2020高考数学(理数)复习作业本8.3 圆方程综合应用(含答案)

合集下载

2020高考数学(理数)复习作业本8.1 直线的方程及应用(含答案)

2020高考数学(理数)复习作业本8.1 直线的方程及应用(含答案)

16.答案:(1)y =-0.5x+2;(2)y =
2
x+
2 +1;(3)y+x-3=0.
2
2020 高考数学(理数)复习作业本 8.1
直线的方程及应用
一、选择题
3
1.过两点 A(4,y),B(2,-3)的直线的倾斜角为 ,则 y 等于(
4
A.-1
B.-5
C.1
) D.5
1
2பைடு நூலகம்过点 M(–2, a), N(a, 4)的直线的斜率为– ,则 a 等于(
)
2
A、–8 B、10 C、2 D、4
3.直线(2m2-5m-3)x-(m2-9)y+4=0 的倾斜角为,则 m 的值是(
A.b>0,d<0,a<c B.b>0,d<0,a>c C.b<0,d>0,a>c D.b<0,d>0,a<c
7.两条直线 A.1 或-3
, B.1
C.-5
互相垂直,则 a 的值是(
)
D.0 或-3
二、填空题 8.已知点 A(4,-3)与 B(2,-1)关于直线 l 对称,在 l 上有一点 P,使点 P 到直线 4x+3y-
15.已知直线 方程为(2+m)x+(1-2m)y+4-3m=0.
(1)证明:直线恒过定点 M; (2)若直线分别与 x 轴、y 轴的负半轴交于 A、B 两点,求△AOB 面积的最小值及此时直 线的方程.
16.直线 l 过点 P(2,1),且与 x 轴、y 轴的正半轴分别交于 A、B 两点.求使 (1)ΔAOB 面积最小时直线 l 的方程; (2)|OA|+|OB|取最小值时直线 l 的方程; (3)求使|PA|∙|PB|取最小值时直线 l 的方程.

2020高考数学(理数)复习作业本8.2 圆的方程(含答案)

2020高考数学(理数)复习作业本8.2 圆的方程(含答案)

2020高考数学(理数)复习作业本8.2 圆的方程一、选择题1.方程x 2+y 2+2x-4y-6=0表示的图形是( )A.以(1,-2)为圆心,11为半径的圆B.以(1,2)为圆心,11为半径的圆C.以(-1,-2)为圆心,11为半径的圆D.以(-1,2)为圆心,11为半径的圆2.已知点(0,0)在圆:x 2+y 2+ax +ay +2a 2+a -1=0外,则a 的取值范围是( )A.a>0.5或a<-1B.371--<a<371+- C.371--<a<-1或12<a<371+- D.a<371--或a>371+-3.过点A(-1,3),B(3,-1),且圆心在直线x-2y-1=0上的圆的标准方程为( )A.(x+1)2+ (y+1)2=4B.(x+1)2+ (y+1)2=16C.(x-1)2+y 2=13D.(x-1)2+y 2=54.圆心在曲线y=0.25x 2(x<0)上,并且与直线y=-1及y 轴都相切的圆的方程是( )A.(x +2)2+(y-1)2=2B.(x-2)2+(y +1)2=4C.(x-2)2+(y-1)2=4D.(x +2)2+(y-1)2=4 5.如果直线l 将圆22240x y x y +--=平分,且不通过第四象限, 那么l 的斜率的取值范围是( )A 、[0,2]B 、[0,1]C 、1[0]2,D 、1[0]3,6.如果过A(2,1)的直线l 将圆x 2+y 2-2x -4y=0平分,则l 的方程为( )A.x +y -3=0B.x +2y -4=0C.x -y -1=0D.x -2y=07.圆心为(1,1)且与直线x +y=4相切的圆的方程是( ).A.(x +1)2+(y +1)2B.(x-1)2+(y-1)2C.(x +1)2+(y +1)2=2D.(x-1)2+(y-1)2=28.如果实数满足(x +2)2+y 2=3,则xy的最大值为( ) A.3 B.-3 C.33 D.-33二、填空题9.圆C :(x +4)2+(y-3)2=9的圆心C 到直线4x +3y-1=0的距离等于________.10.若点P(5a+1,12a)在圆(x-1)2+y 2=1的外部,则a 的取值范围为________.11.以原点O 为圆心且截直线3x +4y +15=0所得弦长为8的圆的方程是________.12.设m,n ∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n 的取值范围是 .三、解答题13.已知圆C 经过点A(2,0),B(1,-3),且圆心C 在直线y=x 上.(1)求圆C 的方程;(2)过点)331(,的直线l 截圆C 所得弦长为32 ,求直线l 的方程.14.已知圆C 的方程为x 2+y 2+(m-2)x+(m+1)y+m-2=0,根据下列条件确定实数m 的取值,并写出相应的圆心坐标和半径。

天津市2020〖人教版〗高三数学复习试卷全国统一高考数学试卷理科参考答案与试题解析

天津市2020〖人教版〗高三数学复习试卷全国统一高考数学试卷理科参考答案与试题解析

天津市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷理科参考答案与试题解析创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x ≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x 2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6 B.﹣3 C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan()的最小正周期为2π,排除B.解答:解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D∵y=tan()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin()+cos2x=cos2x﹣sin2x+cos2x=(+1)cos2x﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.创作人:百里公地创作日期:202X.04.01解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.创作人:百里公地创作日期:202X.04.01考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2 B.0 C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时y min=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g (b)=f(b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.创作人:百里公地创作日期:202X.04.01考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.创作人:百里公地创作日期:202X.04.01专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{a n},{b n}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设c n=a n+b n,S n为数列{c n}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.创作人:百里公地创作日期:202X.04.01分析:先根据等比数列的通项公式分别求出a n和b n,再根据等比数列的求和公式,分别求得S n 的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.和S n﹣1解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y (元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为创作人:百里公地创作日期:202X.04.01故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.25.(12分)(•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P (a,b),圆P截X 轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X 轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d 有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,创作人:百里公地创作日期:202X.04.01P到x轴,y轴的距离,不能正确利用基本不等式.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校创作人:百里公地创作日期:202X.04.01。

2020高考数学(理数)复习作业本8.4 椭圆(含答案)

2020高考数学(理数)复习作业本8.4 椭圆(含答案)

2020高考数学(理数)复习作业本8.4椭圆一、选择题1.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)2.设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B .513 C.49 D .593.已知方程112222=-+-k y k x 表示焦点在y 轴上的椭圆,则实数k 的取值范围是( ) A.(0.5,2) B.(1,+∞) C.(1,2) D.(0.5,1)4.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )A.13 B .33 C.34 D .223 5.如图,已知椭圆C 的中心为原点O,F(-25,0)为C 的左焦点,P 为C 上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C 的方程为( )A.152522=+y x B.1163622=+y x C.1103022=+y x D.1254522=+y x6.如图,已知椭圆C 的中心为原点O ,F(-5,0)为C 的左焦点,P 为C 上一点,满足|OP|=|OF|且|PF|=6,则椭圆C 的方程为( )A.x 236+y 216=1 B .x 240+y 215=1 C.x 249+y 224=1 D .x 245+y 220=17.已知点F 1,F 2分别是椭圆E :=1的左、右焦点,P 为E 上一点,直线1为∠F 1PF 2的外角平分线,过点F 2作l 的垂线,垂足为M ,则|OM|=( ) A.10 B.8 C.5 D.48.椭圆x 25+y24=1的左焦点为F ,直线x=a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN的面积是( )A.55 B .655 C.855 D .455二、填空题 9.设椭圆C :(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为 .10.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.11.如图,在平面直角坐标系xOy 中,F 是椭圆12222=+b y a x (a>b>0)的右焦点,直线y=2b与椭圆交于B,C 两点,且∠BFC=90°,则该椭圆的离心率是 .12.已知P 为椭圆x 2a 2+y2b 2=1(a >b >0)上一点,F 1,F 2是其左、右焦点,∠F 1PF 2取最大值时,cos∠F 1PF 2=13,则椭圆的离心率为________.三、解答题13.已知A(x 0,0),B(0,y 0)两点分别在x 轴和y 轴上运动,且|AB|=1,若动点P(x ,y)满足OP →=2OA→+3OB →.(1)求动点P 的轨迹C 的标准方程;(2)直线l :x=ty +1与曲线C 交于A ,B 两点,E(-1,0),试问:当t 变化时,是否存在一条直线l ,使△ABE 的面积为23?若存在,求出直线l 的方程;若不存在,说明理由. 14.已知焦点在y 轴上的椭圆E 的中心是原点O,离心率等于23,以椭圆E 的长轴和短轴为对角线的四边形的周长为45.直线l:y=kx+m 与y 轴交于点P,与椭圆E 相交于A 、B 两个点. (1)求椭圆E 的方程; (2)若=3,求m 2的取值范围.15.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B(0,4),离心率e=55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y=x -4,求弦MN 的长;(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,左焦点为F(-1,0),过点D(0,2)且斜率为k 的直线l 交椭圆于A ,B 两点. (1)求椭圆C 的标准方程;(2)在y 轴上,是否存在定点E ,使AE →·BE →恒为定值?若存在,求出E 点的坐标和这个定值;若不存在,说明理由.答案解析1.答案为:D.解析:∵圆的标准方程为(x -3)2+y 2=1,∴圆心坐标为(3,0),∴c=3.又b=4,∴a=b 2+c 2=5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).2.答案为:B.解析:由题意知a=3,b=5,c=2.设线段PF 1的中点为M ,则有OM∥PF 2,因为OM⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a=6,所以|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.3.答案为:C ;4.答案为:D.解析:不妨令椭圆方程为x 2a 2+y2b2=1(a >b >0).因为以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,所以2b=2a 3,即a=3b ,则c=a 2-b 2=22b ,则该椭圆的离心率e=c a =223.故选D.5.答案为:B ;6.答案为:C.解析:由题意可得c=5,设右焦点为F′,连接PF′,由|OP|=|OF|=|OF′|知, ∠PFF ′=∠FPO,∠OF ′P=∠OPF′,∴∠PFF ′+∠OF′P =∠FPO+∠OPF′, ∴∠FPO +∠OPF′=90°,即PF⊥PF′.在Rt △PFF ′中,由勾股定理,得|PF′|=|FF ′|2-|PF|2=102-62=8,由椭圆定义,得|PF|+|PF′|=2a=6+8=14,从而a=7,得a 2=49,于是b 2=a 2-c 2=72-52=24,所以椭圆C 的方程为x 249+y224=1,故选C.7.C.8.答案为:C.解析:设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为 L=|MN|+|MF|+|NF|=|MN|+(25-|ME|)+(25-|NE|). 因为|ME|+|NE|≥|MN|,所以|MN|-|ME|-|NE|≤0,当直线MN 过点E 时取等号,所以L=45+|MN|-|ME|-|NE|≤45, 即直线x=a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN|×|EF|=12×2×45×2=855,故选C.9.答案为:.10.答案为:x 216+y24=1;解析:由题意可知e=c a =32,2b=4,得b=2,所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎨⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.11.答案为:;12.答案为:33; 解析:易知∠F 1PF 2取最大值时,点P 为椭圆x 2a 2+y2b2=1与y 轴的交点,由余弦定理及椭圆的定义得2a 2-2a 23=4c 2,即a=3c ,所以椭圆的离心率e=c a =33.13.解:(1)因为OP →=2OA →+3OB →,即(x ,y)=2(x 0,0)+3(0,y 0)=(2x 0,3y 0),所以x=2x 0,y=3y 0,所以x 0=12x ,y 0=33y ,又|AB|=1,所以x 20+y 20=1,即⎝ ⎛⎭⎪⎫12x 2+⎝ ⎛⎭⎪⎫33y 2=1,即x 24+y 23=1,所以动点P 的轨迹C 的标准方程为x 24+y23=1.(2)由方程组⎩⎪⎨⎪⎧x =ty +1,x 24+y 23=1,得(3t 2+4)y 2+6ty -9=0,设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4<0,所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=⎝ ⎛⎭⎪⎫-6t 3t 2+42-4⎝ ⎛⎭⎪⎫-93t 2+4=12t 2+13t 2+4. 因为直线x=ty +1过点F(1,0),所以S △ABE =12|EF||y 1-y 2|=12×2×12t 2+13t 2+4=12t 2+13t 2+4, 令12t 2+13t 2+4=23,则t 2=-23,不成立,故不存在满足题意的直线l. 14.解:15.解:(1)由已知得b=4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y=x -4联立,消去y 得9x 2-40x=0,∴x 1=0,x 2=409,∴所求弦长|MN|=1+12|x 2-x 1|=4029.(2)设椭圆右焦点F 的坐标为(2,0),线段MN 的中点为Q(x 0,y 0),由三角形重心的性质知BF →=2FQ →,又B(0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2,即得Q 的坐标为(3,-2).设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1,以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.16.解:(1)由已知可得⎩⎪⎨⎪⎧c a =22,a 2=b 2+c 2,c =1,可得a 2=2,b 2=1,所以椭圆C 的标准方程为x 22+y 2=1.(2)设过点D(0,2)且斜率为k 的直线l 的方程为y=kx +2,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +2,消去y 整理得(1+2k 2)x 2+8kx +6=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-8k 1+2k 2,x 1x 2=61+2k2.又y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4=-2k 2-42k 2+1,y 1+y 2=(kx 1+2)+(kx 2+2)=k(x 1+x 2)+4=42k 2+1.设存在点E(0,m),则AE →=(-x 1,m -y 1),BE →=(-x 2,m -y 2),所以AE →·BE →=x 1x 2+m 2-m(y 1+y 2)+y 1y 2=62k 2+1+m 2-m×42k 2+1-2k 2-42k 2+1=(2m 2-2)k 2+m 2-4m +102k 2+1. 要使AE →·BE →=t(t 为常数),只需(2m 2-2)k 2+m 2-4m +102k 2+1=t , 从而(2m 2-2-2t)k 2+m 2-4m +10-t=0,即⎩⎪⎨⎪⎧2m 2-2-2t =0,m 2-4m +10-t =0,解得m=114,从而t=10516,故存在定点E ⎝⎛⎭⎪⎫0,114,使AE →·BE →恒为定值10516.。

