空间点线面(必修2)知识点总结与练习

合集下载

必修2第二章第二节空间点线面.doc

必修2第二章第二节空间点线面.doc

2.1.1平面表示及平面公理1.生活中具体“平面”有大小,而几何里的“平面”必须注意是.2.画水平的平面的注意事项: ___________________________________________________请同学试着画出将课本展开呈“锐角”、“直角”、“钝角”三个模型.3.将以上平面用字母表示三种方法 ____________________________________________4.关于平面的三个公理及推论公理1. ____________________________________________________________________ 符号表示____________________________________________________________ 公理2. ____________________________________________________________________ 公理3. ____________________________________________________________________ 符号表示____________________________________________________________5.关于公理2即确定平面的方法有三个推论:推论1: ____________________________________________ 推论2:. 推论3..♦课堂练习:见课本43页. ♦白我反思♦布置作业2.1空间点线面位置关系汇总♦学习目标::理解空间点线面位置关系♦学习重难点:平面向空间扩展的思想♦自主学习:1.空间点与线面位置关系、符号表示及图示(1)点在线上,记作;点在线外,记作(2)点在面内,记作;点在面外,记作2.空间两直线位置关系、符号表示及图示(1)平行____________________________(2)相交____________________________⑶异面______________________________3.空间直线与平面位置关系、符号表示及图示(1)线在面内_______________________________(2)线在面外(含两种)4.空间两平面位置关系、符号表示及图示(1)平行____________________________________(2)相交____________________________________♦课内探究1.在正方体ABCD-A,BC,D,中,(1)与AB平行的棱有_________________________________(2)与AB相交的棱有_________________________________(3)与AB成异面直线的有____________________________(4)指出面ABCD之外的棱与此面的关系.(5)指出面ABCD之外的面与此面的关系.♦课堂练习:见课本49页例4及练习.50页探究及练习作业51页至53页可选.2.1异面直线及所成的角♦学习目标:理解异面直线的概念及所成的角♦学习重难点:异成直线成角的求法♦自主学习1. _______________________________________________ 异面直线定义2.异面直线成角定义___________________________________3.异面垂直定义_____________________________________作图表示以上三定义♦课内探究1.在如图所示正方体中,(1)与AB成异成直线的有(2)与AB异成垂直的有_________________________(3)求AC与B'D'所成的角.(4)求AB与D'C所成的角.(5)求BD与D'C所成的角.(6)求DC与BD,所成的角余弦值..总结:求异面直线成角的基本步骤: ________________________________ p__________ 2.如图,正四面体(四个面全等的正三角形),各棱长均为2, /\\D,E,F分别为PB,AB, BC中点.(1)求异面直线AD与EF所成角的余弦值.(2)求异面直线AD与BC所成角的余弦值.3.如图正三棱柱ABC—A,B,C,(底而正三角形,侧棱与底面垂直),底面边长为1,侧棱长为2,D是棱AA,的中点,(1)求异面直线A,C'与BC所成的角.(2)求异面直线BD与BC,所成的角余弦值.(3)求异面直线BD与AC,所成的角余弦值.♦课堂检测:♦自我反思♦布置作业2.2..1线面平行的判定编制:许建民课型:新课上课时间:年月日♦学习目标:理解线面平行的判定♦学习重难点:线面平行的判定定理的应用♦自主学习:1. ________________________________________________________ 课木45页,线线平行公理4 _______________________________________________2.(公理应用)空间四边形ABCD中,E, F,G H分别是AB, BC, CD, DA的中点,求证:四边形EFGH是平行四边形.3,线面平行定义_____________________________________________4.线而平行判定定理___________________________________________定理思路:平行=> 平行;定理符号表示♦课内探究1 .如上图,证明EG〃面BCD; 证明FH〃面ABD.2.在长方体ABCD—A,BC,D,中,E,为C,D,中点, 证明:B'E'〃面ABCD.若四边形EFGH 是矩形,求证 2.如图,AB 〃HHa,AC 〃BD,C£a,De a,求证 AC = BD.♦课堂检测:P55练习 ♦自我反思 ♦布置作业P62 3题2.2.3线面平行的性质编制:许建民 课型:新课 上课时间: 年 月 日♦学习目标:理解线面平行的判定与性质 ♦学习重难点:线面平行的判定与性质的应用 ♦自主学习1. 线面平行判定定理的思路:,重点是:一面内找线一2. 已知线与面平行,则线与面内直线的位置关系是3. 线面平行性质定理 ____________________________________________________定理思路 平行=>平行;难点是定理图示及符号表示:♦课内探究1. 空间四边形ABCD 中,E, F,G H 分别是AB, BC, CD, DA 上的点,(1) EG 〃BD; (2)FH 〃BD (3)AC±BD.♦课堂检测:P61练习.♦自我反思:课本59页例3.♦布置作业P62 6题2.2..2面面平行的判定♦学习目标:理解面而平行的判定♦学习重难点:面面平行的判定定理的应用♦自主学习:1.线面平行判定定理: _______________________________________________线面平行性质定理_________________________________________________2.面面平行定义_____________________________________________4.面面平行判定定理 __________________________________________定理思路:平行 n 平行;定理符号表示定理图示♦课内探究,1.如图正方体中,求证平面ABD〃平面C,BD.(自已画面)穴/- /。

必修二点直线平面知识点

必修二点直线平面知识点

点、直线、平面的位置关系一、直线与平面位置关系高考考试内容及考试要求:考试内容:1、平面及其基本性质;2、平行直线;对应边分别平行的角;异面直线所成的角;异面直线的公垂线;异面直线的距离;3、直线和平面平行的判定与性质;直线和平面垂直的判定与性质;点到平面的距离;斜线在平面上的射影;直线和平面所成的角;三垂线定理及其逆定理;4、平行平面的判定与性质;平行平面间的距离;二面角及其平面角;两个平面垂直的判定与性质;二、空间中的平行关系课标要求:1.平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上的三点,有且只有一个平面;◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;◆公理4:平行于同一条直线的两条直线平行;◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

2.空间中的平行关系以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;◆垂直于同一个平面的两条直线平行要点精讲:1.平面的性质(1)平面的两个特征:①无限延展②平的(没有厚度)无边界(2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母αβγ、、等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC 。

高中数学空间点线面之间的位置关系的知识点总结(供参考)

高中数学空间点线面之间的位置关系的知识点总结(供参考)
符号表示:


a∩b = Pβ∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3—
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
aβa∥b
高中空间点线面之间位置关系知识点总结
第二章直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
2.1.1
1平面含义:平面是无限延展的
2平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
4注意点:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
α∩β= b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ= a a∥b
β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行

必修2 第二章空间点线面的位置关系知识点

必修2 第二章空间点线面的位置关系知识点

必修2 第二章《点、直线、平面之间的位置关系》知识点
编写人:元丽丽
第一讲 空间点、直线、平面之间的位置关系 1.四个公理
2.异面直线的概念:把 的两条直线叫做异面直线.
3.等角定理
空间中如果有两个角的两边分别对应平行,那么这两个角 或 . 4.两条异面直线所成的角(夹角)
(1)定义:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或 角)叫异面直线,a b 所成的夹角. (2)异面直线所成角的范围:
5.空间两条直线的位置关系:
7.空间中平面与平面之间的位置关系
第二讲 直线、平面平行的判定及其性质
1.四个定理
第三讲直线、平面平垂直的判定及其性质
1.直线与平面垂直:
如果直线l与平面α内的一条直线都垂直,我们就说直线l与平面α垂直,记作 .
直线l叫做平面α的,平面α叫做直线l的 .直线与平面的公共点P叫做 .
2. 直线与平面所成的角:
过斜足上斜足以外的一点向平面平面引,过和的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的,叫做这条直线和这个平面所成的角.
角的取值范围: .
3.二面角。

必修二第2章点线面的位置关系归纳整合

必修二第2章点线面的位置关系归纳整合
网络构建 专题归纳 解读高考
(2)证明线线垂直的方法 ①线线垂直的定义:两条直线所成的角是直角,在研究异面直 线所成的角时,要通过平移把异面直线转化为相交直线; ②线面垂直的性质:a⊥α,b⊂α⇒a⊥b; ③线面垂直的性质:a⊥α,b∥α⇒a⊥b.
网络构建
专题归纳
解读高考
2.线面关系 直线与平面之间的位置关系有且只有线在面内、相交、平行三 种 . (1)证明直线与平面平行的方法 ①线面平行的定义; ②判定定理:a⊄α,b⊂α,a∥b⇒a∥α; ③平面与平面平行的性质:α∥β,a⊂α⇒a∥β.
网络构建 专题归纳 解读高考
3.三线共点问题 证明三线共点问题,先证两条直线交于一点,再证明第三条直 线经过这点,把问题转化为证明点在直线上的问题.
网络构建
专题归纳
解读高考
【例 1】 如图所示,空间四边形 ABCD 中 E,F 分别为 AB, AD 的中点,G,H 分别在 BC,CD 上,且 BG∶GC=DH∶HC =1∶2.求证:
网络构建 专题归纳 解读高考
(2)证明面面垂直的方法 ①面面垂直的定义:两个平面相交所成的二面角是直二面角; ②面面垂直的判定定理:a⊥β,a⊂α⇒α⊥β.
网络构建
专题归纳
解读高考
4.证明空间线面平行或垂直需注意的三点 (1)由已知想性质,由求证想判定. (2)适当添加辅助线(或面)是解题的常用方法之一. (3)用定理时要先明确条件,再由定理得出相应结论. 5.“升降维”思想 用降维的方法把空间问题转化为平面或直线问题,可以使问题得 到解决.用升维的方法把平面或直线中的概念、定义或方法向空 间推广,可以从已知探索未知,是“学会学习”的重要方法. 平面图形的翻折问题的分析与解决,就是升维与降维思想方法的 不断转化运用的过程.

