36 个 (D) 24 个17.设 k>1,f(x)=k(x –1) (x R ),在平面直角坐标系 xOy 中,函数 y=f(x)的图像与 x 轴交于 A点,它的反函数y=f –1(x)的图像与 y 轴交于 B 点,并且这两个函数的图像相交于P 点 . 已知四边形 OAPB 的面积是 3,则实数 k 等于 ( ▲ ).(A) 33 4 6(B)(C)(D)23518.若集合 A 1、 A 2 满足 A 1∪ A 2=A ,则称 (A 1,A 2)为集合 A 的一个分拆,并规定:当且仅当 A 1=A 2 时, (A 1 ,A 2 )与 (A 2,A 1)为集合 A 的同一种分拆,则集合 A={a 1,a 2,a 3}的不同分拆种数是( ▲ ).(A)8 (B)9 (C)26 (D)27三、解答题(本大题满分 74 分)本大题共有 5 题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分 12 分 )a 、b 、c 分别是锐角△ ABC 的内角 A 、B 、C 的对边,向量 p =(2–2sinA ,cosA+sinA),q =(sinA –cosA ,1+sinA),且 p ∥ q .已知 a= 7 ,△ ABC 面积为3 3,求 b 、 c 的大小.220.(本题满分14 分 )本题共有 2 个小题,第 1 小题满分8 分,第 2 小题满分 6 分.如图,在四棱锥P–ABCD的底面梯形ABCD中, AD∥ BC, AB⊥ BC, AB=2, AD=3,∠ ADC=45 .已知 PA⊥平面 ABCD, PA=1.求: (1)异面直线PD与 AC所成角的大小(结果用反三角函数值表示);(2)三棱锥 C–APD 的体积.PA DB C第 20 题图21.(本题满分14 分 ) 本题共有 2 个小题,第 1 小题满分7 分,第 2 小题满分 7 分 .已知 a>0 且 a1,数列 {a n}是首项与公比均为 a 的等比数列,数列{b n}满足 b n=a n lga n(n N* ).(1)若 a=3,求数列 {b n}的前 n 项和 S n;(2)若对于 n N* ,总有b n<b n+1,求a的取值范围.22.(本题满分16 分)本题共有 3 个小题,第 1 小题满分 4 分,第 2 小题满分 6 分,第3小题满分 6 分.动点 P 与点F (0,1)的距离和它到直线l : y1的距离相等,记点P 的轨迹为曲线 C .(1)求曲线 C 的方程;(2) 设点A 0,a (a 2 ) ,动点T在曲线C上运动时,A T 的最短距离为 a 1,求a的值以及取到最小值时点T 的坐标;(3) 设P1,P2为曲线C的任意两点,满足OP1OP2(O为原点),试问直线 P1 P2是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.23.(本小题满分18 分 ) 本题共有 3 个小题,第 1 小题满分 4 分,第 2 小题满分 6 分,第 3小题满分 8 分 .设函数 f(x)=2ka x+(k–3)a–x(a>0 且 a1)是定义域为R的奇函数.(1)求 k 值;(2)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2–x)+f(tx+4)<0 恒成立的t 的取值范围;(3)若 f(2)=3,且 g(x)=2x+2–x–2mf (x)在[ 2,+∞)上的最小值为–2,求 m 的值.参考答案4一、填空 (本大 分56 分)本大 共有 14 ,考生 在答 相 号的空格内直接填写 果,每个空格填 得4 分,否 一律得零分.1.[0, 5] ; 1 ;3.0<x<1;4. 1–i ;5. 或 0; 6. 3n+2;7. 02. 328.7920;9.2;10. 2 2 ;11.7;12.10; 13.2;14.uxvy 132169二、 (本大 分 20 分)本大 共有 4 ,每 有且只有一个正确答案,考生 在答 的相 号上,将代表答案的小方格涂黑, 得 5 分,否 一律得零分 .15. C ;16. B ;17. B ;18. D三、解答 (本大 分74 分)本大 共有 5 ,解答下列各 必 在答 相 号的定区域内写出必要的步 .19. (本 分 12 分 )解: p2 2sin A,cos A sin A , q sin A cos A,1 sin A ,又 p ‖ q(2–2sinA)(1+sinA)–(cosA+sinA)(sinA –cosA)=0,即: 4 sin 2A3 0又A 角,3sin A2,所以∠ A=60 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分因 △ ABC 面33 ,所以 1 bcsinA= 3 3,即 bc=6,2 22222 2又 a= 7 ,所以 7=b +c –2bccosA , b +c =13,b 3 b2 12 分解之得:或c⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯c 2320. (本 分 14 分 )本 共有 2 个小 ,第 1 小 分 8 分,第 2 小 分 6 分.解: (1) 点 C 作 CF ∥ AB 交 AD 于点 F ,延 BC 至 E ,使得 CE=AD , 接 DE , AC ∥ DE ,所以∠ PDE 就是异面直PD 与 AC 所成的角或其 角,⋯⋯⋯⋯⋯⋯2 分因 ∠ ADC=45,所以 FD=2,从而 BC=AF=1,且 DE=AC= 5 ,AE=20 , PE= 21 , PD= 10 , 在 △ PDE中 ,PAF DBC E3 2 cos PDE,所以,异面直 PD 与 AC 所成角的10大小 arccos32⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分10(2) 因 V C –APD =V P –ACD ,△1CF AD=32S ACD = PA ⊥底面 ABCD ,三棱 P –ACD 的高 PA=1,V P –ACD = 1S △ACD PA=1,3所以,三棱 C –APD 的体 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分21. (本 分14 分 ) 本 共有 2 个小 ,第 1 小 分 7 分,第 2 小 分 7 分 .(1) 由已知有 a n3n , b n a n lg a n n 3n lg 3S n [3 2 32 3 33(n 1)3n 1n 3n ] lg 3 ,3S n [322 33 (n 1)3n n 3n 1 ] lg 3 ,所以2S n(3 32333n 13nn 3n 1 ) lg 3 ,S n3lg 3 (2n 1) 3n 1 lg 3 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分4 4(2) b nb n 1 即 na n lg a (n 1)a n 1 lg a .由 a 0 且 a1 ,得 n lg a(n 1)a lg a ,lg a或lg a 0所以(n 1)a n 0( n 1)a n 00 a 1 a 1即an 或an 任意 nN* 成立,n1n 1且 1n 11,所以 0 a1 或 a 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分n 2222.(本 分 16 分)本 共有3 个小 ,第 1 小 分4 分,第 2小 分 6 分,第 3小 分6 分.(1) 根据抛物 的定 可知 , 点 P 的 迹是抛物所以曲 C 的方程x 2=4y ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2) 点 T(x 0, y 0), x 02=4y 0(y 0≥ 0),| AT|= ( x 0 0)2 ( y 0 a)2 = [ y 0 ( a 2)] 24a 4 ,a –2>0, 当 y 0=a –2 , | AT| 取得最小 2 a 1 ,2 a1 =a –1, a 2–6a+5=0, a=5 或 a=1 (舍去 ),所以 y 0=a –2=3, x 0=23 ,所以 T 坐 ( 23 , 3);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分(3) 然直 OP 1 、OP 2 的斜率都必 存在,1 ,k ,ky kx4 ,4),同理 P 2(–4k, 4k 2),x 2,解之得 P 1(4 yk k 2直 P 1P 2 的斜率1k 2 ,直 P 1P 2 方程 : y 4k 21 k 2(x 4k)kk整理得: k(y –4)+(k 2–1)x=0,所以直 P 1 P 2 恒 点 (0, 4)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 16 分23. (本小 分 18 分 )本 共有 3 个小 ,第 1 小 分4 分,第 2 小 分 6 分,第 3小 分 8分 .解(1) 因 f(x)是定 域 R 的奇函数,所以 f(0)= 0,所以 2k+(k –3)=0,即 k=1, 知,符合条件⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分x–x且 a 1)(2) f(x)=2(a –a )(a>0因 f(2)<0, a21 <0,又 a>0 且 a1,所以 0<a<1a2因 y=a x 减, y=a –x 增,故 f(x)在 R 上 减。
2014-2015学年第一学期期末质量检测九年级数学试卷附答案
2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。
1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。
2014-2015年上海市金山区高一上学期数学期末试卷和解析