上海市2020〖人教版〗高三数学复习试卷高考数学试卷理科参考答案与试题解析5

上海市2020〖人教版〗高三数学复习试卷高考数学试卷理科参考答案与试题解析5

上海市2020年〖人教版〗高三数学复习试卷高考数学试卷理科参考答案与试题解析创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校一、选择题(共10小题,每小题5分,满分50分)1.(5分)(•天津)i是虚数单位,=()A.1+2i B.﹣1﹣2i C.1﹣2i D.﹣1+2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】复数的分子、分母同乘分母的共轭复数,化简即可.【解答】解:,故选D.【点评】本小题考查复数代数形式的乘除运算,基础题.2.(5分)(•天津)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.23【考点】简单线性规划的应用.【专题】不等式的解法及应用.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件.画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.【解答】解:画出不等式.表示的可行域,如图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得(2,1),所以z min=4+3=7,故选B.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.3.(5分)(•天津)命题“存在x0∈R,2x2﹣1≤0”的否定是()A.不存在x0∈R,2x02﹣1>0 B.存在x0∈R,2x02﹣1>0 C.对任意的x∈R,2x2﹣1≤0 D.对任意的x∈R,2x2﹣1>0【考点】命题的否定.【专题】简易逻辑.【分析】命题的否定只否定结论即可,不要与否命题混淆.【解答】解:结论的否定形式为:2x2﹣1>0∴原命题的否定为:D.故选D.【点评】本题考查了命题的否定,注意它与否命题的区别.4.(5分)(•天津)设函数f(x)=x﹣lnx(x>0),则y=f (x)()A.在区间(,1),(l,e)内均有零点B.在区间(,1),(l,e)内均无零点C.在区间(,1)内无零点,在区间(l,e)内有零点D.在区间(,1)内有零点,在区间(l,e)内无零点【考点】利用导数研究函数的单调性;函数零点的判定定理.【专题】导数的概念及应用.【分析】先对函数f(x)进行求导,再根据导函数的正负情况判断原函数的增减性可得答案.【解答】解:由题得,令f′(x)>0得x>3;令f′(x)<0得0<x<3;f′(x)=0得x=3,故知函数f(x)在区间(0,3)上为减函数,在区间(3,+∞)为增函数,在点x=3处有极小值1﹣ln3<0;又,,.故选C.【点评】本题主要考查导函数的增减性与原函数的单调性之间的关系.即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.5.(5分)(•天津)阅读程序框图,则输出的S=()A.26 B.35 C.40 D.57【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=2+5+8+ (14)值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=2+5+8+…+14的值∵S=2+5+8+…+14=40.故选C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.6.(5分)(•天津)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.【考点】基本不等式;等比数列的性质.【专题】不等式的解法及应用.【分析】由题设条件中的等比关系得出a+b=1,代入中,将其变为2+,利用基本不等式就可得出其最小值【解答】解:因为3a•3b=3,所以a+b=1,,当且仅当即时“=”成立,故选择B.【点评】本小题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力.7.(5分)(•天津)已知函数的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由周期函数的周期计算公式:,算得ω=2.接下来将f(x)的表达式转化成与g(x)同名的三角函数,再观察左右平移的长度即可.【解答】解:由题知ω=2,所以,故选择A.【点评】本题考点定位:本小题考查诱导公式,函数图象的变换,基础题.8.(5分)(•天津)已知函数若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【考点】函数单调性的性质;其他不等式的解法.【专题】函数的性质及应用.【分析】由题义知分段函数求值应分段处理,利用函数的单调性求解不等式.【解答】解:由f(x)的解析式可知,f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f(a),得2﹣a2>a即a2+a﹣2<0,解得﹣2<a<1.故选C【点评】此题重点考查了分段函数的求值,还考查了利用函数的单调性求解不等式,同时一元二次不等式求解也要过关.9.(5分)(•天津)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A. B. C. D.【考点】抛物线的应用;抛物线的简单性质;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】根据=,进而根据两三角形相似,推断出=,根据抛物线的定义求得=,根据|BF|的值求得B的坐标,进而利用两点式求得直线的方程,把x=代入,即可求得A的坐标,进而求得的值,则三角形的面积之比可得.【解答】解:如图过B作准线l:x=﹣的垂线,垂足分别为A1,B1,∵=,又∵△B1BC∽△A1AC、∴=,由拋物线定义==.由|BF|=|BB 1|=2知x B=,y B=﹣,∴AB:y﹣0=(x﹣).把x=代入上式,求得y A=2,x A=2,∴|AF|=|AA1|=.故===.故选A.【点评】本题主要考查了抛物线的应用,抛物线的简单性质.考查了学生基础知识的综合运用和综合分析问题的能力.10.(5分)(•天津)0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数恰有3个,则()A.﹣1<a<0 B.0<a<1 C.1<a<3 D.2<a<3【考点】其他不等式的解法.【专题】不等式的解法及应用.【分析】要使关于x的不等式(x﹣b)2>(ax)2的解集中的整数恰有3个,那么此不等式的解集不能是无限区间,从而其解集必为有限区间,【解答】解:由题得不等式(x﹣b)2>(ax)2即(a2﹣1)x2+2bx﹣b2<0,它的解应在两根之间,因此应有 a2﹣1>0,解得a>1或a<﹣1,注意到0<b<1+a,从而a>1,故有△=4b2+4b2(a2﹣1)=4a2b2>0,不等式的解集为或(舍去).不等式的解集为,又由0<b<1+a得,故,,这三个整数解必为﹣2,﹣1,02(a﹣1)<b≤3 (a﹣1),注意到a>1,并结合已知条件0<b<1+a.故要满足题设条件,只需要2(a﹣1)<1+a<3(a﹣1),即2<a<3即可,则b>2a﹣2b<3a﹣3又0<b<1+a故 1+a>2a﹣23a﹣3>0解得1<a<3,综上2<a<3.故选:D.【点评】本小题考查解一元二次不等式解法,二次函数的有关知识,逻辑思维推理能力,含有两个变量的题目是难题.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(•天津)某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取40 名学生.【考点】分层抽样方法.【专题】概率与统计.【分析】根据全校的人数和A,B两个专业的人数,得到C专业的人数,根据总体个数和要抽取的样本容量,得到每个个体被抽到的概率,用C专业的人数乘以每个个体被抽到的概率,得到结果.【解答】解:∵C专业的学生有1200﹣380﹣420=400,由分层抽样原理,应抽取名.故答案为:40【点评】本题考查分层抽样,分层抽样过程中,每个个体被抽到的概率相等,在总体个数,样本容量和每个个体被抽到的概率这三个量中,可以知二求一.12.(4分)(•天津)如图是一个几何体的三视图,若它的体积是,则a=.【考点】由三视图求面积、体积.【专题】立体几何.【分析】该几何体是放倒的三棱柱,依据所给数据求解即可.【解答】解:由已知可知此几何体是三棱柱,其高为3,底面是底边长为2,底边上的高为a的等腰三角形,所以有.故答案为:【点评】本小题考查三视图、三棱柱的体积,基础题.本试题考查了简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.13.(4分)(•天津)设直线l1的参数方程为(t为参数),直线l2的方程为y=3x+4则l1与l2的距离为.【考点】直线的参数方程;两条平行直线间的距离.【专题】坐标系和参数方程.【分析】先求出直线的普通方程,再利用两条平行线间的距离公式求出它们的距离即可.【解答】解析:由题直线l1的普通方程为3x﹣y﹣2=0,故它与l2的距离为.故答案为【点评】本小题主要考查参数方程化为普通方程、两条平行线间的距离,属于基础题.14.(4分)(•天津)若圆x2+y2=4与圆x2+y2+2ay﹣6=0(a>0)的公共弦的长为,则a= 1 .【考点】圆与圆的位置关系及其判定;圆方程的综合应用.【专题】直线与圆.【分析】画出草图,不难得到半径、半弦长的关系,求解即可.【解答】解:由已知x2+y2+2ay﹣6=0的半径为,圆心(0,﹣a),公共弦所在的直线方程为,ay=1.大圆的弦心距为:|a+|由图可知,解之得a=1.故答案为:1.【点评】本小题考查圆与圆的位置关系,基础题.15.(4分)(•天津)在四边形ABCD中,==(1,1),,则四边形ABCD的面积是.【考点】向量的线性运算性质及几何意义.【专题】平面向量及应用.【分析】根据题意知四边形ABCD是菱形,其边长为,且对角线BD等于边长的倍,再由向量数量积运算的应用可得和,最终可得四边形ABCD的面积【解答】解:由题,可知平行四边形ABCD 的角平分线BD平分∠ABC,四边形ABCD是菱形,其边长为,且对角线BD等于边长的倍,所以cos∠BAD==﹣,故sin∠BAD=,S ABCD=()2×=.故答案为:.【点评】本小题考查向量的几何运算,基础题.16.(4分)(•天津)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有324 个(用数字作答)【考点】排列、组合的实际应用.【专题】排列组合.【分析】由题意知本题需要分类来解,当个位、十位和百位上的数字为3个偶数,当个位、十位和百位上的数字为1个偶数2个奇数,根据分类计数原理得到结果.【解答】解:由题意知本题需要分类来解:当个位、十位和百位上的数字为3个偶数的有:+=90种;当个位、十位和百位上的数字为1个偶数2个奇数的有:+=234种,根据分类计数原理得到∴共有90+234=324个.故答案为:324.【点评】本小题考查排列实际问题基础题.数字问题是计数中的一大类问题,条件变换多样,把计数问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.三、解答题(共6小题,满分76分)17.(12分)(•天津)已知:△ABC中,BC=1,AC=,sinC=2sinA(1)求AB的值.(2)求的值.【考点】正弦定理的应用.【专题】解三角形.【分析】(1)根据正弦定理将题中正弦值的关系转化为边的关系,即可得到答案.(2)根据三边长可直接验证满足勾股定理进而得到△ABC是Rt△且∠ABC=90°,从而可得到角A的正弦值和余弦值,再由两角和与差的正弦公式和二倍角公式可求最后答案.【解答】解:(1)在△ABC中,∵sinC=2sinA∴由正弦定理得AB=2BC又∵BC=1∴AB=2(2)在△ABC中,∵AB=2,BC=1,∴AB2+BC2=AC2∴△ABC是Rt△且∠ABC=90°∴,∴===【点评】本题主要考查正弦定理和和两角和与差的正弦公式的应用.