高中数学必修2--第二章《直线与平面的位置关系》知识点总结与练习

高中数学必修2--第二章《直线与平面的位置关系》知识点总结与练习

[知识能否忆起]、平面的基本性质 名称图示文子表示 付号表示公理1如果一条直线上的两 点在一个平面内,那么 这条直线在此平面内 A € l , B € l ,且 A €a,B € 0? 1? a公理2过不在一条直线上的 三点,有且只有一个平面\公理3如果两个不重合的平 面有一个公共点,那么 它们有且只有一条过该点的公共直线P € a ,且 P € 3? aCl 3 =l ,且 P € l二、空间直线的位置关系 1. 位置关系的分类相交直线:同一平面内, {共面直线|平行直线:同一平面内,•异面直线:不同在任何一个平面内, 2. 平行公理平行于同一条直线的两条直线互相平行. 3. 等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4. 异面直线所成的角(或夹角)(1) 定义:设a, b 是两条异面直线,经过空间中任一点 0作直线a '// a, b '// b ,把a ' 与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角.I U I空间点、直线、平面间的位置关系基础知iR 襄打牟11 C H U Z H I $ H I Y A 0 A L A 0强取基 固本源 得募础分I 事覆程廈有且只有一个公共点;没有公共点;没有公共点(2)范围:三、直线与平面的位置关系/亠护¥方位置大糸图示付号表示公共点个数直线1在平面a内1? a无数个直线l与平面a相交八/l Cl a= A一个直线l与平面a平行Z / 1 〃a0个四、平面与平面的位置关系/亠护¥方位置大糸图示付号表示公共点个数两个平面平行\Aall 30个7两个平面相交aC 3= l无数个(这些公共点均在交线1上)1•三个公理的作用(1) 公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(2) 公理2的作用:确定平面的依据,它提供了把空间问题转化为平面问题的条件.(3) 公理3的作用:①判定两平面相交;②作两相交平面的交线;③证明多点共线.2. 异面直线的有关问题(1) 判定方法:①反证法;②利用结论即过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线,如图.(2) 所成的角的求法:平移法.師吾点]学技法]得拔高分| 拿握狸度i**-平面的基本性质及应用■典题导入[例1](2012湘潭模拟)如图所示,在正方体ABCD —A i B i C i D i中,E为AB的中点,F 为A i A的中点,求证:CE , D i F, DA三线共点.[自主解答]•EF 綊qCD i,•••直线D i F和CE必相交.设D i F n CE = P,••P Pi F 且D i F?平面AA i D i D,••P € 平面AA i D i D.又P €EC且CE?平面ABCD ,••P € 平面ABCD ,即P是平面ABCD与平面AA i D i D的公共点.而平面ABCD n平面AA i D i D = AD.••P 3D.•CE、D i F、DA三线共点.本例条件不变试证明E , C, D i, F四点共面.证明:••E, F分别是AB和AA i的中点,i•'EF 綊2A i B.又A i D i 綊B i C i 綊BC. •四边形A i D i CB为平行四边形. ••A i B CD i,从而EF CD i.•'EF与CD i确定一个平面. ••E, C i, F, D四点共面.占由题悟法i. 证明线共点问题常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.2•证明点或线共面问题一般有以下两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证平面重合.3以题试法1. (1)(2012江•西模拟)在空间中,下列命题正确的是()A .对边相等的四边形一定是平面图形B .四边相等的四边形- -定是平面图形C.有一组对边平行的四边形一定是平面图形D .有一组对角相等的四边形一定是平面图形⑵对于四面体ABCD,下列命题正确的是 __________ (写出所有正确命题的编号).①相对棱AB与CD所在直线异面;②由顶点A作四面体的高,其垂足是△ BCD三条高线的交点;③若分别作△ ABC和厶ABD的边AB上的高,则这两条高所在的直线异面;④分别作三组相对棱中点的连线,所得的三条线段相交于一点.解析:(1)由“两平行直线确定一个平面”知C正确.(2)由四面体的概念可知,AB与CD所在的直线为异面直线,故①正确;由顶点A作四面体的高,只有当四面体ABCD的对棱互相垂直时,其垂足是厶BCD的三条高线的交点,故②错误;当DA = DB , CA= CB时,这两条高线共面,故③错误;设AB , BC, CD , DA的中点依次为E, F, M , N,易证四边形EFMN为平行四边形,所以EM与FN相交于一点,易证另一组对棱中点的连线也过它们的交点,故④正确.答案:(1)C (2)①④异面直线的判定由典题导入[例2] (2012金华模拟)在图中,G, N , M, H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH , MN是异面直线的图形有___________ .(填上所有正确答案的序号)①②③④[自主解答]图①中,直线GH /MN ;图②中,G , H , N三点共面,但M?面GHN ,因此直线GH与MN异面;图③中,连接MG, GM /HN,因此GH与MN共面;图④中,G , M , N共面,但H?面GMN ,因此GH与MN异面.所以图②④中GH与MN异面.[答案]②④石由题悟法1•异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面. 此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.&以题试法2. 已知m, n, I为不同的直线,a, B为不同的平面,有下面四个命题:①m, n为异面直线,过空间任一点P, —定能作一条直线I与m, n都相交.②m, n为异面直线,过空间任一点P, —定存在一个与直线m, n都平行的平面.③a丄B, aA 3= I, m? a, n? 3, m, n与I都斜交,则m与n—定不垂直;④m, n是a内两相交直线,则a与3相交的充要条件是m, n至少有一条与3相交.则四个结论中正确的个数为( )A. 1B. 2C. 3D. 4解析:选B①错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内且不在直线m上时,就不满足结论;②错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内时,就不满足结论;③正确,否则,若m丄n,在直线m上取一点作直线a丄I,由a丄3得a丄n.从而有n丄a,贝U n丄I :④正确.LI 典题导入[例3] (2012大纲全国卷)已知正方体 ABCD — A 1B 1C 1D 1中,E , F 分别为BB i , CC i 的 中点,那么异面直线 AE 与D 1F 所成角的余弦值为 ___________ .[自主解答]连接DF ,则AE/DF , •••D 1FD 即为异面直线 AE 与D 1F 所成的角. 设正方体棱长为a ,则 D 1D = a , DF = ~25a , D 1F = ~25a ,… 3 [答案]5-由题悟法求异面直线所成的角一般用平移法,步骤如下: (1) 一作:即找或作平行线,作出异面直线所成的角; ⑵二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角,如果求出的角是锐角或直角,则它就是要求的角, 如果求出的角是钝角,则它的补角才是要求的角.初以题试法3. (2012唐山模拟)四棱锥P — ABCD 的所有侧棱长都为.5,底面ABCD 是边长为2的 正方形,则CD 与PA 所成角的余弦值为()D.;解析:选B 如图所示,因为四边形ABCD 为正方形,故CD // AB ,则CD 与PA 所成的角即为 AB 与FA 所成的角/ PAB ,在△ FAB 内,FB = FA = ■.5, AB = 2,利用余弦定理可知:PA 2+ AB 2- PB 2_ 5+ 4— 5 _近 2X FA X AB 2X 2八 55[小题能否全取]A. 2 *5 5B.cos / FAB =1.(教材习题改编)已知a, b是异面直线,直线c平行于直线a,那么c与b()A .异面B.相交C.不可能平行D.不可能相交解析:选C 由已知直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b // c,贝U a// b.与a, b是异面直线相矛盾.2. (2012东北三校联考)下列命题正确的个数为()①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A. 0B. 1C. 2D. 3解析:选C ①④错误,②③正确.3. 已知空间中有三条线段AB, BC和CD,且/ ABC =Z BCD,那么直线AB与CD的位置关系是()A. AB / CDB. AB与CD异面C. AB与CD相交D. AB / CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB, BC, CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.4. (教材习题改编)如图所示,在正方体ABCD —A i B i C i D i中,E,F分别是AB , AD的中点,则异面直线B i C与EF所成的角的大小为解析:连接B i D i, D i C,则B i D i/EF,故ZDi B i C 为所求,又B i D i= B i C= D i C,••』i B i C= 60 °答案:60°5. (教材习题改编)平行六面体ABCD —A i B i C i D i中既与AB共面又与CC i共面的棱的条数为________ .解析:如图,与AB和CC i都相交的棱有BC;与AB相交且与CC i平行的棱有AA i,BB i;与AB平行且与CC i相交的棱有CD , C1D1,故符合条件的棱共有5条.答案:5基础MliR靈扫年J I C H U Z H D S H I YAOIRALAO[知识能否忆起]一、直线与平面平行1. 判定定理文字语言图形语言符号语言判定定理平面外一条直线与此平—面内的一条直线平行, 则直线与此平面平行—a?a、b? a b //a」^ ? a / a2.性质定理文字语言图形语言付号语言性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a/ a '卜? a // baCl 6= b j二、平面与平面平行直线、平面平行的判定及性质1.判定定理判定定理一个平面内的两条相交直线与另一个平面平 行,则这两个平面平行a? a 、 b? aa Ab = P » ? a// a / 3 b / 3' 32.两平面平行的性质定理文字语言图形语言付号语言性质定理如果两个平行平面同时 和第三个平面相交,那 么它们的交线平行a// 3、aA Y a * ? a // b 3A Y b J7,心/IX1.平行问题的转化关系:2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化, 即从“线线平行”到“线面平行”,再到“面面平行”;而在性质定理的应用中,其顺序恰好相反, 但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3•辅助线(面)是求证平行问题的关键,注意平面几何中位线,平行四边形及相似中有 关平行性质的应用.由典题导入[例1] (2011福建高考)如图,正方体 ABCD — A i B i C i D i 中,AB = 2, 点E 为AD 的中点,点F 在CD 上•若EF //平面ABQ ,则线段EF 的长 度等于 _______________ .线//线判定判定 ------------- 判定 -------------- 性质 |线/面—质勺面/面性质[自主解答] 因为直线 EF //平面AB i C , EF?平面ABCD ,且平面 AB i C Q 平面ABCD = AC ,所以EF /AC.又因为点E 是DA 的中点,所以F 是DC 的中点,由中位线定理可得 EF1=2AC.又因为在正方体 ABCD — A i B i C i D i 中,AB = 2,所以AC = 2 2•所以EF = 2.[答案],2本例条件变为“ E 是AD 中点,F , G , H , N 分别是AA i , A i D i , DD i 与D i C i 的中点,解:如图,••G N //平面AA i C i C , EG //平面 AA i C i C , 又 GN n EG = G ,•••平面EGN //平面AA i C i C.•••当M 在线段EG 上运动时,恒有 MN //平面AA i C i C.呂由题悟法解决有关线面平行、面面平行的基本问题要注意:(i)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽 视.⑵结合题意构造或绘制图形,结合图形作出判断. (3)举反例否定结论或用反证法推断命题是否正确.&以题试法i . (i)(20i2浙江高三调研)已知直线I //平面a, P € a,那么过点P 且平行于直线I 的直 线() A •只有一条,不在平面 a 内 B .有无数条,不一定在平面 a 内C .只有一条,且在平面 a 内D .有无数条,一定在平面a 内解析:选C 由直线I 与点P 可确定一个平面 3,且平面a, B 有公共点,因此它们有若M 在四边形EFGH 及其内部运动”,则M 满足什么条件时,有 MN //平面A i C i CA.一条公共直线,设该公共直线为m ,因为I // a,所以I // m ,故过点P且平行于直线I的直线只有一条,且在平面a内.(2)(2012潍坊模拟)已知m, n, l i, I2表示直线,a, B表示平面.若m? a, n? a, l i? B, 12? B IE 12= M,贝U all B的一个充分条件是()A. m l B且l i l a B • m // B且n// BC. m l B 且n l I2 D . m l l i 且n l I2解析:选D 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知al B-直线与平面平行的判定与性质[例2] (2012辽宁高考)如图,直三棱柱ABC —A' B ' C', / BAC= 90° AB= AC =羽,AA' = 1,点M , N 分别为A' B 和B' C'的中点.(1) 证明:MN l 平面A' ACC ';1(2) 求三棱锥A' —MNC的体积.(锥体体积公式V = §Sh,其中S为底面面积,h为高)[自主解答](1)证明:法一:连接AB'、AC ',因为点M , N 分别是A' B和B' C'的中点,所以点M为AB'的中点.又因为点N为B ' C'的中点,所以MN /AC'又MN?平面A' ACCAC' ?平面A' ACC',因此MN l平面A' ACC'.法二:取A' B '的中点P.连接MP.而点M, N分别为AB '与B ' C'的中点,所以MP/AA ' , PN/A ' C '.所以MP l 平面A ' ACC ' , PN l 平面A ' ACC ' •又MP n PN= P,因此平面MPN l平面A ' ACC ' •而MN?平面MPN ,因此MN //平面A ' ACC(2)法一:连接 BN ,由题意得 A ' N IB ' C ',平面 A B ' C 'Q 平面 B ' BCC '=B 'C ',所以A ' N 丄平面NBC. 