2014-2015学年上海市金山区高一(上)期末数学试卷一、填空题(本大题满分36分)本大题共有12题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分)1.(3.00分)已知全集U=R,A={x|x≥2},则∁U A=.2.(3.00分)函数y=lg的定义域是.3.(3.00分)函数y=x+(x>0)的最小值为.4.(3.00分)若集合A={﹣1,0,1},集合B={x|x=t2,t∈A},用列举法表示B=.5.(3.00分)若4x﹣2x+1=0,则x=.6.(3.00分)已知关于x的不等式x2﹣(a﹣1)x+(a﹣1)>0的解集是R,则实数a取值范围是.7.(3.00分)已知函数y=a x﹣1+1(a>0,a≠1)的图象经过一个定点,则顶点坐标是.8.(3.00分)已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,则满足f(m)<f(1)的实数m的范围是.9.(3.00分)用二分法求函数f(x)=3x﹣x﹣4的一个零点,其参考数据如下:据此数据,可得方程3x﹣x﹣4=0的一个近似解(精确到0.01)是.10.(3.00分)方程|x2+4x+3|﹣a=0有2解,则实数a的取值范围是.11.(3.00分)已知y=f(x)是定义在R上的奇函数,且当x≥0时,,则此函数的值域为.12.(3.00分)设a+b=3,b>0,则当a=时,取得最小值.二、选择题(本大题满分18分)本大题共6题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.(3.00分)下列命题中,与命题“如果x2+3x﹣4=0,那么x=﹣4或x=1”等价的命题是()A.如果x2+3x﹣4≠0,那么x≠﹣4或x≠1B.如果x≠﹣4或x≠1,那么x2+3x﹣4≠0C.如果x≠﹣4且x≠1,那么x2+3x﹣4≠0D.如果x=﹣4或x=1,那么x2+3x﹣4=014.(3.00分)已知实数a,b满足ab>0,则“<成立”是“a>b成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(3.00分)若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.C. D.16.(3.00分)如图所示曲线是幂函数y=x a在第一象限内的图象,其中a=±,a=±2,则曲线C1,C2,C3,C4对应a的值依次是()A.、2、﹣2、﹣B.2、、﹣、﹣2 C.﹣、﹣2、2、D.2、、﹣2、﹣17.(3.00分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=﹣|x|(x∈R)B.y=﹣x3﹣x(x∈R)C.D.18.(3.00分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),称f(x)为“局部奇函数”,若f(x)=4x﹣m2x+1+m2﹣3为定义域R上的“局部奇函数”,则实数的取值范围是()A.1﹣≤m≤1+B.1﹣≤m≤2C.﹣2≤m≤2D.﹣2≤m≤1﹣三、解答题(本大题满分46分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(6.00分)本题共有2题,第1小题满分4分,第2小题满分2分已知集合A={x||x﹣1|≤1},B={x|x≥a}.(1)当a=1时,求集合A∩B;(2)若A⊆B,求实数a的取值范围.20.(8.00分)已知a≠0,试讨论函数f(x)=在区间(0,1)上单调性,并加以证明.21.(8.00分)某商场对顾客实行购物优惠活动,规定一次购物总额:(1)如果不超过500元,那么不予优惠;(2)如果超过500元但不超过1000元,那么按标价给予8折优惠;(3)如果超过1000元,那么其中1000元给予8折优惠,超过1000元部分按5折优惠.设一次购物总额为x元,优惠后实际付款额为y元.(1)试写出用x(元)表示y(元)的函数关系式;(2)某顾客实际付款1600元,在这次优惠活动中他实际付款比购物总额少支出多少元?22.(12.00分)已知函数f(x)=3x+k(k为常数),A(﹣2k,2)是函数y=f1(x)图象上的点.(1)求实数k的值及函数y=f1(x)的解析式:(2)将y=f1(x)的图象向右平移3个单位,得到函数y=g(x)的图象,若2f1(x+﹣3)﹣g(x)≥1对任意的x>0恒成立,试求实数m的取值范围.23.(12.00分)已知集合H是满足下列条件的函数f(x)的全体:在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立.(1)幂函数f(x)=x﹣1是否属于集合H?请说明理由;(2)若函数g(x)=lg∈H,求实数a的取值范围;(3)证明:函数h(x)=2x+x2∈H.2014-2015学年上海市金山区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分)1.(3.00分)已知全集U=R,A={x|x≥2},则∁U A={x|x<2} .【解答】解:∵全集U=R,A={x|x≥2},∴∁U A={x|x<2},故答案为:{x|x<2}2.(3.00分)函数y=lg的定义域是(﹣∞,﹣1)∪(1,+∞).【解答】解:∵函数y=lg,∴x应满足:;解得0<x<1,或x>1,∴函数y的定义域是(﹣∞,﹣1)∪(1,+∞).故答案为:(﹣∞,﹣1)∪(1,+∞).3.(3.00分)函数y=x+(x>0)的最小值为2.【解答】解:∵x>0,∴≥2,当且仅当x=时取等号,此时x=,即函数的最小值是2,故答案为:2.4.(3.00分)若集合A={﹣1,0,1},集合B={x|x=t2,t∈A},用列举法表示B= {0,1} .【解答】解:当t=±1时,x=1,当t=0时,x=0,∴B={0,1},故答案为:{0,1}.5.(3.00分)若4x﹣2x+1=0,则x=1.【解答】解:∵4x﹣2x+1=0,∴2x(2x﹣2)=0,∴2x﹣2=0,解得x=1.故答案为:16.(3.00分)已知关于x的不等式x2﹣(a﹣1)x+(a﹣1)>0的解集是R,则实数a取值范围是(1,5).【解答】解:∵关于x的不等式x2﹣(a﹣1)x+(a﹣1)>0的解集是R,∴△<0,即(a﹣1)2﹣4(a﹣1)<0;整理得(a﹣1)(a﹣5)<0,解得1<a<5;∴实数a取值范围是(1,5).故答案为:(1,5).7.(3.00分)已知函数y=a x﹣1+1(a>0,a≠1)的图象经过一个定点,则顶点坐标是(1,2).【解答】解:当x=1时,f(1)=a1﹣1+1=a0+1=2,∴函数f(x)=a x﹣1+1的图象一定经过定点(1,2).故答案为:(1,2).8.(3.00分)已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,则满足f(m)<f(1)的实数m的范围是﹣1<m<1.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(m)<f(1)等价为f(|m|)<f(1),即|m|<1,∴﹣1<m<1,即实数m的取值范围是﹣1<m<1,故答案为:﹣1<m<1.9.(3.00分)用二分法求函数f(x)=3x﹣x﹣4的一个零点,其参考数据如下:据此数据,可得方程3x﹣x﹣4=0的一个近似解(精确到0.01)是 1.56.【解答】解:由表格作数轴如下,故f(1.5625)f(1.5563)<0;故方程3x﹣x﹣4=0的一个近似解在(1.5563,1.5625)之间,故可取(1.5563+1.5625)=1.5594≈1.56作为近似解.故答案为:1.56.10.(3.00分)方程|x2+4x+3|﹣a=0有2解,则实数a的取值范围是a=0或a >1.【解答】解:方程|x2+4x+3|﹣a=0有2解可化为y=|x2+4x+3|与y=a有两个交点,作函数y=|x2+4x+3|的图象如右图,故当a=0或a>1时,有两个交点;故答案为:a=0或a>1.11.(3.00分)已知y=f(x)是定义在R上的奇函数,且当x≥0时,,则此函数的值域为.【解答】解:设t=,当x≥0时,2x≥1,∴0<t≤1,f(t)=﹣t2+t=﹣+,∴0≤f(t)≤,故当x≥0时,f(x)∈[0,];∵y=f(x)是定义在R上的奇函数,∴当x≤0时,f(x)∈[﹣,0];故函数的值域时[﹣,].12.(3.00分)设a+b=3,b>0,则当a=﹣时,取得最小值.【解答】解:∵a+b=3,b>0,∴b=3﹣a>0,即a<3,当0<a<3时,=+=++≥+=+=,当且仅当a=取等号,故当a=时,取得最小值;当a<0时,=﹣﹣=﹣﹣﹣≥﹣+2=﹣+=,当且仅当a=﹣取等号,故当a=﹣时,取得最小值;综上所述a的值为﹣时,取得最小值.故答案为:﹣.二、选择题(本大题满分18分)本大题共6题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.(3.00分)下列命题中,与命题“如果x2+3x﹣4=0,那么x=﹣4或x=1”等价的命题是()A.如果x2+3x﹣4≠0,那么x≠﹣4或x≠1B.如果x≠﹣4或x≠1,那么x2+3x﹣4≠0C.如果x≠﹣4且x≠1,那么x2+3x﹣4≠0D.如果x=﹣4或x=1,那么x2+3x﹣4=0【解答】解:原命题与其逆否命题等价,故命题“如果x2+3x﹣4=0,那么x=﹣4或x=1”等价的命题是:如果x≠﹣4且x≠1,那么x2+3x﹣4≠0,故选:C.14.(3.00分)已知实数a,b满足ab>0,则“<成立”是“a>b成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:ab>0,<⇔⇔b<a.∴实数a,b满足ab>0,则“<成立”是“a>b成立”的充要条件.故选:C.15.(3.00分)若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.C. D.【解答】解:对于A;a2+b2≥2ab所以A错对于B,C,虽然ab>0,只能说明a,b同号,若a,b都小于0时,所以B,C 错∵ab>0∴故选:D.16.(3.00分)如图所示曲线是幂函数y=x a在第一象限内的图象,其中a=±,a=±2,则曲线C1,C2,C3,C4对应a的值依次是()A.、2、﹣2、﹣B.2、、﹣、﹣2 C.﹣、﹣2、2、D.2、、﹣2、﹣【解答】解:根据幂函数y=x a在第一象限内的图象,知;当a=2时,幂函数y=x2在第一象限内是增函数,图象向上靠近y轴,符合C1特征;当a=时,幂函数y=在第一象限内是增函数,图象向右靠近x轴,符合C2特征;当a=﹣时,幂函数y=在第一象限内是减函数,图象向右靠近x轴,符合C3特征;当a=﹣2时,幂函数y=x﹣2在第一象限内是减函数,图象向右更靠近x轴,符合C4特征.综上,曲线C1,C2,C3,C4对应a的值依次是2、、﹣、﹣2.故选:B.17.(3.00分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=﹣|x|(x∈R)B.y=﹣x3﹣x(x∈R)C.D.【解答】解:A选项不正确,因为y=﹣|x|(x∈R)是一个偶函数,且在定义域内不是减函数;B选项正确,y=﹣x3﹣x(x∈R)是一个奇函数也是一个减函数;C选项不正确,是一个减函数,但不是一个奇函数;D选项不正确,是一个奇函数,但在定义域上不是减函数.综上,B选项正确故选:B.18.(3.00分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),称f(x)为“局部奇函数”,若f(x)=4x﹣m2x+1+m2﹣3为定义域R上的“局部奇函数”,则实数的取值范围是()A.1﹣≤m≤1+B.1﹣≤m≤2C.