属基础题.18.(12分)(•天津)在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(I)取出的3件产品中一等品件数X的分布列和数学期望;(II)取出的3件产品中一等品件数多于二等品件数的概率.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式.【专题】概率与统计.【分析】(Ⅰ)由题意知本题是一个古典概型,试验包含的所有事件是从10件产品中任取3件的结果为C103,满足条件的事件是从10件产品中任取3件,其中恰有k件一等品的结果数为C3k C73﹣k,写出概率,分布列和期望.(II)取出的3件产品中一等品件数多于二等品件数包括三种情况,一是恰好取出1件一等品和2件二等品,二是恰好取出2件一等品,三是恰好取出3件一等品,这三种情况是互斥的,根据互斥事件的概率,得到结果.【解答】解:(Ⅰ)由题意知本题是一个古典概型,由于从10件产品中任取3件的结果为C103,从10件产品中任取3件,其中恰有k件一等品的结果数为C3k C73﹣k,那么从10件产品中任取3件,其中恰有k件一等品的概率为P (X=k)=,k=0,1,2,3.∴随机变量X的分布列是x 0 1 2 3p∴X的数学期望EX=(Ⅱ)解:设“取出的3件产品中一等品件数多于二等品件数”为事件A,“恰好取出1件一等品和2件三等品”为事件A1“恰好取出2件一等品“为事件A2,”恰好取出3件一等品”为事件A3由于事件A1,A2,A3彼此互斥,且A=A1∪A2∪A3而,P(A2)=P(X=2)=,P(A3)=P(X=3)=,∴取出的3件产品中一等品件数多于二等品件数的概率为P(A)=P(A1)+P(A2)+P(A3)=++=【点评】本题考查离散型随机变量的分布列和期望,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的类型题目.19.(12分)(•天津)如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD,(1)求异面直线BF与DE所成的角的大小;(2)证明平面AMD⊥平面CDE;(3)求二面角A﹣CD﹣E的余弦值.【考点】异面直线及其所成的角;平面与平面垂直的判定;与二面角有关的立体几何综合题.【专题】空间位置关系与距离;空间角;立体几何.【分析】(1)先将BF平移到CE,则∠CED(或其补角)为异面直线BF与DE所成的角,在三角形CED中求出此角即可;(2)欲证平面AMD⊥平面CDE,即证CE⊥平面AMD,根据线面垂直的判定定理可知只需证CE与平面AMD内两相交直线垂直即可,易证DM⊥CE,MP⊥CE;(3)设Q为CD的中点,连接PQ,EQ,易证∠EQP为二面角A﹣CD﹣E的平面角,在直角三角形EQP中求出此角即可.【解答】(1)解:由题设知,BF∥CE,所以∠CED(或其补角)为异面直线BF与DE所成的角.设P为AD的中点,连接EP,PC.因为FE=∥AP,所以FA=∥EP,同理AB=∥PC.又FA⊥平面ABCD,所以EP⊥平面ABCD.而PC,AD都在平面ABCD内,故EP⊥PC,EP⊥AD.由AB⊥AD,可得PC⊥AD设FA=a,则EP=PC=PD=a,CD=DE=EC=,故∠CED=60°.所以异面直线BF与DE所成的角的大小为60°(2)证明:因为DC=DE且M为CE的中点,所以DM⊥CE.连接MP,则MP⊥CE.又MP∩DM=M,故CE⊥平面AMD.而CE⊂平面CDE,所以平面AMD⊥平面CDE.(3)解:设Q为CD的中点,连接PQ,EQ.因为CE=DE,所以EQ⊥CD.因为PC=PD,所以PQ⊥CD,故∠EQP为二面角A﹣CD﹣E的平面角.可得,.【点评】本小题要考查异面直线所成的角、平面与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想像能力、运算能力和推理论证能力.20.(12分)(•天津)已知函数f(x)=(x2+ax﹣2a2+3a)e x(x∈R),其中a∈R.(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当时,求函数f(x)的单调区间和极值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(Ⅰ)把a=0代入到f(x)中化简得到f(x)的解析式,求出f'(x),因为曲线的切点为(1,f(1)),所以把x=1代入到f'(x)中求出切线的斜率,把x=1代入到f(x)中求出f(1)的值得到切点坐标,根据切点和斜率写出切线方程即可;(Ⅱ)令f'(x)=0求出x的值为x=﹣2a和x=a﹣2,分两种情况讨论:①当﹣2a<a﹣2时和②当﹣2a>a﹣2时,讨论f'(x)的正负得到函数的单调区间,根据函数的增减性即可得到函数的最值.【解答】(Ⅰ)解:当a=0时,f(x)=x2e x,f'(x)=(x2+2x)e x,故f'(1)=3e,所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e,f(1)=e,所以该切线方程为y﹣e=3e(x﹣1),整理得:3ex﹣y﹣2e=0.(Ⅱ)解:f'(x)=[x2+(a+2)x﹣2a2+4a]e x令f'(x)=0,解得x=﹣2a,或x=a﹣2.由知,﹣2a≠a﹣2.以下分两种情况讨论.①若a>,则﹣2a<a﹣2.当x变化时,f'(x),f(x)的变化情况如下表:x (﹣∞,a﹣2)﹣2a (﹣2a,a﹣2)a﹣2 (a﹣2,+∞)f′(x)+ 0 ﹣0 +F(x)↗极大值↘极小值↗所以f(x)在(﹣∞,﹣2a),(a﹣2,+∞)内是增函数,在(﹣2a,a﹣2)内是减函数.函数f(x)在x=﹣2a处取得极大值f(﹣2a),且f(﹣2a)=3ae﹣2a.函数f(x)在x=a﹣2处取得极小值f(a﹣2),且f(a﹣2)=(4﹣3a)e a﹣2.②若a<,则﹣2a>a﹣2,当x变化时,f'(x),f(x)的变化情况如下表:x (﹣∞,a﹣2)a﹣2 (a﹣2,﹣2a)﹣2a (﹣2a,+∞)f′(x)+ 0 ﹣0 +F(x)↗极大值↘极小值↗所以f(x)在(﹣∞,a﹣2),(﹣2a,+∞)内是增函数,在(a﹣2,﹣2a)内是减函数函数f(x)在x=a﹣2处取得极大值f(a﹣2),且f(a﹣2)=(4﹣3a)e a﹣2,函数f(x)在x=﹣2a处取得极小值f(﹣2a),且f(﹣2a)=3ae﹣2a.【点评】考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调性以及根据函数的增减性得到函数的极值.灵活运用分类讨论的数学思想解决数学问题.21.(14分)(•天津)以知椭圆的两个焦点分别为F1(﹣c,0)和F2(c,0)(c>0),过点的直线与椭圆相交于A,B两点,且F1A∥F2B,|F1A|=2|F2B|.(1)求椭圆的离心率;(2)求直线AB的斜率;(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.【考点】椭圆的应用;椭圆的简单性质;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(1)由F1A∥F2B且|F1A|=2|F2B|,得,从而,由此可以求出椭圆的离心率.(2)由题意知椭圆的方程可写为2x2+3y2=6c2,设直线AB的方程为,设A(x1,y1),B(x2,y2),则它们的坐标满足方程组,整理,得(2+3k2)x2﹣18k2cx+27k2c2﹣6c2=0.再由根的判别式和根与系数的关系求解.(III)解法一:当时,得,.线段AF1的垂直平分线l的方程为直线l与x轴的交点是△AF1C外接圆的圆心,因此外接圆的方程为.由此可以推导出的值.解法二:由椭圆的对称性可知B,F2,C三点共线,由已知条件能够导出四边形AF1CH为等腰梯形.由此入手可以推导出的值.【解答】(1)解:由F1A∥F2B且|F1A|=2|F2B|,得,从而整理,得a2=3c2,故离心率(2)解:由(I)得b2=a2﹣c2=2c2,所以椭圆的方程可写为2x2+3y2=6c2设直线AB的方程为,即y=k(x﹣3c).由已知设A(x1,y1),B(x2,y2),则它们的坐标满足方程组消去y整理,得(2+3k2)x2﹣18k2cx+27k2c2﹣6c2=0.依题意,而①②由题设知,点B为线段AE的中点,所以x1+3c=2x2③联立①③解得,将x1,x2代入②中,解得.(III)解法一:由(II)可知当时,得,由已知得.线段AF1的垂直平分线l的方程为直线l与x 轴的交点是△AF1C外接圆的圆心,因此外接圆的方程为.直线F2B的方程为,于是点H(m,n)的坐标满足方程组,由m≠0,解得故当时,同理可得.解法二:由(II)可知当时,得,由已知得由椭圆的对称性可知B,F2,C三点共线,因为点H(m,n)在△AF1C的外接圆上,且F1A∥F2B,所以四边形AF1CH为等腰梯形.由直线F2B的方程为,知点H的坐标为.因为|AH|=|CF1|,所以,解得m=c(舍),或.则,所以.当时同理可得【点评】本题考查直线与椭圆的位置关系和椭圆性质的综合应用,难度较大,解题要注意公式的正确选取和灵活运用,避免不必要的性质.22.(14分)(•天津)已知等差数列{a n}的公差为d(d≠0),等比数列{b n}的公比为q(q>1).设s n=a1b1+a2b2+…+a n b n,T n=a1b1﹣a2b2+…+(﹣1)n﹣1anbn,n∈N+,(1)若a1(2)=b1(3)=1,d=2,q=3,求S3的值;(Ⅱ)若b1(6)=1,证明(1﹣q)S2n﹣(1+q)T2n=,n∈(10)N+;(Ⅲ)若正数n满足2≤n≤q,设k1,k2,…,k n和l1,l2,…,l n是1,2,…,n的两个不同的排列,c1=a k1b1+a k2b2+…+a kn b n,c2=a l1b1+a l2b2+…+a ln b n证明c1≠c2.【考点】数列的应用.【专题】等差数列与等比数列.【分析】(Ⅰ)由题设,可得a n=2n﹣1,b n=3n﹣1,n∈N*,由此可求出S3的值.(Ⅱ)证明:由题设可得b n=q n﹣1则S2n=a1+a2q+a3q2++a2n q2n﹣1,T2n=a1﹣a2q+a3q2﹣a4q3+﹣a2n q2n﹣1,由此能够推导出(1﹣q)S2n﹣(1+q)T2n=.(Ⅲ)证明:由题设条件可知,由此入手能够导出c1≠c2.【解答】(Ⅰ)解:由题设,可得a n=2n﹣1,b n=3n﹣1,n∈N*所以,S3=a1b1+a2b2+a3b3=1×1+3×3+5×9=55(Ⅱ)证明:由题设可得b n=q n﹣1则S2n=a1+a2q+a3q2+…+a2n q2n﹣1,①T2n=a1﹣a2q+a3q2﹣a4q3+…﹣a2n q2n﹣1,S2n﹣T2n=2(a2q+a4q3+…﹣a2n q2n﹣1)1式加上②式,得S2n+T2n=2(a1+a3q2+…+a2n﹣1q2n﹣2)③2式两边同乘q,得q(S2n+T2n)=2(a1q+a3q3+…+a2n﹣1q2n﹣1)所以,(1﹣q)S2n﹣(1+q)T2n=(S2n﹣T2n)﹣q(S2n+T2n)=2d(q+q3+…+q2n﹣1)=(Ⅲ)证明:c1﹣c2=(a k1﹣a l1)b1+(a k2﹣a l2)b2+…+(a kn﹣a ln)b n=(k1﹣l1)db1+(k2﹣l2)db1q+…+(k n﹣l n)db1q n﹣1因为d≠0,b1≠0,所以若k n≠l n,取i=n若k n=l n,取i满足k i≠l i且k j=l j,i+1≤j≤n,由题设知,1<i≤n且当k i<l i2时,得k i﹣l i≤﹣1,由q≥n,得k i﹣l i≤q﹣1,i=1,2,3i﹣13即k1﹣l1≤q﹣1,(k2﹣l2)q≤q(q﹣1),(k i﹣1﹣l i﹣1)q i﹣2≤q i﹣2(q﹣1)又(k i﹣l i)q i﹣1≤﹣q i﹣1,所以因此c1﹣c2≠0,即c1≠c2当k i>l i,同理可得,因此c1≠c2.综上c1≠c2.【点评】本题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力.创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校。