又 A ' N = 1B ' C ' = 1 ,吕由题悟法利用判定定理证明线面平行的关键是找平面内与已知直线平行的直线,可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过 已知直线作一平面找其交线.畐以题试法2. (2012淄博模拟)如图,在棱长为2的正方体 ABCD — A 1B 1C 1D 1中,E , F 分别是BD , BB 1的中点.(1) 求证:EF //平面 A 1B 1CD ; (2) 求证:EF 丄 AD 1.解:(1)在正方体ABCD — A 1B 1C 1D 1中,连接B 1D , 在平面BB 1D 内,E , F 分别为BD , BB 1的中点, ••EF BD.又•••B 1D?平面 A 1B 1CD. EF?平面 A 1B 1CD , ••EF //平面A 1B 1CD.⑵'-ABCD — A 1B 1C 1D 1 是正方体,•'AD 1 ^A 1 D , AD 1 JA 1B 1. 又 A 1D n A 1B 1 = A 1, ••AD 1 丄平面 A 1B 1D.故 V A ' - MNC = V N -A ' MC = 2V N -A ' BC = gV A '—NBC = 16.法二:V A ' -MNC = V A-NBC —V M — NBC =1V A '— NBC =••AD1I B1D.又由(1)知,EF B1D , /-EF_LAD1.平面与平面平行的判定与性质i典题导入[例3]如图,已知ABCD —A i B i C i D i是棱长为3的正方体,点E 在AA i 上,点 F 在CC i 上,G 在BB i 上,且AE = FC i = B i G= 1, H 是B i C i的中点.⑴求证:E, B, F , D i四点共面;⑵求证:平面A i GH //平面BED i F.5[自主解答](i)在正方形AA i B i B中,'•AE = B i G= i,••BG = A i E= 2,••BG 綊A i E.•四边形A i GBE是平行四边形.•■AiG /BE.又C i F 綊B i G,•四边形C i FGB i是平行四边形.••FG 綊C i B i 綊D i A i.•四边形A i GFD i是平行四边形.• A i G 綊D i F.•D i F 綊EB.故E, B, F, D i四点共面.3⑵--H是B i C i的中点,• B i H = 2厂B i G 2又B i G= i, /B1H= 3.又EC = f,且/FCB = /GB i H = 90 ° BC 3•••△i HG s/CBF.•••启i GH = ZCFB = ZFBG.••HG /FB.••GH ?面FBED i, FB?面FBED i ,「GH //面BED i F.由⑴知A i G/BE, A i G?面FBED i, BE?面FBED i,AG //面BED i F.且HG A A i G = G ,•平面A i GH //平面BED i F.占由题悟法常用的判断面面平行的方法(1) 利用面面平行的判定定理;(2) 面面平行的传递性(all 3,训Y all Y;⑶利用线面垂直的性质(I丄a, I丄3? a// 3 .血以题试法3. (20i2北京东城二模)如图,矩形AMND所在的平面与直角梯形MBCN 所在的平面互相垂直,MB // NC , MN丄MB.(1) 求证:平面AMB //平面DNC ;(2) 若MC丄CB,求证:BC丄AC.证明:(i)因为MB /NIC , MB?平面DNC , NC?平面DNC ,所以MB //平面DNC.又因为四边形AMND为矩形,所以MA /DN.又MA?平面DNC, DN?平面DNC.所以MA //平面DNC.又MA A MB = M,且MA, MB?平面AMB ,所以平面AMB //平面DNC.(2)因为四边形AMND是矩形,所以AM丄/IN.因为平面AMND丄平面MBCN,且平面AMND A平面MBCN = MN ,所以AM丄平面MBCN.因为BC?平面MBCN ,所以AM JBC.因为MC _LBC, MC A AM = M , 所以BC丄平面AMC.因为AC? 平面AMC,所以BC JAC.[ 小题能否全取]1.(教材习题改编)下列条件中,能作为两平面平行的充分条件的是()A •一个平面内的一条直线平行于另一个平面B .一个平面内的两条直线平行于另一个平面C. 一个平面内有无数条直线平行于另一个平面D •一个平面内任何一条直线都平行于另一个平面解析:选D 由面面平行的定义可知,一平面内所有的直线都平行于另一个平面时,两平面才能平行,故D正确.2. 已知直线a, b,平面a,则以下三个命题:①若a// b, b? a,贝U a// a;②若 a / b, a // a,贝U b // a;③若a/ a, b// a,贝U all b.其中真命题的个数是()A. 0B. 1C. 2D. 3解析:选A 对于命题①,若a// b, b? a ,贝U应有a// a或a? a,所以①不正确;对于命题②,若a// b , a// a ,则应有b// a或b? a,因此②也不正确;对于命题③,若a//a, b // a,则应有a // b或a与b相交或a与b异面,因此③也不正确.3. (教材习题改编)若一直线上有相异三个点A , B , C到平面a的距离相等,那么直线I与平面a的位置关系是()A . I // a B. I 丄aC. I与a相交且不垂直D. I // a或I? a解析:选D 由于I上有三个相异点到平面a的距离相等,贝U I与a可以平行,I? a时也成立.4. ___________________________________________________________ 平面a//平面3, a? a, b? 3,则直线a, b的位置关系是______________________________________________ 解析:由a//3可知,a, b的位置关系是平行或异面.答案:平行或异面5. (2012衡阳质检)在正方体ABCD —A1B1C1D1中,E是DD 1的中点,则BD i与平面ACE 的位置关系为_________解析:如图.连接AC, BD交于O点,连接OE,因为OE /BD1,而OE?平面ACE,BD1?平面ACE,所以BD1 /平面ACE.答案:平行基础知MW1 I C M U Z H I S H I Y A 0[知识能否忆起]一、直线与平面垂直1. 直线和平面垂直的定义直线I与平面a内的任意一条直线都垂直,就说直线I与平面a互相垂直.2.直线与平面垂直的判定定理及推论文字语言图形语言付号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直1心k a, b? a] a A b = O.r ? I 丄a1丄aI丄b 」推论如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面ab7 a / b、\? b丄aa丄a_直线、平面垂直的判定与性质3.直线与平面垂直的性质定理文字语言图形语言付号语言性质定理垂直于冋一个平面的两条直线平行a匚—b7a丄ab丄a€ a// b、平面与平面垂直1.平面与平面垂直的判定定理文字语言图形语言付号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直□a 丄3l丄aa j2.平面与平面垂直的性质定理文字语言图形语言付号语言性质定理a_L 3 、》? 1丄a ad 3= a1丄a」两个平面垂直,则一个平面内垂直于父线的直线垂直于另一个平面L71•在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件. 同时抓住线线、线面、面面垂直的转化关系,即:线血垂百线线垂直、一…厂:面面垂直-------- 性质---------------2•在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3•几个常用的结论:(1) 过空间任一点有且只有一条直线与已知平面垂直.(2) 过空间任一点有且只有一个平面与已知直线垂直.垂直关系的基本问题高频考点3EIB美GAOP1N K.AOI>IAN YAOLI典题导入[例1](2012襄州模拟)若m, n为两条不重合的直线,a, B为两个不重合的平面,给出下列命题:①若m,n都平行于平面a,则m,n—定不是相交直线;②若m、n都垂直于平面a,贝U m, n—定是平行直线;③已知a, B互相垂直,m, n互相垂直,若m丄a,则n丄④m,n在平面a内的射影互相垂直,则m,n互相垂直.其中的假命题的序号是________________ .[自主解答]①显然错误,因为平面a//平面平面a内的所有直线都平行所以3内的两条相交直线可同时平行于a;②正确;如图1所示,若aCl 3= I,且n/,当m丄a时,mln,但n//3,所以③错误;如图2显然当m' Jn'时,m不垂直于n,所以④错误.[答案]①③④-由题悟法解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例. ③寻找恰当的特殊模型(如构造长方体)进行筛选.初以题试法1. (2012长春模拟)设a, b是两条不同的直线,a, 3是两个不同的平面,则下列四个命题:①若a丄b, a丄a, b? a,贝U b // a;②若a // a, a丄3贝U a丄3;③若a丄3, a丄3,贝U a// a或a? a;④若a丄b ,a丄a, b丄3,贝U a丄3-其中正确命题的个数为()A. 1B.2C. 3D.4解析:选D对于①,由b不在平面a内知,直线b或者平行于平面a,或者与平面相交,若直线b与平面a相交,则直线b与直线a不可能垂直,这与已知"a丄b”相矛盾, 因此①正确.对于②,由 a // a知,在平面a内必存在直线a1 // a,又a丄3,所以有a j丄3, 所以a丄3,②正确.对于③,若直线a与平面a相交于点A,过点A作平面a 3的交线的垂线m,则m丄3,又a丄3,则有a / m,这与"直线a、m有公共点A”相矛盾,因此③正确.对于④,过空间一点O分别向平面a、3引垂线a1、b1 ,则有a // a1 , b / B ,又a丄b , 所以a1丄b1 ,所以a丄3,因此④正确•综上所述,其中正确命题的个数为 4.直线与平面垂直的判定与性质LI典题导入[例2](2012广东高考)如图所示,在四棱锥P—ABCD中,AB 丄平面PAD , AB // CD, PD = AD , E 是PB 的中点,F 是DC1上的点且DF = 2AB, PH PAD中AD边上的高.(1)证明:PH丄平面ABCD ;⑵若PH = 1 , AD = 2, FC = 1,求三棱锥E—BCF的体积;(3)证EF丄平面[自主解答](1)证明:因为AB丄平面FAD, PH?平面FAD ,所以PH JAB.因为PH为APAD中AD边上的高,所以PH 1AD.因为PH?平面ABCD , AB A AD = A, AB,AD?平面ABCD , 所以PH丄平面ABCD.连接EG.⑵如图,连接BH,取BH的中点G,因为E是PB的中点,所以EG PH ,1 1且EG = -PH = 2.因为PH丄平面ABCD , 所以EG丄平面ABCD.因为AB丄平面PAD , AD?平面PAD,所以AB丄\D.所以底面ABCD为直角梯形.所以V E-BCF = 3S Z SCF EG =1• FC AD EG =鲁.(3) 证明:取PA中点M,连接MD , ME.1 因为E是PB的中点,所以ME綊T^AB.1又因为DF綊^AB,所以ME綊DF,所以四边形MEFD是平行四边形,所以EF /MID.因为PD = AD,所以MD _LPA.因为AB丄平面PAD,所以MD 1AB.因为PA A AB = A,所以MD丄平面FAB,所以EF丄平面FAB.呂由题悟法证明直线和平面垂直的常用方法有:(1)利用判定定理.⑵利用判定定理的推论(a// b, a丄a? b丄汰⑶利用面面平行的性质(a丄a, a// 3? a± 3).(4) 利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.EJ以题试法2. (2012启东模拟)如图所示,已知PA丄矩形ABCD所在平面, M , N分别是AB, PC的中点.(1) 求证:MN丄CD ;(2) 若/ PDA = 45°求证:MN丄平面PCD.证明:(1)连接AC, AN, BN,••PA丄平面ABCD , /PA1AC,1在Rt△AC 中,N 为PC 中点,••• AN = ^PC.••PA丄平面ABCD,/PAJBC,又BC _1AB,PA A AB= A,••BC 丄平面PAB./BC1PB.从而在RtAPBC中,BN为斜边PC上的中线,1「BN = ?PC.••AN = BN. •△BN为等腰三角形,又M为AB的中点,• MN _LAB,又TAB CD , AMN JCD.⑵连接PM , MC ,Vz PDA = 45 °PAAAD, A AP = AD.• •四边形ABCD 为矩形,• AD = BC,「AP = BC./?又为AB的中点,••• AM = BM.而/PAM = ZCBM = 90°• △AM 也/CBM .•'PM = CM.又N为PC的中点,• MN JPC.由⑴知,MN _LCD , PC A CD = C,/MN 丄平面PCD.面面垂直的判定与性质[例3] (2012江苏高考)如图,在直三棱柱ABC —A i B i C i中,"B!=A i C i, D, E分别是棱BC, CC i上的点(点D不同于点C),且AD丄DE , F为B iC i的中点.求证:⑴平面ADE丄平面BCC i B i;(2)直线A i F //平面ADE.ti [自主解答](i)因为ABC —A i B i C i是直三棱柱,所以CC i丄平面ABC,又AD?平面ABC,所以CC i L AD.又因为AD IDE , CC i, DE?平面BCC i B i,CC i A DE = E,所以AD丄平面BCC i B i.又AD?平面ADE ,所以平面ADE丄平面BCC i B i.⑵因为A i B i= A i C i, F为B i C i的中点,所以A i F _LBi C i.因为CC i丄平面A i B i C i,且A i F?平面A i B i C i,所以CC il A i F.又因为CC i, B i C i?平面BCC i B i, CC i A B i C i= C i,所以A i F丄平面BCC i B i.由⑴知AD 丄平面BCC i B i ,所以A i F/AD. 又AD?平面ADE , A i F?平面ADE , 所以A i F //平面ADE.呂由题悟法1. 判定面面垂直的方法: (i )面面垂直的定义.⑵面面垂直的判定定理(a 丄B, a? a a 丄2. 在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直. 转化方法:在一个平面内作交线的垂线, 转化为线面垂直,然后进一步转化为线线垂直.$以题试法3. (20i2泸州一模)如图,在四棱锥P — ABCD 中,底面ABCD 为 菱形,/ BAD = 60° Q 为AD 的中点.⑴若PA = PD ,求证:平面 PQB 丄平面PAD ;⑵若点M 在线段PC 上,且PM = tPC (t>0),试确定实数t 的值, 使得FA //平面MQB.解:(1)因为FA = PD , Q 为AD 的中点,所以 PQ 丄AD. 连接BD ,因为四边形 ABCD 为菱形,/ BAD = 60° 所以AB = BD. 所以BQ 丄\D.因为BQ?平面PQB , PQ?平面PQB , BQ A PQ = Q , 所以AD 丄平面PQB.因为AD?平面PAD ,所以平面 PQB 丄平面PAD.证明如下:连接AC ,设AC n BQ = O ,连接 OM •在△AOQ 与△COB 中, 因为 AD BC ,所以/OQA=ZOBC,ZOAQ = ZOCB. 所以…。