﹣2≤m≤2D.﹣2≤m≤1﹣【解答】解:根据“局部奇函数”的定义可知,函数f(﹣x)=﹣f(x)有解即可,即f(﹣x)=4﹣x﹣m2﹣x+1+m2﹣3=﹣(4x﹣m2x+1+m2﹣3),∴4x+4﹣x﹣2m(2x+2﹣x)+2m2﹣6=0,即(2x+2﹣x)2﹣2m⋅(2x+2﹣x)+2m2﹣8=0有解即可.设t=2x+2﹣x,则t=2x+2﹣x≥2,∴方程等价为t2﹣2m⋅t+2m2﹣8=0在t≥2时有解,设g(t)=t2﹣2m⋅t+2m2﹣8,对称轴x=,①若m≥2,则△=4m2﹣4(2m2﹣8)≥0,即m2≤8,∴﹣2,此时2,②若m<2,要使t2﹣2m⋅t+2m2﹣8=0在t≥2时有解,则,即,解得1﹣,综上:1﹣.故选:B.三、解答题(本大题满分46分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(6.00分)本题共有2题,第1小题满分4分,第2小题满分2分已知集合A={x||x﹣1|≤1},B={x|x≥a}.(1)当a=1时,求集合A∩B;(2)若A⊆B,求实数a的取值范围.【解答】解:由题意,A={x||x﹣1|≤1}=[0,2],(1)B={x|x≥1},故A∩B=[1,2].(2)∵A⊆B,∴a≤0.20.(8.00分)已知a≠0,试讨论函数f(x)=在区间(0,1)上单调性,并加以证明.【解答】解:a<0时,f(x)在(0,1)上是减函数,a>0时,f(x)在(0,1)上是增函数;证明如下:任取x1,x2∈(0,1),且x1<x2;∴f(x1)﹣f(x2)=﹣=;∵0<x1<x2<1,∴x1+x2>0,x1﹣x2<0,(1﹣)(1﹣)>0;∴当a<0时,f(x1)﹣f(x2)>0,f(x)在(0,1)上是减函数;当a>0时,f(x1)﹣f(x2)<0,f(x)在(0,1)上是增函数.综上,a<0时,f(x)在(0,1)上是减函数,a>0时,f(x)在(0,1)上是增函数.21.(8.00分)某商场对顾客实行购物优惠活动,规定一次购物总额:(1)如果不超过500元,那么不予优惠;(2)如果超过500元但不超过1000元,那么按标价给予8折优惠;(3)如果超过1000元,那么其中1000元给予8折优惠,超过1000元部分按5折优惠.设一次购物总额为x元,优惠后实际付款额为y元.(1)试写出用x(元)表示y(元)的函数关系式;(2)某顾客实际付款1600元,在这次优惠活动中他实际付款比购物总额少支出多少元?【解答】解:(1)由题可知:y=.(6分)(2)∵y=1600>900,∴x>1000,∴500+400+0.5(x﹣1000)=1600,解得,x=2400,2400﹣1600=800,故此人在这次优惠活动中他实际付款比购物总额少支出800元.…(12分)22.(12.00分)已知函数f(x)=3x+k(k为常数),A(﹣2k,2)是函数y=f1(x)图象上的点.(1)求实数k的值及函数y=f1(x)的解析式:(2)将y=f1(x)的图象向右平移3个单位,得到函数y=g(x)的图象,若2f1(x+﹣3)﹣g(x)≥1对任意的x>0恒成立,试求实数m的取值范围.【解答】解:(1)∵函数f(x)=3x+k(k为常数),且A(﹣2k,2)是函数y=f1(x)图象上的点;∴32+k=﹣2k,解得k=﹣3;∴f(x)=3x﹣3,∴函数y=f1(x)=log3(x+3);(2)将y=f1(x)=log3(x+3)的图象向右平移3个单位,得到函数y=g(x)的图象,∴y=g(x)=log3x;∵2f1(x+﹣3)﹣g(x)≥1,即2log3(x+﹣3+3)﹣log3x≥1,∴log3≥1;即≥3对任意的x>0恒成立,∴x+2+≥3,即x++2≥3对任意的x>0恒成立;∵x>0,∴x+≥2,当且仅当x=时取“=”,∴函数h(m)=x++2≥2+2=4,令4≥3,解得m≥,∴实数m的取值范围[,+∞).23.(12.00分)已知集合H是满足下列条件的函数f(x)的全体:在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立.(1)幂函数f(x)=x﹣1是否属于集合H?请说明理由;(2)若函数g(x)=lg∈H,求实数a的取值范围;(3)证明:函数h(x)=2x+x2∈H.【解答】(1)解:若f(x)=x﹣1∈H,则有,即,而此方程无实数根,所以f(x)=x﹣1∉H.(4分)(2)解:由题意有实数解即,也即有实数解.当a=2时,有实数解.当a≠2时,应有.综上得,a的取值范围为.(3)证明:∵,∴令m(x)=2x+2x﹣2,∵m(x)在R上连续不断,且m(0)=﹣1<0,m(1)=2>0,∴存在x0∈(0,1),使得m(x0)=0成立.∴存在x0∈(0,1),使得h(x0+1)=h(x0)+h(1)成立.∴h(x)∈H.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2014~2015学年度第一学期期末考试九年级数学试卷答案
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
2014—2015学年度第⼀学期期末学业质量评估九年级数学试题(含答案)九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为⾮选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上⾯的项⽬填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上⼀律⽆效.第Ⅰ卷⼀、选择题(本题共12⼩题,在每⼩题给出的四个选项中,只有⼀个是正确的,请把正确的选项选出来,每⼩题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每⼀条直径都是它的对称轴;C. 弦的垂直平分线过圆⼼;D. 相等的圆⼼⾓所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有⼀动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系⽤图象描述⼤致是()4. 下列命题中的假命题是()A. 正⽅形的半径等于正⽅形的边⼼距的2倍;B. 三⾓形任意两边的垂直平分线的交点是三⾓形的外⼼;C. ⽤反证法证明命题“三⾓形中⾄少有⼀个内⾓不⼩于60°”时,第⼀步应该“假设每⼀个内⾓都⼩于60°”;D. 过三点能且只能作⼀个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的⼀点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所⽰,在△ABC 中D 为AC 边上⼀点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为() A .1 B .2 C .23 D .25 7. 下列⽅程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有() A. 0个 B. 1个 C. 2个 D. 3个8. ⼀次函数y 1=3x +3与y 2=-2x +8在同⼀直⾓坐标系内的交点坐标为(1,6).则当y 1>y 2时,x 的取值范围是()A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是() A. 45° B. 60° C. 75° D. 105°10. 如图,热⽓球的探测器显⽰,从热⽓球A 看⼀栋⾼楼顶部B 的仰⾓为30°,看这栋⾼楼底部C 的俯⾓为60°,热⽓球A 与⾼楼的⽔平距离为120m ,这栋⾼楼BC 的⾼度为() A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反⽐例函数y =xk的图像经过点P (-1,2),则这个函数图像位于() A .第⼆、三象限 B .第⼀、三象限 C .第三、四象限 D .第⼆、四象限 12. 已知⼆次函数y =ax 2+bx +c (a ≠0)的图象如图所⽰,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是() A.1个 B.2个 C.3个 D.4个第Ⅱ卷⼆、填空题(本题共6⼩题,要求将每⼩题的最后结果填写在横线上. 每⼩题3分,满分18分) 13. 已知⼀元⼆次⽅程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则⼆次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所⽰,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满⾜12AE AF EB FC ==,则△EFD 与△ABC 的⾯积⽐为.16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的⼀定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. ⼀个⾜球从地⾯上被踢出,它距地⾯⾼度y (⽶)可以⽤⼆次函数x x y 6.199.42+-=刻画,其中x (秒)表⽰⾜球被踢出后经过的时间. 则⾜球被踢出后到离开地⾯达到最⾼点所⽤的时间是秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平⽅⽶6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资⾦周转,对价格经过两次下调后,决定以每平⽅⽶4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某⼈准备以开盘价均价购买⼀套100平⽅⽶的住房,开发商给予以下两种优惠⽅案以供选择:①打9.8折销售;②不打折,⼀次性送装修费每平⽅⽶80元,试问哪种⽅案更优惠?如图,晚上⼩明站在路灯P的底下观察⾃⼰的影⼦时发现,当他站在F点的位置时,在地⾯上的影⼦为BF,⼩明向前⾛2⽶到D 点时,在地⾯上的影⼦为AD,若AB=4⽶,∠PBF=60°,∠PAB=30°,通过计算,求出⼩明的⾝⾼.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的⾯积.