2020-2021中考数学专题复习分类练习 圆的综合综合解答题含答案解析

2020-2021中考数学专题复习分类练习 圆的综合综合解答题含答案解析

2020-2021中考数学专题复习分类练习圆的综合综合解答题含答案解析一、圆的综合1.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E ,OE=BE ,∴DO=DE+OE=(A′E+BE )=AB=OA ,∴A′C 与半圆O 相切;(2)当BA′与半圆O 相切时,则OB ⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB ,∴∠O′AB=30°,∴∠AB O′=60°,∴α=30°,(3)∵点P ,A 不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B ;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B .当α继续增大时,点P 逐渐靠近点B ,但是点P ,B 不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B .综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.2.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o ,1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=, AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==, 24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.3.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(Ⅰ)求∠ACB 的大小;(Ⅱ)若⊙O 半径为1,求四边形ACBP 的面积.【答案】(Ⅰ)60°;(Ⅱ)33【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO=34,∴S△ACP=33,4∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.5.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2020高考人教数学(理)大一轮复习检测:第8章第2节 圆的方程 含解析

2020高考人教数学(理)大一轮复习检测:第8章第2节 圆的方程 含解析

限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B.直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2. 2.方程|x |-1=1-(y -1)2所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆解析:选D.由题意得⎩⎨⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎨⎧(x +1)2+(y -1)2=1,x ≤-1.故原方程表示两个半圆.3.(2018·湖南长沙模拟)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2解析:选 A.将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y=2距离的最大值为d +1=2+1,故选A.4.(2018·山西晋中模拟)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4B .(x -2)2+(y +2)2=2C .(x -2)2+(y +2)2=4D .(x -22)2+(y +22)2=4解析:选C.设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,所以a =2或a =-42+2(舍去),所以该圆的标准方程为(x-2)2+(y +2)2=4,故选C.5.(2018·广东七校联考)圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b的最小值是( )A .2 3B .203C .4D .163解析:选D.由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9,因为圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,所以该直线经过圆心(-1,3),即-a -3b +3=0,所以a +3b =3(a >0,b >0).所以1a+3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13(1+3a b +3b a +9)≥13⎝ ⎛⎭⎪⎫10+23a b ·3b a =163,当且仅当3b a =3a b ,即a =b 时取等号.故选D.6.(2018·江西南昌二中月考)若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( )A .(-1,1)B .(-3,3)C .(-2,2)D .⎝⎛⎭⎪⎫-22,22解析:选C.∵原点(0,0)在圆(x -m )2+(y +m )2=4的内部,∴(0-m )2+(0+m )2<4,解得-2<m <2,故选C.7.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的范围为________.解析:设圆心为C (a ,0),由|CA |=|CB |得 (a +1)2+12=(a -1)2+32.所以a =2. 半径r =|CA |=(2+1)2+12=10.故圆C 的方程为(x -2)2+y 2=10.由题意知(m -2)2+(6)2<10,解得0<m <4. 答案:(0,4)8.(2018·枣庄模拟)已知圆C :(x -3)2+(y +5)2=25和两点A (2,2),B (-1,-2),若点P 在圆C 上且S △ABP =52,则满足条件的P 点有________个.解析:因为A (2,2),B (-1,-2),所以|AB |=(2+1)2+(2+2)2=5,又S △ABP =52,所以P 到AB 的距离为1,又直线AB 的方程为y -2-2-2=x -2-1-2,即4x -3y -2=0,依题意,圆心C 与直线AB 的距离为|4×3-3×(-5)-2|42+(-3)2=5,且半径r =5,所以直线AB 与圆相切,所以符合条件的点有2个.答案:29.已知点P (-2,-3),圆C :(x -4)2+(y -2)2=9,过点P 作圆C 的两条切线,切点为A ,B ,则过P 、A 、B 三点的圆的方程为________.解析:易知圆C 的圆心为C (4,2),连接AC 、BC ,由题意知PA ⊥AC ,PB ⊥BC ,所以P ,A ,B ,C 四点共圆,连接PC ,则所求圆的圆心O ′为PC 的中点,所以O ′⎝ ⎛⎭⎪⎫1,-12, 所以所求圆的半径 r ′=(1+2)2+⎝ ⎛⎭⎪⎫-12+32=614. 所以过P ,A ,B 三点的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y +122=614.答案:(x -1)2+⎝ ⎛⎭⎪⎫y +122=61410.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.解析:设C (a ,0)(a >0),由题意知|2a |5=455,解得a =2,所以r =22+5=3,故圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=9B 级 能力提升练11.(2018·江西新余一中期中)若圆C 与y 轴相切于点P (0,1),与x 轴的正半轴交于A ,B 两点,且|AB |=2,则圆C 的标准方程是( )A .(x +2)2+(y +1)2=2B .(x +1)2+(y +2)2=2C.(x-2)2+(y-1)2=2D.(x-1)2+(y-2)2=2解析:选C.设线段AB的中点为D,则|AD|=|CD|=1,∴r=|AC|=2=|CP|,故C(2,1),故圆C的标准方程是(x-2)2+(y-1)2=2,故选C.12.(2018·海南联考)若抛物线y=x2-2x-3与坐标轴的交点在同一个圆上,则由交点确定的圆的方程为()A.x2+(y-1)2=4B.(x-1)2+(y-1)2=4C.(x-1)2+y2=4D.(x-1)2+(y+1)2=5解析:选D.抛物线y=x2-2x-3关于直线x=1对称,与坐标轴的交点为A(-1,0),B(3,0),C(0,-3),设圆心为M(1,b),半径为r,则|MA|2=|MC|2=r2,即4+b2=1+(b+3)2=r2,解得b=-1,r=5,∴由交点确定的圆的方程为(x-1)2+(y+1)2=5,故选D.13.(2018·湖北名校联考)圆(x-3)2+(y-1)2=5关于直线y=-x对称的圆的方程为()A.(x+3)2+(y-1)2=5B.(x-1)2+(y-3)2=5C.(x+1)2+(y+3)2=5D.(x-1)2+(y+3)2=5解析:选C.由题意知,所求圆的圆心坐标为(-1,-3),所以所求圆的方程为(x+1)2+(y+3)2=5,故选C.14.(2018·江西赣州模拟)已知动点A(x A,y A)在直线l:y=6-x上,动点B 在圆C:x2+y2-2x-2y-2=0上,若∠CAB=30°,则x A的最大值为()A .2B .4C .5D .6解析:选C.由题意可知,当AB 是圆的切线时,∠ACB 最大,此时|CA |=4,点A 的坐标满足(x -1)2+(y -1)2=16,与y =6-x 联立,解得 x =5或x =1,∴点A 的横坐标的最大值为5.故选C.15.(2018·浙江瑞安中学期中)过点(2,3)且与圆(x -1)2+y 2=1相切的直线的方程为________.解析:当切线的斜率存在时,设圆的切线方程为y =k (x -2)+3,由圆心(1,0)到切线的距离为1,得k =43,所以切线方程为4x -3y +1=0;当切线的斜率不存在时,易知直线x =2是圆的切线,所以所求的直线方程为4x -3y +1=0或x =2.答案:x =2或4x -3y +1=016.(2018·广东珠海六校联考)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0相交于A ,B 两点,且△ABC 为等边三角形,则圆C 的面积为________.解析:圆C :x 2+y 2-2ax -2y +2=0可化为(x -a )2+(y -1)2=a 2-1,因为直线y =ax 和圆C 相交,△ABC 为等边三角形,所以圆心C 到直线ax -y =0的距离为32·a 2-1,即d =|a 2-1|a 2+1=3(a 2-1)2,解得a 2=7,r =a 2-1= 6.所以圆C 的面积为6π.答案:6π。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