人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_基础

人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_基础

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习平面【学习目标】1.利用生活中的实物对平面进行描述;理解平面的概念,掌握平面的画法及表示方法.2.重点掌握平面的基本性质.3.能利用平面的性质解决有关问题.【要点梳理】【空间点线面之间的位置关系知识讲解】要点一、平面的基本概念1.平面的概念:“平面”是一个只描述而不定义的原始概念,常见的桌面、黑板面、平静的水面等都给我们以平面的形象.几何里的平面就是从这些物体中抽象出来的,但是,几何里的平面是无限延展的.要点诠释:(1)“平面”是平的(这是区别“平面”与“曲面”的依据);(2) “平面”无厚薄之分;(3)“平面”无边界,它可以向四周无限延展,这是区别“平面”与“平面图形”的依据.2.平面的画法:通常画平行四边形表示平面.要点诠释:(1)表示平面的平行四边形,通常把它的锐角画成45,横边长是其邻边的两倍;(2)两个相交平面的画法:当一个平面的一部分被另一个平面遮住时,把被遮住的部分的线段画为虚线或者不画;3.平面的表示法:(1)用一个希腊字母表示一个平面,如平面α、平面β、平面γ等;(2)用表示平面的平行四边形的四个字母表示,如平面ABCD;(3)用表示平面的平行四边形的相对两个顶点的两个字母表示,如平面AC或者平面BD;4.点、直线、平面的位置关系:(1)点A 在直线a 上,记作A a ∈;点A 在直线a 外,记作A a ∉;(2)点A 在平面α上,记作A α∈;点A 在平面α外,记作A α∉;(3)直线l 在平面α内,记作l α⊂;直线l 不在平面α内,记作l α⊄.要点二、平面的基本性质平面的基本性质即书中的三个公理,它们是研究立体几何的基本理论基础.1.公理1:(1)文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;(2)符号语言表述:A l ∈,B l ∈,A α∈,B l αα∈⇒⊂;(3)图形语言表述:要点诠释:公理1是判断直线在平面内的依据.证明一条直线在某一平面内,只需证明这条直线上有两个不同的点在该平面内.“直线在平面内”是指“直线上的所有点都在平面内”.2.公理2:(1)文字语言表述:过不在一条直线上的三点,有且只有一个平面;(2)符号语言表述:A 、B 、C 三点不共线⇒有且只有一个平面α,使得A α∈,B α∈,C α∈;(3)图形语言表述:要点诠释:公理2的作用是确定平面,是把空间问题化归成平面问题的重要依据.它还可用来证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三点”这一条件.“有且只有一个”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同义.(4)公理2的推论:①过一条直线和直线外一点,有且只有一个平面;②过两条相交直线,有且只有一个平面;③过两条平行直线,有且只有一个平面.(5)作用:确定一个平面的依据.3.公理3:(1)文字语言表述:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;(2)符号语言表述:P l αβαβ∈⇒=且P l ∈;(3)图形语言表述:要点诠释:公理3的作用是判定两个平面相交及证明点在直线上的依据.要点三、证明点线共面所谓点线共面问题就是指证明一些点或直线在同一个平面内的问题.1.证明点线共面的主要依据:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(公理1);②经过不在同一条直线上的三点,有且只有一个平面(公理2及其推论).2.证明点线共面的常用方法:(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面a、β重合;(3)反证法.3.具体操作方法:(1)证明几点共面的问题可先取三点(不共线的三点)确定一个平面,再证明其余各点都在这个平面内;(2)证明空间几条直线共面问题可先取两条(相交或平行)直线确定一个平面,再证明其余直线均在这个平面内.要点四、证明三点共线问题所谓点共线问题就是证明三个或三个以上的点在同—条直线上.1.证明三点共线的依据是公理3:如果两个不重合的平面有一个公共点,那么它们还有其他的公共点,且所有这些公共点的集合是一条过这个公共点的直线.也就说一个点若是两个平面的公共点,则这个点在这两个平面的交线上.对于这个公理应进一步理解下面三点:①如果两个相交平面有两个公共点,那么过这两点的直线就是它们的交线;②如果两个相交平面有三个公共点,那么这三点共线;③如果两个平面相交,那么一个平面内的直线和另一个平面的交点必在这两个平面的交线上.2.证明三点共线的常用方法方法1:首先找出两个平面,然后证明这三点都是这两个平面的公共点.根据公理3知,这些点都在交线上.方法2:选择其中两点确定一条直线,然后证明另一点也在其上.要点五、证明三线共点问题所谓线共点问题就是证明三条或三条以上的直线交于一点.1.证明三线共点的依据是公理3.2.证明三线共点的思路:先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上的问题.【经典例题】类型一、平面的概念及其表示例1.下面的说法中正确的是().A .平行四边形是一个平面B .任何一个平面图形都是一个平面C .平静的太平洋面就是一个平面D .圆和平行四边形都可以表示平面【答案】D【解析】 利用平面的基本特征以及平面与平面图形的区别进行判断.A 不正确.我们用平行四边形来表示平面,但不能说平行四边形是一个平面.平行四边形仅是平面上四条线段构成的图形,它是不能无限延展的.B 不正确,平面图形和平面是完全不同的两个概念,平面图形是有大小的,它是不可以无限延展的.C 不正确,太平洋再大也会有边际,也不可能是绝对平面.D 正确.在需要时,除用平行四边形表示平面外,还能用三角形、梯形、圆等来表示平面.【总结升华】 平面与平面图形既有区别又有联系.平面没有角度、绝对平展、无边界,是一种理想的图形.平面可以用三角形、正方形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形等是平面.举一反三:【变式1】下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一个平面的长是50 m ,宽是20 m ;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为( ).A .1B .2C .3D .4【答案】A例2.平面α内的直线a 、b 相交于点P ,用符号语言概述为“a b P =,且P ∈α ”,是否正确?【答案】不正确【解析】不正确.应表示为:a α⊂,b α⊂,且a ∩b=P .相交于点P 的直线a 、b 都在平面α内,也可以说,平面α经过相交于点P 的直线a 、b .题中的符号语言只描述了直线a 、b 交于点P ,点P 在平面α内,而没有描述直线a 、b 也都在平面内,下图也是题中的符号语言所表示的情形.【总结升华】用符号语言来叙述时,必须交代清楚所有元素的位置关系,不能有半点遗漏.立体几何中的三种语言(文字语言、符号语言、图形语言组成立体几何语言,我们强须准确地把握它们.其中文字语言比较自然、生动,能将问题研究的对象的含义更明确地叙述出来.图形语言给人以清晰的视觉形象,有助于空间想象力的培养;而符号语言更精练、简洁.三种语言的互译有助于我们在更广阔的思维领域里寻找解决问题的途径,有利于对思维广阔性的培养.举一反三:【变式1】指出图中的图形画法是否正确,如不正确,请改正.(1)如图1,直线a 在平面α内.(2)如图2,直线a 和平面α相交.(3)如图3,直线a和平面α平行.【答案】详见解析【解析】(1)(2)(3)的图形画法都不正确.正确画法如下图:(1)直线a在平面α内:(2)直线a与平面α相交:(3)直线a与平面α平行:类型二、平面的确定例3.判断下列说法是否正确,并说明理由:(1)一点和一条直线确定一个平面;(2)经过一点的两条直线确定一个平面:(3)两两相交的三条直线确定一个平面;(4)首尾依次相接的4条线段在同一平面内.【答案】不正确正确不正确不正确【解析】(1)不正确.如果点在直线上,可以确定无数个平面;如果点不在直线上,在已知直线上任取两个不同的点,由公理2知,有且只有一个平面,或直接由公理2的推论1知,有且只有一个平面.(2)正确.经过同一点的两条直线是相交直线,由公理2的推论2知,有且只有一个平面.(3)不正确.3条直线可能交于同一点,也可能有三个不同交点,如下图(1)、(2)所示.前者,由公理2的推论2知.可以确定1个或3个平面;后者,由公理2的推论2及公理1知,能确定一个平面.(4)不正确.四边形中三点可确定一个平面,而第4点不一定在此平面内,如上图(3),因此这4条线段不一定在同一平面内.【总结升华】公理2及其3个推论都是确定平面的依据,对涉及这方面的应用问题,务必分清它们的条件.立体几何研究的对象是空间点、线、面的位置关系问题,要有一定的空间想象能力.对于问题中的点、线,要注意它们各种不同的位置关系,以及由此产生的不同结果.举一反三:【变式1】正方体的八个顶点一共可以确定个平面.【答案】20例4.三个互不重合的平面,能把空间分成n部分,则n的所有可能值为______________.