如图,在平⾏四边形ABCD 中,过点A 作AE ⊥BC ,垂⾜为E ,连接DE ,F 为线段DE 上⼀点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的⼀元⼆次⽅程()2kx 4k 1x 3k 30-+++=. (1)试说明:⽆论k 取何值,⽅程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是⽅程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三⾓形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上⼀点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准⼀、选择题(每⼩题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB⼆、填空题(每⼩题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x ,则6000(1-x )2=4860,解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分(2)⽅案1优惠:4860×100×(1-0.98)=9720(元);⽅案2可优惠:80×100=8000(元). 故⽅案1优惠.…………………………10分20. (本题满分10分)解:设⼩明的⾝⾼为x ⽶,则CD =EF =x ⽶.在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:⼩明的⾝⾼为3⽶.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30°∴弧AB 和弧AD 的度数都等于60°⼜∵BC 是直径∴弧CD 的度数也是60° ------------------ --------------2分∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径∴∠BAC =90°∵∠ACB =30°,AC =6 ∴06433cos 230AC BC === 23R = ∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE 中:0sin330OE OB =?=,0cos 330BE OB =?=,BD =2BE =6----------------------------------------------------8分∴()21201-63=4-33360223BOD BOD S S S ??=-=阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分∴△ADF ∽△DEC ----------------------------------------------------5分⑵解:∵△ADF ∽△DEC ∴AD AFDE CD= ∴63438DE = 解得:DE =12 ----------------------------------------------------7分∵AE ⊥BC , AD ∥BC ∴AE ⊥AD ∴221441086AE DEAD =-=-=----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴⽆论k 取何值,⽅程总有两个实数根. -------------------------------------------------5分⑵若AB =AC 则⽅程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满⾜三边关系. -------------------------8分若BC =5为△ABC 的⼀腰,则⽅程()2kx 4k 1x 3k 30-+++=有⼀根是5,将5x =代⼊⽅程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得⽅程两根为5和3,此时AB 、AC 、BC 满⾜三边关系. ----------11分综上:当△ABC 是等腰三⾓形时,k 的值为1124或. -----------------------------12分24. (本题满分12分)⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分⼜OC 是半径∴CE 是⊙O 的切线。
2014年上海市中学考试数学试卷及问题详解Word版
实用文档文案大全2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23 的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.2二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________..8.函数11yx??的定义域是_______________..9.不等式组12,28xx??????的解集是_____________..10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________..12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________..14.已知反比例函数kyx?(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设ABa?,BCb?,那么DE=_______________(结果用a、b表示).实用文档文案大全16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________..17.一组数:2, 1, 3,x, 7,y, 23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________..18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分10分)计算:131128233????.20.(本题满分10分)解方程:2121111xxxx??????.421.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长x(cm)4.28.29.8体温计的读数y(℃) 35.0… 40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE 分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.实用文档文案大全23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC 延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223yxbxc 与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP的面积相等,求t的值.625.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图实用文档文案大全2014年上海市初中毕业统一学业考试数学试卷参考答案一、选择题1、B;2、C;3、C;4、A;5、A;6、B二、填空题7、2aa?; 8、1x?; 9、34x; 10、352; 11、1k; 12、26;13、13; 14、1(0ykx??即可);15、23ab?;16、乙; 17、-9; 18、23t.三、解答题19、解:原式233?20、0;1(xx??舍)21、(1)1.2529.75yx??, (2)37.522、5,sinBsinCAE5BDCBCAE????????5;2525cos4;25sin2tanCAE13CDABBCBACBCEACBEBCCE??????????????? 23、(1)求证:四边形ACED是平行四边形;,//DE//,,ABCDADBDACACDEABD CDE ACADCEADECBDDCADCA????????????????=等腰梯形,为为(2)联结AE,交BD于点G,求证:DGDFGBDB?.8//,;,,;DGADDFADADBCGBBEFBBC DF ADDFADFBBCDFFBADBCADECADCEADBCBEDFADDFADDFFBADBCDBBEDGD FGBDB 为24、实用文档文案大全25、。
上海市金山区2015初三化学期末试卷及答案
2014学年第一学期期末质量检测初三化学试卷2015年1月说明:1.全卷满分100分,考试时间90分钟2.相对原子质量:C-12 H-1 O-16 N-14 S-32 Na-23 Cl-35.5 Ca-40 一.选择题(每小题只有一个正确选项,共30分)1.地壳中含量最多的金属元素是A.氧 B.硅C.铝D.铁2.二氧化碳气体变成“干冰”发生的变化A.是状态发生了变化B.有新物质生成C.只是分子本身由大变小D.既有物理变化,又有化学变化3.不属于大气污染物的是A.PM2.5 B.CO2 C.NO2D.SO24.下列符号中,既表示一个原子,又表示一种元素,还表示一种物质的是A.O B.2H C.Fe D.N25.生活中常接触到“加碘食盐”、“高钙牛奶”,其中的“碘”和“钙”理解为A.单质B.分子C.元素D.原子6.生活中的下列现象,用分子的相关知识加以解释,其中错误的是A.室内插花,满屋花香,说明分子不断运动B.热胀冷缩,说明分子大小随温度而变化C.100ml酒精和100ml水混合,体积小于200ml,说明分子之间有间隙D.湿衣服放火炉旁,干得较快,说明分子运动速度随温度升高而增大7.下列各组物质中,前者是后者的溶质的是A.酒精、碘酒B.生石灰、石灰水C.氯化氢、盐酸D.植物油、油水8.属于纯净物的是A.矿泉水B.生理盐水C.家用燃气D.金刚石9.下列含有硫元素的物质中,硫元素的化合价最高的是A.SO2B.H2SO4C.H2S D.S10.物质的名称与对应的化学式书写正确的是A.汞Ag B.硝酸铁Fe(NO3)2 C.硫酸铝Al2(SO4)3D.碳酸氢钙CaHCO3 11.酒精灯的火焰太小时,将灯芯拔得松散些,可使火焰更旺。