北京市2020〖人教版〗高三数学复习试卷高考数学试卷理科参考答案与试题解析2

北京市2020〖人教版〗高三数学复习试卷高考数学试卷理科参考答案与试题解析2

北京市2020年〖人教版〗高三数学复习试卷高考数学试卷理科参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(•重庆)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A考点:子集与真子集.专题:集合.分析:直接利用集合的运算法则求解即可.解答:解:集合A={1,2,3},B={2,3},可得A≠B,A∩B={2,3},B A,所以D正确.故选:D.点评:本题考查集合的基本运算,基本知识的考查.2.(5分)(•重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=()A.﹣1 B.0C.1D.6考点:等差数列的性质.专题:等差数列与等比数列.分析:直接利用等差中项求解即可.解答:解:在等差数列{a n}中,若a2=4,a4=2,则a4=(a2+a6)==2,解得a6=0.故选:B.点评:本题考查等差数列的性质,等差中项个数的应用,考查计算能力.3.(5分)(•重庆)重庆市各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23考点:茎叶图.专题:概率与统计.分析:根据中位数的定义进行求解即可.解解:样本数据有12个,位于中间的两个数为20,20,答:则中位数为,故选:B点评:本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.4.(5分)(•重庆)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:解“(x+2)<0”,求出其充要条件,再和x>1比较,从而求出答案.解答:解:由“(x+2)<0”得:x+2>1,解得:x>﹣1,故“x>1”是“(x+2)<0”的充分不必要条件,故选:B.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,利用三视图的数据,求解几何体的体积即可.解答:解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.点评:本题考查三视图与直观图的关系,组合体的体积的求法,判断几何体的形状是解题的关键.6.(5分)(•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量垂直的等价条件以及向量数量积的应用进行求解即可.解答:解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A点评:本题主要考查向量夹角的求解,利用向量数量积的应用以及向量垂直的等价条件是解决本题的关键.7.(5分)(•重庆)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A.s≤B.s≤C.s≤D.s≤考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k,S的值,当S>时,退出循环,输出k的值为8,故判断框图可填入的条件是S.解答:解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=(此时k=6),因此可填:S.故选:C.点评:本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.8.(5分)(•重庆)已知直线l:x+ay﹣1=0(a∈R)是圆C:x2+y2﹣4x﹣2y+1=0的对称轴.过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.C.6D.考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆的标准方程可得圆心和半径,由直线l:x+ay﹣1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,再利用直线和圆相切的性质求得|AB|的值.解答:解:圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).由于AC==2,CB=R=2,∴切线的长|AB|===6,故选:C.点评:本题主要考查圆的标准方程,直线和圆相切的性质,属于基础题.9.(5分)(•重庆)若tanα=2tan,则=()A.1B.2C.3D.4考点:三角函数的积化和差公式;三角函数的化简求值.专题:三角函数的求值.分析:直接利用两角和与差的三角函数化简所求表达式,利用同角三角函数的基本关系式结合已知条件以及积化和差个数化简求解即可.解答:解:tanα=2tan,则=============3.故答案为:3.点评:本题考查两角和与差的三角函数,积化和差以及诱导公式的应用,考查计算能力.10.(5分)(•重庆)设双曲线=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣,0)∪(0,)D.(﹣∞,﹣)∪(,+∞)考点:双曲线的简单性质.专题:计算题;创新题型;圆锥曲线的定义、性质与方程.分析:由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AC得,求出c﹣x,利用D到直线BC的距离小于a+,即可得出结论.解答:解:由题意,A(a,0),B(c,),C(c,﹣),由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AC得,∴c﹣x=,∵D到直线BC的距离小于a+,∴c﹣x=<a+,∴<c2﹣a2=b2,∴0<<1,∴双曲线的渐近线斜率的取值范围是(﹣1,0)∪(0,1).故选:A.点评:本题考查双曲线的性质,考查学生的计算能力,确定D到直线BC的距离是关键.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)(•重庆)设复数a+bi(a,b∈R)的模为,则(a+bi)(a﹣bi)=3.考点:复数代数形式的乘除运算;复数求模.专题:数系的扩充和复数.分析:将所求利用平方差公式展开得到a2+b2,恰好为已知复数的模的平方.解答:解:因为复数a+bi(a,b∈R)的模为,所以a2+b2==3,则(a+bi)(a﹣bi)=a2+b2=3;故答案为:3.点本题考查了复数的模以及复数的乘法运算;属于基础题.评:12.(5分)(•重庆)的展开式中x8的系数是(用数字作答).考点:二项式定理.专题:二项式定理.分析:先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式中的x8的系数.解答:解:由于的展开式的通项公式为 T r+1=••,令15﹣=8,求得r=2,故开式中x8的系数是•=,故答案为:.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.13.(5分)(•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.考点:余弦定理的应用.专题:解三角形.分析:利用已知条件求出A,C,然后利用正弦定理求出AC即可.解答:解:由题意以及正弦定理可知:,即,∠ADB=45°,A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,AC=2=.故答案为:.点评:本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力.三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.(5分)(•重庆)如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=2.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:利用切割线定理计算CE,利用相交弦定理求出BE即可.解答:解:设CE=2x,ED=x,则∵过点A作圆O的切线与DC的延长线交于点P,∴由切割线定理可得PA2=PC•PD,即36=3×(3+3x),∵x=3,由相交弦定理可得9BE=CE•ED,即9BE=6×3,∴BE=2.故答案为:2.点评:本题考查切割线定理、相交弦定理,考查学生的计算能力,比较基础.15.(5分)(•重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为(2,π).考点:简单曲线的极坐标方程;直线的参数方程.专题:坐标系和参数方程.分析:求出直线以及曲线的直角坐标方程,然后求解交点坐标,转化我2极坐标即可.解答:解:直线l的参数方程为(t为参数),它的直角坐标方程为:x﹣y+2=0;曲线C的极坐标方程为,可得它的直角坐标方程为:x2﹣y2=4,x<0.由,可得x=﹣2,y=0,交点坐标为(﹣2,0),它的极坐标为(2,π).故答案为:(2,π).点评:本题考查曲线的极坐标方程直线的参数方程与普通方程的互化,基本知识的考查.16.(•重庆)若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=﹣6或4.考点:带绝对值的函数.专题:创新题型;函数的性质及应用.分析:分类讨论a与﹣1的大小关系,化简函数f(x)的解析式,利用单调性求得f(x)的最小值,再根据f(x)的最小值等于5,求得a的值.解答:解:∵函数f(x)=|x+1|+2|x﹣a|,故当a<﹣1时,f(x)=,根据它的最小值为f(a)=﹣3a+2a﹣1=5,求得a=﹣6.当a=﹣1时,f(x)=3|x+1|,它的最小值为0,不满足条件.当a≥﹣1时,f(x)=,根据它的最小值为f(a)=a+1=5,求得a=4.综上可得,a=﹣6 或a=4,故答案为:﹣6或4.点评:本题主要考查对由绝对值的函数,利用单调性求函数的最值,体现了转化、分类讨论的数学思想,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)(•重庆)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)根据古典概型的概率公式进行计算即可;(Ⅱ)随机变量X的取值为:0,1,2,别求出对应的概率,即可求出分布列和期望.解答:解:(Ⅰ)令A表示事件“三种粽子各取到1个”,则由古典概型的概率公式有P(A)==.(Ⅱ)随机变量X的取值为:0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,X 0 1 2PEX=0×+1×+2×=个.点评:本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.18.(13分)(•重庆)已知函数f(x)=sin(﹣x)sinx﹣x (Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.考点:二倍角的余弦;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得f(x)的最小正周期和最大值.(Ⅱ)根据2x﹣∈[0,π],利用正弦函数的单调性,分类讨论求得f(x)在上的单调性.解答:解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣sin2x﹣=sin(2x﹣)﹣,故函数的周期为=π,最大值为1﹣.(Ⅱ)当x∈时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x∈[,]时,f(x)为增函数;当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.点评:本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.19.(13分)(•重庆)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间角.分析:(Ⅰ)由已知条件易得PC⊥DE,CD⊥DE,由线面垂直的判定定理可得;(Ⅱ)以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,易得,,的坐标,可求平面PAD的法向量,平面PCD的法向量可取,由向量的夹角公式可得.解答:(Ⅰ)证明:∵PC⊥平面ABC,DE⊂平面ABC,∴PC⊥DE,∵CE=2,CD=DE=,∴△CDE为等腰直角三角形,∴CD⊥DE,∵PC∩CD=C,DE垂直于平面PCD内的两条相交直线,∴DE⊥平面PCD(Ⅱ)由(Ⅰ)知△CDE为等腰直角三角形,∠DCE=,过点D作DF垂直CE于F,易知DF=FC=FE=1,又由已知EB=1,故FB=2,由∠ACB=得DF∥AC,,故AC=DF=,以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A(,0,0),E(0,2,0),D(1,1,0),∴=(1,﹣1,0),=(﹣1,﹣1,3),=(,﹣1,0),设平面PAD的法向量=(x,y,z),由,故可取=(2,1,1),由(Ⅰ)知DE⊥平面PCD,故平面PCD的法向量可取=(1,﹣1,0),∴两法向量夹角的余弦值cos<,>==∴二面角A﹣PD﹣C的余弦值为.点评:本题考查二面角,涉及直线与平面垂直的判定,建系化归为平面法向量的夹角是解决问题的关键,属难题.20.(12分)(•重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f (1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(I)f′(x)=,由f(x)在x=0处取得极值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲线y=f(x)在点(1,f(1))处的切线方程;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.对x 分类讨论:当x<x1时;当x1<x<x2时;当x>x2时.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得即可.解法二:“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,利用导数研究其最大值即可.解答:解:(I)f′(x)==,∵f (x )在x=0处取得极值,∴f ′(0)=0,解得a=0.当a=0时,f (x )=,f ′(x )=,∴f (1)=,f ′(1)=,∴曲线y=f (x )在点(1,f (1))处的切线方程为,化为:3x﹣ey=0;(II )解法一:由(I )可得:f ′(x )=,令g (x )=﹣3x 2+(6﹣a )x+a ,由g (x )=0,解得x 1=,x 2=. 当x <x 1时,g (x )<0,即f ′(x )<0,此时函数f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0,此时函数f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,此时函数f (x )为减函数.由f (x )在[3,+∞)上为减函数,可知:x 2=≤3,解得a ≥﹣.因此a 的取值范围为:. 解法二:由f (x )在[3,+∞)上为减函数,∴f ′(x )≤0,可得a ≥,在[3,+∞)上恒成立. 令u (x )=,u ′(x )=<0,∴u (x )在[3,+∞)上单调递减,∴a ≥u (3)=﹣.因此a 的取值范围为:.点评: 本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力,属于难题.22.(12分)(•重庆)在数列{a n }中,a 1=3,a n+1a n +λa n+1+μa n 2=0(n ∈N +)(Ⅰ)若λ=0,μ=﹣2,求数列{a n }的通项公式;(Ⅱ)若λ=(k 0∈N +,k 0≥2),μ=﹣1,证明:2+<<2+.考点:数列与不等式的综合.专题:创新题型;等差数列与等比数列;不等式的解法及应用.分析: (Ⅰ)把λ=0,μ=﹣2代入数列递推式,得到( n ∈N +),分析a n ≠0后可得a n+1=2a n (n ∈N +q=2的等比数列.从而可得数列的通项公式;(Ⅱ)把代入数列递推式,整理后可得(n ∈N ).进一步得到=,对n=1,2,…,k 0求和后放缩可得不等式左边,进一步利用放缩法证明不等式右边.解答: (Ⅰ)解:由λ=0,μ=﹣2,有 ( n ∈N +).若存在某个n 0∈N +,使得,则由上述递推公式易得,重复上述过程可得a 1=0,此与a 1=3∴对任意n ∈N +,a n ≠0.从而a n+1=2a n (n ∈N +),即{a n }是一个公比q=2的等比数列. 故.(Ⅱ)证明:由,数列{a n }的递推关系式变为 ,变形为:(n ∈N ).由上式及a 1=3>0,归纳可得3=a 1>a 2>…>a n >a n+1>…>0. ∵=,∴对n=1,2,…,k 0求和得: =>. 另一方面,由上已证的不等式知,, 得综上,2+<<2+.点评:本题考查了数列递推式,考查了等比关系的确定,训练了放缩法证明数列不等式属难度较大的题目. 21.(12分)(•重庆)如题图,椭圆=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1(Ⅰ)若|PF 1|=2+|=2﹣,求椭圆的标准方程;(Ⅱ)若|PF 1|=|PQ|,求椭圆的离心率e .考点:椭圆的简单性质.专题:创新题型;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|,求出a,再根据2c=|F1F2|==2,求出c,进而求出椭圆的标准方程;(Ⅱ)由椭圆的定义和勾股定理,得|QF1|=|PF1|=4a﹣|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,再一次根据勾股定理可求出离心率.解答:解:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|=2++2﹣=4,故a=2,设椭圆的半焦距为c,由已知PF2⊥PF1,因此2c=|F1F2|==2,即c=,从而b==1,故所求椭圆的标准方程为.(Ⅱ)连接F1Q,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a﹣2|PF1|,又由PQ⊥PF1,|PF1|=|PQ|,知|QF1|=|PF1|=4a﹣2|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,由PF2⊥PF1,知2c=|F1F2|=,因此e=====.点评:本题考查了椭圆的定义2a=|PF1|+|PF2|,椭圆的标准方程,直角三角形的勾股定理,属于中档题.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