【思路点拨】将互不重合的三个平面的位置关系分为:三个平面互相平行;三个平面有两个平行,第三个平面与其它两个平面相交;三个平面交于一线;三个平面两两相交且三条交线平行;三个平面两两相交且三条交线交于一点;五种情况并分别讨论,即可得到答案.【答案】4,6,7,8【解析】若三个平面互相平行,则可将空间分为4部分;若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;若三个平面交于一线,则可将空间分为6部分;若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分; 若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分; 故n 等于4,6,7或8类型三、平面的基本性质的应用例5.如右图,在正方体ABCD-A 1B 1C 1D 1中,判断下列命题是否正确,并说明理由.(1)直线AC 1在平面CC 1B 1B 内;(2)设正方形ABCD 与正方形A 1B 1C 1D 1的中心分别为O 、O 1,则平面AA 1C 1C与平面BB 1D 1D 的交线为OO 1;(3)由点A 、D 、C 可以确定一个平面;(4)由点A 、C 1、B 1确定的平面为ADC 1B 1;(5)由点A 、C 1、B 1确定的平面与由点A 、C 1、D 确定的平面是同一个平面.【解析】(1)错误.因为点A ∉平面CC 1B 1B ,所以AC 1不在平面CC 1B 1B 内.(2)正确.因为点O ∈直线AC ,直线AC ⊂平面AA 1C 1C ,所以点O ∈平面AA 1C 1C .同理,点O 1∈平面AA 1C 1C ,所以直线OO 1⊂平面AA 1C 1C .同理,直线OO 1⊂平面BB 1D 1D .故OO 1为平面AA 1C 1C 与平面BB 1D 1D 的交线.(3)错误.因为点A 、O 、C 在同一直线上,故不能确定—个平面(4)正确.因为点A 、C 1、B 1不共线,故可确定一个平面,又AD ∥B 1C 1,所以点D ∈平面AB 1C 1,故由点A 、C 1、B 1确定的平面为ADC 1B 1.(5)正确.因为点A 、C 1、B 1确定的平面为平面ADC 1B 1,而由点A 、C 1、D 确定的平面也是平面ADC 1B 1,故它们确定的是同一个平面.【总结升华】正确地运用三个公理和有关概念的推理是解决此类题目的依据.例6.已知直线a ∥b ,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面.证明 证法一:如下图所示.由已知a ∥b ,所以过a ,b 有且只有一个平面α.设l A α=,b l B =,∴A ∈α,B ∈α,且A ∈l ,B ∈l ,∴l α⊂.即过a ,b ,l 有且只有一个平面.证法二:由已知可设la A =,lb B =. ∵l a A =,过l 与a 有且只有一个平面β.∵a ∥b ,∴过a ,b 有且只有一个平面α,∴B ∈α,B ∈β,a α⊂,a β⊂.又B∉a,∴平面α与β重合.=⇒过a,b,l有且只有一个平面.即a∥b,.a l A=,b l B【总结升华】在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.确定一个平面的方法:①直线和直线外一点确定一个平面;②两条平行线确定一个平面;③两条相交直线确定一个平面.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.举一反三:【空间点线面之间的位置关系例2】【变式】(1)空间两两相交的四条直线能确定几个平面?(2)证明空间不共点且两两相交的四条直线在同一平面内.【答案】(1)1或6;(2)略【解析】(1)略(2)分两种情形,有三条交于一个点,没有三条交于一个点.已知:直线AB、BC、CD、DA两两相交,且不过同一点.求证:直线AB、BC、CD、DA共面.证明:如图(左),AB、BC、CD、DA两两相交,且无三条直线相交于一点.设AD、BC交于点M,AB、CD交于点N.∴AB、CD确定一个平面α.又∵C∈CD,B∈AB,D∈CD,A∈AB.∴A、B、C、D∈α.由公理1,知AD、BC∈α.故AB、BC、CD、DA四条直线共面.如图(右),AB、BC、CD、DA两两相交,且有三直线交于一点D.∵AB∩CD=C.∴AB、CD确定一个平面β.又∵A∈AB,D∈CD,∴A、D∈β,B∈AB,D∈CD,∴B、D∈β.∴AD⊂β,BD⊂β(公理1).∴AB、BC、CD、DA四直线共面.例7.如下图,已知△ABC的三个顶点都不在平面α内,它的三边AB、BC、AC延长后分别交平面α于点P、Q、R.求证:P、Q、R在同一条直线上.证明由已知AB的延长线交平面α于点P,根据公理3,平面ABC与平面α必相交于一条直线,设为L.∵P∈直线AB,∴P∈平面ABC.又AB∩α=P,∴P∈平面α,∴P是平面ABC与平面α的公共点.∵平面ABC∩α=l,∴P∈l,同理,Q∈l,R∈l.∴点P、Q、R在同一条直线l上.【总结升华】多点共线中的这条线一定是两个平面的交线,因此这类问题实际为两平面的相交问题.举一反三:【空间点线面之间的位置关系 例3】【变式1】已知E,F,G,H 分别是空间四边形各边AB ,AD ,BC ,CD 上的点,且直线EF 与GH 交于点P .求证:B ,D ,P 在同一直线上.【解析】P EF P ABD P EF GH P GH P BCD ∈⇒∈⎧⎫∈⇒⎨⎬∈⇒∈⎩⎭平面平面P ABD BCD BD P BD ⇒∈=⇒∈平面平面例8.(2016 甘肃天水月考)在正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1AA 的中点,求证:CE ,1D F ,DA 三线共点.【思路点拨】延长1D F 、DA 交于P ,连结EP ,由已知条件得△P AE ≌△P AF ,从而得到∠PEA +∠AEC =180°,由此能证明CE 、1D F 、DA 三线共点于P .【答案】略【解析】延长1D F 、DA 交于P ,连结EP∵AE =AF ,P A =P A ,∠P AE =∠P AF =90°,∴△P AE ≌△P AF ,∴∠PF A =∠PEA ,∵∠PEA =1PD D ∠,1PD D ∠=∠DCE (11A D F ∠=∠BCE ),∴∠PEA =∠DCE ,又∵∠DCE +∠AEC =180°,∴∠PEA +∠AEC =180°,即点P 、E 、C 共线,∴CE ,1D F ,DA 三线共点于P .【总结升华】本题考查三线共点的证明,题时要认真审题,注意空间思维能力的培养.举一反三:【变式1】 如下图,已知空间四边形ABCD (即四个点不在同一平面内的四边形)中,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且23CF CG CB CD ==.求证:直线EF、GH、AC相交于一点.证明:∵E、H分别是边AB、AD的中点,∴EH∥BD且12EH BD=.∵F、G分别是边BC、CD上的点,且23 CF CGCB CD==,∴FG∥BD且23FG BD=.故知EH∥FGE且EH≠FG,即四边形EFGH为梯形,从而EF与GH必相交,设交点为P.∵P∈EF,EF⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∵平面ADC∩平面ABC=AC,∴P∈AC.即EF、GH、AC交于一点P。

人教高中数学必修第二册8.4空间点线面之间的位置关系 知识点

人教高中数学必修第二册8.4空间点线面之间的位置关系 知识点

空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45o,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:αBA βαABαβαβBAAβαBA a ∉ 点A 不在直线a 上A α∈ 点A 在平面α内A α∉点A 不在平面α内b a Aa b A =I直线a 、b 交于A 点a α⊂直线a 在平面α内a α=∅I 直线a 与平面α无公共点a A α=I 直线a 与平面α交于点Al αβ=I 平面α、β相交于直线l二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面;BA αA αAαA aaαaαa Aα推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭I 如图示: 或者:∵,A A αβ∈∈,∴,l A l αβ=∈I 公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。

高中数学必修2《点、直线、平面之间的位置关系》知识点

高中数学必修2《点、直线、平面之间的位置关系》知识点

第二章 点、直线、平面之间的位置关系空间点、直线、平面之间的位置关系一、平面1、平面及其表示2、平面的基本性质 ①公理1:②公理2:不共线的三点确定一个平面③公理3:A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭P l P l P ααββ∈⎫⇒⋂=∈⎬∈⎭则二、点与面、直线位置关系1、点与平面有2种位置关系2、点与直线有2种位置关系三、空间中直线与直线之间的位置关系1、异面直线2、直线与直线的位置关系⎧⎧⎨⎪⎨⎩⎪⎩相交共面平行异面3、公理4和定理 公理4:12A B αα∈⎧⎨∉⎩、、12A lB l∈⎧⎨∉⎩、、131223l l l l l l ⎫⇒⎬⎭定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