其原理是A.降低可燃物的着火点B.提高可燃物的着火点C.增加空气中氧气含量D.增大可燃物与空气的接触面积12.下列基本实验操作的图示正确的是A .检查气密性B .读液体体积C . 过滤悬浊液D .熄灭酒精灯 13.关于分子和原子两种微粒的叙述正确的是A. 物质只能由分子构成B. 相同原子可能构成不同的分子 C .分子在不断运动,原子静止不动 D .化学变化中分子数目一定发生变化 14.用氯化钠固体配制一定质量分数的氯化钠溶液,必须使用的一组仪器是 A .天平、烧杯、量筒、玻璃棒、药匙 B .天平、烧杯、量筒、铁架台、药匙 C .天平、烧杯、漏斗、蒸发皿、玻璃棒 D .天平、集气瓶、漏斗、蒸发皿、玻璃棒 15.下列对化学式NO 2的各种表述中,错误的是 A .表示一个二氧化氮分子 B .表示二氧化氮这种物质C .表示二氧化氮中,氮元素与氧元素的质量比为7∶8D .表示一个二氧化氮分子由一个氮原子和两个氧原子构成16.镁带能在CO 2气体中燃烧:2Mg +CO 22MgO +C ,该反应中的还原剂是 A .Mg B .CO 2 C . MgOD .C17.有关N 4说法正确的是 A .N 4和N 2互为同素异形体B .N 4是一种化合物C .1个N 4分子由2个N 2分子构成D .1molN 4约含6.02×1023个氮原子18.物质燃烧现象描述正确的是 A .红磷在氧气中燃烧产生浓厚烟雾B .铁丝在空气中燃烧,火星四射,生成黑色固体C .木炭在氧气中燃烧发出白光,有无色刺激性气味气体生成D .硫在氧气中燃烧发出蓝紫色火焰,有刺激性气味的气体生成 19.除去二氧化碳中混有少量一氧化碳的正确方法是A .用燃着的木条点燃B .通过灼热木炭C .通过澄清石灰水D .通过灼热氧化铜 20.X 、Y 物质的溶解度都随温度升高而增大。
上海市金山区2015学年第一学期期末考试高三数学试卷带答案
上海市金山区2015学年第一学期期末考试高三数学试卷带答案金山区2015学年第一学期期末考试高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.lim3n1. n2n 334i(i为虚数单位),则z. 12i2.已知全集U=R,集合M={x |x2–4x–5<0},N={x | x≥1},则M∩(UN. 3.若复数z满足z4.若直线l1:6x+my–1=0与直线l2:2x-y+1=0平行,则m= .5. 若线性方程组的增广矩阵为23c1x2,解为,则c1–c2.32c2y 16.方程4x– 62x +8=0的解是7.函数y=secx sinx的最小正周期T8.二项式(x163)x展开式中系数的值是. 2xx2y21的中心为顶点,且以该椭圆的右焦点为焦点的抛物线方程是 . 9.以椭圆251610.在报名的5名男生和3名女生中,选取5人参加数学竞赛,要求男、女生都有,则不同的选取方式的种数为.(结果用数值表示)11.方程cos2x+sinx=1在(0,)上的解集是.12.行列式abcd(a、b、c、d{–1,1,2})所有可能的值中,最小值为.213.已知点P、Q分别为函数f(x)x 1 (x≥0)和g(x)和Q两点距离的最小值为. x1图像上的点,则点P14.某种游戏中,用黑、黄两个点表示黑、黄两个“电子狗”,它们从棱长为1的正方体ABCD–A1B1C1D1的顶点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.黑“电子狗”爬行的路线是AA1→A1D1→…,黄“电子狗”爬行的路线是AB→BB1→…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是正整数).设黑“电子狗”爬完2015段、黄“电子狗”爬完2014段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.“直线l1、l2互相垂直”是“直线l1、l2的斜率之积等于–1”的( ).(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既非充分也非必要条件16.若m、n是任意实数,且m>n,则( ).n 1 m1m1n(C) lg(m–n)>0 (D) ()() 22(A) m2>n2 (B)17.已知,是单位向量,且向量满足|c a b|=1,则||的取值范围是( ). a b0,(A) [21,21] (B) [21,(C) [2,2] 21] (D) [22,22]P18.如图,AB为定圆O的直径,点P为半圆AB上的动点.过点P作AB的垂线,垂足为Q,过Q作OP的垂线,垂足为M.记弧AP的长为x,线段QM的长为y,则函数y=f(x)的大致图像是( ).BMx(A)(B) (C)(D) )三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)在△ABC中,内角A、B、C的对边分别为a、b、c.已知a=3,cosA=试求b的大小及△ABC的面积S.20.(本题满分14分,第(1)小题6分,第(2)小题8分)在直三棱柱ABC A1B1C1中,AB AC1,BAC90,且异面直线A1B与6,B=A+. 23B1C1所成的角等于60,设AA1 a.(1) 求a的值;(2) 求三棱锥B1A1BC的体积.21.(本题满分14分) 本题共有2个小题,第1小题满分7分,第2小题满分7分.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数f x|x|m1x0. x(1) 当m=2时,证明f(x)在(–∞,0)上是单调递减函数;(2) 若对任意x R,不等式f(2x) > 0恒成立,求m的取值范围;(3) 讨论函数y=f(x)的零点个数.23.(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.2已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn an 3an2(n N*).(1) 求{an}的通项公式;(2) 设数列bn满足bn an,n为偶数,Tn为数列{bn}的前n项和,求Tn; an2,n为奇数(3) 设Cn bn1,问是否存在正整数N,使得当任意正整数n > N 时,(n为正整数)bn恒有Cn>2015成立?若存在,请求出正整数N的取值范围;若不存在,请说明理由.金山区2015学年第一学期期末考试高三数学试卷评分参考意见一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.3; 2.{x| –1< x <1}; 3. 25; 4.–3; 5. –1;6. x=1或x=2; 7.; 8.–6; 9.y2=12x; 10.5511.325; 14.3. ,; 12.–6; 13.466二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.B; 16.D; 17.A; 18.A三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.解:因为cosA=63,所以sinA=,………………………………………………1分 33又B=A+,所以sinB=sin(A+)=cosA=,……………………………………………2分 223ab,………………………………………………………………………4分 sinAsinBa sinB所以b==32,……………………………………………………………………6分 sinA又因为cosB=cos(A+3)= –sinA= –………………………………………………………………8分 231,…………………………………………………10分 3132.……………………………………………12分所以△ABC的面积S=absinC=22sinC=sin(A+B)=sinAcosB+cosAsinB=或解:因为a2=b2+c2–2bccosA(2分)即:c2–43c+9=0,解之得:c=33(舍去),c=,(2分)△AB C的面积S=13bcsinA=2.(2分) 2220.解(1)∵BC∥B1C1,∴∠A1BC就是异面直线A1B与B1C1所成的角,即∠A1BC =60,…………………………………………………………………………2分又AA1⊥平面ABC,AB=AC,则A1B=A1C,∴△A1BC为等边三角形,…………4分由AB AC1,BAC90BC2,∴A1B2a22a1;……………………………………………6分(2)连接B1C,则三棱锥B1–A1BC的体积等于三棱锥C–A1B1B的体积,即:VB1A1BC VC A1B1B,………………………………………………………………9分△A1B1B 的面积S1,……………………………………………………………11分 2又CA A1A,CA AB,CA平面A1B1B,所以VC A1B1B11111,所以VB1A1BC.………………………………14分 326621.解:(1)由题意得:圆R的半径为22,因为直线OP,OQ互相垂直,且与圆R相切,所以四边形OPRQ为正方形,故OR222r4,即x0y016① ………………3分。
上海市金山区2014届高三数学上学期期末考试试题(上海金山一模)沪教版
金山区2013学年第一学期期末考试高三数学试卷〔总分为:150分,完卷时间:120分钟〕〔答案请写在答题纸上〕一、填空题〔本大题总分为56分〕本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否如此一律得零分。
1.计算:=+ii -31〔i 为虚数单位〕。
2.假设)π2,2π3(∈α,34-αtan =,如此=αsin 。
3.设集合{A =,集合{}b a B ,=,假设{}2∩=B A ,如此=B A ∪。
4.不等式:1≤1-11xx +的解集是 。
5.假设函数)(x f y =的反函数为1-21-x y =,如此=)(x f 。
6.假设关于x 的实系数一元二次方程02=++q px x 有一个根为i 4-3〔i 是虚数单位〕,如此实数p 与q 的乘积=pq 。
7.二项式72)1-(x x 的展开式中含2x 的项的系数是。
8.在等差数列{}n a 中,31=a ,公差不等于零,且942a a a 、、恰好是某一个等比数列的前三项,那么该等比数列的公比的值等于。
9.容器中有10个小球,除颜色外,其他“性状〞完全一样,其中4个是红色球,6个是蓝色球,假设从中任意选取3个,如此所选的3个小球都是蓝色球的概率是〔结果用数值表示〕。
10.从一堆苹果中任取5只,称得它们的质量〔单位:克〕分别是:125,124,121,123,127,如此该堆苹果的总体标准差的点估计值是〔结果准确到0.01〕。
11.设数列{}n a 是公比为q 的等比数列,它的前n 项和为n S ,假设2lim ∞→=n n S ,如此此等比数列的首项1a 的取值范围是。
12.偶函数)∈)((R x x f y =满足:)()2(x f x f =+,并且当[]10∈,x 时,x x f =)(,函数))((R x x f y ∈=与函数x y 3log =的交点个数是。
13.如图,直线063-4:=+y x l ,抛物线x y C 4:2=图像上的一个动点P 到直线l 与y 轴的距离之和的最小值是。
上海金山初级中学初三数学九年级上册期末复习题及答案