2020高考数学一轮复习第八章平面解析几何8-3圆的方程课时提升作业理

2020高考数学一轮复习第八章平面解析几何8-3圆的方程课时提升作业理

【2019最新】精选高考数学一轮复习第八章平面解析几何8-3圆的方程课时提升作业理(25分钟50分)一、选择题(每小题5分,共30分)1.方程x2+y2+4mx-2y+5m=0表示圆的充要条件的是( )A.<m<1B.m<或m>1C.m<D.m>1【解析】选B.由(4m)2+4-4×5m>0,得m<或m>1.2.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为( )A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【解析】选C.由(a-1)x-y+a+1=0得a(x+1)-(x+y-1)=0,所以直线恒过定点(-1,2).所以圆的方程为(x+1)2+(y-2)2=5,即x2+y2+2x-4y=0.3.方程|x|-1=所表示的曲线是( )A.一个圆B.两个圆C.半个圆D.两个半圆【解析】选D.由题意得即或故原方程表示两个半圆.4.(2016·运城模拟)若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选D.圆x2+y2-2ax+3by=0的圆心为,则a<0,b>0.直线y=-x-,k=->0,->0,直线不经过第四象限.5.若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则a的取值范围为( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(2,+∞)【解题提示】圆上的所有点都在第二象限,因此圆心必在第二象限,且圆心到两坐标轴的距离大于半径.【解析】选D.曲线C的方程可化为(x+a)2+(y-2a)2=4,其为圆心为(-a,2a),半径为2的圆,要使圆C的所有的点均在第二象限内,则圆心(-a,2a)必须在第二象限,从而有a>0,并且圆心到两坐标轴的最小距离应大于圆C的半径,易知圆心到坐标轴的最小距离为|a|,则有|a|>2,得a>2.6.(2016·忻州模拟)已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为( )A.(-1,1)B.(-1,0)C.(1,-1)D.(0,-1)【解析】选D.由x2+y2+kx+2y+k2=0知所表示圆的半径r==,当k=0时,rmax==1,此时圆的方程为x2+y2+2y=0,即x2+(y+1)2=1,所以圆心为(0,-1).二、填空题(每小题5分,共20分)7.(2016·太原模拟)在平面直角坐标系xOy中已知圆C:x2+(y-1)2=5,A为圆C与x 轴负半轴的交点,过点A作圆C的弦AB,记线段AB的中点为M.若OA=OM,则直线AB的斜率为.【解析】C(0,1),所以A(-2,0),连接CM,显然CM⊥AB,因此,四点C,M,A,O共圆,且AC就是该圆的直径,2R=AC=,在三角形OCM中,利用正弦定理得2R=,根据题意,OA=OM=2,所以,=,所以sin∠OCM=,tan∠OCM=-2(∠OCM为钝角),而∠OCM与∠OAM互补,所以tan∠OAM=2,即直线AB的斜率为2.答案:28.(2016·新乡模拟)已知在Rt△ABC中,A(0,0),B(6,0),则直角顶点C的轨迹方程为.【解析】依题意,顶点C的轨迹是以AB为直径的圆,且去掉端点A,B,圆心坐标为(3,0),半径为3,故直角顶点C的轨迹方程为(x-3)2+y2=9(y≠0).答案:(x-3)2+y2=9(y≠0)【一题多解】解答本题还可以用如下的方法解决:设顶点C的坐标为(x,y),由于AC⊥BC,故kAC·kBC=-1,所以·=-1,所以x2+y2-6x=0,即直角顶点C的轨迹方程为(x-3)2+y2=9(y≠0).答案:(x-3)2+y2=9(y≠0)9.当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角α= .【解析】由题意知,圆的半径r==≤1,当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tanα=-1,又α∈[0,π),故α=.答案:10.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a= .【解题提示】先求出圆C2上的点到直线y=x的最小值,从而得出曲线C1:y=x2+a到直线l:y=x的距离,再利用平行线的距离即可求出a的值.【解析】x2+(y+4)2=2到直线l:y=x的距离为-=,所以y=x2+a到直线l:y=x的距离为,而与y=x平行且距离为的直线有两条,分别是y=x+2与y=x-2,而抛物线y=x2+a与y=x+2相切,可求得a=.答案:(20分钟40分)1.(5分)设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆圆心的距离|C1C2|= ( )A.4B.4C.8D.8【解题提示】由已知可知两圆均在第一象限,且圆心的横、纵坐标相等,再由已知条件得出关于圆心的方程,进而求出两圆心的距离.【解析】选C.因为两圆与两坐标轴都相切,且都经过点(4,1),所以两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,所以a+b=10,ab=17.所以(a-b)2=(a+b)2-4ab=100-4×17=32,所以|C1C2|===8.2.(5分)(2016·邯郸模拟)若△PAB是圆C:(x-2)2+(y-2)2=4的内接三角形,且PA=PB,∠APB=120°,则线段AB的中点的轨迹方程为( )A.(x-2)2+(y-2)2=1B.(x-2)2+(y-2)2=2C.(x-2)2+(y-2)2=3D.x2+y2=1【解析】选A.设线段AB的中点为D,则由题意,PA=PB,∠APB=120°,所以∠ACB=120°,因为CB=2,所以CD=1,所以线段AB的中点的轨迹是以C为圆心,1为半径的圆,所以线段AB的中点的轨迹方程是:(x-2)2+(y-2)2=1.3.(5分)已知直线ax+by=1(a,b是实数)与圆O:x2+y2=1(O是坐标原点)相交于A,B两点,且△AOB是直角三角形,点P(a,b)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积的最小值为.【解析】因为直线与圆O相交所得△AOB是直角三角形,可知∠AOB=90°,所以圆心O 到直线的距离为=,所以a2=1-b2≥0,即-≤b≤.设圆M的半径为r,则r=|PM|===(2-b),又-≤b≤,所以+1≥|PM|≥-1,所以圆M的面积的最小值为(3-2)π.答案:(3-2)π【加固训练】已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为.【解析】如图,取AC的中点F,BD的中点E,则OE⊥BD,OF⊥AC.又AC⊥BD,所以四边形OEMF为矩形,设|OF|=d1,|OE|=d2,所以+=|OM|2=3.又|AC|=2,|BD|=2,所以S四边形ABCD=|AC|·|BD|=2·=2=2=2.因为0≤≤3.所以当=时,S四边形ABCD有最大值是5.答案:54.(12分)(2016·许昌模拟)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O.(1)求圆C的方程.(2)试探求C上是否存在异于原点的点Q,使Q到定点F(4,0)的距离等于线段OF的长?若存在,请求出点Q的坐标;若不存在,请说明理由.【解析】(1)设圆C的圆心为C(a,b),则圆C的方程为(x-a)2+(y-b)2=8.因为直线y=x与圆C相切于原点O,所以O点在圆C上,且OC垂直于直线y=x,于是有⇒或由于点C(a,b)在第二象限,故a<0,b>0,所以圆C的方程为(x+2)2+(y-2)2=8.(2)假设存在点Q符合要求,设Q(x,y),则有解之得x=或x=0(舍去),y=.所以存在点Q,使Q到定点F(4,0)的距离等于线段OF的长.5.(13分)(2016·朔州模拟)在平面直角坐标系xOy中,已知点A(-3,4),B(9,0),C,D 分别为线段OA,OB上的动点,且满足AC=BD.(1)若AC=4,求直线CD的方程.(2)证明:△OCD的外接圆恒过定点.【解析】(1)若AC=4,则BD=4,因为B(9,0),所以D(5,0).因为A(-3,4),所以|OA|==5,则|OC|=1,直线OA的方程为y=-x,设C(3a,-4a),-1<a<0,则|OC|===5|a|=-5a=1,解得a=-,则C,则CD的方程为=,整理得x+7y-5=0,即直线CD的方程为x+7y-5=0.(2)设C(3a,-4a),-1<a<0,则|AC|===5|a+1|=5(a+1),则|BD|=|AC|=5(a+1),则D(4-5a,0),设△OCD的外接圆的一般方程为x2+y2+Dx+Ey+F=0,则圆的方程满足即则解得E=10a-3,F=0,D=5a-4,则圆的一般方程为x2+y2+(5a-4)x+(10a-3)y=0,即x2+y2-4x-3y+5a(x+2y)=0,由解得或即△OCD的外接圆恒过定点(0,0)和(2,-1).。