4、求异面直线所成角的步骤: ①作:作平行线得到相交直线;②证:证明作出的角即为所求的异面直线所成的角; ③构造三角形求出该角。

提示:1、作平行线常见方法有:直接平移,中位线,平行四边形。

2、异面直线所的角的范围是 。

四、空间中直线与平面之间的位置关系位置关系公共点有无数个公共点有且只有一个公共点没有公共点符号表示图形表示五、空间中平面与平面之间的位置关系位置关系 两个平面平行 两个平面相交 公共点 没有公共点有一条公共直线符号表示αβa αβ=(000,90⎤⎦a α直线与平面平行a α直线与平面相交a 直线在平面内a α⊂a αa Aα=图形表示直线、平面平行的判定及其性质一、线面平行1、判定:(线线平行,则线面平行)2、性质:(线面平行,则线线平行)二、面面平行1、判定:(线面平行,则面面平行)b a b b a ααα⊄⎫⎪⊂⇒⎬⎪⎭a a ab b αβαβ⎫⎪⊂⇒⎬⎪⋂=⎭a b a b P a b βββααα⊂⎫⎪⊂⎪⎪⋂=⇒⎬⎪⎪⎪⎭2、性质1:(面面平行,则线面平行) 性质2:m m αββα⎫⇒⎬⊂⎭(面面平行,则线面平行)说明(1)判定直线与平面平行的方法:①利用定义:证明直线与平面无公共点。

必修二第一章立体几何和第二章点线面之间关系知识点归纳

必修二第一章立体几何和第二章点线面之间关系知识点归纳

第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

2、公理2:过不在一条直线上的三点,有且只有一个平面。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

6、线线位置关系:平行、相交、异面。

7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。

8、面面位置关系:平行、相交。

第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。

若A ,B ,C 不共线,则A ,B ,C 确定平面α推论1:过直线的直线外一点有且只有一个平面若A l ∉,则点A 和l 确定平面α推论2:过两条相交直线有且只有一个平面 若m n A = ,则,m n 确定平面α 推论3:过两条平行直线有且只有一个平面若m n ,则,m n 确定平面α 公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

,P P l P l αβαβ∈∈⇒=∈ 且公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。

4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.,a b c b a c ⇒m nαP· αL β5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

,1212a a b b ''∠∠⇒∠∠ 且与方向相同=,1212180a a b b ''∠∠⇒∠+∠︒ 且与方向相反=作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。

高中数学必修2点线面常用定理汇总

高中数学必修2点线面常用定理汇总

高中数学必修2 点、线、面知识小结第一部分 课本相关概念一、关于异面直线:1.定义:不同在任一平面的两条直线;既不平行也不相交的两条直线2.异面直线夹角:对于异面直线l 和m ,在空间任取一点P ,过P 分别作l 和m 的平行线1l 和1m ,我们把1l 和1m 所成的角叫做异面直线l 和m 所成的角α 其中,⎥⎦⎤⎝⎛∈20πα,3.异面直线的公垂线与两异面直线都垂直且相交的直线 两异面直线的公垂线段有且仅有一条 说明:两直线所成角θ的范围:⎥⎦⎤⎢⎣⎡∈20πθ, 二、关于线面角 1.直线与平面斜交:当直线与平面相交且不垂直时,称直线与平面斜交,直线叫做平面的斜线 2.斜线与平面所成的角:平面的一条斜线和它在平面上的射影所成的锐角α ,⎥⎦⎤⎝⎛∈20πα,当直线与平面垂直时,直线与平面所成角为︒90 3.直线与平面所成角:记作“θ”,⎥⎦⎤⎢⎣⎡∈20πθ,三、关于二面角1.半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分都叫做一个半平面2.二面角:从一条直线出发的两个半平面所组成的图形 这条直线称为二面角的棱;两个半平面称为二面角的面3.二面角的平面角:以二面角棱上任意一点为端点,在两个面内分别做垂直于棱的两条射线,这两条射线所成的角 二面角的大小用它的平面角的大小来表示 平面角是直角的二面角称为直二面角4.二面角的范围:记作“θ”,[]πθ,0∈四、空间中的距离问题:1.点到直线的距离:直线外一点到直线的垂线段长2.点到平面的距离:平面外一点到平面的垂线段长3.两异面直线间的距离:两异面直线间公垂线段的长4.平行直线到平面的距离:直线上任一点到平面的距离5.两平行平面间的距离:其中一个平面内任意一点到另一个平面的距离 五、空间中的位置关系: 1.点与直线的位置关系:点在直线上;点不在直线上; 2.点与平面的位置关系:点在平面内;点不在平面内;3.两直线的位置关系:相交,平行,异面;空间中垂直有两种:相交垂直和异面垂直 4.直线与平面间的位置关系:直线与平面平行α//l ;直线与平面相交P l =α ;直线在平面内α⊆l 直线与平面垂直是直线与平面相交的一种;直线与平面平行和直线与平面相交统称为直线不在平面内5.平面与平面的位置关系:相交l =βα ;平行βα//;重合βα=;第二部分 课本公理定理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内 αα∈∈∈∈B A l B l A ,,,且 ⇒ α⊆l用途:常用来判断点在平面内;或者直线在平面内 公理2 过不在同一直线上的三点,有且只有一个平面 推论 ①过直线与直线外一点,有且仅有一个平面②过两条相交直线,有且仅有一个平面 ③过两条平行直线,有且仅有一个平面 用途:常用来确定平面 公理3 若两个不重合的平面有一个公共点,则它们有且只有一条过该点的公共直线.βα∈∈P P 且 ⇒ l P l ∈=且,βα用途:证明两平面相交;或三点共线;或三线共点公理4 平行于同一条直线的两条直线互相平行 b a //,c b // ⇒ c a //空间等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补若方向相同,则两角相等;若方向相反,则两角互补 异面直线的判定定理:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线 l B B A l ∉∈∉⊆,,,ααα⇒AB 和l 是异面直线 线面平行判定定理 若不在平面内的一条直线与此平面内的一条直线平行,则该直线与此平面平行 m l m l //,,αα⊆⊄ ⇒ α//l面面平行判定定理 若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行第三部分 立体几何中的唯一性定理辨析1、经过平面外一点,有无数条直线和已知平面平行 经过平面外一点,有且只有一个平面和已知平面平行2、经过平面外一点,有且只有一条直线和已知平面垂直 经过平面外一点,有无数个平面和已知平面垂直3、经过直线外一点,有且只有一条直线和已知直线平行 经过直线外一点,有无数个平面和已知直线平行4、经过直线外一点,有且只有一条直线和已知直线垂直 经过直线外一点,有无数个平面和已知直线垂直第四部分 关于平行的判定方法一、线线平行的判定 1.定义法:在同一平面内,没有公共点的两条直线 ∅≠⊆⊆l m l m ;,αα ⇒ l m //2.平行公理:平行于同一条直线的两条直线互相平行 b a //,c b // ⇒ c a //3.线面平行性质定理 若一条直线与一个平面平行,过这条直线的任意平面与此平面相交,则交线与该直线平行l m m =⊆βαβα ,,// ⇒ l m //4.面面平行性质定理 若两个平行平面同时和第三个平面相交,则它们的交线平行一、线线垂直的判定 1.定义法:两直线所成角为o90;两直线所成角,是两直线相交所得较小的角;也可以是异面直线平移后相交所得较小的角2.线面垂直性质:若一条直线垂直于一个平面,则它垂直于平面内的所有直线αα⊆⊥n l , ⇒ n l ⊥3.三垂线定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直AB l l PB A PA ⊥⊆⊥=,,,ααα ⇒ PA l ⊥4.三垂线定理的逆定理:在平面内的一直线,若和这个平 交线的直线与另一个平面垂直 n l n l ⊥=⊆⊥,,,βααβα ⇒ β⊥l二、线面垂直的判定1.定义法:若直线和平面相交,并且和这个平面内的任意一条直线都垂直,则称这条直线和这个平面互相垂直2.线面垂直判定定理 若一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面n l m l P n m n m ⊥⊥=⊆⊆,;,, αα⇒α⊥l3.线面垂直性质 若一条直线垂直于垂直于两个平行平面中的一个平面,则它也垂直于另一个平面 βαα//,⊥l ⇒ β⊥l 面的一条斜线垂直,则它也和这条斜线的射影垂直PA l l PB A PA ⊥⊆⊥=,,,ααα ⇒ AB l ⊥5.线面垂直性质 若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面 α⊥l n l ,// ⇒ α⊥n6.面面垂直性质 若两个平面垂直,则一个平面内垂直于三、面面垂直的判定1.定义法:两个平面相交,若它们所成的二面角是直二面角,则这两个平面互相垂直.2.面面垂直判定定理 若一个平面过另一个平面的一条垂线,则这两个平面互相垂直 βα⊆⊥l l , ⇒ βα⊥。

点线面之间的位置关系的知识点总结

点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线 a ∥b 。

2 公理4:平行于 c ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D CBAα LA ·α C ·B·A · α P· αLβ 共面直线=>a ∥c2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