上海金山初级中学初三数学九年级上册期末复习题及答案一、选择题1.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-12.下列是一元二次方程的是( ) A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 3.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°4.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-5.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐6.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=7.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④8.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .409.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6 D .这组数据的方差是10.2 10.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( )A .-1B .0C .1D .211.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=12.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.413.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .214.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +15.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 二、填空题16.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.17.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.18.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.19.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.20.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)21.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.22.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________23.抛物线2(-1)3y x =+的顶点坐标是______.24.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .25.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.26.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____. 27.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.28.若32x y =,则x y y+的值为_____. 29.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.30.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),三、解答题31.解下列一元二次方程. (1)x 2+x -6=0; (2)2(x -1)2-8=0.32.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长.33.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 34.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)35.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:平均数(环) 中位数(环) 方差(环2) 小华 8 小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)四、压轴题36.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.37.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________38.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.39.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.2.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C 、方程y 2+x =1含有两个未知数,是二元二次方程,故不是一元二次方程;D 、方程1x=1不是整式方程,是分式方程,故不是一元二次方程. 故选:B. 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.3.D解析:D 【解析】 【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.4.C解析:C 【解析】 【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案. 【详解】解:∵(1)(2)0x x --=, ∴x -1=0或x -2=0, 解得:1x =或2x =. 故选:C. 【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.5.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.7.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.8.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.9.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.10.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 11.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 12.D解析:D 【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】 解:∵////a b c∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】 本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.13.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.14.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.二、填空题16.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.17.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴∴1,1【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.18.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.19.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.20.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 21.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt △OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5, ∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E解析:2【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=, ∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13 ∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m , Rt △GMC 中,勾股可得222GC GM CM =+,即:222(32)(13)m m m ++=+,解得:2m =, ∴边长为22m =2.【点睛】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.23.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.24..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.25.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度. 26.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 27.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.28..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 解析:52. 【解析】【分析】 根据比例的合比性质变形得: 325.22x y y ++== 【详解】 ∵32x y =, ∴325.22x y y ++== 故答案为:52. 【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.29.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求解析:25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.30.∠ACP=∠B(或).