【高考核动力】2020届高考数学 8-3圆的方程配套作业 北师大版

【高考核动力】2020届高考数学 8-3圆的方程配套作业 北师大版

【高考核动力】高考数学 8-3圆的方程配套作业 北师大版1.(2013·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( )A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4【解析】 AB 的中点坐标为(0,0), |AB |=[1--1]2+-1-12=22,∴圆的方程为:x 2+y 2=2. 【答案】 A2.(2013·银川模拟)圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0D .x 2+y 2-10x =0【解析】 设圆心为(0,b ),半径为R ,则R =|b |, ∴圆的方程为x 2+(y -b )2=b 2,∵点(3,1)在圆上, ∴9+(1-b )2=b 2,解得b =5, ∴圆的方程为x 2+y 2-10y =0. 【答案】 B3.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4【解析】 设圆心为(a ,b ),半径为r , 则圆的方程为(x -a )2+(y -b )2=r 2. 得⎩⎪⎨⎪⎧1-a 2+-1-b 2=r 2, ①-1-a 2+1-b 2=r 2, ②a +b -2=0, ③解得a =1,b =1,r =2. 【答案】 C4.圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于点A 、B ,若|AB |=3,则该圆的标准方程是________.【解析】 根据|AB |=3,可得圆心到x 轴的距离为12,故圆心坐标为1,12,故所求圆的标准方程为(x -1)2+y -122=1.【答案】 (x -1)2+y -122=15.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.【解】 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6,或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2), ∴圆P 的方程为(x +3)2+(y -6)2=40或 (x -5)2+(y +2)2=40. 课时作业【考点排查表】考查考点及角度 难度及题号 错题记录基础 中档 稍难 圆的方程 1 7,9 与圆有关的最值问题 4 6,8 圆的方程的综合应用 2,35,1011,12,131.圆(x +2)2+y 2=5关于直线y =x 对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5【解析】 由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x 2+(y +2)2=5.【答案】 D2.(2013·东营模拟)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1【解析】 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x 02,y =-2+y2解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1. 【答案】 A3.两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是( )A .-15<a <1B .a >1或a <-15C .-15≤a <1D .a ≥1或a ≤-15【解析】 由⎩⎪⎨⎪⎧y =x +2ay =2x +a ,得P (a,3a ),∴(a -1)2+(3a -1)2<4,∴-15<a <1,故应选A.【答案】 A4.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -1)2+(y -3)2=1852B .(x -3)2+(y -1)2=1652C .(x -2)2+y -322=9D .(x -3)2+(y -3)2=9【解析】 设圆心坐标为a ,3a(a >0),则圆心到直线3x +4y +3=0的距离d (a )=⎪⎪⎪⎪⎪⎪3a +12a +35=35a +4a +1≥35(4+1)=3,当且仅当a =2时等号成立.此时圆心坐标为2,32,圆的半径为3.【答案】 C5.已知⊙C :x 2+y 2+Dx +Ey +F =0,则“F =E =0且D <0”是“⊙C 与y 轴相切于原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 由题意可知,圆心坐标为-D2,0,而D 可以大于0,故选A.【答案】 A6.(2013·邢台模拟)已知两点A (0,-3)、B (4,0),若点P 是圆x 2+y 2-2y =0上的动点,则△ABP 面积的最小值为( )A .6 B.112 C .8D.212【解析】 如图,过圆心C 向直线AB 作垂线交圆于点P, 这时△ABP 的面积最小.直线AB 的方程为x 4+y-3=1,即3x -4y -12=0,圆心C (0,1)到直线AB 的距离为d =|3×0-4×1-12|32+-42=165, ∴△ABP 的面积的最小值为12×5×165-1=112.故选B.【答案】 B 二、填空题7.(2013·杭州模拟)设圆C 同时满足三个条件:①过原点;②圆心在直线y =x 上;③截y 轴所得的弦长为4,则圆C 的方程是________________.【解析】 由题意可设圆心A (a ,a ),如图,则22+22=2a 2,解得a =±2,r 2=2a 2=8.所以圆C 的方程是(x +2)2+(y +2)2=8 或(x -2)2+(y -2)2=8.【答案】 (x +2)2+(y +2)2=8或(x -2)2+(y -2)2=88.(2013·福州模拟)若实数x ,y 满足方程x 2+y 2-4x +1=0,则y x +1的最大值为________,最小值为________.【解析】 ∵yx +1=y -0x --1, ∴yx +1表示过点P (-1,0)与圆(x -2)2+y 2=3上的点(x ,y )的直线的斜率.由图象知yx +1的最大值和最小值分别是过P 与圆相切的直线PA 、PB 的斜率.又∵k PA =|CA ||PA |=36=22,k PB =-|CB ||PB |=-36=-22. 即yx +1的最大值为22,最小值为-22. 【答案】22,-229.关于方程x 2+y 2+2ax -2ay =0表示的圆,下列叙述中:①关于直线x +y =0对称:②其圆心在x 轴上;③过原点;④半径为2a .其中叙述正确的是________.(要求写出所有正确命题的序号)【解析】 圆心为(-a ,a ),半径为2|a |,故①③正确. 【答案】 ①③ 三、解答题10.在直角坐标系xOy 中,以M (-1,0)为圆心的圆与直线x -3y -3=0相切. (1)求圆M 的方程;(2)如果圆M 上存在两点关于直线mx +y +1=0对称,求m 的值.【解】 (1)依题意,圆M 的半径r 等于圆心M (-1,0)到直线x -3y -3=0的距离,即r =|-1-3|1+3=2,∴圆M 的方程为(x +1)2+y 2=4.(2)∵圆M 上存在两点关于直线mx +y +1=0对称,∴直线mx +y +1=0必过圆心M (-1,0), ∴-m +1=0⇒m =1.11.求过P (4,-2)、Q (-1,3)两点,且在y 轴上截得的线段长为43的圆的方程. 【解】 设圆的方程为x 2+y 2+Dx +Ey +F =0.① 将P 、Q 点的坐标分别代入①得⎩⎪⎨⎪⎧4D -2E +F =-20, ②D -3E -F =10. ③令x =0,由①得y 2+Ey +F =0.④由已知|y 1-y 2|=43,其中y 1、y 2是方程④的两根, 所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2 =E 2-4F =48.⑤ 解②③⑤组成的方程组得⎩⎪⎨⎪⎧D =-2E =0F =-12或⎩⎪⎨⎪⎧D =-10E =-8F =4,故所求圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.12.如图,在平面直角坐标系中,方程为x 2+y 2+Dx +Ey +F =0的圆M 的内接四边形ABCD 的对角线AC 和BD 互相垂直,且AC 和BD 分别在x 轴和y 轴上.(1)求证:F <0;(2)若四边形ABCD 的面积为8,对角线AC 的长为2,且AB →·AD →=0,求D 2+E 2-4F 的值. 【解】 (1)由题意,不难发现A 、C 两点分别在x 轴正、负半轴上.设两点坐标分别为A (a,0),C (c,0),则有ac <0.对于圆的方程x 2+y 2+Dx +Ey +F =0,当y =0时,可得x 2+Dx +F =0,其中方程的两根分别为点A 和点C 的横坐标, 于是有x A x C =ac =F .因为ac <0,故F <0.(2)不难发现,对角线互相垂直的四边形ABCD 的面积S =|AC |·|BD |2,因为S =8,|AC |=2,可得|BD |=8. 又因为AB →·AD →=0,所以∠A 为直角, 又四边形ABCD 是圆M 的内接四边形, 故|BD |=2r =8⇒r =4.(r 为圆M 的半径)对于方程x 2+y 2+Dx +Ey +F =0所表示的圆,可知D 24+E 24-F =r 2,所以D 2+E 2-4F =4r 2=64. 四、选做题13.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.【解】 (1)设圆C 的方程为(x -a )2+(y -b )2=8(a <0,b >0).则:⎩⎪⎨⎪⎧a 2+b 2=8,|a -b |2=22,∴⎩⎪⎨⎪⎧a =-2,b =2,或⎩⎪⎨⎪⎧a =2,b =-2.(舍)故圆C 的方程为(x +2)2+(y -2)2=8. (2)假设存在Q (m ,n )符合题意,则⎩⎪⎨⎪⎧m -42+n 2=42,m 2+n 2≠0,m +22+n -22=8,解得⎩⎪⎨⎪⎧m =45,n =125.故圆C 上存在异于原点的点Q( 45,125)符合题意.。

2020届一轮复习新课改省份专用版8.3圆的方程作业

2020届一轮复习新课改省份专用版8.3圆的方程作业

课时跟踪检测(四十八) 圆的方程一、题点全面练1.圆(x -3)2+(y -1)2=5关于直线y =-x 对称的圆的方程为( ) A .(x +3)2+(y -1)2=5 B .(x -1)2+(y -3)2=5 C .(x +1)2+(y +3)2=5D .(x -1)2+(y +3)2=5解析:选C 由题意知,所求圆的圆心坐标为(-1,-3),半径为5,所以所求圆的方程为(x +1)2+(y +3)2=5,故选C.2.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43解析:选B 设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎫2332=213.3.(2019·成都模拟)若抛物线y =x 2-2x -3与坐标轴的交点在同一个圆上,则由交点确定的圆的方程为( )A .x 2+(y -1)2=4 B.(x -1)2+(y -1)2=4 C .(x -1)2+y 2=4D .(x -1)2+(y +1)2=5解析:选D 抛物线y =x 2-2x -3关于直线x =1对称,与坐标轴的交点为A (-1,0),B (3,0),C (0,-3),设圆心为M (1,b ),半径为r ,则|MA |2=|MC |2=r 2,即4+b 2=1+(b +3)2=r 2,解得b =-1,r =5,∴由交点确定的圆的方程为(x -1)2+(y +1)2=5,故选D.4.(2019·银川模拟)若圆C 与y 轴相切于点P (0,1),与x 轴的正半轴交于A ,B 两点,且|AB |=2,则圆C 的标准方程是( )A .(x +2)2+(y +1)2=2 B.(x +1)2+(y +2)2=2 C .(x -2)2+(y -1)2=2D .(x -1)2+(y -2)2=2解析:选C 设线段AB 的中点为D ,则|AD |=|CD |=1,∴r =|AC |=2=|CP |,故C (2,1),故圆C 的标准方程是(x -2)2+(y -1)2=2,故选C.5.点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( )A .(x -2)2+(y +1)2=1 B.(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′),由题意得⎩⎪⎨⎪⎧x ′+4=2x ,y ′-2=2y ,则⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y +2,故(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1,故选A. 6.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)7.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=98.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为____________________.解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=29.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C ,D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),由点P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.10.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). (1)求|M Q |的最大值和最小值; (2)若M (m ,n ),求n -3m +2的最大值和最小值. 解:(1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|Q C |=(2+2)2+(7-3)2=42>2 2. 所以点Q 在圆C 外,所以|M Q |max =42+22=62, |M Q |min =42-22=2 2. (2)可知n -3m +2表示直线M Q 的斜率, 设直线M Q 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k .因为直线M Q 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.二、专项培优练(一)易错专练——不丢怨枉分1.方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B.一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.2.(2019·海口模拟)已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4) B.[-23,4] C .[-4,4]D .[-4,23]解析:选B x 2+y 2=4(y ≥0)表示圆x 2+y 2=4的上半部分,如图所示,直线3x +y -m =0的斜率为-3,在y 轴上的截距为m .当直线3x +y -m =0过点(-2,0)时,m =-2 3.设圆心(0,0)到直线3x +y -m =0的距离为d ,则⎩⎨⎧m ≥-23,d ≤2,即⎩⎪⎨⎪⎧m ≥-23,|-m |2≤2,解得m ∈[-23,4].3.若对圆(x -1)2+(y -1)2=1上任意一点P (x ,y ),|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,则实数a 的取值范围是( )A .(-∞,-4]B.[-4,6] C .(-∞,-4]∪[6,+∞)D .[6,+∞)解析:选D |3x -4y -9|表示点P 到直线l 1:3x -4y -9=0的距离的5倍,|3x -4y +a |表示点P 到直线l 2:3x -4y +a =0的距离的5倍,|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,即点P 到直线l 1,l 2的距离之和与点P 的位置无关,所以直线3x -4y +a =0与圆相离或相切,并且l 1和l 2在圆的两侧,所以|3-4+a |5≥1,且a >0,解得a ≥6,故选D.4.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 的方程为______________________.解析:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,a ), 半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43. 答案:x 2+⎝⎛⎭⎫y ±332=435.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|PA |2,其中A (0,1),B (0,-1),则d 的最大值为________.解析:设P (x 0,y 0),d =|PB |2+|PA |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(32+42+1)2=36,∴d max =74.答案:74(二)交汇专练——融会巧迁移6.[与基本不等式交汇]已知圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( )A .2 3 B.203 C .4D.163解析:选D 由圆x 2+y 2+2x -6y +1=0知,其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+2 3a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号,故选D. 7.[与线性规划交汇]已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为____________________.解析:如图,不等式表示的平面区域是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,∴覆盖它的且面积最小的圆是其外接圆. ∵△OP Q 为直角三角形,∴圆心为斜边P Q 的中点(2,1),半径r =|P Q |2=5, 因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=58.[与函数交汇]如果直线2ax -by +14=0(a >0,b >0)和函数f (x )=m x +1+1(m >0,m ≠1)的图象恒过同一个定点,且该定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,那么ba 的取值范围为________.解析:易知函数f (x )=m x +1+1(m >0,m ≠1)的图象过定点(-1,2),∴直线2ax -by +14=0(a >0,b >0)过定点(-1,2),∴a +b =7,①又定点(-1,2)在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,∴a 2+b 2≤25,②由①②解得3≤a ≤4,∴14≤1a ≤13,∴b a =7-a a =7a -1∈⎣⎡⎦⎤34,43. 答案:⎣⎡⎦⎤34,439.[与向量交汇]已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求P Q ―→·M Q ―→的最小值. 解:(1)设圆C 的圆心C (a ,b ),由已知得M (-2,-2), 则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2)设Q (x 0,y 0),则x 20+y 20=2,P Q ―→·M Q ―→=(x 0-1,y 0-1)·(x 0+2,y 0+2)=x 20+y 20+x 0+y 0-4=x 0+y 0-2.令x 0=2cos θ,y 0=2sin θ, 所以P Q ―→·M Q ―→=x 0+y 0-2 =2(sin θ+cos θ)-2 =2sin ⎝⎛⎭⎫θ+π4-2, 又⎣⎡⎦⎤sin ⎝⎛⎭⎫θ+π4min =-1, 所以P Q ―→·M Q ―→的最小值为-4. (三)难点专练——适情自主选10.在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A ,B ,C 三点的圆过定点.解:由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0.设A (x 1,0),B (x 2,0),可得Δ=m 2-8m >0,则m <0或m >8.x 1+x 2=m ,x 1x 2=2m .令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC ―→·BC ―→=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0(舍去)或m =-12.此时C (0,-1),AB 的中点M ⎝⎛⎭⎫-14,0即圆心, 半径r =|CM |=174, 故所求圆的方程为⎝⎛⎭⎫x +142+y 2=1716. (2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0. 整理得x 2+y 2-y -m (x +2y -2)=0.令⎩⎪⎨⎪⎧ x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝⎛⎭⎫25,45.。