必修2点线面复习提纲及练习

必修2点线面复习提纲及练习

必修2 点线面复习姓名一、点线面的关系:直线和直线有3种关系:相交、平行、异面;直线和平面有3种关系:相交、平行、在平面内;平面和平面有2种关系:相交、平行;二、平行垂直的判定:线面平行:线平行面内一条直线————线线平行面面平行:相交直线平行面——————线线平行×2线面垂直:线垂直面内两条相交直线——线线垂直×2面面垂直:过面的垂线————————线线垂直×2三、平行垂直的性质:线面平行:线与交线平行面面平行:面面交线平行线面垂直:(1)线垂直于面内任何一直线(2)两垂线平行面面垂直:垂直交线的垂直面典型例题:1、如图,在三棱锥A-BCD中,E、F是棱AB、AD的中点求证:EF∥平面BCD2、在正方体ABCD-A 1B1C1D1中,E为边DD1的中点,O为AC和BD的交点,求证:BD1∥平面AEC3、三棱锥A-BCD中,E、F、G分别是AB、AD、AC的中点求证:平面EFG∥平面BCD4、在正方体ABCD-A1B1C1D1中,E、F为A1D1和BC的中点求证:EF∥平面ABB1A15、三棱锥A-BCD中,AB=1,AD=2,求证:AB⊥平面BCD6、三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD求证:CD⊥平面ABC7、在四棱锥S-ABCD中,SD⊥平面ABCD,底面ABCD是正方形求证:AC⊥平面SBD8、ABCD和DCCD1是两个正方形,平面ABCD⊥平面DCC1D1(1)求证:AD⊥平面DCC1D1(2)求证:D1D⊥平面ABCD(3)CD⊥平面BCC1(4)AC⊥平面BDD19:、(湖北文)如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,点E是线段SD上的任意一点,求证: AC⊥BE10、(江西文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,M 为PD 上一点,求证:平面ABM ⊥平面A P D11、(10广州一模)如图,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,求证:AB ⊥平面ADE ;12、在四面体ABCD 中,CB=CD ,AD BD ⊥,且E ,F 分别是AB ,BD 的中点, 求证(I )直线EF D 平面AC ;(II )EFC D ⊥平面平面BC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《点、直线、平面之间的位置关系》测试题(一)一、选择题1.(2010全国1文)在直三棱柱(侧面都是矩形的棱柱)中,若,,则异面直线与所成的角等于( ).A. B. C. D.考查目的:考查直三棱柱的性质,异面直线所成的角的求法.答案:C.解析:延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又∵三角形为等边三角形,∴.2.在空间中,下列命题正确的是( ).A.若∥,∥,则∥B.若∥,∥,,,则∥C.若∥,∥,则∥D.若∥,,则∥考查目的:考查直线与平面、平面与平面平行的判定.答案:D.解析:若∥,∥,则∥或,故A错误;由平面与平面平行的判定定理知,B错误;若∥,∥,则∥或,故C错误.3.设,,表示三条不同的直线,,表示两个不同的平面,则下列命题不正确的是( ).A. B.C. D.考查目的:考查直线与平面平行、垂直的转化.答案:D.解析:由∥,⊥可得,与的位置关系有:∥,,与相交,∴D不正确.4.(2010宁夏海南)如图,正方体的棱长为1,线段上有两个动点E,F,且,则下列结论中错误的是( ).A. B.三棱锥的体积为定值C. D.异面直线所成的角为定值考查目的:考查空间直线、平面之间平行和垂直关系综合应用的能力.答案:D.解析:A正确,易证,从而;B正确,可用等积法求得;C 显然正确,∵,∴;D错误.5.(2012重庆理)设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,则的取值范围是( ).A. B. C. D.考查目的:考查空间直线与直线之间的位置关系,以及有关计算的能力.答案:A.解析:如图所示的四面体,设为中点,在中,,则,.6.如图,平面⊥平面,A∈,B∈,AB与两平面,所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为、,则( ).A.2∶ 1B.3∶ 1C.3∶2 D.4∶3考查目的:考查直线与平面所成的角,以及二面角概念的综合运用.答案:A.解析:在平面内,过作,且,连结和,因为平面⊥平面,所以和即为和平面和平面所成的角,先解和求线段和的长,再解.二、填空题7.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.考查目的:考查直线与直线、直线与平面垂直关系的判定.答案:4.解析:由直线与平面垂直关系可知,图中直角三角形共有4个.8.(2007湖北理)平面外有两条直线和,如果和在平面内的射影分别是和,给出下列四个命题:①⊥⊥;②⊥⊥;③与相交与相交或重合;④与平行与平行或重合.其中不正确的命题是 .考查目的:考查空间两条直线的位置关系.答案:①②③④.解析:①如图⊥,但与不垂直;②⊥⊥或与重合;③与相交与相交或重合或异面;④与平行与平行或异面,所以四个命题均不正确.9.(2010全国1文)在正方体中,与平面所成角的余弦值为________.考查目的:考查正方体的性质、直线与平面所成的角的求法.答案:.解析:∵∥,∴与平面所成的角和与平面所成的角相等.设DO⊥平面,由等体积法得,即.设,则,,∴,记与平面所成角为,则,∴.10.(2009浙江理)如图,在长方形中,,,为的中点,为线段(端点除外)上一动点.现将沿折起,使平面平面.在平面内过点作,为垂足.设,则的取值范围是 .考查目的:考查直线与平面的位置关系,以及二面角概念的综合应用.答案:.解析:当F位于DC的中点时,;随着点F移动到与点C重合时,∵,,∴平面,∴.对于,,∴.又∵,,∴,∴,因此的取值范围是第二章《点、直线、平面之间的位置关系》测试题(二)三、解答题11.(2012上海理改编)如图,在四棱锥中,底面是矩形,是四棱锥的高,是的中点,已知,,,求:⑴四棱锥的体积;⑵异面直线与所成的角的大小.考查目的:考查异面直线所成角的概念及其求法.答案:⑴,⑵.解析:⑴根据题意四棱锥的体积.⑵取PB的中点F,连接EF,AF,则EF∥BC,∴∠AEF(或其补角)是异面直线BC与AE所成的角.连结AC.在直角△AEF中,,∴.在△AEF中,,,AE=2,∴△AEF是等腰直角三角形,∴∠AEF=,∴异面直线BC与AE所成的角大小为.12.(2011湖南文)如图,在圆锥PO中,已知,⊙O的直径AB=2,点C在上,且,D为AC的中点.⑴证明:AC平面POD;⑵求直线OC和平面PAC所成角的正弦值.考查目的:考查直线与平面垂直的判定,直线与平面所成角的计算,以及空间想象能力.答案:⑴略,⑵.解析:⑴∵OA=OC,D是AC的中点,∴AC⊥OD.又∵PO⊥底面⊙O,底面⊙O,∴AC ⊥OD.PO是平面POD内的两条相交直线,∴AC⊥平面POD.⑵由⑴知,AC⊥平面POD.又∵,∴平面POD⊥平面PAC.在平面POD中,过O作OH⊥PD于点H,则OH⊥平面PAC.连结CH,则CH是OC在平面PAC上的射影,∴∠OCH是直线OC和平面PAC所成的角.在中,;在中,.13.(2010陕西文)如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.⑴证明:EF∥平面PAD;⑵求三棱锥E—ABC的体积V.考查目的:考查直线与平面平行的判定,以及三棱锥的体积计算.答案:⑴略;⑵.解析:⑴在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.又∵BC∥AD,∴EF∥AD,∵AD平面PAD,EF平面PAD,∴EF∥平面PAD.⑵连接AE,AC,EC,过E作EG∥PA交AB于点G,则BG⊥平面ABCD,且.在△PAB中,AD=AB,,BP=2,∴,.∴,∴.14.(2010四川理)已知正方体的棱长为1,点M是棱的中点,点O 是对角线的中点.⑴求证:OM为异面直线和的公垂线;⑵求二面角的正切值.考查目的:考查异面直线、直线与平面垂直、二面角、正方体等基础知识,空间想象能力和逻辑推理能力.答案:⑴略;⑵.解析:⑴连结AC,取AC中点K,则K为BD的中点,连结OK.∵M是棱的中点,点O是的中点,∴,∴.由⊥AK,得MO⊥.∵AK⊥BD,AK⊥,∴AK⊥平面,∴AK⊥,∴MO⊥.又∵OM与异面直线和都相交,∴OM为异面直线和的公垂线.⑵取中点N,连结MN,则MN⊥平面.过点N作NH⊥于H,连结MH,则由三垂线定理得⊥MH,从而,∠MHN为二面角的平面角.MN=1,.在Rt△MNH中,,∴二面角的正切值大小为.15.(2012湖南理)如图,在四棱锥中,⊥平面,,,,,是的中点.⑴证明:CD⊥平面PAE;⑵若直线与平面成的角和与平面所成的角相等,求四棱锥的体积.考查目的:考查直线与平面垂直的判定,直线和平面所成角的运用,体积计算以及综合运用立体几何知识解决问题的能力.答案:⑴略;⑵.解析:⑴连接,由,,,得.又∵,E是的中点,∴.∵,∴.而是平面内的两条相交直线,∴⊥平面.⑵过点作,分别与相交于,连接.由⑴⊥平面知,⊥平面,∴为直线与平面所成的角,且.由知,为直线与平面所成的角.,,.由题意知,.∵,∴.由知,AD ∥BC. 又∵BG∥CD,∴四边形是平行四边形,∴,∴.在中,,∴,于是.又∵梯形的面积为,∴四棱锥的体积为.《2.3 直线、平面垂直的判定及其性质(2)》测试题一、选择题1.(2010山东)在空间中,下列命题正确的是( ).A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行考查目的:考查空间直线与平面的位置关系,直线与平面垂直、平行的判定和性质.答案:D.解析:选项A,平行直线的平行投影可以依然是两条平行直线;选项B,两个相交平面的交线与某一条直线平行,则这条直线平行于这两个平面;选项C,两个相交平面可以同时垂直于同一个平面;选项D正确.2.(2012浙江文)设是直线,,是两个不同的平面,则下列结论正确的是( ).A.若∥,∥,则∥B.若∥,⊥,则⊥C.若⊥,⊥,则⊥D.若⊥,∥,则⊥考查目的:考查直线与平面平行、垂直的判定和性质.答案:B.解析:利用排除法可得选项B是正确的,选项A:当∥,∥时,⊥或∥;选项C:若⊥,⊥,则∥或;选项D:若⊥,⊥,则∥或⊥.3.(2010全国2文)已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,,那么直线与平面所成角的正弦值为( ).A. B. C.D.考查目的:考查直线与平面、平面与平面的位置关系,会求直线与平面所成的角.答案:D.解析:过A作AE垂直于BC交BC于E,连结SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴ E为BC中点,∵BC⊥AE,SA⊥BC,∴BC⊥面SAE,∴BC⊥AF,AF⊥SE,∴AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长3,∴,AS=3,∴,,∴.二、填空题4.(2010辽宁理)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.考查目的:考查直线与平面垂直的判定.答案:.解析:由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.5.(2010四川)如图,二面角的大小是,线段.,与所成的角为,则与平面所成的角的正弦值是 .考查目的:考查直线和平面所成角的概念和求法.答案:.解析:过点A作平面的垂线,垂足为C,在内过C作的垂线.垂足为D.连结AD,则平面,AD⊥,故∠ADC为二面角的平面角为.又由已知得,∠ABD=,连结CB,则∠ABC为与平面所成的角.设AD=2,则,CD=1,,∴.6.(2012上海理)如图,与是四面体中互相垂直的棱,,若,且,其中,为常数,则四面体的体积的最大值是 .考查目的:考查直线与直线、直线与平面垂直关系,会根据几何体特点进行合理的计算.答案:.解析:过点A做AE⊥BC,垂足为E,连接DE,由AD⊥BC可知,BC⊥平面ADE,所以.又∵,∴当时,四面体ABCD的体积最大.过E做EF⊥DA,垂足为点F,已知EA=ED,∴△ADE为等腰三角形,∴点E为AD的中点.