【解析】由于△ACP 与△ABC 有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解析:∠ACP=∠B (或AP AC AC AB =). 【解析】【分析】由于△ACP 与△ABC 有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB ,∴当∠ACP=∠B 时,△ACP ∽△ABC ; 当AP AC AC AB=时,△ACP ∽△ABC . 故答案为:∠ACP=∠B (或AP AC AC AB =). 【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.三、解答题31.(1)123;2x x =-=;(2)123;1x x ==-【解析】【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=0.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解32.(1)OE ∥BC .理由见解析;(2)125【解析】【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.【详解】解:(1) OE ∥BC .理由如下:连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCE =90︒ ,∴∠OCA +∠ECF =90︒,∵OC =OA ,∴∠OCA =∠CAB .又∵∠CAB =∠E ,∴∠OCA =∠E ,∴∠E +∠ECF =90︒,∴∠EFC =180O -(∠E +∠ECF ) =90︒.∴∠EFC =∠ACB=90︒ ,∴OE ∥BC .(2)由(1)知,OE ∥BC ,∴∠E =∠BCD .在Rt △OCE 中,∵AB =12,∴OC =6,∵tan E =tan ∠BCD =OC CE , ∴468tan 3OC CE DCB ==⨯=∠. ∴OE 2=O C 2+CE 2=62+82,∴OE =10又由(1)知∠EFC =90︒,∴∠AFO =90︒.在Rt △AFO 中,∵tan A =tan E =34,∴设OF =3x ,则AF =4x .∵OA 2=OF 2+AF 2,即62=(3x )2+(4x )2,解得:65x =∴185OF =, ∴18321055EF OE OF =-=-=.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.33.12m m -+,原式=14 【解析】【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的值求解.【详解】22+24411m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0解得,m 1=2,m 2=-1,因为m =-1分式无意义,所以m =2时,代入原式=2122-+=14. 【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.34.13. 【解析】【分析】先画树状图得到所有等可能的情况,然后找出符合条件的情况数,利用概率公式求解即可.【详解】画树状图为:由树状图知,共有6种等可能的结果数,其中甲、丙两人成为比赛选手的结果有2种, 所以甲、丙两人成为比赛选手的概率为26=13. 【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.35.(1)8,8,23;(2)选择小华参赛.(3)变小 【解析】【分析】(1)根据方差、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.【详解】(1)解:小华射击命中的平均数:7+8+7+8+9+96=8, 小华射击命中的方差:2222122(78)2(88)2(98)63S ⎡⎤=-+-+-=⎣⎦, 小亮射击命中的中位数:8+8=82; (2)解:∵x 小华=x 小亮,S 2小华<S 2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.四、压轴题36.(1)OD=4,(2)证明过程见详解。
2015年上海市各区初三年级第一学期期末考试数学试题(全含答案)
2015年上海市各区初三年级第⼀学期期末考试数学试题(全含答案)2015年上海市六区联考初三⼀模数学试卷(满分150分,时间100分钟) 2015.1⼀. 选择题(本⼤题满分4×6=24分)1. 如果把Rt ABC ?的三边长度都扩⼤2倍,那么锐⾓A 的四个三⾓⽐的值()A. 都扩⼤到原来的2倍;B. 都缩⼩到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为()A. 2(1)y x =+;B. 2(3)y x =-;C. 2(1)2y x =-+;D. 2(1)2y x =--;3. ⼀个⼩球被抛出后,如果距离地⾯的⾼度h (⽶)和运⾏时间t (秒)的函数解析式为25101h t t =-++,那么⼩球到达最⾼点时距离地⾯的⾼度是()A. 1⽶;B. 3⽶;C. 5⽶;D. 6⽶;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于()A. 2;B. 4;C. 245;D. 365;5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于()A. 2sin m α?;B. 2cos m α?;C. 2tan m α?;D. 2cot m α?;6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对⾓线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的⾯积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是()A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ?=?;⼆. 填空题(本⼤题满分4×12=48分)7. 已知34x y =,那么22x y x y-=+ ;8. 计算:33()22a ab -+-= ; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的⽐例中项等于 cm10. ⼆次函数2253y x x =--+的图像与y 轴的交点坐标为;11. 在Rt ABC ?中,90C ∠=?,如果6AB =,2cos 3A =,那么AC = ; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于;13. 如果抛物线2(3)5y a x =+-不经过第⼀象限,那么a 的取值范围是;14. 已知点G 是⾯积为227cm 的△ABC 的重⼼,那么△AGC 的⾯积等于;15. 如图,当⼩杰沿着坡度1:5i =的坡⾯由B 到A 直⾏⾛了26⽶时,⼩杰实际上升的⾼度AC = ⽶(结论可保留根号)16. 已知⼆次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个⼆次函数的图像⼀定经过除点(1,3)外的另⼀点,这点的坐标是;17. 已知不等臂跷跷板AB 长为3⽶,当AB 的⼀端点A 碰到地⾯时(如图1),AB 与地⾯的夹⾓为30°;当AB 的另⼀端点B 碰到地⾯时(如图2),AB 与地⾯的夹⾓的正弦值为13,那么跷跷板AB 的⽀撑点O 到地⾯的距离OH = ⽶18. 把⼀个三⾓形绕其中⼀个顶点逆时针旋转并放⼤或缩⼩(这个顶点不变),我们把这样的三⾓形运动称为三⾓形的T-变换,这个顶点称为T-变换中⼼,旋转⾓称为T-变换⾓,三⾓形与原三⾓形的对应边之⽐称为T-变换⽐;已知△ABC 在直⾓坐标平⾯内,点(0,1)A -,(B ,(0,2)C ,将△ABC 进⾏T-变换,T-变换中⼼为点A ,T-变换⾓为60°,T-变换⽐为23,那么经过T-变换后点C 所对应的点的坐标为;三. 解答题(本⼤题满分10+10+10+10+12+12+14=78分)19. 已知在直⾓坐标平⾯内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;(1)求抛物线的表达式;(2)求△ABC 的⾯积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =;(1)求AD (⽤向量,a b 的式⼦表⽰)(2)如果点E 在中线AD 上,求作BE 在,BA BC ⽅向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表⽰结论的分向量)21. 如图,某幢⼤楼的外墙边上竖直安装着⼀根旗杆CD ,⼩明在离旗杆下⽅⼤楼底部E 点24⽶的点A 处放置⼀台测⾓仪,测⾓仪的⾼度AB 为1.5⽶,并在点B 处测得旗杆下端C 的仰⾓为40°,上端D 的仰⾓为45°,求旗杆CD 的长度;(结果精确到0.1⽶,参考数据:sin 400.64?≈,cos 400.77?≈,tan 400.84?≈)22. ⽤含30°、45°、60°这三个特殊⾓的四个三⾓⽐及其组合可以表⽰某些实数,如:12 可表⽰为1sin 30cos 60tan 45sin 302=?=?==…;仿照上述材料,完成下列问题:(1)⽤含30°、45°、60填空:2= = = =…;(2)⽤含30°、45°、60°这三个特殊⾓的三⾓⽐,结合加、减、乘、除四种运算,设计⼀个等式,要求:等式中须含有这三个特殊⾓的三⾓⽐,上述四种运算都⾄少出现⼀次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上⼀点,DE ∥BC ,交边AC 于点E ,延长DE ⾄点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF(1)求证:AE EG AC CG=;(2)如果2CF FG FB =?,求证:CG CE BC DE ?=?24. 已知在平⾯直⾓坐标系xOy 中,⼆次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-;(1)求这个⼆次函数的解析式;(2)将这个⼆次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请⽤m 的代数式表⽰平移后函数图象顶点M 的坐标;(3)在第(2)⼩题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的⼀动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =;(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求EBP ∠的正切值;(3)如果△EBC 是以EBC ∠为底⾓的等腰三⾓形,求AP 的长;2015年上海市六区联考初三⼀模数学试卷参考答案⼀. 