2020年高考数学理科一轮温习第8章平面解析几何第3讲课后作业

2020年高考数学理科一轮温习第8章平面解析几何第3讲课后作业

A 组 基础关1.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) A .x 2+(y -2)2=5 B .(x -2)2+y 2=5 C .x 2+(y +2)2=5 D .(x -1)2+y 2=5答案 B解析 因为所求圆的圆心与圆(x +2)2+y 2=5的圆心(-2,0)关于原点(0,0)对称,因此所求圆的圆心为(2,0),半径为5,故所求圆的方程为(x -2)2+y 2=5.2.假设a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,那么方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,应选B.3.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,那么a =( )A .-43 B .-34 C . 3 D .2答案 A解析 圆的方程可化为(x -1)2+(y -4)2=4,那么圆心坐标为(1,4),圆心到直线ax +y -1=0的距离为|a +4-1|a 2+1=1,解得a =-43.应选A.4.(2018·太原模拟)两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,那么实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-15,1B.⎝ ⎛⎭⎪⎫-∞,-15∪(1,+∞) C.⎣⎢⎡⎭⎪⎫-15,1 D.⎝ ⎛⎦⎥⎤-∞,-15∪[1,+∞) 答案 A解析 联立⎩⎪⎨⎪⎧ y =x +2a ,y =2x +a ,解得⎩⎪⎨⎪⎧x =a ,y =3a ,∴两条直线y =x +2a ,y =2x +a 的交点P (a,3a ). ∵交点P 在圆(x -1)2+(y -1)2=4的内部, ∴(a -1)2+(3a -1)2<4,化为5a 2-4a -1<0,解得-15<a <1, ∴实数a 的取值范围是⎝ ⎛⎭⎪⎫-15,1.5.(2018·成都高新区月考)已知圆C 通过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y +1=0上,那么该圆的面积是( )A .5πB .13πC .17πD .25π答案 D解析 解法一:设圆心为(a ,a +1),半径为r (r >0),那么圆的标准方程为(x -a )2+(y -a -1)2=r 2,又圆通过点A (1,1)和点B (2,-2),故有⎩⎪⎨⎪⎧ (1-a )2+(-a )2=r 2,(2-a )2+(-3-a )2=r 2,解得⎩⎪⎨⎪⎧a =-3,r =5,故该圆的面积是25π.解法二:由题意可知圆心C 在AB 的中垂线 y +12=13⎝ ⎛⎭⎪⎫x -32,即x -3y -3=0上.由⎩⎪⎨⎪⎧ x -3y -3=0,x -y +1=0,解得⎩⎪⎨⎪⎧x =-3,y =-2,故圆心C 为(-3,-2), 半径r =|AC |=5,圆的面积是25π.6.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1答案 A解析 设圆上任意一点为(x 1,y 1),中点为(x ,y ),那么⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.7.(2018·全国卷Ⅲ)直线x +y +2=0别离与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,那么△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]答案 A解析 ∵直线x +y +2=0别离与x 轴,y 轴交于A ,B 两点, ∴A (-2,0),B (0,-2),那么|AB |=2 2.∵点P 在圆(x -2)2+y 2=2上,圆心为(2,0),半径为2,∴圆心到直线x +y +2=0的距离d 1=|2+0+2|2=22,故点P 到直线x +y +2=0的距离d 2的范围为[2,3 2 ],则S △ABP =12|AB |d 2=2d 2∈[2,6].应选A.8.(2018·宜昌模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.因此当k =0时圆C 的面积最大,现在圆的方程为x 2+(y +1)2=1,圆心坐标为(0,-1).9.已知实数x ,y 知足(x +2)2+(y -3)2=1,那么|3x +4y -26|的最小值为________. 答案 15解析 解法一:|3x +4y -26|最小值的几何意义是圆心到直线3x +4y -26=0的距离减去半径后的5倍,|3x +4y -26|min =5⎝ ⎛⎭⎪⎪⎫|3a +4b -26|32+42-r ,(a ,b )是圆心坐标,r 是圆的半径.圆的圆心坐标为(-2,3),半径是1,因此圆心到直线的距离为|3×(-2)+4×3-26|5=4,因此|3x +4y -26|的最小值为5×(4-1)=15.解法二:令x +2=cos θ,y -3=sin θ,那么x =cos θ-2,y =sin θ+3,|3x +4y -26|=|3cos θ-6+4sin θ+12-26|=|5sin(θ+φ)-20|,其中tan φ=34,因此其最小值为|5-20|=15.10.在平面直角坐标系内,假设曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,那么实数a 的取值范围为________.答案 (-∞,-2)解析 圆C 的标准方程为(x +a )2+(y -2a )2=4,因此圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).B 组 能力关1.圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,那么1a +3b 的最小值是( ) A .2 3 B .203 C .4 D .163答案 D解析 由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线通过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝ ⎛⎭⎪⎫10+23a b ·3b a =163,当且仅当3b a =3ab ,即a =b 时取等号.应选D.2.(2018·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆 D .两个半圆答案 D解析 由题意知|y |-1≥0,那么y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心,1为半径的上半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心,1为半径的下半圆.因此方程|y |-1=1-(x -1)2表示的曲线是两个半圆.选D.3.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 别离是圆C 1,C 2上的动点,P 为x 轴上的动点,那么|PM |+|PN |的最小值为( )A .52-4B .17-1C .6-2 2D .17答案 A解析 圆C 1,C 2的图形如下图.设P是x轴上任意一点,那么|PM|的最小值为|PC1|-1,同理,|PN|的最小值为|PC2|-3,那么|PM|+|PN|的最小值为|PC1|+|PC2|-4.作C1关于x轴的对称点C′1(2,-3),连接C′1C2,与x轴交于点P,连接PC1,可知|PC1|+|PC2|的最小值为|C′1C2|,那么|PM|+|PN|的最小值为52-4.应选A.4.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)假设M(m,n),求n-3m+2的最大值和最小值.解(1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,因此圆心C的坐标为(2,7),半径r=2 2. 又|QC|=(2+2)2+(7-3)2=42>2 2.因此点Q在圆C外,因此|MQ|max=42+22=62,|MQ|min=42-22=2 2.(2)可知n-3m+2表示直线MQ的斜率,设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0,那么n-3m+2=k.因为直线MQ与圆C有交点,因此|2k-7+2k+3|1+k2≤22,可是2-3≤k≤2+3,因此n-3m+2的最大值为2+3,最小值为2- 3.5.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23.(1)求圆心P 的轨迹方程;(2)假设P 点到直线y =x 的距离为22,求圆P 的方程.解 (1)设P (x ,y ),圆P 的半径为r ,那么y 2+2=r 2,x 2+3=r 2,因此y 2+2=x 2+3,即y 2-x 2=1.因此P 点的轨迹方程为y 2-x 2=1.(2)设P 的坐标为(x 0,y 0),那么|x 0-y 0|2=22,即|x 0-y 0|=1.因此y 0=x 0±1.当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1,因此⎩⎪⎨⎪⎧x 0=0,y 0=1,因此r 2=3,因此圆P 的方程为x 2+(y -1)2=3;当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1,因此⎩⎪⎨⎪⎧x 0=0,y 0=-1,因此r 2=3,因此圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考数学(理数)复习作业本8.3
圆方程综合应用
1.已知从圆外一点P(4,6)作圆O:x2+y2=1的两条切线,切点分别为A,B.
(1)求以OP为直径的圆的方程;
(2)求直线AB的方程.
2.已知直线l:
2x-y+1=0,方程x2+y2﹣2mx﹣2y+m+3=0表示圆.
(1)求实数m的取值范围;
(2)当m=﹣2时,试判断直线l与该圆的位置关系,若相交,求出相应弦长.
3.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)证明:不论m为何值时,直线l恒过定点;
(2)求直线l被圆C截得的弦长最小时的方程.
4.已知直线l:y=x+m,m∈R.若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,
求该圆的方程;
5.如图,矩形EFCD内接于半圆O,E,F两点在直径AB上,C,D两点在半圆弧上,设OF=x,圆的
半径为定值R.
(1)写出矩形EFCD面积y与x的函数关系式,并指出定义域;
(2)问x为何值时,矩形EFCD的面积最大?并求出最大值.
6.已知圆C:(x-3)2+(y-1)2=4和直线l:x-y=5,求C上的点到直线l的距离的最大值与最小
值.
7.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点
A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TQ
+,求实数t的取值范围.
TA=
TP
8.已知圆心在直线x+y﹣1=0上且过点A(2,2)的圆C1与直线3x﹣4y+5=0相切,其半径小于5.
(1)若C2圆与圆C1关于直线x﹣y=0对称,求圆C2的方程;
(2)过直线y=2x﹣6上一点P作圆C2的切线PC,PD,切点为C,D,当四边形PCC2D面积最
小时,求直线CD的方程.
答案解析
1.解:(1)∵所求圆的圆心为线段OP 的中点(2,3),半径为|OP|=, ∴以OP 为直径的圆的方程为(x-2)2+(y-3)2=13.
(2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线,∴OA ⊥PA ,OB ⊥PB ,
∴A ,B 两点都在以OP 为直径的圆上.得直线AB 的方程为4x +6y-1=0.
2.解:
3.解:(1)由(2m +1)x +(m +1)y-7m-4=0,得(2x +y-7)m +x +y-4=0. 则解得∴直线l 恒过定点A(3,1).
(2)当直线l 被圆C 截得的弦长最小时,有l ⊥AC ,由
, 得l 的方程为y-1=2(x-3),即2x-y-5=0.
4.答案:(x -2)2+y 2=8. 详解:依题意,点P 的坐标为(0,m).因为MP ⊥l ,所以0-m 2-0
×1=-1, 解得m=2,即点P 的坐标为(0,2).从而圆的半径r=|MP|=22,
故所求圆的方程为(x -2)2+y 2=8.
5.解:
6.
7.解:圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心为M(6,7),半径为5.
8.解:。

相关文档
最新文档