又∵,∴,∴,∴四面体ABCD体积的最大值.三、解答题7.(2011天津改编)如图,在四棱锥中,底面为平行四边形,,,O为AC中点,⊥平面,PO=2,M为PD中点,求直线AM与平面ABCD所成角的正切值.考查目的:考查直线和平面所成角的概念及其求法.答案:.解析:取DO中点N,连接MN,AN.∵M为PD的中点,∴MN∥PO,且.由PO⊥平面ABCD,得MN⊥平面ABCD,∴是直线AM与平面ABCD所成的角.在中,,,∴,∴.在中,.即直线AM与平面ABCD所成角的正切值为.8.(2010辽宁文)如图,棱柱的侧面是菱形,.⑴证明:平面平面;⑵设是上的点,且平面,求的值.考查目的:考查空间直线、平面之间的平行、垂直关系的证明,以及二面角的求法.答案:C.解析:⑴∵侧面是菱形,∴.又∵,且,∴平面.∵平面,∴平面平面.⑵设交于点E,连结DE,则DE是平面与平面的交线. ∵∥平面,∴.又∵E是的中点,∴以D为的中点,∴.《2.3 直线、平面垂直的判定及其性质(1)》测试题一、选择题1.(2010湖北文)用,,表示三条不同的直线,表示平面,给出下列命题:①若∥,∥,则∥;②若⊥,⊥,则⊥;③若∥,∥,则∥;④若⊥,⊥,则∥.其中真命题的序号是( ).A.①②B.②③C.①④D.③④考查目的:考查空间直线与直线、直线与平面的平行和垂直的转化关系.答案:C.解析:由公理4知①是真命题.在空间内,⊥,⊥,直线,的关系不确定,故②是假命题.由∥,∥,不能判定,的关系,故③是假命题.④是直线与平面垂直的性质定理.2.(2011浙江理)下列命题中错误的是( ).A.如果平面⊥平面,那么平面内一定存在直线平行于平面B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C.如果平面⊥平面,平面⊥平面,,那么⊥平面D.如果平面⊥平面,那么平面内所有直线都垂直于平面考查目的:本题考查空间平面与平面垂直的性质.答案:D.解析:如果平面⊥平面,那么平面内垂直于交线的直线都垂直于平面,其它与交线不垂直的直线均不与平面垂直,故D项叙述是错误的.3.(2011北京理)某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ).A.8B.C.10D.考查目的:考查直线与平面垂直的判定,和空间想象能力.答案:C.解析:该四面体的直观图,如图,,,PA=4,AB=4,BC=3,该四面体的四个面都是直角三角形,四个面的面积分别为,,故最大面积为10.二、填空题4.(2007四川理)如图,在正三棱柱中,侧棱长为,底面三角形的边长为1,则与侧面所成的角是.考查目的:考查直线和平面所成角的求法.答案:.解析:作于点,则为与侧面所成的角,在直角中,,,∴,∴.5.(2007江苏理改编)已知两条直线,,两个平面,,给出下面四个命题:①∥,⊥⊥;②∥,,∥;③∥,∥∥;④∥,∥,⊥⊥.其中正确命题的序号是 .考查目的:考查空间直线与平面的垂直和平行关系的判定.答案:①④.解析:①,④可由直线和平面垂直的定义和性质推证,根据②中的条件可得与平行或异面,③中有可能在内.6.(2012辽宁理)已知正三棱锥,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________.考查目的:考查空间几何体中直线与平面的位置关系.答案:.解析:∵在正三棱锥中,PA,PB,PC两两互相垂直,∴可以把该正三棱锥看作为一个正方体的一部分(如图),此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点.球心到截面ABC的距离为球的半径减去正三棱锥在面ABC上的高.已知球的半径为,∴正方体的棱长为2,可求得正三棱锥在面ABC上的高为,∴球心到截面ABC的距离为.三、解答题7.(2011天津改编)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=,AD=AC=1,O为AC的中点,PO⊥平面ABCD. 证明:AD⊥平面PAC.考查目的:考查直线和平面垂直的判定.答案:(略).解析:∵∠ADC=,且AD=AC=1,∴∠DAC=,即AD⊥AC.又∵PO⊥平面ABCD,AD?平面ABCD,∴PO⊥AD,而AC∩PO=O,∴AD⊥平面PAC.8.(2011江苏)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=,E,F分别是AP,AD的中点.求证:⑴直线EF∥平面PCD;⑵平面BEF⊥平面PAD.考查目的:考查直线与平面,平面与平面的垂直关系间的联系与转化.解析:⑴在△PAD中,∵E,F分别为AP,AD的中点,∴EF∥PD.又∵EF平面PCD,PD?平面PCD,∴直线EF∥平面PCD.⑵如图,连结BD. ∵AB=AD,∠BAD=,∴△ABD为正三角形. ∵F是AD的中点,∴BF⊥AD. ∵平面PAD⊥平面ABCD,BF?平面ABCD,平面PAD∩平面ABCD=AD,∴BF⊥平面PAD.又∵BF?平面BEF,∴平面BEF⊥平面PAD.《2.1 点、直线、平面之间的位置关系》测试题一、选择题1.(2011四川),,是空间三条不同的直线,则下列命题正确的是( ).A.⊥,⊥?∥B.⊥,∥?⊥C.∥∥?,,共面D.,,共点?,,共面考查目的:考查空间中直线与直线的位置关系及有关性质.答案:B.解析:在空间中,垂直于同一直线的两条直线有可能相交或异面,故A错;两平行线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错.2.若三个平面两两相交,有三条交线,且三条交线互相平行,则这三个平面把空间分成( ).A.5部分B.6部分C.7部分D.8部分考查目的:考查空间平面的位置关系和空间想象能力.答案:C.解析:如图所示,三个平面,,两两相交,交线分别是,,,且∥∥.观察图形,可得,,把空间分成7部分.3.(2010重庆文)到两条互相垂直的异面直线的距离相等的点( ).A.只有1个B.恰有3个C.恰有4个D.有无穷多个考查目的:考查异面直线的概念、性质和空间想象能力.答案:D.解析:可以将异面直线放在正方体中研究,显然,线段、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D.也可以在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等.二、填空题4.(2010江西改编)过正方体的顶点A作直线,使与棱AB,AD,所成的角都相等,这样的直线可以作_______.A.1条B.2条C.3条D.4条考查目的:考查空间直线所成的角概念与求法.答案:8.解析:如图,连结体对角线,显然与棱AB、AD,所成的角都相等,所成角的正切值都为.联想正方体的其他体对角线,如连结,则与棱BC、BA、所成的角都相等,∵∥,BC∥AD,∴体对角线与棱AB、AD、所成的角都相等,同理,体对角线、也与棱AB、AD、所成的角都相等,过A点分别作、、的平行线都满足题意,故这样的直线可以作4条.5.正方体中,P、Q、R分别是AB、AD、的中点,那么,正方体的过P、Q、R的截面图形是 .考查目的:考查空间几何的公理3,判断空间点线的共面关系.答案:六边形.解析:如图,作RG∥PQ交于G,连接QP并延长与CB交于M,连接MR交于E,连接PE、RE为截面的部分外形.同理连PQ并延长交CD于N,连接NG交于F,连接QF,FG,∴截面为六边形PQFGRE.6.(2012安徽文)若四面体的三组对棱分别相等,即,,,则____________(写出所有正确结论编号).①四面体每组对棱相互垂直②四面体每个面的面积相等③从四面体每个顶点出发的三条棱两两夹角之和大于而小于④连接四面体每组对棱中点的线段互垂直平分⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长考查目的:考查空间直线与直线的位置关系.答案:②④⑤.解析:①连接四面体每组对棱中点构成菱形;②四面体每个面是全等三角形,面积相等;③从四面体每个顶点出发的三条棱两两夹角之和等于;④连接四面体每组对棱中点构成菱形,菱形对角线垂直平分;⑤连结四面体棱的中点可得,该三角形三边分别等于长度的一半.三、解答题7.正方体中,E、F分别是AB和的中点.求证:⑴E,C,,F四点共面;⑵CE,,DA三线共点.考查目的:考查空间几何公理,会证明共线、共面问题.解析:⑴如图,连接EF,,.∵E、F分别是AB、的中点,∴EF∥.又∵∥,∴EF∥,∴E、C、、F四点共面.⑵∵EF∥,EF<,∴CE与必相交.设交点为P,则由P∈CE,CE?平面ABCD,得P∈平面ABCD.同理P∈平面.又∵平面ABCD∩平面=DA,∴P∈直线DA,∴CE、、DA三线共点.8.A是△BCD平面外的一点,E,F分别是BC,AD的中点.⑴求证:直线EF与BD是异面直线;⑵若AC⊥BD,AC=BD,求EF与BD所成的角.考查目的:考查异面直线的判定,求异面直线所成角的基本方法.答案:⑴略;⑵.解析:⑴假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾,故直线EF 与BD是异面直线. ⑵如图,设G为CD的中点,连接EG、FG,则EG∥BD,所以相交直线EF 与EG所成的,即等于异面直线EF与BD所成的角.同理即为异面直线AC和BD所成的角,又∵AC⊥BD,∴为直角,在Rt△EGF中,由EG=FG=AC,求得∠FEG=,即异面直线EF与BD所成的角为.《2.2 直线、平面平行的判定及其性质》测试题一、选择题1.下面命题中正确的是( ).①若一个平面内有两条直线与另一个平面平行,则这两个平面平行;②若一个平面内有无数条直线与另一个平面平行,则这两个平面平行;③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行.A.①③B.②④C.②③④D.③④ 考查目的:考查平面与平面平行的判定. 答案:D.解析:①②中两个平面可以相交,③是两个平面平行的定义,④是两个平面平行的判定定理.2.(2011浙江)若直线不平行于平面,且,则( ).A.内的所有直线与异面B.内不存在与平行的直线C.内存在唯一的直线与平行D.内的直线与都相交 考查目的:考查直线与平面的位置关系. 答案:B.解析:如图,在内存在直线与相交,所以A 不正确;若内存在直线与平行,又∵,则∥,与题设相矛盾,∴B 正确,C 不正确;在内不过与交点的直线与异面,D 不正确.3.(2012全国理)已知正四棱柱中 ,AB=2,,E 为的中点,则直线与平面BED 的距离为( ).A.2B.C.D.1考查目的:考查直线与平面平行的性质. 答案:D .解析:连结交于点,连结,∵是的中点,∴,且,∴∥平面,即直线与平面BED 的距离等于点C 到平面BED 的距离,过C 做于,则即为所求距离. ∵底面边长为2,高为,∴,,,利用等积法得.二、填空题4.平面∥平面,,,则直线,的位置关系是________.考查目的:考查平面与平面平行的性质. 答案:平行或异面.解析:直线与直线没有公共点,所以直线与平行或异面.5.在正方体中,E 是的中点,则与平面ACE 的位置关系为________.考查目的:考查直线与平面平行的判定.答案:平行.解析:如图,连接AC、BD交于O点,连结OE,∵OE∥,而OE?平面ACE, BD平面ACE,∴∥平面ACE.6.(2011福建文)如图,正方体中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面,则线段EF的长度等于_____________.考查目的:考查直线与平面平行的性质.答案:.解析:∵∥平面,平面,平面平面,由线面平行的性质定理,得.又∵E为AD的中点,∴F是CD的中点,即EF为的中位线,∴.又∵正方体的棱长为2,∴,∴.三、解答题7.(2011天津改编)如图,在四棱锥中,底面为平行四边形,为的中点,为的中点.求证:.考查目的:考查直线与平面平行的判定.解析:连接,.在平行四边形中,∵为的中点,∴为的中点.又∵为的中点,∴.∵平面,?平面,∴.8.如图,在三棱柱中,E,F,G,H分别是AB,AC,,的中点,求证:⑴B,C,H,G四点共面;⑵平面∥平面BCHG.考查目的:考查平面与平面平行的判定.答案:(略).解析:⑴∵GH是的中位线,∴GH∥.又∵∥BC,∴GH∥BC,∴B,C,H,G四点共面.⑵∵E、F分别为AB、AC的中点,∴EF∥BC.∵EF平面BCHG,BC?平面BCHG,∴EF∥平面BCHG.∵=EB且∥EB,∴四边形是平行四边形,∴∥GB.∵平面BCHG,GB?平面BCHG,∴∥平面BCHG.∵EF=E,∴平面∥平面BCHG.。

相关文档
最新文档