选择题1. C2. A3. D4. C5. B6. B⼆. 填空题 7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12.53 13. 3a <- 14. 915. 16. (3,3)- 17. 3518. ( 三. 解答题19.(1)256y x x =-+;(2)(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ?=;20.(1)12b a -;(2)略; 21. 3.84CD m ≈22.(1)sin 60?,cos 30?,tan 45sin 60;(2)(sin 30cos60)tan 45cot 45?+÷?;23. 略;24.(1)24y x x =-;(2)(2,4)M m -;(3)92m =;25.(1)4y x x =-(25x <≤);(2)3tan 4EBP ∠=;(3;崇明县2014学年第⼀学期教学质量调研测试卷九年级数学(测试时间: 100分钟,满分:150分)⼀、选择题(本⼤题共6题,每题4分,满分24分)1、已知52a b =,那么下列等式中,不⼀定正确的是………………………………() (A)25a b = (B)52a b = (C)7a b += (D)72a b b += 2、在Rt ABC ?中,90C ∠=?,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不⼀定成⽴的是……………………………………………………………………()(A)tan b a B = (B)cos a c B = (C)sin a c A= (D)cos a b A = 3、如果⼆次函数2y ax bx c =++的图像如图所⽰,那么下列判断中,不正确的是………()(A)0a > (B)0b > (C)0c < (D)240b ac ->4、将⼆次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………()(A)2(1)1y x =++(B)2(1)1y x =+- (C)2(1)1y x =-+ (D)2(1)1y x =-- 5、下列说法正确的是……………………………………………………()(A) 相切两圆的连⼼线经过切点 (B) 长度相等的两条弧是等弧 (C) 平分弦的直径垂直于弦 (D) 相等的圆⼼⾓所对的弦相等6、如图,点D 、E 、F 、G 为ABC ?两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ?的⾯积三等分,那么下列结论正确的是 ………………………………………()(A)14DE FG = (B)1DF EG FB GC ==(C)AD FB =(D)AD DB =(第3题图)(第6题图)⼆、填空题(本⼤题共12题,每题4分,满分48分)7、已知点P 是线段AB 的黄⾦分割点()AP PB >,如果2AB =cm ,那么线段AP = cm .8、如果两个相似三⾓形的⾯积⽐为1:4,那么它们的周长⽐为.9、如果⼆次函数22(1)51y m x x m =-++-的图像经过原点,那么m = .A B CD E F G10、抛物线221y x =-在y 轴右侧的部分是(填“上升”或“下降”).11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为.12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是.13、某飞机的飞⾏⾼度为1500m ,从飞机上测得地⾯控制点的俯⾓为60°,此时飞机与这地⾯控制点的距离为 m .14、已知正六边形的半径为2cm ,那么这个正六边形的边⼼距为 cm .15、如图,已知在ABC ?中,90ACB ∠=?,6AC =,点G 为重⼼,GH BC ⊥,垂⾜为点H ,那么GH = .16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆⼼距O 1O 2的长为10cm ,那么公共弦AB 的长为 cm .17、如图,⽔库⼤坝的横截⾯是梯形,坝顶AD 宽5⽶,坝⾼10⽶,斜坡CD 的坡⾓为45?,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为⽶.18、如图,将边长为6cm 的正⽅形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,那么EBG ?的周长是 cm .(第15题图)(第17题图)(第18题图)三、解答题(本⼤题共7题,满分78分)19、(本题满分10分)计算:2014cos301(cot 45)sin60?-+-?+?20、(本题满分10分,其中第(1)⼩题5分,第(2)⼩题5分)已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =.(1)⽤,a b 的线性组合表⽰FA ;(2)先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.C F E DAB C A B CD F G H QE21、(本题满分10分,其中第(1)⼩题6分,第(2)⼩题4分)如图,在Rt ABC ?中,90C ∠=?,点D 是BC 边上的⼀点,6CD =,3cos 5ADC ∠=, 2tan 3B =.(1)求AC 和AB 的长;(2)求sin BAD ∠的值.22、(本题满分10分,其中第(1)⼩题5分,第(2)⼩题5分)如图,轮船从港⼝A 出发,沿着南偏西15?的⽅向航⾏了100海⾥到达B 处,再从B 处沿着北偏东75?的⽅向航⾏200海⾥到达了C 处.(1)求证:AC AB ⊥;(2)轮船沿着BC ⽅向继续航⾏去往港⼝D 处,已知港⼝D 位于港⼝A 的正东⽅向,求轮船还需航⾏多少海⾥.23、(本题满分12分,其中第(1)⼩题6分,第(2)⼩题6分)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的⽐值.DD A B CEF 北 A B C 东24、(本题满分12分,其中每⼩题各4分)如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的⼀点,且90ABC ∠=?.(1)求抛物线的解析式;(2)求点C 坐标;(3)直线112y x =-+上是否存在点P ,使得BCP ?与OAB ?相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由.25、(本题满分14分,其中第(1)⼩题5分,第(2)⼩题5分,第(3)⼩题4分)已知在ABC ?中,5AB AC ==,6BC =,O 为边AB 上⼀动点(不与A 、B 重合),以O 为圆⼼OB 为半径的圆交BC 于点D ,设OB x =,DC y =.(1)如图1,求y 关于x 的函数关系式及定义域;(2)当⊙O 与线段AC 有且只有⼀个交点时,求x 的取值范围;(3)如图2,若⊙O 与边AC 交于点E (有两个交点时取靠近C 的交点),联结DE ,当DEC ?与ABC ?相似时,求x 的值.C AD O B · · · (图1) B C A (备⽤图1)E C A D O B · · · · (图2) B CA (备⽤图2)2014学年徐汇区数学⼀模⼀. 选择题1. 将抛物线22y x =-向右平移⼀个单位,再向上平移2个单位后,抛物线的表达式为()A. 22(1)2y x =--+;B. 22(1)2y x =---;C. 22(1)2y x =-++;D. 22(1)2y x =-+-; 2. 如图,平⾏四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC = 2:3,那么下列各式错误的是()A. 2BE EC =;B. 13EC AD =; C.23EF AE =; D. 23BF DF =;3. 已知Rt △ABC 中,90C ∠=?,CAB α∠=,7AC =,那么BC 为() A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△D C A 成⽴的是()A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =?;D. DC AB AC BC=; 5. 已知⼆次函数222y ax x =-+(0a >),那么它的图像⼀定不经过()A. 第⼀象限;B. 第⼆象限;C. 第三象限;D. 第四象限;6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =,那么:ADE BEC S S ??=()A. 1:24;B. 1:20;C. 1:18;D. 1:16;⼆. 填空题 7. 如果53a b =,那么a b a b-+的值等于; 8. 抛物线2(1)2y x =-+的顶点坐标是;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 9
O
x
y
O x
y
O
x
y
O x
y
金山区2014-2015学年第一学期期末质量检测初三数
学试卷
2015.1
(时间100分钟,满分150分)
一、选择题(本题共6小题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.抛物线
122
x
y 的顶点坐标是(
)
(A ))1,2(;(B ))1,0(;(C ))0,1(;
(D ))2,1(.
2.在ABC Rt 中,90C
,3,5BC
AB ,那么A sin 的值等于(
)
(A )4
3;
(B )
3
4;
(C )
5
3;
(D )
5
4.
3.已知
ABC ∽DEF ,点A 、B 、C 对应点分别是D 、E 、F ,4:9:DE AB ,那
么
DEF ABC
S S
:等于(
)
(A )3:2;(B )9:4;
(C )16:81;
(D )81:16.4.正多边形的中心角是36o ,那么这个正多边形的边数是(
)
(A )10;
(B )8;
(C );6
(D )5.
5.已知⊙M 与⊙N 的半径分别为1和5,若两圆相切,那么这两圆的圆心距MN 的长等于
(
)
(A )4;(B )6;(C )4或5;(D )4或6
6.已知反比例函数)0(a x
a y
,当0x 时,它的图像
y 随x 的增大而减小,那么二次函
数
ax ax
y 2
的图像只可能是(
)
(A)
(B)
(C)
(D)
二、填空题(本题共12题,每小题4分,满分48分)
7.已知
23
x y
,那么
y
x
y x。